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Abstract

We consider reallocation problems in settings where the initial endowment of each agent
consists of a subset of the resources. The private information of the players is their value for
every possible subset of the resources. The goal is to redistribute resources among agents to
maximize efficiency. Monetary transfers are allowed, but participation is voluntary.

We develop incentive-compatible, individually-rational and budget balanced mechanisms for
several classic settings, including bilateral trade, partnership dissolving, Arrow-Debreu markets,
and combinatorial exchanges. All our mechanisms (except one) provide a constant approxima-
tion to the optimal efficiency in these settings, even in ones where the preferences of the agents
are complex multi-parameter functions.



1 Introduction

One of the most fundamental problem in economics is to determine how to allocate scarce re-
sources. Initially, resources may be inefficiently distributed among agents. However, as agents
value resources differently, they may want to trade to improve their well being.

When every agent seeks to maximize his own utility, classic economic theory generally predicts
the existence of an “invisible hand”: agents will trade among themselves to maximize their own
utility, and will eventually arrive at an efficient resource allocation. This paradigm fails, however,
in the presence of asymmetric information. Private information may lead to market failures, where
trade fails to take place even when it is desirable for all. One influential example is Akerlof’s market
for used cars [1], where the unraveling of markets leads to no trade at all. In this paper we aim to
design mechanisms that will foster trade in such markets, even if resources are distributed among
multiple agents with different interests and partial information.

In exchange economies, where each agent is initially endowed with some resources, agents si-
multaneously play the role of buyers and sellers. Exchange economies are related to many real life
environments; Individuals hold assets, like real estate, cars and stocks, for which other individu-
als have their own preferences. Firms hold other types of assets (e.g., employees, land, machines,
intellectual property) that may possibly be better assigned if more information becomes available.
Numerous examples from the realms of industrial organization and finance fall into this model,
like the dissolving of partnerships, breaking monopolies and other anti-trust acts, and merges and
acquisitions. Of particular interest are structured markets where trade can be coordinated by cen-
tralized mechanisms. One recent example for a centralized large-scale reallocation mechanism is
the FCC’s attempt to reallocate frequencies currently held by TV broadcasters to wireless phone
companies (see [15]). A major challenge in these FCC two-sided auctions is to provide incentives
for the TV broadcasters to relinquish their licenses (see also [3]).

Our main goal is to design markets that allow an efficient reallocation of resources. Technically,
this translates to three requirements. The first one is individually rationality : the participation
of the agents is voluntary and at any point they may leave the market and consume their initial
endowments. Thus, the outcome of any individually rational mechanism is a Pareto improvement
in the economy, where agents are expected to be (weakly) better off in the new allocations. The
second requirement is budget balance: the mechanism is not allowed to subsidize the agents in order
to improve the outcome. We distinguish between weakly and strongly budget balanced mechanisms:
in the latter the mechanism is additionally not allowed to burn money1.

The third requirement is truthfulness. We discuss both Bayesian and prior-free models, but
all our mechanisms admit ex-post dominant strategy equilibria (i.e., universal truthfulness). Even
when distributional assumptions are made, we make minimal use of this knowledge, namely we
only require access to statistical properties like the edowment’s median value2.

Our reallocation problems are essentially combinatorial auctions where items are initially held
by the players (and not by the auctioneer as usual), hence generalizing models of double auctions
double auctions (see, e.g., [20, 21, 6, 11, 10]). This adds another layer of complexity; For example,
while VCG can always be used to maximize the welfare in combinatorial auctions, in the presence
of endowments no truthful mechanism can allocate efficiently and remain budget balanced, as we
will shortly see.

1The budget balance requirement is common in the cost-sharing literature (e.g., [17] and [19]) but there the idea
is to charge the participants an amount that suffices to cover the cost of providing the service.

2In fact, using noisy estimations of the medians decreases the performance of our mechanism in a rate proportional
to the noise. Hence, even if we only have a black box access to the distributions, we can use the black box to estimate
the medians within an arbitrary precision, and preserve very similar performance guarantees.
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The challenges one faces in designing reallocation mechanisms reveal themselves even when
analyzing the simplest environment considered in this paper, bilateral trade. We then build upon the
insights we gain from this simple setting and develop mechanisms for more complex environments.

Bilateral Trade and Partnership Dissolving

Consider a seller that holds a single indivisible good and a buyer. The seller’s value for the good
vs is drawn from some distribution Ds, and the buyer’s value vb is independently drawn from Db.
In efficient markets the seller will sell the item if and only if vs < vb. Any price between these
values will clear the market and support an efficient allocation. However, finding this price may be
challenging, as the parties will try to influence the sale price by their bids.

A seminal impossibility result by Myerson and Satterthwaite [18] shows that no mechanism can
simultaneously achieve full efficiency, individual rationality and budget balance in (Bayes Nash)
equilibrium. Our first result bounds the loss of efficiency in bilateral trade: it considers the Median
Mechanism that simply sets a trade price p that equals to the median of the distribution of the
seller; The seller sells the item at price p to the buyer if and only if vs < p ≤ vb. Notice that this
mechanism is truthful, (strongly) budget balanced, and individually rational.

Theorem: The expected welfare of the median mechanism is at least half of the expected value of
the efficient allocation. I.e., the median mechanism is a 2 approximation to the optimal welfare.

We note that a similar mechanism that posts the median of the buyer’s value does not provide any
bounded approximation. However, by carefully analyzing both distributions we show how to find
a trade price that gives an approximation ratio strictly better than 2. The mechanism is inspired
by a neat recent work by McAfee [14] who showed that posting any price between the medians of
the two agents achieves in expectation a 2 approximation to the gain from trade (defined to be
max(0, vb − vs)), but only if the median of the buyer is at least the median of the seller.

Notice that our efficiency benchmark in this paper is the value of the efficient allocation, i.e.,
the allocation that maximizes the social welfare, sometimes also called the first-best solution. This
allocation is clearly infeasible when players behave strategically [18].3

Next, we consider the more general setting of Partnership Dissolving. Here, fractions of a
divisible item are held by n agents who have different (linear) preferences for this item. The goal
is to reallocate the items in a way that maximizes the welfare, which, in this setting, is equivalent
to giving all the good to the player with the highest value. Cramton, Gibbons and Klemperer [5]
show that if the shares are close enough to equal holdings, there exists a fully efficient mechanism
(see also [13], and a survey [16] ). Their mechanism is Bayes Nash incentive compatible and interim
individually rational. In contrast, we show that:

Theorem:

• Suppose that the shares are close enough to equal holdings. There exists a dominant strat-
egy, ex-post individually rational, strongly budget balanced mechanism whose efficiency loss
approaches 0 as the number of players grows. This mechanism does not require any distribu-
tional knowledge on the values of the agents.

3An alternative approach – when the distribution of preferences is known to the designer – is to run the second-best
mechanism, i.e., the mechanism that maximizes efficiency subject to the individual rationality and budget balance
constraints. While this approach might be feasible in some very simple settings where the structure of the second-best
mechanism is well understood (like bilateral trade with monotone-hazard rate distributions), very little is known on
the structure of such mechanisms in the more complicated models we study later. This holds in particular for the
multi-parameter environments we consider, for which a characterization of optimal mechanisms is a big open question.
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• For any arbitrary initial division of shares, there exists a dominant strategy, ex-post individ-
ually rational, strongly budget balanced mechanism that provides a better-than-2 approxi-
mation to the optimal social welfare.

The second mechanism is obtained by introducing a general reduction: any α-approximation mech-
anism for bilateral trade yields an α-approximation for partnership dissolving, regardless of the
initial division of shares.

Both bilateral trade and partnership dissolving are single-parameter domains. We now move
on to study more complex multi-parameter domains. Indeed, our most technical constructions are
developed for the next two multi-parameter environments.

Combinatorial Exchanges

We first consider combinatorial exchanges: a set of indivisible heterogeneous items that is initially
distributed among the agents so that each agent i holds a (possibly empty) subset Ei of the items.
Our players have combinatorial multi-parameter preferences over sets of items. Let Hn denote the
n’th harmonic number, and let t = maxi |Ei| (i.e., the maximal number of items held by a single
player). We are able to show that:

Theorem: There exists a truthful, individually rational, weakly budget balanced, randomized
mechanism that provides an 8Ht-approximation to the optimal welfare if all valuations are sub-
additive4. The only distributional knowledge that the mechanism uses is the median value of the
distribution of the endowment of each player.

