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Abstract. We study the design of provider incentives in the post-acute care setting �
a high-stakes but under-studied segment of the healthcare system �by examining the

impact of a sharp jump in payments to long-term care hospitals (LTCHs) that occurs

when a patient�s stay reaches a pre-speci�ed number of days. The descriptive evidence

indicates that discharge decisions from the LTCH respond strongly to approximately

$13,000 payment increase for keeping a patient an additional day at the threshold. The

marginal patient discharged after the threshold is a relatively healthy one. Despite the

large incentives and behavioral response in a high mortality population (90 day mortality

is 30%), we are unable to detect any compelling evidence of an impact of the incentives

on patient mortality. To quantify the impact of the �nancial incentives and assess

behavior under counterfactual payment schedules, we specify and estimate a simple

dynamic discrete choice model of LTCH discharge decisions. We �nd that our least

generous payment schedule could save about $12,000 per patient or $1.5 billion annually.

Interestingly, we �nd that our most generous payment schedule, which provides weakly

higher payments at every length of stay, also reduces government spending through its

e¤ect on discharge behavior. This result highlights how improved �nancial incentives

can reduce healthcare spending, without negative consequences for patient health and

perhaps even industry pro�ts.
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1 Introduction

Healthcare spending is one of the largest �scal challenges facing the U.S. federal government. In

2014, the U.S. federal government spent $1.1 trillion on public healthcare programs (BEA, 2015)

and the CBO projects that spending will grow to $2.0 trillion by 2026 (CBO, 2016). Within the

healthcare system, post acute care (PAC) is an important but relatively under-studied sector. Post-

acute care is the term used for care provided to help patients recover from a surgery or other acute

care event, and is de�ned as care provided by a long-term care hospital (LTCH), skilled nursing

facility (SNF), inpatient rehabilitation facility (IRF), or home health care agency (HHA) (MedPAC,

2015b). In the Traditional Medicare (TM) program that we study, PAC spending was $60 billion

or about 16 percent of total program spending in 2013, and is growing at a faster rate than overall

Medicare spending (MedPAC, 2004, 2015a).

The nature of the post acute care system makes it ripe for ine¢ ciencies. Patients take complex

paths through PAC, often receiving services from two or more facilities during a single episode of

care. The functional distinction between di¤erent facilities is not always clear, allowing providers to

exert substantial discretion over the location of treatment and length of stay. A recent Institute of

Medicine report found that �despite accounting for only 16 percent of spending �PAC contributed

to a striking 73% of the unexplained geographic variation in Medicare spending, underlining con-

cerns about provider discretion and ine¢ ciencies in the sector (Newhouse et al., 2013).

In this paper, we study the role of �nancial incentives in determining patient �ows and govern-

ment spending in the Medicare PAC system. Given its �scal importance, understanding the e¤ects

of �nancial incentives is a natural area for inquiry. Moreover, ine¢ ciencies in the PAC sector have

potentially important implications for public health. Over 40% of hospital patients are discharged

to PAC (MedPAC, 2015b). These PAC stays are disproportionately concentrated in high-risk pa-

tients who might be more vulnerable to ine¢ ciencies in the delivery of care.1 However, despite the

importance of the PAC system, it has received relatively little attention from academic economists.

Our analysis focuses on patients whose point of entry into the PAC system is an LTCH. We

focus on these patients because of sharp variation in provider incentives at this type of facility.

This is illustrated in Figure 1: providers are reimbursed a daily amount (of approximately $1,300)

up to a threshold number of days, at which point there is a large (approximately $13,000) lump

sum payment for keeping a patient an additional day beyond the threshold, but no payments for

any additional days beyond it. We investigate the e¤ects of this �jump�in payments using detailed

Medicare claims and administrative data on the universe of LTCH stays over the 2008-2012 period

�when this non-linear payment schedule was in e¤ect �as well as a 2000-2002 period, when LTCHs

were instead reimbursed under a linear payment schedule.

We start by presenting descriptive evidence on the e¤ect of the jump in payments. Discharges

respond strongly to the payment increase, with the share of stays discharged increasing from 2%

to 9% at precisely the date of the payment increase. The marginal patient discharged at the

threshold appears to be (relatively) much healthier than average. At the threshold, patients are

1We calculate that 15% of Medicare deaths involve a PAC stay in the 30 days prior to death.
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disproportionately likely to be discharged to �downstream� (to a less intensive PAC facility or

home) relative to �upstream� (e.g. to acute care hospitals) locations. And at the threshold, the

30-day mortality rate of discharged patients is substantially lower than patients who are discharged

earlier.

A natural question raised by this evidence is whether distortions in the timing of discharge

�and therefore distortions to patients� location of treatment �has an impact on patient health.

Given the high mortality rate for LTCH patients (16% die within 30 days of LTCH admission), if

the distortions are harmful, it seems plausible that we could detect an impact on mortality in our

setting. However, empirical analysis of mortality e¤ects is challenging because, unlike discharge

behavior, they are not expected to be visually present right �at�the threshold.

The available evidence shows no compelling evidence of any mortality e¤ects from the distortions

in discharge behavior. We �nd no evidence of a change in the level or the slope of the mortality

hazard in the vicinity of the jump in payments. An additional informative contrast is provided by

comparing the experience of for-pro�t and non-pro�t LTCHs. We show that while both types of

hospitals have similar payment schedules, the behavioral response in discharges is much stronger

for-pro�t hospitals. Despite the larger behavioral response of for-pro�t LTCHs, the two types of

facilities have virtually identical mortality patterns, both in the immediate vicinity of the threshold

� suggesting no on-impact e¤ect of the location distortion on mortality � and also in the weeks

before and after the threshold �indicating that the distortion in discharge behavior does not have

a less-immediate, gradual e¤ect on mortality. These results suggest that the marginal patient is

able to receive similar care whether they are located in an LTCH or in their alternative setting,

which empirically is usually a SNF.

The descriptive analysis provides compelling evidence that providers respond to �nancial incen-

tives, but does not provide a natural way for gauging the magnitude of this response or estimating

how treatment patterns and Medicare costs would be e¤ected by counterfactual payment sched-

ules. To address these questions, in the second half of the paper we specify and estimate a stylized

dynamic model of LTCH discharge behavior. The LTCH faces a (daily) decision of whether to re-

tain the patient (characterized by their health, which evolves stochastically over time) or discharge

them to another facility. The provider�s objective function includes both net revenue (Medicare

payments net of costs) and patient utility. If the patient is discharged from the LTCH, the provider

receives zero net revenue, but internalize at least a portion of the patient utility from being treated

in an alternative location. If the LTCH keeps the patient, it receives a net revenue that depend

on Medicare�s payment schedule, while also accounting for the patient�s utility from being treated

in the LTCH and the option value of making a similar discharge decision the following day. The

provider problem can therefore be described by a standard dynamic discrete choice problem.