In particular, if each bidder is initially endowed with at most one item we get an 8-approximation.
To gain some intuition about the mechanism, let us consider the simpler setting in which one

bidder i initially holds all items (that is, Ei = M). Let MEDi denote the median of the value of
the distribution of vi(Ei). We could have hoped to have the following generalization of the median
mechanism for bilateral trade: bidder i will report us if he is ready to sell all items for a price of
MEDi. If he agrees, we will use VCG to find an optimal allocation of the items to all bidders but
bidder i, and use the revenue generated from VCG to pay an amount of MEDi to bidder i. If
bidder i does not agree, he keeps the items. Notice that the approximation ratio of this (incorrect)
procedure is constant: if most of the expected optimal welfare is contributed by bidder i then by
doing nothing we already get a 2 approximation, and the outcome of any valid mechanism is a
Pareto improvement. On the other hand, if most of the expected optimal welfare is contributed
by the rest of the bidders, then we get a 4 approximation: with probability 1

2 bidder i sells his
endowment, and in that case we allocate the items optimally among all bidders but bidder i.

Of course, the procedure above fails because we cannot guarantee that the revenue will from
the VCG will be at least MEDi. To handle this, we develop a “revenue extracting” procedure
which is the combinatorial auctions analogue of a second-price auction with reserve price. In a
second-price auction the auctioneer can put a reserve price r to guarantee revenue of at least r
if the highest value is at least r. We show that in a combinatorial auction with n players there
exists a (deterministic, prior-free) mechanism that guarantees a revenue of at least r if the optimal
welfare is at least Hn · r.5

Our mechanism (for the special case) now looks as follows: allow bidder i to sell all his items
at price MEDi. If bidder i agrees, we use the revenue extraction procedure with a “reserve price”

4A valuation v is subadditive if for ever two bundles S and T we have that v(S) + v(T ) ≥ v(S ∪ T ).
5If the optimal welfare is smaller than Hn · r, then the mechanism is not required to allocate the items, but if it

does so the revenue is guaranteed to be at least r.
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of r = MEDi to distribute the items among all bidders but bidder i, and use the revenue to pay
MEDi to bidder i. The mechanism for the general case can be found in Section 4.

Prior-Free Mechanisms: Arrow-Debreu Markets

Our second main technical construction considers the classic exchange model of Arrow and Debreu
[2]. We have a single divisible good, but the valuations are no longer linear as in partnership
dissolving, but can be any function with decreasing marginals (i.e., concave valuations). An easy
adaption of the mechanism for combinatorial exchanges guarantees a constant approximation, but
our challenge now is to get rid of the distributional assumptions and develop prior free mechanisms
with a constant approximation ratio in the worst case.

From a technical perspective this is a multi-parameter environment for which our machinery
for developing truthful mechanisms (especially prior free ones) is limited. Yet, to our surprise we
were able to utilize ideas from the mechanism for combinatorial exchanges and come up with a
constant-approximation mechanism that does not make any distributional assumptions.

Theorem: There exists a truthful, prior-free, individually rational, weakly budget balanced, ran-
domized mechanism that provides a constant approximation to the optimal social welfare, as long
as no player is initially endowed with more than 1

3 of the good.

Notice the necessity of the last condition: in markets when, say, one player initially holds all the
good, in the spirit of [18] no prior-free mechanism with a constant approximation ratio exists.

A key idea in the mechanism is to replace the revenue extraction procedure that was used in the
mechanism for combinatorial exchanges with a more subtle one, that will allow us to take advantage
of the specifics of the setting and get a constant approximation ratio. Consider the special case
where one agent i holds all the good. Now, since we assume no distributional knowledge, we do not
know the median value of the endowment of i, but let us assume for now that we know instead the
“mid-supply” price: the price per fraction p for which i prefers to sell exactly half of his endowment.
The crux is that since the valuation of i exhibits decreasing marginals, agent i will agree to sell any
amount smaller than half of his endowment at the price. Thus, if we knew that mid-supply price
we could just run VCG with the rest of the agents as well as an additional dummy bidder that has
a value per fraction of p for any amount below half of the endowment of i. Observe that if some
bidder i′ was allocated fraction x of the good, the VCG payment formula implies that his payment
his at least x · p (since otherwise the dummy bidder can get an additional amount x of the good).
We can now take an amount of x from agent i, assign it to i′ and pay agent i x · p.

Conclusions and Future Directions

In this paper we devise welfare maximizing reallocation mechanisms. Almost all of our mechanisms
provide a constant approximation ratio to the welfare-maximizing allocation, but we do not know
whether these constants are optimal. In particular, proving impossibilities on the power of truthful
and budget balanced mechanisms for reallocation problems is an interesting open question.

Our focus in this paper was not computational complexity, but it turns out that all of our
mechanisms run in polynomial time, except the mechanism for combinatorial exchanges (see [12, 4]
for computational issues in combinatorial exchanges). Developing a polynomial time mechanism
for the latter setting seems hard as in particular it implies a solution to the notorious problem of
developing truthful polynomial time algorithm for combinatorial auctions with subadditive (and
submodular) bidders (see, e.g., [7], [9], and [8]).
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Finally, there are environments in which even the individual-rationality requirement can be
relaxed. For example, regulators may force firms to participate in some markets even if it may hurt
them (breaking monopolies and other anti-trust procedures fall into this category). Modeling such
environments is an interesting question that may possibly lead to some practical insights.

Organization

Section 2 defines a general framework which captures all settings we discuss. Instantiations of this
framework are studied next: bilateral trade and partnership dissolving in Section 3, combinatorial
exchanges in Section 4 and Arrow-Debreu markets in Section 5.

2 The Framework

Consider a set of resources M = {1, ...,m} and a set of n agents. Let Ei ⊆ [0, 1]m be the set of
allowed endowments for agent i. Let A ⊆ [0, 1]n×m be the set of allowed allocations of resources
among the agents, where Ai ⊆ [0, 1]m stands for the set of possible allocations to player i.

The valuation of player i is a function vi : Ai ∪ Ei → R+. Let Vi be the set of all possible
valuations of player i, and V = V1 × ... × Vn. We sometimes assume a Bayesian model, where vi
is drawn from Vi according to a distribution Fi, independently from the valuations of the other
agents. The valuations are private information and the endowments are known to the designer.

A (direct revelation) reallocation mechanism consists of an allocation function M : V → ∆(A)
and a payment function p : V → Rn.6 All of our mechanisms are dominant-strategy truthful. That
is, reporting the true valuations vi is a dominant strategy for every agent i. Truthful behavior is ex-
post (rather than dominant-strategy in expectation) which allows us, e.g., to ignore distributional
beliefs of the agents and whether they are risk-neutral or not. We require the following:

• Ex Post Individual Rationality. For every allocation and payment Ai, pi eventually allo-
cated to agent i with initial endowment Ei ∈ Ei (after the realization of the valuations and
the randomness of the mechanism), we have that vi(Ai)− pi ≥ vi(Ei).

• Ex Post Budget Balance. For every v ∈ V of the preferences we have
∑n

i=1 pi(v) = 0. If,
instead, we only have that

∑n
i=1 pi(v) ≥ 0, the mechanism is weakly budget balanced.7

• Approximate Efficiency. We would like to approximate the optimal expected efficiency
with non-strategic agents, OPT = maxA∈AEv∈V

[∑n
i=1 vi(Ai)

]
. A mechanism achieves an α

approximation to the optimal welfare if E[
∑n

i=1 vi(M(v))] ≥ OPT
α (expectation is over the

random coins of the mechanism, if any, and over the valuations v ∈ V ).

3 Partnership Dissolving and Bilateral Trade

Our first set of results concerns bilateral trade and partnership dissolving. As we will see these two
settings are closely related, in the sense that an approximation algorithm for the bilateral trade
problem immediately implies an algorithm with the same approximation guarantee for partnership
dissolving. We later extend the mechanisms we develop to more complex multi-parameter settings.

6Note that as agents in our model can be sellers and buyers simultaneously, we do not assume that payments are
positive; Negative payments mean transfers from the mechanism to the agents.

7Note that this definition holds for every realization of v (and not only in expectation, which is usually a key for
achieving budget balance in Bayesian domains, e.g., in [5]).
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3.1 Bilateral Trade

In the bilateral trade problem a seller holds a single indivisible good. The seller’s value for the
good vs is drawn from some distribution Ds. There is also a buyer, whose value for the good vb is
independently drawn from Db. Let Ms denote the median of the seller’s distribution. The Median
Mechanism works as follows: if both players accept the price Ms (i.e., vb ≥Ms and vs ≤Ms) then
the buyer gets the item and pays Ms to the seller. Otherwise, the seller keeps the item and no
payments are made.

Theorem 3.1. The Median Mechanism is truthful, individually rational, budget balanced and
achieves a 2-approximation to the optimal social welfare.

Proof. The mechanism is obviously truthful, individually rational, and budget balanced. We now
analyze its approximation ratio. We start with some notation. An instance (vs, vb) is type 1, if
vb < Ms. All other instances are type 2. Let Si denote the contribution to the optimal welfare of
type i instances in which the seller has a higher value, i.e., for i ∈ {1, 2}):

Si = E[vs|vs ≥ vb, instance is type i] · Pr[vs ≥ vb, instance is type i]

Similarly, let Bi = E[vb|vb > vs, instance is type i] · Pr[vb > vs, instance is type i].
Define OPTi = Si + Bi (for i = 1, 2) and observe that OPT = OPT1 + OPT2. Let ALG be

the expected welfare achieved by the median mechanism. Let ALGi be the expected contribution
of type i instances to this welfare (ALG = ALG1 +ALG2). We will show that ALG1 ≥ OPT1

2 and

ALG2 ≥ OPT2
2 and the theorem will follow.

Claim 3.2. ALG1 ≥ OPT1
2 .

Proof. First, we claim that B1 ≤ MS
2 . Indeed, for type 1 instances vb < Ms. Hence,

B1 = E[vb|vb > vs, instance is type 1] · Pr[vb > vs, instance is type 1] < Ms · Pr[vs ≤Ms] =
Ms

2

Thus, OPT1 = S1 + B1 ≤ S1 + MS
2 . Now observe that ALG1 ≥ S1 since the mechanism never

sells the item if vs ≥ vb. Finally, we claim that ALG1 > MS/2, since given that the instances are
of type 1, with probability 1

2 we have that vs > Ms (vs and vb are independent) and the welfare is
at least Ms (as vs > vb). Together we have that ALG1 > OPT1/2.

Claim 3.3. ALG2 ≥ OPT2
2 .

Proof. Observe that in the median mechanism, the buyer buys the item in type 2 instances only
when the seller’s value is below the price Ms. Thus,

ALG2 = S2 + E[vb|instance is type 2, vs < Ms] · Pr[instance is type 2, vs < Ms].

Since vs and vb are drawn from independent distributions we have that

ALG2 = S2 + E[vb|instance is type 2] · Pr[instance is type 2, vs < Ms]

= S2 + E[vb|instance is type 2] · Pr[instance is type 2] · Pr[vs < Ms]

= S2 + E[vb|instance is type 2] · Pr[instance is type 2] · 1

2

≥ 1

2

(
S2 + E[vb|instance is type 2] · Pr[instance is type 2]

)
(1)
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Now observe that OPT2 < S2 + E[vb|instance is type 2] · Pr[instance is type 2] since the RHS
is the expected welfare from type 2 instances when the buyer always gets the item and the seller
keeps the item whenever vs > vb (so we sometimes count the value of both bidders). Thus the RHS
is clearly at least than OPT2, which is simply max(vb, vs) in type 2 instances. Together with (1)
we get that ALG2 ≥ OPT2

2 .

This completes the analysis of the approximation ratio of the median mechanism.

One nice feature of the median mechanism is that it only requires the knowledge of the distri-
bution of one of the agents (the seller). We show that the median mechanism achieves the best
approximation ratio among such mechanisms (proof in the appendix):

Proposition 3.4. No truthful, individually rational and budget balanced mechanism an obtain an
approximation ratio better than 2 if the mechanism uses only the distribution of the seller or only
the distribution of the buyer.

As we show in the next theorem (proved in the appendix), carefully choosing a trade price that
depends on both distributions enables us to get a better approximation ratio:

Theorem 3.5. There exists a truthful, individually rational, and budget balanced mechanism that
achieves a 55

28 -approximation to the optimal social welfare.

Myerson and Satterthwaite [18] already proved that no mechanism can be fully efficient. We
further provide a quantification for that statement using the observation that every truthful de-
terministic8 mechanism for bilateral trade simply sets a fixed trade price r, since the trade price
cannot depend neither on the seller’s value nor on the buyer’s. Trade occurs if and only if vs ≤ r
and vb ≥ r. The simple proof is in the appendix.

Proposition 3.6. No truthful, individually rational, budget balanced mechanism can achieve an
approximation ratio better than 1.1231 to the social welfare.

3.2 Dissolving Partnerships

In the partnership dissolving problem, there are n agents, each agent i owns a share ri of an asset,
and

∑n
i=1 ri = 1. Each agent i has a value vi for holding the entire asset, or a value c ·vi for holding

a fraction c ≥ 0 of the asset. Let rmax = max{r1, ..., rn} be the largest share held by an agent.
We first construct a mechanism that does not use any distributional assumptions, yet it provides

a good approximation ratio given that the initial endowment of every player is not “too big”. As
we will see, achieving a better approximation ratio requires some distributional assumptions.

We then develop mechanisms with improved guarantees if the valuations are drawn from some
known distirbutions. We show that any approximation algorithm for bilateral trade can be used
for constructing a mechanism for partnership dissolving with the same approximation ratio.

3.2.1 The Pivot Mechanism: Prior-Free Partnership Dissolving

We first present a simple prior-free approximation mechanism for the partnership dissolving prob-
lem. The mechanism announces a price equal to the second highest value, and all bidders may sell
their share at that price to the highest-value bidder. As long as the agent with the second-highest
value does not own a large share of the asset, the mechanism achieves a good approximation.

8Choosing a price from some distribution in this Bayesian environment cannot help, as there always exists a
deterministic mechanism with at least the same welfare (i.e., the best price in the support).
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Without loss of generality, assume that v1 ≥ v2 ≥ ... ≥ vn. The Pivot Mechanism for partnership
dissolving is defined as follows:

• Each bidder i ≥ 3 give their shares r3, ..., rn to bidder 1. Bidder 2 keeps his share.

• Bidder 1 pays ri · v2 to every bidder i ∈ {3, ..., n}.

Proposition 3.7. The Pivot Mechanism for partnership dissolving is truthful, individually rational,
and budget balanced. It recovers a fraction of 1−rmax of the optimal social welfare in every instance.

Proof. It is straightforward to see that the mechanism is truthful, individually rational and budget
balanced. We now analyze the approximation ratio of the mechanism. Denote the optimal welfare
by OPT and observe that OPT = v1. The welfare of the mechanism is:

(1− r2) · v1 + r2 · v2 ≥ (1− r2) · v1 ≥ (1− rmax)OPT

We note that, as stated, the mechanism only partially dissolves partnerships, since sometimes
both players 1 and 2 end up with non-zero shares x1 and x2. Mechanisms with partial dissolving can
be turned to full dissolving as follows: denote the payment of agent i by pi. Run the mechanism,
and give all shares to player i (i = 1, 2) with probability ti = xi

x1+x2
for a payment of pi/ti. The

approximation ratio is the same, the mechanism is still individually rational, but now the mechanism
is only truthful in expectation (notice that the expected payment of each bidder i is still pi).

We now show that without distributional knowledge, the pivot mechanism for partnership
dissolving is essentially the best we can get.

Proposition 3.8. No deterministic, truthful, individually rational, and budget balanced mechanism
recovers more than 1− rmax of the optimal social welfare in every instance, for every rmax ≥ 1

2 .

Proof. Consider an instance with n bidders. Let the valuations of bidders 3, . . . , n be identically
zero and r3 = . . . = rn = 0. Let r1 = 1− rmax and r2 = rmax. Observe that since the valuations of
bidder 3, . . . , n are 0 and they have no shares, the only bidders 1 and 2 may trade. By dominant-
strategy truthfulness, the trade price cannot depend on v1 and v2, hence it is some fixed price p for
every v1 and v2. Now assume that v1 = p− ε and v2 = 0. The optimal solution has value v1 (give
bidder 1 all shares). However, no trade occurs so the value of the outcome is only (1−rmax) ·v1.