We estimate the model by simulated method of moments to match the observed discharge

and mortality patterns under the linear and non-linear payment schedules. To take advantage

of the variation provided by the sharp jump in payments, we assign greater weights to moments

that are close to the payment jump. The estimated model �ts the data reasonably well. We use

our model and the estimated parameters to investigate the e¤ects of two types of counterfactual
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exercises. In our primary exercise, we consider three alternative payment schedules, which all

eliminate the �jump� in LTCH payments at the threshold, but in di¤erent ways. We estimate

that the least generous reimbursement schedule could save about $12,000 per patient, or about

$1.5 billion annually. Interestingly, even the most generous reimbursement schedule, which from an

accounting perspective is even more generous that the observed schedule, is estimated to lead to a

(small) reduction in Medicare spending through its e¤ect on discharge behavior. In our second set

of counterfactuals, we return to the variation in the response to incentives between for-pro�t and

non-pro�t LTCHs, and estimate that if all for-pro�t LTCHs behaved like non-pro�ts, government

spending would be lower by approximately $2,000 per patient, or about $250 million per year.

Given the importance of healthcare spending in the economy and in public sector budgets, it

is not surprising that there exists a large literature examining how healthcare spending responds

to �nancial incentives. What is surprising �and arguably unfortunate from this perspective � is

that the vast majority of this literature (including much of our own prior work) has focused on

the impact of consumer �nancial incentives (such as deductibles and co-payments).2 The majority

of healthcare spending, however, is accounted for by a small share of high-cost individuals whose

spending is largely in the �catastrophic�range where deductibles and co-insurance often no longer

bind, and thus where consumer cost-sharing is likely to have little impact relative to provider-side

incentives and reimbursement policies.3

The relative lack of research on the provider side presumably re�ects the di¢ culties in �nding

clean variation in incentives to model and study. Perhaps not surprisingly therefore, the sharp

incentives created by the current LTCH payment schedule have already received some attention

in both academic (Kim et al., 2015) and popular (Weaver et al., 2015) spheres. Our descriptive

work on discharges around the threshold is quite similar to this prior work, while our analysis of

the health of the marginal dischargee and our exploration of mortality e¤ects is new. Our paper is

most closely related to Eliason et al. (2016) who �in independent ongoing work �also study the

impact of the LTCH payment schedule on discharge behavior descriptively and through the lens of

a dynamic model.

Finally, from a more conceptual perspective, our paper is related to a growing literature that

seeks to interpret descriptive evidence of the behavioral responses to non-linear payment schedules

(�bunching�) through the lens of richer economic models that allow for assessments of behavior

under counterfactual schedules (Chetty et al., 2011; Einav et al., 2015, 2016; Manoli and Weber,

2The literature on the impact of consumer incentives (�moral hazard�) in health insurance is too vast to try

to summarize or cite here. Most of the work on provider-side responses has focused on descriptive evidence that

providers do respond to incentives, with much of the evidence coming from the response to the introduction of the

Inpatient Prospective Payment System in 1983 (Cutler and Zeckhauser (2000) provide a review of this evidence).

More recently, Clemens and Gottlieb (2014) provide a rare look at the behavioral response of physicians to �nancial

incentives.
3For instance, using data from 2013 in the Medical Expenditure Panel Survey, individuals in the top 10% of the

spending distribution accounted for 63% of total spending, but had an out-of-pocket share of 6.9% (relative to a 12%

out-of-pocket share for the entire population). The top 1% of the distribution accounted for 22% of total spending

and had an out-of-pocket share of 4.2%.
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forthcoming).

The rest of the paper proceeds as follows. Section 2 provides some background on the PAC

sector in the U.S., LTCHs, and our data. In Section 3, we describe the discharge and mortality

patterns around the jump in payments. Section 4 presents the model, discusses estimation, and

presents the results from our counterfactuals. Section 5 concludes.

2 Setting and Data

2.1 Post-Acute Care in The United States

Post-acute care (PAC) is the term for rehabilitation and palliative services provided to patients

recovering from an acute care hospital stay. In the United States, the Center for Medicaid and

Medicare Services (CMS) associates PAC with four types of facilities: long-term care hospitals

(LTCHs), skilled nursing facilities (SNFs), inpatient rehabilitation facilities (IRFs), and home health

agencies (HHAs) (MedPAC, 2015b). In 2013, Medicare paid $60 billion to PAC providers, approx-

imately 16% of the $368 billion paid that year for Traditional Medicare (TM) claims (MedPAC,

2015a). This is similar to the $69 billion spending in the much-studied Medicare Part D program.

In recent years, the geographic variation and growth rate of spending on PAC have raised

concerns about the e¢ ciency of the sector. From 2001 to 2013, Medicare spending on PAC grew

at an annual rate of 6.1%, 2 percentage points higher than the rate of total spending growth for

TM (The Boards of Trustees for Medicare, 2002 and 2014; MedPAC, 2015a). A recent Institute

of Medicine report found that, despite accounting for only 16% of spending, PAC contributed to

a striking 73% of the unexplained geographic variation in spending, suggesting that there may be

substantial ine¢ ciencies in this setting (Newhouse et al., 2013).

It is useful to think about patients generally �owing �downstream� through the healthcare

system. Upon an acute health event, they enter a regular, Acute Care Hospital (ACH), from there

they may enter a PAC facility to recover, and eventually go home once they are su¢ ciently healthy

and independent. Some ACH patients �skip� the PAC stay and return home directly from the

ACH, and some patients occasionally move �upstream�from a PAC facility back to an ACH due

to a relapse.

The top panel of Figure 2 gives a sense of transitions between ACHs, PAC facilities (LTCHs,

SNFs, and IRFs), home (including home health agencies), and death (including hospice). In our

data, described below, 26% of patients who are discharged from an ACH received follow-up care

from a PAC facility (i.e. a SNF, IRF, or LTCH, but excluding HHAs).4 From these PAC facilities,

60% of patients continue to �ow home (�downstream�), where they may still receive treatment from

an HHA, while 33% are discharged back upstream to an ACH. The remaining 7% of discharges are

to a hospice or due to death.

Just like there is a natural �ow of patients into and out of the PAC system, there is also a

4 In analysis that includes HHAs in the calculation, the number of ACH patients who are discharged to PAC rises

to 42% (MedPAC, 2015b).
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general ordering of care within it. LTCHs provide the most intensive care, SNFs and IRFs provide

less intensive care, and HHAs the least intensive bundle of medical services. For instance, the

share of patients in the highest severity of illness (SOI) category declines from 43% at LTCHs, to

approximately 12% at SNFs and IRFs, to 4% at HHA (AHA, 2010). Medicare payments per day

follow the same declining pattern.

The bottom panel of Figure 2 looks at patient �ows from LTCHs. About 11% of LTCH patients

are discharged upstream to an ACH, 38% are discharged downstream to another PAC facility (SNF

or IRF), and 33% are discharged to their homes, where they may continue to receive care from

an HHA. The remaining 18% are discharged to a hospice (4%) or die within the LTCH (14%). In

contrast, once in a SNF or IRF, patients almost never get discharged �upstream� to an LTCH,

they die much less frequently (5%), and much more often (60%) return directly home.

Despite the interlocking nature of the PAC system, the way that Medicare reimburses facilities

varies substantially by the type of facility. Historically, all facilities were paid according to an

administrative estimate of their costs. Since the early 2000s, however, all types of PAC stays

are paid under a prospective payment system (PPS), yet the unit of payment varies across sites.

Loosely, HHAs are paid per 60-day episodes of care, SNFs are paid a �xed rate per day of stay, while

IRFs and LTCHs are in principle paid a �xed amount per admission (like ACHs).5 We provide

more details on LTCH payments in Section 3.

The fact that each type of facility is paid under a di¤erent system has often raised concerns.

From a public health perspective, there is concern that the separate payment systems do not

give providers enough incentive to coordinated care across di¤erent facilities. From a budgetary

perspective, there is concern that providers may shu e patients across facilities with the aim of

increasing Medicare payments. These concerns have spurred various proposals for payment reform,

including a recent bill which proposes providing a �bundled payment�to a single PAC coordinator,

and letting this coordinator internalize the costs and bene�ts associated with the sequence of

admissions and discharges for the entire episode of care (H.R.1458 - BACPAC Act of 2015).

2.2 Long-Term Care Hospitals

Our primary focus is on patients whose point of entry into the PAC system is a long-term care

hospital (LTCH). The demarcation �LTCH�describes how the provider gets paid by Medicare. For

a hospital to get paid as an LTCH, it must have an average inpatient length of stay of 25 days or

more. Naturally, there are many ways to meet this requirement, so from a medical standpoint the

question of what exactly is an LTCH often results in a host of di¤erentiated and fuzzy answers.

The LTCH category of hospitals was created to solve a potential problem created by the 1982

Tax Equity and Fiscal Responsibility Act (TEFRA), which established the prospective payment

5These di¤erent payment systems also has di¤erential implications for bene�ciaries� cost-sharing requirements

across types of PAC facilities. Bene�ciaries generally are not required for any cost sharing for HHA services. IRF and

LTCH stays are tied to the bene�ciaries�inpatient deductible, so when arriving from an ACH there would typically

be no requirement for additional cost sharing. SNF stays are associated with a separate SNF deductible for stays

longer than 20 days.
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system (PPS) for acute care hospitals. Under the new prospective payment system, hospitals were

paid per discharge and not based on their costs, as a way to create incentives for hospitals to be

e¢ cient in their treatment decisions. Regulators who were designing the PPS realized that there

was a small number of hospitals that had long average length-of-stays (LOS) and would not be

�nancially viable under the lump-sum PPS. LTCHs were thus created as a carve-out from acute-

care hospital PPS for hospitals that had an average inpatient length of stay of 25 days or more;

such hospitals were allowed to be paid according to a measure of costs, roughly in the spirit of the

pre-1982 payment system. At that point in time, there were 40 hospitals in the U.S. that quali�ed

as LTCHs. They were mainly former tuberculosis and chronic disease hospitals in the Boston, New

York City, and Philadelphia metropolitan areas. Their payments were based on costs measured

in 1982 and adjusted for in�ation in subsequent years. See Liu et al. (2001) for more on the

background of the LTCH sector.

Over the last 30 years, and perhaps because of the LTCH exception from PPS, there has been

rapid growth of the LTCH sector. Because new entrants did not have cost data for 1982, payments

for new entrants were determined by costs in the initial years of operation. This encouraged new

entrants to be ine¢ cient when they �rst opened and then earn pro�ts by increasing their e¢ ciency

over time (Liu et al., 2001). From the initial 40 hospitals �rst designated as LTCHs in 1982, there

are now over 400 such hospitals in the country.

Geographic penetration of LTCHs is extremely varied. This presumably re�ects their historical

roots as tuberculosis and chronic disease hospitals in the northeast, as well as certi�cate of need

(CON) laws that have restricted entry. There are only a few LTCHs in the west of the country,

and three states (Massachusetts, Texas, and Louisiana) account for a third of all LTCHs. Almost

a quarter of Medicare PAC stays in the U.S. occur in hospital referral areas (HRRs) that have no

LTCH. In places where there are LTCHs, these hospitals are an important part of Medicare�s PAC

landscape. For instance, in hospital service areas (HSAs) with at least one LTCH, we calculate

that LTCHs account for 13% of Medicare PAC days and 28% of Medicare PAC spending.6 Overall,

payments to LTCHs account for 9.3% of Medicare PAC spending (MedPAC, 2015a)

LTCHs are much more likely to be for-pro�t than other medical providers. According to AHA

data, 72% of LTCHs are for-pro�t (versus 17% for ACHs), 22% are non-pro�t, and 6% are govern-

ment run. The LTCH market is dominated by two for-pro�t companies, Kindred Health Systems

and Select Medical, which run about 40% of LTCHs. Company reports indicate that the LTCH busi-

ness is highly pro�table. For their business segments that include LTCHs, Kindred�s pro�ts have

hovered between 22% and 29% of revenue and Select�s pro�ts have ranged between 16% to 22%.7

Approximately half of LTCHs are known as Hospitals-within-Hospitals (HwHs), meaning that

they are physically located within the building or campus of an ACH but have a separate governing

body and medical sta¤. Regardless of an LTCH�s location (co-located or freestanding), they tend to

6The numbers we calculate exclude spending by HHAs.
7Pro�ts are de�ned as EBITA. Kindred�s pro�ts are based on 2009 to 2015 company reports. Prior to 2009,

Kindred did not separate out their reporting of LTCH pro�ts from the much larger SNF category. Select�s pro�ts are

based on company reports from 2004 to 2015.
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have strong relationships with a single ACH.8 Because of concerns over close relationships between

LTCHs and their partner ACHs, in 2005 CMS established a policy known as the �25-percent rule�

that creates disincentives for admitting more than 25% of patients from a single facility; however,

Congress has delayed the full implementation of the law.9

2.3 Data

Our main data source is the Medicare Provider and Analysis Review (MedPAR) data, spanning the

years 2000-2012. The dataset contains claim-level information on stays at ACHs, LTCHs, SNFs, and

IRFs.10 Each record is a unique stay for which a claim was submitted, and it contains information on

procedures, admission and discharge dates, admission sources and discharge destinations, hospital

charges, and Medicare payments. These data also provide us with basic demographic information

such as the age, sex, and race of the bene�ciary, and information about the patient�s diagnoses

(DRGs).

We supplement this primary source with several ancillary data sources. First, we use Medicare�s

bene�ciary �les to determine whether the bene�ciary is dually eligible for Medicare and Medicaid

and the date of death (if any). Second, we use the Medicare chronic conditions �le to measure

whether the individual has any of 27 chronic conditions. Third, we use data from the American

Hospital Association (AHA) survey over the same period to determine whether a hospital is for-

pro�t, non-pro�t, or government owned, and whether it is co-located with an ACH.