3.2.2 From Bilateral Trade to Partnership Dissolving

Next we show a reduction from partnership dissolving to bilateral trade. Given distributional
assumptions on the values of the bidders the reduction guarantees constant approximation ratios
for partnership dissolving irrespectively of the size of the initial shares. The idea is that each agent
sells his share to the other agents via the bilateral trade mechanism. However, the mechanism
needs to carefully adjust the prices so that truthfulness is maintained.

Lemma 3.9. Let M be some truthful, individually rational, and budget balanced mechanism for
bilateral trade that achieves an α-approximation to the welfare. There is a truthful, individu-
ally rational and budget balanced mechanism for partnership dissolving which also achieves an
α-approximation to the welfare.
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Proof. In the proof we use the already-mentioned fact that any truthful mechanism for bilateral
trade simply sets a trade price p that does not depend on the values of the bidders. We develop
our mechanism for partnership dissolving in two stages.

First Stage: A Mechanism where only Bidder i may sell. We will “run” M with bidder
i and a hypothetical buyer whose value is distributed according to the distribution of maxk 6=i vk.
Let p be the price that M posts. Let M ′ be the following mechanism:

• Let j ∈ arg maxk 6=i{vk} and let m2 be the second highest value of v1, . . . , vi−1, vi+1, . . . , vn,
that is, m2 = maxk∈N\{j,i} vk.

• Let p∗ = max{p,m2}. If vi ≤ p∗ and vj ≥ p∗ then bidder j pays to bidder i the amount of p∗

and receives the item. Otherwise bidder i keeps his item and does not get paid.

To see that the mechanism is truthful, observe that if a sale is made neither the winning buyer
nor bidder i cannot affect the price by changing their bid. A losing buyer k can only turn into a
winner by overbidding the winning buyer and paying p∗ ≥ vj ≥ vk, and therefore cannot gain a
positive payoff. If the item is not sold, it is either because the seller’s value exceeds p∗ (and winning
by underbidding induces a payment below vi) or all of the buyers’ values are below p∗ (and again,
overbidding results in a payment higher than vj).

Now for the approximation ratio. Notice that whenever there is a trade in M there is a trade in
M ′ (but the opposite is not true; for example, a trade takes place when p < vi ≤ m2). M achieves
an α-approximation to the optimal solution (that may only allocate bidder i’s share) which equals
max{vi,max{v−i}} = maxk{vk}. M ′ achieves at least the same expected welfare as M , thus it is
an α-approximation to the optimal welfare (that may only allocate bidder i’s share) as well.

The mechanism is individually rational since we always have that vi ≤ p∗ ≤ vj . In addition,
payments are transferred from one player to another, hence the mechanism is budget balanced.

Second Stage: The Final Mechanism. At an arbitrary order, use M ′ to sell to the other
bidders the endowment ri of each bidder i as a single indivisible item.

We now analyze the approximation ratio. Let vmax = maxk vk be the highest value. By selling
the endowment of bidder i the expected social welfare is at least rivmax

α . Since the valuations of the
bidders are linear, after selling all endowments the expected social welfare of at least vmax

α .
The truthfulness of the mechanism also follows from the linearity of the valuations of the

bidders: at every stage they will maximize their payoff from the item independently of the other
sales. Therefore, truthfulness follows from the truthfulness of M ′. Similarly, the mechanism is
individually rational and budget balanced.

As our best approximation for bilateral-trade is 55
28 , the reduction guarantees the same approx-

imation ratio for partnership-dissolving.

Corollary 3.10. There is a truthful, individually rational, and budget balanced mechanism the
Partnership Dissolving problem which is a 55

28 ≈ 1.964 approximation to the optimal social welfare.

4 Combinatorial Exchanges

In this section we consider combinatorial exchanges: there are n agents, each agent i initially holds
a subset Ei of the items. Items are heterogeneous and indivisible. Every agent i has a subadditive
valuation vi, that is, for every two bundles S, T we have that vi(S ∪ T ) ≤ vi(S) + vi(T ). Each vi
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is independently drawn from a distribution Fi. However, our mechanism will only require that the
mechanism knows, for each agent i, the median value MEDi for the bundle Ei she initially owns.

Let Hn be the n’th harmonic number (Hn =
∑n

i=1
1
i ) and t = maxi |Ei|. We present a mech-

anism that achieves an 8Ht approximation in this multi-parameter domain. In particular, if each
player is initially endowed with at most one item we get an 8-approximation.

The basic step of the mechanism is in some sense a reduction to the bilateral trade problem: the
bidders are randomly partitioned into two sets, “buyers” and ”sellers”, and each “seller” i is offered
to sell his endowment bundle at a price MEDi. Then we would like to take all the items that were
sold and optimally allocate them among the “buyers” using VCG. The main obstacle is that VCG
is not budget balanced. To overcome this we present a procedure that guarantees (approximate)
welfare maximization while guaranteeing a minimum amount of revenue. Subsection 4.1 describes
this procedure and the mechanism itself is in Subsection 4.2.

4.1 Detour: Combinatorial Auctions with Global Reserve

Consider the usual combinatorial auction setting, where a set M of m heterogeneous items that has
to be allocated to n bidders, each bidder i has a valuation vi : 2M → R. As usual we assume that
each vi is normalized (vi(∅) = 0) and non-decreasing. While the standard goal in the literature is
to maximize welfare, assuming the auctioneer has no production cost for the items, in our case the
auctioneer is only interested in selling the items to cover his non-negative cost r of producing all
items9. We are interested in truthful and individually rational mechanisms.

Denote by OPT the value of the welfare-maximizing allocation of the items in M to the bidders.
Clearly, if OPT < r then no such individually rational mechanism is possible. If OPT = r
then again no such mechanism exists but now the argument is a bit more delicate: by revenue
equivalence, VCG is the only truthful and individually rational mechanism that always outputs an
optimal solution, and it is easy to construct examples when its revenue is 0. For example, consider
two bidders and a set of two items a and b. The value of bidder 1 for any bundle that contains a
is 1 (the value of any other bundle is 0). Similarly the value of bidder 2 for bundles that contain b
is 1. VCG will allocate a to bidder 1 and b to bidder 2, but none of the bidders will pay anything.

We therefore relax our requirements: given α > 1, whenever OPT ≥ α · r the algorithm must
allocate some items to the bidders and raise a revenue of at least r. Else, when OPT < α · r the
mechanism is not required to sell the items (but if it does sell the revenue must be at least r).

The challenge is of course to develop such a mechanism with α that is as small as possible, and
we do so for α = Hn. We use the (well known) observation that VCG generalizes to maximization
of an affine function. Specifically, we “adjust” the welfare of an allocation A = (A1, . . . , An) to
be Σivi(Ai) − HnA · r, where nA is the number of non-empty bundles in A. We now select the
allocation with the highest “adjusted welfare”. Payments are similar to VCG payments.

The mechanism is truthful since VCG is truthful. In addition, the mechanism allocates the items
whenever OPT ≥ α · r. To see this, observe that the mechanism allocates some items only if there
is an allocation with a positive adjusted welfare (since the adjusted welfare of the empty allocation
is 0). Now recall that the adjusted welfare of the optimal allocation is at least OPT −Hn · r.

All that is left is to prove that when the mechanism allocates some items then the revenue is
at least r. Suppose that the mechanism outputs the allocation A = (A1, . . . , An). Consider some
bidder i with Ai 6= ∅. In the VCG mechanism bidder i pays his “damage to society”. Observe that

9The items are produced only if a sale is made. Here we assume for simplicity that the cost of producing the first
item is r and the cost of producing any additional item is 0. This corresponds to the case that the production cost
of items is governed by the start-up cost. A more realistic setup assumes a production cost for each item, or more
generally for bundles of items. Indeed, the mechanism of Subsection 4.2 essentially presents a solution for this case.
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the damage to society of bidder i is at least r
HnA

: consider the allocation A′ that allocates each

bidder i′ 6= i the same set of items and allocates nothing to bidder i. If we ignored the preferences
of bidder i, we could have chosen the allocation A′ and increase the adjusted welfare by

(Σi′ 6=ivi′(Ai′)−HnA−1 · r)− (Σi′ 6=ivi′(Ai′)−HnA · r) = HnA−1 · r −Hn · r =
r

nA

I.e., the payment of each bidder i with Ai 6= ∅ is at least r
nA

. Since by definition there are at least
nA such bidders, the total revenue is at least r, as required.