Our analysis focuses on the current Medicare payment schedule for LTCHs, known as LTCH-

PPS. We analyze the time periods before and after full implementation of LTCH-PPS, which was

phased in over a �ve year period starting on October 1, 2002. We de�ne the pre-PPS period as

January 1, 2000 to September 30, 2002. We exclude the October 2002 to September 2007 phase-in

period because provider behavior during this period potentially re�ects the combination of changing

�nancial incentives and learning about the new incentive structure, complicating the interpretation

of the data. We de�ne the PPS period as October 2007 to September 2012.11

Table 1 shows summary statistics on ACH, LTCH, and SNF/IRF admissions in the pre-PPS

and PPS periods.12 Since an observation is an admission, some patients (16%) show up multiple

8MedPAC (2004) found that HwHs receive 61% of their cases from their most frequent referring hospital and

freestanding hospitals receive 42% from their most frequent referring hospital.
9There is also a regulation known as the �5-percent rule� that addresses the incentive for HwH to �ping-pong�

patients between the ACH and LTCH. In particular, if more than 5% of patients who are discharged from an LTCH

to an ACH are readmitted to the LTCH, the LTCH will be compensated as if the patient had a single LTCH stay

(42 CFR 412.532).
10Due to the scope of our data-use agreement, we do not have access to claim-level information about hospice stays

or HHA services. Thus, for our main analysis of LTCH patients and their discharge decisions, we can observe all

discharge destinations, but we cannot observe post-discharge claims for HHA or hospice.
11We begin our pre-PPS period in year 2000 because we do not have data from earlier years. We end the PPS

period in year 2012 because we do not have more recent data.
12We group SNF and IRF admissions together for convenience, as both represent post-acute care that is �less

intense�than an LTCH and because IRFs only account for a small (6.4%) fraction of these admissions.
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times in the data. LTCH patients are, on average, slightly younger than ACH patients and much

younger than SNF/IRF patients. LTCH patients are also almost twice as likely to be black and

about one-third more likely to be eligible for Medicaid, relative to ACH and SNF/IRF patients.

These di¤erences are fairly stable over time. From a health perspective, the number of chronic

conditions is slightly higher for both LTCH and SNF/IRF relative to ACH patients. Mortality

rates are highest for LTCH patients, with about 15% dying within 30 days of admission and 30%

dying within 90 days. These mortality rates are about 50% larger than mortality rates for SNF/IRF

patients and twice as large as those for ACH patients.

In terms of the intensity of medical care, LTCH stays are closer to ACH stays than stays at a

SNF/IRF. The majority of LTCH and ACH patients receive at least one medical procedure versus

about 5% of patients who visit an SNF/IRF. The most common LTCH procedures (blood transfu-

sion, and ventilation) is also more similar to those that occur at an ACH, relative to occupational

and physical therapies, which are the most common procedures in SNF/IRF. Length of stay, how-

ever, is (by design) much more similar in LTCH to that of SNF/IRF. The average stay at an ACH

is 5 days, while it is just over 25 days in LTCH and SNF/IRF.

The bottom rows of Table 1 show statistics on Medicare and out-of-pocket payments. Medicare

payments in the PPS period average $2,087 per day at an ACH, $1,390 per day at an LTCH, and

$507 per day at a SNF/IRF. However, because LTCH stays are much longer than ACH stays,

per-admission Medicare payments at LTCHs average approximately $35,402, which is three times

greater than per-admission ACH and SNF/IRF payments. Out-of-pocket payments at ACHs and

LTCHs arise from Medicare�s Part A deductible ($1,156 in 2012) and from co-insurance payments

that apply when the patient has more than 60 hospital days in the bene�t period ($289 per day

in 2012). Because patients have no out-of-pocket exposure between the deductible and their 60th

hospital day, out-of-pocket payments are a modest 7.7% of Medicare payments at ACHs and 5.5%

at LTCHs in the PPS period. SNFs, on the other hand, have a separate co-insurance schedule with

payments of $144.50 per day for stays in excess of 20 days, and have a much higher out-of-pocket

share.

3 LTCH Payments, Discharge Patterns, and Outcomes

In this section we present descriptive analysis on LTCHs�response to �nancial incentives. We start

by describing the LTCH budget set, including the large jump in payments that is our primary

source of identi�cation. We then show evidence on how discharge patterns and mortality rates vary

with the budget set. This descriptive evidence motivates several of our key modeling choices in the

dynamic model of LTCH discharge behavior, which we present in the next section.

3.1 LTCH Payments

We provide a basic overview here of how LTCH payments vary with the patient�s length of stay, an

object we refer to as the LTCH budget set or payment schedule. Appendix A provides much more
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detail. Figure 1 summarizes the payment schedules in the pre-PPS and PPS periods.

Prior to October 2002, LTCHs were paid their (estimated) daily cost, generating a linear re-

lationship between the length of the hospital stay and payments. As described earlier, this �cost

plus�reimbursement of LTCHs was seen as potentially encouraging ine¢ cient entry into the LTCH

market. Because of this and other concerns, the 1997 Balanced Budget Act (BBA) and 1999 Bal-

anced Budget Re�nement Act (BBRA) implemented a PPS for LTCHs. LTCH-PPS was phased in

over a 5-year period starting on October 1, 2002 and was fully implemented by October 1, 2007. At

a broad level, LTCH-PPS is designed to operate like the PPS for acute care hospitals (IP-PPS), un-

der which hospitals are paid a lump-sum that is based on the patient�s diagnosis (diagnosis-related

group, or DRG) and does not vary with the patient�s length of stay.

Much like LTCHs were originally created to address a potential problem with the introduction

of PPS for ACHs, so do the details of the LTCH-PPS payment schedule can be thought of as

attempting to address a potential problem arising from the introduction of PPS for LTCHs. In

particular, in designing LTCH-PPS, o¢ cials were concerned that LTCHs might discharge patients

after a small number of days but still receive large lump-sum payments intended for longer hospitals

stays. To address this concern, they created short stay outlier (SSO) threshold. If stays were

shorter than the SSO threshold, payments would be based on the pre-PPS cost-based reimbursement

schedule and not a large lump sum. However, while reducing the incentive to cycle patients in and

out of the LTCH, the SSO system creates potentially problematic incentives at the SSO threshold.

At the day where payments switch from per-day reimbursement to lump-sum prospective payment

amount, Medicare payments for keeping a patient an additional day �jump�by a large amount.

Figure 1 graphs the average payment schedules in the pre-PPS and PPS periods, pooling across

LTCH facilities and DRGs. The y-axis shows cumulative Medicare payments, in�ation adjusted

to 2012 dollars. The x-axis shows the length of the stay relative to the SSO threshold, which we

normalize to be day 0. The SSO threshold is de�ned as �ve-sixths the geometric mean length of

stay for that DRG in the previous year and therefore varies by DRG and to a much lesser extent by

year. The modal threshold (accounting for 22.4% of PPS stays) is 20 days and 99% of the sample

has SSO thresholds between 16 and 39 days.13 As a result, in this and subsequent �gures, we

present results relative to the SSO threshold so that we can pool analyses across DRGs.14 Because

the SSO threshold is unde�ned in the pre-PPS period, we assign pre-PPS stays the threshold for

their DRG from PPS period.15

Under the pre-PPS system, average payments scale linearly with the length of stay at a rate of

$1,071 per day. Under the PPS system, payments increase linearly by $1,386 per day to the left of

13Across all DRGs, the SSO threshold ranges from 14 to 56 days.
14We start the x-axis range at -15 days because nearly all SSO thresholds occur after 16 days. If we extended the

x-axis range to -16, for example, there would be a change in the composition of DRGs between days -16 and -15

due to the entry of new DRGs into the sample. We end the x-axis range at 15 days because there are relatively few

(14.6%) patients who are kept at the LTCH more than 15 days beyond the SSO threshold.
15 In particular, since the thresholds occasionally vary over time, we use the SSO threshold from 2007, which is the

�rst year in the PPS period.
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the SSO threshold, �jump�by $13,656 at the SSO threshold, and remain constant thereafter. The

increase in payments at the jump is large: it is equal to 55% of the cumulative payment amount

on the day prior to the threshold, or equivalent to about 10 days of payments at the pre-threshold

daily rate.

This sharp jump in payments was presumably not the intention of the policymakers who de-

signed the LTC-PPS, but it arises naturally from the interaction of two sensible policies. As is

standard in �xed price contracts, the LTCH-PPS payments were likely set to approximate average

costs per stay. As noted, payments on a cost-plus basis up to the SSO threshold were introduced

to avoid LTCHs receiving large lump sum payments for relatively short stays; under the pre-PPS

payment scheme, a large share, 44%, of stays would have been below the subsequent SSO thresh-

old, thus quali�ed as short stay �outliers.�While reducing the incentive to discharge patients from

an ACH to an LTCH, the SSO system unavoidably creates potentially problematic incentives at

the transition from cost-plus to �xed-price payments for the stay. In Section 4 we explore the

impact of alternative, counterfactual payment schedules, but short of getting rid of PPS, there is

an unavoidable transition problem.

3.2 Discharge Patterns

We present a number of descriptive results on discharge patterns from the LTCH around the thresh-

old. The results can be summarize as follows. First, there is a large spike in discharges at precisely

the date of the jump in payments, indicating a strong response to �nancial incentives. Second,

several pieces of evidence are consistent with the fact that the marginal patients discharged at the

threshold are in relatively better health: they are disproportionately discharged �downstream�and

they have lower mortality rates than patients discharged at other times. Third, among patients

discharged downstream, the patient discharged at the threshold is relatively sicker, with higher

post-discharge costs (paid to SNF/IRF or to ACH due to a relapse) than pre-threshold discharges.

Figure 3 shows the aggregate pattern of discharges by length of stay in the pre-PPS and PPS

periods. A discharge occurs when the patient is transferred to another facility, sent home (possibly

with home health care provided by an HHA), or dies at the LTCH. The y-axis shows discharges as

a share of the total number of stays at the LTCH. The x-axis plots the length of stay relative to the

DRG-speci�c SSO threshold, de�ned in the same manner as in Figure 1. In the PPS period, there

is a sharp increase in discharges at the SSO threshold, with the share of discharges increasing from

about 2% to 9% per day. Discharge rates remain elevated over the subsequent 7 to 10 days before

reverting to baseline. In the pre-PPS period, there is no evidence of any bunching at the SSO

threshold. This discharge pattern is consistent with a strong response to the �nancial incentives at

the threshold.

Relative to the pre-PPS constant, per-day payment schedule, the increase in discharges under

PPS at the threshold could be drawn either �from the left�or �from the right�of the distribution.

In other words, the excess discharges at the threshold could re�ect patients who under the pre-PPS

schedule would have been discharged before the threshold but are �retained� in order to get the
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lump sum payout at the threshold, or patients who would have been discharged after the threshold

but are now discharged earlier since there is no longer a marginal �nancial payment associated

with keeping them additional days. Because the share of discharges to the left of the threshold

is lower in the PPS period relative to the pre-PPS period, it is tempting to infer that the excess

mass of discharges is primarily �drawn from the left�of the distribution. However, we caution that

di¤erences in the discharge rate might not only re�ect the change in �nancial incentives but also

changes in patient health and other secular trends between the pre-PPS and PPS periods. In fact,

a simple reweighting of the pre-PPS admissions to match the DRG composition of the PPS period

is su¢ cient to make the pre-PPS discharge rate much closer to that of the PPS discharge rate prior

to the SSO threshold (Appendix Figure 1). In Section 4, we show how we can use our model to

compare discharge patterns under the observed PPS payment schedule to discharge patterns under

alternative, counterfactual payment schedules.

Figure 4 decomposes the discharge pattern by the location of discharge. For purposes of this

exercise we group the discharges into three mutually exclusive and comprehensively exhaustive

categories, in roughly descending order of patient health: discharges �downstream� (de�ned as

SNF/IRF, or home with or without home health), discharges �upstream�(to ACH or hospice), and

discharges due to death. The �gure shows increases at the threshold in discharges both upstream

and downstream, but the proportional increase is substantially larger on the downstream margin.

Moreover, because the pre-threshold discharge rate is much higher downstream, the sharp change

in discharge rate at the threshold (shown in Figure 3) is almost entirely driven by downstream

discharges.

Appendix Figure 2 plots the 30-day mortality by length of stay, where the 30-day mortality rate

is de�ned as death within 30 days of discharge. The graph shows a sharp drop in mortality at the

SSO threshold, again suggesting that the patients who are discharged at the threshold are healthier

than the patients who are discharged immediately beforehand. We caution that the decline in

mortality not only re�ects changes in the composition of patients discharged at the threshold, but

could in principle re�ect a treatment e¤ect of discharge on health. We address this concern in the

next section.

Figure 5 plots Medicare payments that occur after the LTCH discharge, by date of discharge.

These post-discharge payments are de�ned as the sum of Medicare payments (to ACH, SNF, IRF,

or LTCH) over the episode of care for patients discharged on di¤erent days. We de�ne the episode

of care as the spell of continuous days with a Medicare payment so that the episode ends if there are

two days or more without any Medicare payments being made to any facility. We show separately

the post-discharge costs for patients initially discharged �upstream� (to an ACH) and initially

discharged �downstream� (to a SNF/IRF).16 For patients initially discharged downstream to a

SNF/IRF, there is a sharp increase in post-discharge payments at the threshold, with average post-

discharge payments increasing from approximately $1,000 to $2,000. There is small change in the

opposite direction in post-discharge payments at the threshold for patients initially discharged to

16 In Figure 4, �upstream�discharges include discharges to hospice and �downstream�discharges include discharges

to home health, but we do not observe payments to either of these in our data and so exclude them from this analysis.
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an ACH.

Figure 5 suggests a simple model of the behavioral response to the threshold, which motivates

the model we present in Section 4. Prior to the threshold, retaining patients is pro�table, and only

the healthiest patients are discharged to SNF/IRF and the sickest patients discharged to an ACH.

After the threshold, on the SNF/IRF margin, LTCHs work �down the distribution�and discharges

less healthy patients, increasing the post-discharge costs on average. Similarly, on the ACH margin,

LTCHs work �up the distribution,�discharging patients who are in better health, and decreasing

average post-discharge costs. The marginal patient discharged downstream at the threshold is

therefore sicker than the average patient discharged prior to the threshold, while the marginal

patient discharged upstream is slightly healthier than the average patient discharged upstream in

prior days.

3.3 (Lack of) Mortality E¤ects

A natural question raised by the discharge patterns is whether the distortions in the timing of

discharges have an impact on patient health and in particular mortality. Since the 90-day mortality

rate of LTCH patients is approximately 30%, if these distortions are harmful to health, it seems

plausible that we might be able to pick up an e¤ect with our data. To guide the interpretation of

the mortality results, it is helpful to think about health evolving according to a stochastic process,

with sicker patients having a higher probability of death. Di¤erence in the location of care might

impact the level of someone�s health, generating an on-impact e¤ect on the probability of death.