4.2 The Combinatorial Median Mechanism

Borrowing ideas from the procedure for combinatorial auction with a global reserve and the median
mechanism, we get the Combinatorial Median mechanism for combinatorial exchanges.

1. Each player is assigned to either group S or group B uniformly at random.

2. Each player i ∈ S will be offered a price equal MEDi (i.e., the median value of her endow-
ment). Let Ŝ denote the set of players in S that accepted the price. The total set of items of
players in Ŝ endowments is denoted by EŜ = ∪i∈ŜEi.

3. Given an allocation A of items in EŜ to players in B, denote for each i ∈ Ŝ by ti the
number of buyers that hold in A at least one item from Ei, i.e., ti = |{j|Aj ∩ Ei 6= ∅}|. Let
cA = Σi∈ŜHti ·MEDi.

4. Run a VCG auction for the items EŜ among the bidders B where we penalize the welfare of
an allocation A by cA, taking into account the endowments of bidders in B. I.e., we find the
allocation A that maximizes: Σi∈Bvi(Ai + Ei)− cA.

5. Consider seller i ∈ Ŝ. If at least one item from his endowment Ei is sold in the VCG auction,
then i is paid MEDi and loses all his endowment. Else, seller i keeps his endowment and is
not paid anything. Each buyer is allocated the items he won in the VCG auction (in addition
to his endowment) and pays his VCG payment.

The role of the cA’s is to guarantee budget balance in a slightly more complicated way than was
described earlier. This introduces inefficiency to the market, but we show that this loss is bounded.

Theorem 4.1. The Combinatorial Median mechanism is a 8Ht-approximation to the optimal social
welfare. It is truthful, ex-post individually rational and weakly budget balanced.

Proof. In the analysis we use the following simple folklore observation:

Claim 4.2. Let v be a subadditive valuation. Let S be a set and let R be a randomly constructed
set that is obtained by selecting each item in S with probability 1

2 , uniformly at random. Then,
E[v(R)] ≥ 1

2v(S).

Proof. By subadditivity and the random choice of R: E[v(R)] ≥ E[v(S) − v(S \ R)] ≥ v(S) −
E[v(R)].

The proof uses the following notation: given a set of players T and a set of items R, let
OPTT←R be the optimal allocation of items in R to players in T . Given an allocation A, let
A|T,R = Σi∈T vi(R ∩Ai) (the value of players in T from items in R).
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Claim 4.3. The mechanism achieves in expectation at least 1
2Ht

of the share of the optimal efficiency
gained by bidders in B receiving the items EŜ, that is:

ALG ≥ 1

2Ht
Ev
[
ES,B

[
OPT (v)|B,EŜ

]]
Proof. Let ALGS,B be the expected efficiency of our mechanism after partitioning to S,B. We first
argue that the effect of the cA’s on the welfare maximizing allocation is limited: given v, S,B, our
mechanism outputs the welfare-maximizing allocation of items in EŜ to the bidders in B, taking
the cA’s into account. The efficiency of the outcome ais composed of three terms: the value of the
allocation A, minus cA, plus the value of the players S \ Ŝ that did not accept the median price
and consume their own endowment.

The value of cA is at most Ht times the sum of the medians of sellers that agreed to sell their
items, and the value of players in S \ Ŝ is at least the sum of the medians offered to them. Since
sellers belong to Ŝ independently with probability 1

2 , we conclude that, in expectation, the total

value of the players in S \ Ŝ is at least 1
Ht

of cA. Let A = OPT (v)|B,EŜ
. We have that:

ALGS,B ≥ Ev
[

max{0, A− cA}] +
Ev[cA]

Ht
≥ Ev[A]

Ht

Since Ev
[

max{0, A− cA}] ≥ Ev
[
A]−Ev[cA] substituting Ev[cA] instead of Ev

[
A] yields the second

inequality when Ev
[
A] − Ev[cA] ≥ 0. When Ev

[
A] − Ev[cA] < 0, we observe that Ev

[
max{0, A −

cA}] ≥ 0 and the second inequality follows.
Thus, all we have to do is to bound the value of the nominator (where σ denotes an optimal

allocation of items in S to B, given a partition S,B)10:

Ev
[
OPT (v)|B,EŜ

]
≥ Ev

[
OPTB←EŜ

(v)
]
≥ Ev

[
OPTB←EŜ

(v)|B,EŜ

]
= Ev of B

[ ∑
i∈B

Ev of S

[
vi
(
σi ∩ EŜ

) ] ]

≥ Ev of B

[∑
i∈B

1

2
vi(σi)

]
=

1

2
Ev

[
OPTB←EŜ

(v)
]
≥ 1

2
Ev

[
OPT (v)|B,EŜ

]
Where in the third-to-last transition we use Observation 4.2. As the preferences v and the partition
S,B are drawn independently, it follows that:

ALG = ES,B
[
ALGS,B

]]
≥ 1

2Ht
ES,B

[
Ev
[
OPT (v)|B,EŜ

]]
=

1

2Ht
Ev
[
ES,B

[
OPT (v)|B,EŜ

]]
This concludes the proof of the lemma.

We now show that the random partition to S and B generates an efficiency loss which is not
greater than a factor of 4. Given a profile v, let σv be the optimal allocation for v. Then,

ES,B
[
OPT (v)|B,EŜ

]
=

n∑
i=1

Pr
(
i ∈ B

)
· ES,B[vi(σ

v
i ∩ EŜ)] ≥

n∑
i=1

1

2
· 1

2
vi(σ

v
i ) =

1

4
OPT (v)

10In the analysis, we ignore the endowments that players in B continue to hold, as it can only improve the
performance of our mechanism.
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Where the second transition is due to Observation 4.2. Together with the lemma we have that
ALG is a 8Ht-approximation to OPT.

The mechanism is clearly truthful, as the agents in B participate in a VCG auction (more pre-
cisely, an affine maximizer), the agents in S face take-it-or-leave-it offers, and agents are randomly
assigned to S and B.

Finally, we show that the mechanism is budget balanced. Let A be the allocation that the VCG
mechanism outputs (i.e., each player i ∈ B receives Ai + Ei). Consider bidder i ∈ B that receives
some items that were initially endowed to some set of players S′ ∈ S. Let A′ be the allocation in
which Ai′ = A′i′ for all i 6= i′ and A′i = ∅. Recall that in the VCG payment formula bidder i pays
his “damage to society” which is at least (comparing the welfare of A and and the welfare of A′):

Σi 6=i′,i∈B (vi(Ai + Ei)− cA)− Σi 6=i′,i∈B
(
vi(A

′
i + Ei)− cA′

)
= cA − cA′

=Σi′∈S′Hti′ ·MEDi′ − Σi′∈S′ ·Hti′−1 ·MEDi′

=− Σi′∈S′
MEDi′

ti′

In other words, we can think of each player i that got at least one item from Ei′ as paying
MEDi′
ti′

to player i′ (player i might pay an additional amount of money, but this additional amount is
“burned”). Since by definition there are ti′ players that got at least one item from Ei′ , the total
payment that i′ gets is exactly MEDi′ which equals to the amount that i′ receives, as needed.

5 Arrow-Debreu Markets

In this section we give a constant approximation mechanism for a multi-parameter environment
without any distributional assumptions. We consider the following setting [2]: there is one divisible
good and n players. Each player i has a valuation function vi : [0, 1] → R, and for every x, y we
define the marginal valuation vi(x|y) = vi(x + y) − vi(y).We assume that the valuation functions
are normalized (vi(0) = 0), non decreasing, and have decreasing marginal valuations (i.e., vi(ε|x) ≥
vi(ε|y) for every ε > 0, y > x).11 Denote the initial endowment of player i by ri, ri ≥ 0, where
Σiri = 1. Observe that given some price p, the supply that a seller i is willing to sell is an amount
xi that maximizes his payoff p · xi − vi(xi|ri − xi).