Changing locations might also e¤ect the stochastic process for health, which would be associated

with a longer-run change in mortality rate, but might not have an immediate, on-impact e¤ect.

We have already seen in the bottom panel of Figure 4 some suggestive evidence that mortality

rates are declining over the course of the LTCH stay (which is not surprising given natural selection;

as the sickest die, the remaining patients are gradually healthier) with little di¤erence around the

SSO threshold. However, the interpretation of the bottom panel of Figure 4 �which plots mortality

rates for LTCH patients by length of stay �is complicated by selection concerns. Since LTCHs are

di¤erentially discharging healthier patients at the SSO threshold, the composition of patients who

remain at the LTCH is changing, making it tricky to disentangle any potential treatment e¤ects on

mortality from e¤ects due to changes in the selection of LTCH patients.

In Figure 6 we circumvent this concern by taking advantage of the fact that our data allow

us to track mortality outcomes for patients even after their LTCH discharge. Conceptually, our

mortality analysis follows the logic of a reduced form regression, where the mortality hazard is the

outcome, discharge patterns are the endogenous variable, and the threshold in the PPS payment

schedule is the instrument. In particular, since we know there is a sharp jump in discharge patterns

at the threshold (analogous to a large �rst stage), if there is also a change in the level or slope of

the mortality hazard in the vicinity of the threshold (that is, non-zero reduced form), we can infer

that the distortion in discharge location has an impact on mortality.

The top panel of Figure 6 is thus similar to the bottom panel of Figure 4, but uses the full
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set of LTCH patients (unconditional on their location) rather than only those who have yet to be

discharged. As before, natural selection leads mortality rates to decline over time, but we now can

interpret more cleanly the mortality pattern around the SSO threshold. The plot shows no obvious

evidence of a change in the level of mortality hazard in the vicinity of the threshold during the PPS

period, with perhaps a small shift of mortality from just before the threshold to just after. The

evidence is consistent with no mortality e¤ect but it does not allow us to rule out a gradual e¤ect

that would not appear sharply in the data.

The bottom panel of Figure 6 attempts to look for a more gradual e¤ect by plotting a 30-day

mortality rate by days since LTCH admission. If distortions in the location of care e¤ected the

stochastic process for health, we might not observe an immediate e¤ect, but would see a change in

mortality over a longer time horizon. The 30-day mortality hazard measures the share of patients

who are alive on a given day but die in the next 30 days, allowing us to observe a potential longer-

run e¤ect. The plot shows no e¤ect around the threshold, suggesting there are no gradual e¤ects of

the distortions in discharges on mortality. Obviously, this (lack of) reduced form e¤ect needs to be

judged in relation to the size of the �rst stage e¤ect on the location of care. And as we show in our

counterfactuals, the �experiment�we analyze only shifts the location of care for a relatively small

number of days, so perhaps the non-e¤ect is not surprising. Yet, these relatively small changes

in the location of care are precisely what we explore with our counterfactuals. Figure 6 makes us

conclude that there is little evidence of quantitatively large e¤ect on mortality that is created by

the sharp discharge incentives at the SSO threshold.

We can gain additional traction on potential mortality impact by exploiting di¤erence in the

response to incentives between for-pro�t and non-pro�t LTCHs. Figure 7 shows the payment sched-

ules (top panel), discharge shares (middle panel), and mortality rates (bottom panel), separately

by for-pro�t status. While the payment schedules are almost the same across the two groups of

hospitals, the behavioral response to the jump in payments is substantially larger for for-pro�t

LTCHs. Prior to the SSO threshold, for-pro�t hospitals have a slightly lower discharge rate, but

at the SSO threshold their discharge share rises by about twice as much as that of non-pro�t hos-

pitals, suggesting that, perhaps not surprisingly, for-pro�t hospitals are relatively more responsive

to �nancial incentives.

Given the for-pro�ts LTCHs�much larger behavioral response to the jump in payments, if the

PPS payment schedule a¤ected mortality, we would expect a more pronounced e¤ect at for-pro�t

hospitals. The bottom panel of Figure 7 provides no suggestion of any di¤erences in the mortality

pattern by for-pro�t status. Mortality hazards are remarkably similar across both groups, both

in the immediate vicinity of the SSO threshold � suggesting no on-impact e¤ect of the location

distortion on mortality �and also in the weeks before and after the threshold �suggesting that the

distortion in discharge behavior does not have a less-immediate, gradual e¤ect on mortality.17

Overall, we interpret the results in this section as showing no evidence of any impact of the

17The mortality pattern for non-pro�t hospitals is slightly more noisy, but this is presumably driven by sampling

variation due to the smaller samples size of non-pro�t admissions (113,154 versus 487,988 for for-pro�ts in the PPS

period).
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PPS payment schedule relative to the pre-PPS schedule on mortality. While these results are not

de�nitive � given the challenges discussed in detecting delayed mortality e¤ects � they provide

no �smoking gun�evidence of patient harm (at least as measured by mortality). Combined with

the earlier results, which indicate that the patients who are most a¤ected by the SSO threshold

are disproportionately healthy, the results suggest that the marginal patient a¤ected by the PPS

payment schedule is able to receive similar care whether they are located in an LTCH or in their

alternative setting, which empirically is usually a SNF.

4 Quantifying the Importance of Financial Incentives

The results in the last section provide descriptive evidence of the response of LTCHs to the sharp

�nancial incentives associated with the SSO threshold. One way to quantify the importance of the

�nancial incentives in directing discharge patterns out of LTCHs is to assess how these patterns

would change in response to counterfactual �nancial contracts that exhibit weaker incentives. Doing

so requires a dynamic model, which is the focus of this section.

4.1 Model and Estimation

4.1.1 A simple model of LTCH discharge decision

Consider a patient i who is admitted at day t = 0 to LTCH l. We index patient i�s health at

the time of admission by hi;0, and assume that hi;t (conditional on patient i staying at LTCH

l) evolves stochastically from day to day. In particular, we assume that hi;t follows a monotone

Markov process, such that hi;t � F (�jhi;t�1) with F (�jh) stochastically increasing in h. We use
higher values of h to indicate better health and thus assume that daily mortality hazard m(h) is

strictly decreasing in h.

Hospital l�s �ow (daily) payo¤ from keeping patient i (whose health is given by h) during the

tth day since admission is given by

ul(h; tjkeep) = p(t)� cl(h) + �wl(h) + �ilt, (1)

where p(t) is the hospital�s revenue, which depends on CMS�reimbursement schedule for patient

i, cl(h) is the hospital�s daily cost of treating a patient with health index h, and the third term

captures the patient�s utility from staying at LTCH l, wl(h), multiplied by the hospital�s weight

on it �. Finally, �ilt is an error term, distributed i.i.d. type I extreme value, presumably capturing

idiosyncratic considerations associated with the patient and/or the hospital.