Our mechanism is in many respects a varaiant of the Combinatorial Median mechanism for
combinatorial exchanges. Similarly, players are divided into “sellers” and “buyers” (but in a subtler
way). The constant approximation ratio is achieved by replacing the revenue extraction procedure
of the combinatorial exchanges mechanism with a method that allows the separate sell of items.
This will be the key to obtaining a constant approximation in the worst case. We assume that
no single player initially holds a huge chunk of the good; Notice that if, say, one player is initially
endowed with all the good then no prior-free mechanism can achieve a bounded approximation.

Theorem 5.1. Suppose that for all i, ri ≤ 1
3 . Then, there exists a truthful, weakly budget balanced

mechanism that provides an expected approximation ratio of 48 in every instance.

We first provide a mechanism assuming that the bidders can be divided to 3 groups N1, N2,
N3 where each set Nk is substantial : Σi∈Nk

ri ≥ 1
4 . Later we relax the requirement; we will only

assume that for every i, ri ≤ 1
3 . We need the following definition:

Definition 5.2. Let Nk be a substantial set of bidders. The mid-supply price of Nk is the minimal
price p such that the total amount that bidders in Nk are willing to sell at price p is at least 1

8 .

11When vi(·) is twice differentiable, we simply assume that v
′′
i (x) ≤ 0 for every x.
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The mechanism itself is a bit heavy on details, although the basic idea is quite simple. We
therefore start with an informal description, and then move on to a formal one. Initially, we have
an arbitrary division of the bidders into three arbitrary substantial groups, N1, N2, and N3, with
roles selected at random: N1 wil be the group of buyers, N2 the statistics, and N3 the sellers.

We use the statistics group to compute a mid-supply price p: that is, the price for which bidders
in the statistics group are willing to sell half of their total supply (which is at least 1

8 of the good).
Each bidder in N3 is asked to report the maximum amount of his endowment that he is willing to
sell at price p. Let t be the total amount that the sellers are willing to sell (in fact, we have to
make sure that t ≤ 1

8 – see the formal description for exact implementation details).
Now, run VCG with the participation of the buyers and an extra additive buyer with valuation

vd(s) = min(t, s)·p. This bidder is added to ensure compliance with the budget balance requirement.
The set of possible allocations in this VCG mechanism equals to all distributions of amount t of
the good among the buyers and the extra additive buyer. Effectively, we show that this amounts
to finding a welfare maximizing allocation of t fraction of the good among the buyers so that each
buyer that received an amount of x pays at least x ·p. We use this money to pay each bidder i ∈ N3

a total sum of xi · p, where xi is the part of the endowment that was taken from bidder i. We now
provide a formal description of the mechanism, followed by its analysis.

The Formal Mechanism:

1. Let N1, N2 and N3 be three substantial groups of bidders.

2. Select at random “roles” for the groups N1, N2, N3: players in one group will be the buyers
(without loss of generality, N1), another group will be the statistics group (without loss of
generality, N2), and players in the additional group are the sellers (N3).

3. Let p be the mid-supply price of the statistics group N2. Each seller from the sellers group
N3 reports the amount of good x′i he is willing to sell at price p. Let t = min{18 ,Σi∈N3xi}.
If Σi∈N3x

′
i ≤ 1

8 , let xi = x′i. If Σi∈N3x
′
i >

1
8 , choose a value xi for each i such that xi ≤ x′i

and Σi∈N3xi = 1
8 .12

4. For each player i ∈ N1, let v′i(s) = vi(s|ri). Let N ′ be a set that consists of all players in N1

and one additional dummy bidder.

Use the VCG mechanism to sell t fraction of the good to buyers in N ′, where the valuation
of each player i ∈ N1 is v′i and the valuation of the dummy bidder is vd(s) = min(t, s) · p.

5. The output of the mechanism is as follows: each bidder i ∈ N1 pays to the mechanism the
VCG payment of v′i and receives the same amount of good that v′i received (in addition to his
endowment ri). Bidders in N2 keep their initial endowment and do not pay anything.

Let t′ ≤ t be the amount of good that the dummy player ended up with in the VCG mecha-
nism. Choose some x′′i ’s such that for each i ∈ N3, x

′′
i ≤ xi and Σi∈N3x

′′
i = t− t′, taking the

good first from bidders with lower indices. Each bidder i ∈ N3 keeps ri − x′′i of the good and
receives a payment of x′′i · p.

Claim 5.3. The above mechanism is truthful.

12Formally, order the buyers arbitrarily, and let xi = max{0, 1
8
− Σi′>ix

′
i′} if x′

i + Σi′>ix
′
i′ ≥ 1

8
.
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Proof. The mechanism is clearly truthful for the statistics group since they never sell nor receive any
amount of the good. The mechanism is also truthful for the buyers since they are just participating
in a VCG mechanism. To show that the mechanism is truthful for the sellers we have to use the fact
that the valuations exhibit decreasing marginal utilities. First, observe that the price p depends
only on the valuations of the statistics group N2. Now, consider some seller i ∈ N3. Bidder i reports
at stage 3 a quantity x′i that maximizes his profit x · p + vi(ri − x). Therefore, if he eventually
sells a fraction x′i he has no reason to report a different value. However, at stages 3 and 5 of the
mechanism the quantity that he sells is reduced to xi or x′′i that may gain him a lower profit. By
the way that the mechanism reduces the quantities, reporting any value above x′′i will not affect the
quantity that seller i sells. If seller i reports a value smaller than x′′i , he will sell a quantity smaller
than x′′i ; This smaller quantity cannot gain him a greater profit since the profit is non-decreasing
in x in the range below x′i due to decreasing marginals.13

Claim 5.4. The above mechanism is weakly budget balanced.

Proof. Consider a buyer i that received an amount of ti (not including his endowment ri). His
VCG price is at least ti · p, since otherwise we could have considered the same allocation except
that an additional amount of ti of the good is allocated to the dummy bidder. We have that the
total payment is at least (t− t′) · p, which is exactly the amount we have to pay to the sellers.

The next lemma analyses the approximation ratio of the mechanism:

Lemma 5.5. If there are three substantial groups N1, N2, and N3 then the mechanism provides
an approximation ratio of 48.

Proof. Fix some optimal solution (o1, . . . , on). For k = {1, 2, 3}, let Ok = Σi∈Nk
vi(oi). Observe

that since each group of bidders plays the role of the buyers with probability exactly 1
3 , we have

that E[O1] = OPT/3. Let p′ be the mid-supply price of N3 and recall that p is the mid-supply
price of N2. Since the statistics group and the sellers group are chosen at random, with probability
at least 1/2 we have that p ≥ p′. We will condition our analysis on that event and conservatively
assume that if p < p′ then the welfare of the allocation that the mechanism outputs is 0.

Now, if p ≥ p′, the total amount of the good that bidders in N3 are willing to sell is at least
1
8 : they hold at least 1

4 of the good by our initial condition, and at price p′ they are willing to sell
half of it, so surely they will agree to sell that amount at price p ≥ p′. In particular we have that
Σixi = 1

8 with probability at least 1
2 .

Claim 5.6. For every i ∈ N1, let si denote the amount of good bidder i receives in the final
allocation. If t = 1

8 then Σi∈N1vi(si) ≥ O1
8 −

p
8 .

Proof. Consider the allocation that gives each bidder i ∈ N1 an amount of s′i = oi
8 . Since the

valuations have decreasing marginals, the welfare of this allocation is at least Σivi∈N1(s′i) ≥
O1
8 and

no more than 1
8 of the good was allocated to players in N1.

Thus, the welfare of VCG is at least the welfare of (s′1, . . . , s
′
n), but we have to subtract the

contributtion of the dummy bidder. His contribution to the welfare is at most his maximum value:
p
8 . Thus we have that Σi∈N1vi(si) ≥ O1

8 −
p
8 .

13To see this, note that the derivative of x · p is p for every x. Since x′
i maximizes profit, and due to the convexity

of vi, for every value x < x′
i and the derivative of vi(ri − x) is negative with absolute value of at most p. Therefore,

the marginal profit is non-negative for x < x′
i. A similar argument holds also when vi is not differentiable.
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Now notice that the value of bidders in the statistics group N2 is at least p · t = p
8 : they are not

willing to sell 1
8 = t of the good at price p, so their total value for their initial endowment (that

they keep) is at least p · t.
Hence we have that with probability at least 1

2 (if t = 1
8), it holds that Σi∈N1vi(si)+Σi∈N2vi(si) =

O1
8 −

p
8 + p

8 = O1
8 . Recall that E[O1] = 1

3 , and we get that the expected welfare is at least
1
2 ·

E[O1]
8 ≥ OPT

48 , as needed.

We now relax the requirement of substantial groups and show how the above mechanism can
be used for the more general case. The proof of the lemma is in the appendix.

Lemma 5.7. If for every i we have that ri ≤ 1
3 then there exists a mechanism that provides an

approximation of 48.
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[8] Shahar Dobzinski and Jan Vondrák. The computational complexity of truthfulness in combi-
natorial auctions. In ACM Conference on Electronic Commerce, pages 405–422, 2012.
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A Missing Proofs of Section 3

Proof of Proposition 3.4

We start with the first part. Consider the following distribution Ds of the seller: with probability
1
2 , vs gets a value (uniformly at random) in (0, ε). With probability 1

2 , vs gets a value (uniformly
at random) between (1, 1 + ε). Observe that the median of Ds is 1.

There are two possible cases, depending on the trade price r:

1. r ≤ 1: let vb =∞ with probability 1. The optimal solution always sells the item to the buyer,
but the mechanism will sell the item with probability 1

2 . We get an approximation of 2 since
vb >> vs.

2. r > 1: let vb = 1 − ε with probability 1. The value of the optimal solution is at least
1 − ε (always sell the item to the buyer). However, the mechanism sells the item only when
vs ∈ (0, ε), which happens with probability 1

2 . The approximation is 2 also in this case.

We now prove the second part. Consider the following distribution Db of the buyer: with
probability 0.99, vb gets a value (uniformly at random) in (1, 1 + ε). With probability 0.01, vb gets
a value (uniformly at random) between (100, 100 + ε).

There are several possible cases, depending on the trade price r.

1. r ≤ 1 + ε: let vs = 1 + ε with probability 1. The optimal solution sells the item to the buyer
with probability 1

100 and the expected welfare is about 2. The mechanism that post the price
r however will never sell the item and will generate an expected welfare of 1 + ε.
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2. 1 + ε < r ≤ 100 + ε: let vs = 0 with probability 1. The expected value of the optimal solution
is about 2 (always sell the item to the buyer). However, the mechanism sells the item only
when vb ∈ (100, 100 + ε), so the expected welfare is about 1. The approximation is 2 also in
this case.

3. r > 100 + ε: let vs = 0. The expected value of the optimal solution is 2, but the mechanism
achieves welfare of 0.

Proof of Proposition 3.6

Consider a setting where the seller has an exponential distribution Fs(vs) = 1 − e−svs and the
buyer’s distribution is Fb(vb) = 1− e−bvb .

The expected social welfare is simply the maximum of two exponential variables. The mini-
mum of two exponential variables is distributed exponentially with parameter s + b, therefore its
expectation is 1

s+b . We get that: E[max{vs, vb}] = E[vs+vb]−E[min{vs, vb}] = 1/s+1/b−1/(s+b).
For a given trade price p, the welfare is:

e−bp
((

1− e−sp
)(

p+
1

b

)
+ e−sp

(
p+

1

s

))
+
(

1− e−bp
) 1

s

Where we use that for the exponential distribution, E[x|x > p] = p+E[x]. The welfare is maximized
when the partial derivative by p equals zero, i.e., when (b2 − s2)e−sp = b2 − b2sp. For s = 1 and
b = 1/2, we get that the optimal price is about 1.603 that gives welfare of 2.0775 compared to
optimal welfare of 7

3 .

B A 55
28-Approximation Mechanism for Partnership Dissolving

In this section we present a mechanism for bilateral trade that provides an approximation ratio
which is strictly better than 2. Denote by Mb the median of the distribution of the buyer and by
Ms the median of the distribution of the seller.

Theorem B.1. There exists a 55
28 -approximation for the bilateral trade problem.

For clarity of presentation we normalize the value of the optimal solution OPT to be 1. The
mechanism itself simply chooses a trade price p according to the following rule:

• If Mb ≥Ms:

– If expected value of the seller is greater than 1/13, then p ∈ [Ms,Mb]. Else, p = 3/13.

• If Mb ≥Ms:

– Let p be either Ms or Mb, whichever gives a better expected welfare.

One part of the proof relies on McAfee’s 2 approximation for the gain for trade [14]. In Appendix
B.1 we provide an alternative combinatorial proof for this result. We will also use the analysis of
this combinatorial proof in the proof of the theorem.

In the proof we let x denote the random variable denoting the value of the item for seller, and y
be random variable denoting the value of the item for the buyer. We divide the proof to two cases,
depending on the relationship between Mb and Ms.
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Case 1: Mb ≥Ms

We show that in this case we get an approximation ratio of 13
7 . Let r = E[x] (the expected value of

the seller). We present two mechanisms that provides different approximation ratios that depend
on r, and show that at least one them gives the guaranteed approximation ratio.

Lemma B.2. If Mb ≥Ms then the expected welfare provided by McAfee’s mechanism is 1
2 + r

2 .

Proof. McAfee [14] shows that ALG − r ≥ 1
2(OPT − r). This implies that ALG ≥ OPT

2 + r
2 , as

needed.

The second mechanism is the following: for t > 1, given r = E[x] as defined above, the t-
threshold sets a trade price of t · r. The next lemma analyzes the approximation ratio of the
t-threshold mechanism (the analysis holds for all Ms and Mb):

Lemma B.3. If t < 1−r
2r then the expected welfare of the allocation that the t-threshold mechanism

produces is at least 1 + r − 1
t + r

t − t · r.

Proof. First observe that it trivially holds that OPT ≥ E[x] + E[y]. Hence, E[y] ≥ 1 − r. Let
p = Pr[x < t · r], and let q = Pr[y < t · r]. By Markov inequality, p ≥ 1− 1/t. We can now write:

ALG =p · q · E[x|x < tr] + (1− p) · q · E[x|x ≥ tr] + p · (1− q) · E[y|y > tr] + (1− p)(1− q) · E[x|x ≥ tr]
=p · q · E[x|x < tr] + p · (1− q) · E[y|y > tr] + (1− p) · E[x|x ≥ tr]

Since E[y] = q ·E[y|y ≤ tr]+(1−q) ·E[y|y > tr] we have that (1−q) ·E[y|y > tr] ≥ E[y]−q ·t ·r.
We continue in our effort to give a lower bound on ALG:

≥p · q · E[x|x < tr] + p · (E[y]− q · t · r) + (1− p) · E[x|x ≥ tr]
≥p · E[y]− p · q · t · r + (1− p) · E[x|x ≥ tr]

Since q ≤ 1 and since E[x|x ≥ tr] ≥ tr:

≥p · E[y]− p · t · r + (1− p) · tr
≥t · r + p · (1− r)− 2p · t · r

Observe that whenever t ≤ 1−r
2r we have that 2t · r ≤ 1 − r. Therefore, in this regime we the

expression is minimized when p gets the lowest value possible:

≥t · r + (1− 1

t
) · (1− r)− 2(1− 1

t
) · t · r

=1 + r − 1

t
+
r

t
− t · r

To finish the case where Mb ≥Ms, consider first the case where r < 1
13 . In this case we choose

t = 3, and apply Lemma B.3. The approximation ratio that we get is 13
7 . On the other hand, if

r ≥ 1
13 , we apply Lemma B.2 and get again an approximation ratio of 13

7 .

19



Case II: Mb < Ms

We show that there is a trade price that provides a 156
255 -approximation to the welfare for this case.

We assume that r > 1
13 – otherwise Lemma B.3 guarantees a 13

7 -approximation. For simplicity, in
the proof of this case we assume that both distributions are discrete and that every atom in the
support has the same probability. Both assumptions can be removed with some effort but the proof
becomes a bit messier.

We start with some notation. For every element x in the support of the seller’s distribution Ds,
let px = Prq∼Ds [q < x]. Consider an element x < Ms in the support of Ds (the distribution of the
seller). We match x to the (unique) element x′ in the support of Ds with px′ = px + 0.5. Using
similar notation, we match every element y < Mb in the support of Db to y′ in the support of Db

with py′ = py + 0.5. Partition the set of all instances to 4-tuples (quadruples). We will have two
types of quadruples:

1. Tuples where Mb < y′ < Ms.

2. Tuples where Mb < Ms < y′.

Fix some optimal mechanism. and denote by O1 the contribution of type 1 tuples to the
optimum, and by O2 the contribution of type 2 tuples. Observe that OPT = O1 +O2.