Our focus is on the hospital�s discharge decision. Consider a set of J alternative destinations

for patient i, each indexed by j. Conditional on discharging the patient to destination j, LTCH

l�s revenue and cost are both zero, and its �ow payo¤s are given by the patient�s utility, again

multiplied by the hospital�s weight on it �:

uj(h; tjdischarge to j) = �wj(h) + �ijt. (2)
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Moreover, because hospital l loses control over the patient upon discharge, it will be convenient to

denote by Wj(h) the present value of the patient�s utility from being discharged to alternative j.

This setting lends itself to a simple dynamic programming problem, which can be represented

by the following Bellman equation:

Wl(h; t) = E

 
max

(
ul(h; tjkeep) + � (1�m(h))

R
Wl(h

0; t+ 1)dF (h0jh),
maxj2J

�
uj(h; tjdischarge to j) + � (1�m(h))

R
Wj(h

0)dF (h0jh)
� )! ,

(3)

where � is the LTCH�s (daily) discount factor. That is, the two state variables are the health of

the patient and the number of days since LTCH admission. Every day the hospital makes a binary

decision whether to discharge or keep the patient, and in the event of a discharge the hospital

also decides about the discharge location. Of course the model can allow the patient to actually

�decide� about the discharge destination by having the hospital place a large weight on patient

utility.

It is convenient to benchmark the patient�s utility against her utility at the LTCH, thus nor-

malizing wl(h) = 0 for all h, vj(h) = wj(h) � wl(h), and Vj(h) is de�ned accordingly. Applying
these adjustments and using the well-known expression for the logit�s inclusive value, we can write

the problem as

Vl(h; t) = ln

8<:exp
�
p(t)� cl(h) + � (1�m(h))

Z
Vl(h

0; t+ 1)dF (h0jh)
�
+
X
j2J

exp (Vj(h))

9=; : (4)
Finally, we note that the state variable t only a¤ects the problem through the hospital revenue

function p(t), and p(t) = 0 for all t > SSO, so the problem becomes stationary after the SSO

threshold, and the solution is simply a �xed point of

V t>SSOl (h) = ln

8<:exp
�
�cl(h) + � (1�m(h))

Z
V t>SSOl (h0)dF (h0jh)

�
+
X
j2J

exp (Vj(h))

9=; : (5)

We can therefore solve for the dynamic problem by �rst solving for the �xed point associated with

the post-SSO stationary part of the problem given by equation (5), and then iterating backwards

until t = 0 using equation (4).

4.1.2 Parameterization, estimation, and identi�cation

Parameterization. We make several additional assumptions before we take the model to the
data. First, we restrict the set of alternative discharge destinations J to include only two options,

J = fS;Ag. Motivated by the summary statistics described in Section 3, option S covers a collection
of downstream destinations �SNF, IRF, home care, and �other��that are appropriate for LTCH

patients who are of better health or require lower levels of medical monitoring. In contrast, option

A covers upstream discharge destinations �ACH and hospice �which would be natural discharge

destinations for patients who are of worse health.
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Because, conditional on discharge, �nancial incentives do not a¤ect LTCH�s discharge destina-

tion, having a richer set of discharge options is unlikely to a¤ect our counterfactual. By focusing

on two options, we essentially restrict the LTCH to consider two types of marginal LTCH patients.

One set of marginal patient are those who are healthier, and for whom the hospital must consider

whether to keep them or discharge them to location S. The second set of marginal patients are

sicker, and for whom the hospital must consider whether to keep them in the LTCH or transfer

them to location A.

The second assumption regards the health process. Given that mortality is monotone in h, it is

convenient to normalize the health index by mortality risk. We do so by assuming that h is de�ned

by its associated mortality hazard using the following relationship:

m(h) = 1� �(h), (6)

where �(�) is the standard normal CDF. We note that h is an index and thus has no cardinal mean-
ing, and the above is simply a normalization, which entails h with a cardinal measure. Equipped

with this normalization, we then make parametric assumptions about the initial (as of LTCH ad-

mission, t = 0) health distribution of newly admitted patients, and about how the health process

evolves over time. Speci�cally, we assume that hi;0 is drawn from N(�0; �
2
0) and that F (�jhi;t�1)

follows a simple AR(1) process:

hi;t = �+ �hi;t�1 + "i;t; where "i;t � N(0; �2). (7)

In our baseline speci�cation, we allow the health process to be di¤erent in the pre-PPS and PPS

periods to accommodate potential di¤erences in the LTCH patient mix, which may result from the

growth of the LTCH sector, time trends in medical technology and practice, or directly from the

change in �nancial incentives.

The third assumption is associated with the LTCH�s cost, cl(h), which we assume are given by

cl(h) = c
reported. (8)

That is, as described in Section 2 and reported in the bottom row of Table 1, we observe the cost

associated with each hospital l, which enters the formula by which it is paid by CMS. We do not

treat these reported costs as the �true� costs, but we use it to guide our model of costs in two

ways. First, and importantly, we assume that the hospital�s cost do not vary with the patient

health h, which is consistent with CMS�s treatment of costs and also seems natural given that

LTCH patients are generally stable. Second, we assume that the reported costs are true up to a

monotone transformation, which we assume to be linear. This assumption means that if hospital

l has higher reported costs than hospital k, we will also assume that this also re�ects the ranking

of their true underlying cost. This seems natural, and could be driven by a variety of factors,

including geographic location. We would naturally expect  � 1.
The fourth assumption is to parameterize VA(h) and VS(h). We approximate each using a linear

function in h, so that

Vj(h) = �0j + �1jh for j = A;S. (9)
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Recall from Section 3 that healthier patients (higher h), who are associated with lower mortality, are

discharged to S, while sicker patients (lower h), associated with higher mortality, are discharged to

A. It is therefore natural to expect �1;S > 0 and v1;A < 0. That is, all else equal, facility S becomes

a more attractive discharge destination as health gets better (h is higher) and facility A becomes a

more attractive discharge destination as patients�health worsens (h is lower). As explained below,

one of the intercept terms v0;S and v0;A needs to be normalized, so we set v0;A = 0.

Finally, as is typical in these type of models, we set (rather than estimate) the daily discount

factor to � = 0:951=365. Thus, overall we are left with 14 parameters to estimate: �ve parameters

(�0; �0; �; �; �) that are associated with the health distribution and the way it evolves over time

in the pre-PPS period, �ve corresponding parameters in the PPS period, the cost parameter (),

and the three parameters (�1A; �0S ; �1S) associated with the relative value of patients at facilities

A and S.

Estimation. An important decision is how to treat heterogeneity across patients, observable
health conditions, and LTCH hospitals. In our baseline speci�cation, we abstract from such hetero-

geneity and instead model the �average�discharge decision as it pertains to the �average�LTCH

patient and the �average�payment schedule. That is, we pool all payment schedules observed in

the data, separately for the pre-PPS and PPS periods, measure each day in the schedule relative

to the DRG-speci�c SSO threshold in the PPS period (which is normalized to zero), and construct

the average payment schedule for each day, as shown in Figure 1. We then apply an analogous

exercise to the discharge pattern, and construct the distribution of discharge patterns in a 31-day

window around the SSO threshold, as shown in Figure 3 and Figure 4. We then estimate our model

in an attempt to match these average patterns. The dramatic di¤erence in the payment schedules

between the pre-PPS and PPS periods will assist in the identi�cation of some of the parameters

and is an important ingredient in our research design. An advantage of this approach of focusing

on the average pattern rather than the heterogenous pattern is that it only requires us to solve

the dynamic problem once (for each pricing period), which is computationally attractive. In future

work, we plan to explore speci�cations that are less restrictive (e.g., by partitioning the data into

bins based on the number of days to the SSO threshold and by conditioning on early-day mortality

rates).