Lemma B.4. The mechanism that posts a trade price Ms provides an approximation ratio of
O1
2 + 7O2

13 .

Proof. We first show that we extract an expected welfare of at least O1
2 from type 1 instances.

In this case we have that x′ > Ms and that y′, y, x < Ms. As usual we consider four instances:
< x, y >, < x, y′ >, < x′, y′ >, < x′, y >. Since x′ is the largest value, the sum of the optimal
solutions in all these four instances is trivially bounded from above by 4x′. Now observe that in
the last two instances the mechanism does not sell the item, so the sum of all the solutions that
the mechanism outputs is bounded from below by 2x′. This gives that we get a O1

2 from type 1
instances.

Next we claim that we get a 2 approximation for the gain from trade of type 2 instances. Our
constraints imply that the following quadruples as possible:

• x′ and y′ can take arbitrary values, as long as both are at least Ms ≥Mb.

• y ≤Mb ≤Ms.

• x ≤Ms.

It is routine to verify that all of these tuples are analyzed in Appendix B.1. Thus we get a 2
approximation for the gain from trade for all type 2 tuples. Now, since E[x] = E[x|type 2] (because
the distributions are independent, and whether a tuple is type 1 or type 2 is only a function of y′),
we get that we extract at least (12 + r

2) ·O2 from type 2 instances (as in Lemma B.2). Recall that
by our assumption r ≥ 1

13 , which finishes the proof of the lemma.

Lemma B.5. The mechanism that posts a trade price of Mb provides an expected welfare of at
least 2O1

3 .

Proof. Next we consider type 1 tuples when using this price. By definition of x,y,x′,y′ and type
1 tuples, we have that x′ > Ms, Mb < y′ < Ms, y < Mb and x < Ms. We consider two cases,
depending on whether x < Mb or not.
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1. x < Mb. There are four possible instances:

(a) In < x, y > the optimal solution has value max(x, y) and we assume conservatively that
the mechanism outputs a solution with value min(x, y).

(b) In < x′, y > the optimal solution has value x′ is and the mechanism outputs a solution
with value x′.

(c) In < x′, y′ > the optimal solution has value x′ and the mechanism outputs a solution
with value x′.

(d) In < x, y′ > the optimal solution has value y′ and the mechanism outputs a solution
with value y′.

One can check that the solution of the mechanism possibly differs from the solution of the
optimal solution only in the first case. Our loss in this case is bounded by y < y′ < x′.
Since the optimal aggregated welfare from all four instances is 2x′+y′+max(x, y) and ALG’s
aggregated welfare is 2x′ + y′ + min(x, y), we have that the expected approximation ratio is
4
3 for the quadruple.

2. Ms > x > Mb. There are four possible instances:

(a) In < x, y > the optimal solution has value x and the mechanism outputs solution with
value x.

(b) In < x′, y > the optimal solution has value x′ and the mechanism outputs solution with
value x′.

(c) In < x′, y′ > the optimal solution has value x′ and the mechanism outputs solution with
value x′

(d) In < x, y′ > the optimal solution has value max(x, y′) and we conservatively assume that
the mechanism outputs solution with value min(x, y′).

The solution of the mechanism possibly differs from the solution of the optimal solution only in
the last case. In this case our loss is bounded by x′. Since the optimal aggregated welfare from all
four instances is 2x′ + x+ max(x, y′) and ALG’s aggregate welfare is x+ 2x′ + min(x, y′), we have
that the expected approximation ratio is 3

2 in this case.

We therefore have two mechanisms that give two different guarantees: one provides an expected
welfare of at least O1

2 + 7O2
13 and the other provides an expected welfare of at least 2O1

3 . Recalling
that O1 + O2 = 1, we have that at least one of these mechanisms guarantees an approximation
ratio of 28

55 .

B.1 A Combinatorial Proof for McAfee’s Mechanism

Let the seller’s value be x which is drawn from some distribution Ds and the buyer’s value be y,
drawn from some independent distributionDb. The expected gain from trade is Ex∼Ds,y∼Db

[max(y−
x, 0)]. McAffee shows the following:

Theorem B.6 ([14]). Denote the median of Ds by Ms and the median of Db by Mb. If Mb ≥Ms

then setting a trade price of Ms provides a 2 approximation to the expected gain from trade.
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We now provide an alternative combinatorial proof for McAffee’s theorem. For simplicity, in
the proof we assume that both distributions are discrete and that every atom in the support has
the same probability. Both assumptions can be removed with some effort but the proof becomes a
bit messier.

We start with some notation. For every element x in the support of distribution Ds, let
px = Prq∼Ds [q < x]. Consider an element x < Ms in the support of Ds. We match x to the
(unique) element x′ in the support of Ds with px′ = px + 0.5. Using similar notation, we match
every element y < Mb in the support of Db to y′ in the support of Db with py′ = py + 0.5.

We denote instances by < x, y > where x is the value of the seller and y is the value of the
buyer. A losing pair is an instance < x, y > where x < y but the mechanism does not make a sell.
If x < y but the mechanism does make a sell this is a winning pair.

We can have the following three types of losing pairs, and we match each type with a winning
pair. This way, all losing pairs are matched to a winning pair.

1. < x, y > where x < Ms and y < Mb. We match it to < x, y′ >.

2. < x′, y′ > where x′ > Ms and y′ > Mb. We match it to < x, y′ > as well.

3. < x′, y > where x′, y are in [Ms,Mb]. If x′, y > p, < x′, y > is matched to < x, y >. If
x′, y < p then < x′, y > is matched to < x′, y′ >.

We will show that the gain from trade from every winning pair is at least total gain from trade
that would have been gained from the losing pairs matched to it.

Consider values < x, y, x′, y′ > as in items 1 and 2. < x, y′ > is a winning pair matched with
two losing pairs < x, y > and < x′, y′ >. Since y − x′ < 0 (recall that y < Ms, x

′ > Mb), we have
that (y − x) + (y′ − x′) < y′ − x, and this what we wanted to show.

Consider values < x, y, x′, y′ > as in item 3. Assume that the losing pair is x′, y > p; Then,
the winning pair is < x, y > which is matched only to < x′, y >, but y − x ≥ y − x′. Similarly,
assume that the losing pair is x′, y < p; Then, the winning pair is < x′, y′ > which is matched only
to < x′, y >, but y′ − x′ ≥ y − x′.

Together, this gives us a 2 approximation for the gain for trade.

C Missing Proofs Section 5

Sketch of Proof of Lemma 5.7

We divide into several cases:

• There are two bidders i and j with ri, rj ≥ 1
8 : we select at random one player i or j to play N2

and the remaining one to play N3. The rest of the players will consist the group N1. Observe
that if either vi(oi) ≥ OPT

6 or vj(oj) ≥ OPT
6 then we are already done, since the current value

for the endowment is at least 1
8 of their contribution to the optimal welfare. Furthermore, no

individually rational mechanism (and our mechanism in particular) can decrease the welfare.

We may therefore assume that the total contribution of bidders in N1 to the optimal welfare
is at least 2OPT

3 . Running the mechanism (but now with t = 1
16) and using the very similar

analysis, give us welfare of at least 2OPT
3 · 1

16 with probability 1
2 , hence the approximation

ratio is 48 in this case.

• There is at most one bidder i with ri ≥ 1
8 : we show how to construct three substantial sets

and therefore we can run the mechanism with no change.
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Recall that by assumption ri ≤ 1
3 . Select two disjoint minimal sets of bidders T1 and T2 such

that for each l, Σi′∈Tlri′ ≥
1
4 and i /∈ Tl. Notice that by minimality and since for each bidder

i′ 6= i we have that ri′ ≤ 1
8 , we have that Σi′∈Tlri′ ≤

3
8 . Notice that two such minimal sets

exist since Σi′ 6=iri′ ≥ 2
3 .

Let our three substantial sets be T1, T2, N−T1−T2. T1 and T2 are substantial by construction,
and that N − T1 − T2 is substantial since Σi′∈Tlri′ ≤

3
8 for each l.
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