We estimate the model using simulated method of moments, by trying to match the daily

mortality and discharge patterns presented in Figure 4. Speci�cally, we use 93 moments for the

pre-PPS payment schedule, re�ecting the daily discharge and mortality risks within a 31-day window

around the SSO threshold. One set of moments is associated with discharge rates to S, another

with discharge rates to A, and a third with mortality rates. We then construct another set of 93

corresponding moments for the PPS period. Because much of the identi�cation is driven by the

sharp change to discharge incentives at the SSO threshold, we assign greater weights to moments

that are closer to day zero (the SSO threshold) by making weights linearly decline for days that

are further away from day zero, hitting one-half of the day-zero weight at 15 days before or after

the SSO threshold.
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Generating the model predictions requires us to solve the dynamic problem described in the

previous section for each set of parameter. To ease with computation, we approximate the health

process F (�jhi;t�1) using a discrete space of health rates, that evolve according to a Markov transi-
tion matrix (Tauchen, 1986). This eases the solution of the dynamic problem, and at the same time

allows us to read the discharge probabilities directly o¤ the solution, without any need to integrate

(presumably by simulation) over unattractive integration regions. The Appendix provides more

details.

Intuition for Identi�cation. To see the intuition for the identi�cation of the parameters,
it is easiest to consider �rst a case where health is homogeneous across patients and over time.

Under this assumption, the data can be characterized by daily observations of discharge shares to

A and to S (sAt and sSt, respectively), with the remaining patients staying at the LTCH (sLt =

1 � sAt � sSt). The problem resembles a repeated static discrete choice problem, where the mean

utility of each discharge destination is given by the continuation values VAt, VSt, and VLt. As is

usual in multinomial logit models, the observed daily shares can then be inverted to recover the

values of VAt, VSt, and VLt, subject to a required level and scale normalizations.

Let us start with the level normalization. Setting VAt = 0 allows us to estimate VS from the

average values of VSt, and VLt, up to a scale normalization. To identify the scale parameter, recall

that VLt varies over time due to the expected present value of payments and cost. In particular, the

present value is function of the payment schedule p(t); reported costs scaled by parameter ; and the

relevant time horizon, which depends on the mortality rate and subsequent, endogenous discharge

decisions. So one can think of the identi�cation of the scale parameter and  as a projection of the

values of VLt on these observables. The sharp change in payments at the SSO threshold provides a

sharp change in the present value of payments and identi�es the scale parameter (or equivalently

the coe¢ cient on payments when the variance of the error term is standardized), and the di¤erential

change in the present value of payments versus costs as the patient approaches the SSO threshold

identi�es . This identi�cation can be achieved from the PPS moments alone, but given that we

restrict these parameters to be time-invariant, it is also aided by variation in discharge patterns

between the pre-PPS and PPS periods.

If health status h was observed, we could make the argument above conditional on health,

and thus identify each object as a non-parametric function of h. In practice h is unobserved, but

identifying the health process is conceptually easy given our assumptions. If there are no discharges,

which is roughly the case during the �rst week or so of the LTCH stay, the only attrition from the

sample is due to mortality. With only �ve parameters that determine the initial health distribution

and how it evolves from day to day, mortality rates over �ve days are su¢ cient to identify the

health process parameters, separately in the pre-PPS and PPS periods. Once the unobserved

health distribution is identi�ed, we can integrate over h and apply a similar intuition to the one

we described above for the homogenous h case. Moreover, once the health process is identi�ed, the

cross-sectional distribution of h varies over time in �known�ways, so we can also identify how the

key parameters �in particular the V �s �vary as a function of h.
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Obviously, as is typically the case, the intuition for identi�cation requires us to have substantial

variation in the data. In practice, some of the variation is not as large, and statistical power issues

require us to impose more parametric structure, so the estimable model is not as �exible �especially

in terms of the extent to which parameters vary with h �as the identi�able structure would be.

4.2 Results

4.2.1 Parameter estimates and model �t

Table 2 presents the parameter estimates. We estimate  = 0:93 implying that LTCH�s actual costs

are 7% lower than their reported value. This is consistent with our prior that reported costs are

somewhat in�ated.

The �1;A , �0;S , and �1;S parameters capture the value the LTCH places on the patient�s utility

from being discharged to A or S relative to remaining at the LTCH. The estimates imply that

LTCHs are indi¤erent between A and S for a patient with h = 1:75, which is a fairly low health

level. For instance, h = 1:75 is the 9.8th percentile of the steady state PPS health distribution

(� = 4:27, � = 1:95) and corresponds to a daily mortality hazard of 3.95 percent. Consistent with

our description of patients �owing �downstream�as their health improves, S is relatively better for

healthier patients and A is better for sicker patients. The magnitude of the slope parameter v1;S
is about one-sixth as large (in absolute value) as the slope parameter v1;A, which indicates that a

given change in �nancial incentives will have a much larger e¤ect on discharges on the downstream

S margin. These estimates are consistent with the descriptive evidence that shows a substantially

larger response on the downstream margin at the SSO threshold.

We are cautious not to over-interpret the health process parameters. Because they are the only

parameters that are allowed to vary across the time periods, they capture not only di¤erences in the

health of admitted patients but may also re�ect other factors that vary over time, such as changes

in medical technology or the administrative capacity of providers.

The model �ts the data reasonable well. Figure 8 presents our moments and the simulated

moments from the estimated model. The left column shows values in the PPS period and the right

column shows values in the pre-PPS period. The top row shows the share of discharges to A by day

relative to the SSO threshold, the middle row shows the share of discharges to S, and the bottom

row shows the share of patients who die at the LTCH. The model does a very good job �tting the

�spike�in discharges to A and S in the PPS period. This is particularly encouraging because this

variation is our key source of identifying variation. The model �t for the mortality patterns in the

pre-PPS and PPS periods is good over the initial days, but less good at longer time horizons. This

is likely due to our fairly parsimonious parameterization of the health process. The model �t is

also poorer for discharges to A in the pre-PPS period.

Figure 9 provides some intuition for how the model operates. The solid black lines show the

LTCH�s discharge policy function at the estimated parameters.18 Healthy patients (lower h) are

18The discharge policy function is not a deterministic function of h; given the ��s in the model, h is related to

discharge stochastically. The policy lines in Figure 9 are drawn so that at that given level of h, 50% of the patients
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discharged to S, while sick patients (higher h) are discharged to A. Consistent with the descriptive

evidence, LTCHs work �down the distribution� at the jump and lower their discharge threshold

on the S margin and conversely work �up the distribution� on the A margin and increase the

discharge threshold. The larger shift on the S margin relative to the A margin relates directly

to our discussion above on the magnitude of the slope parameter estimates (v1;S and v1;A). The

relatively small outward shift in the policy function just before the SSO threshold is consistent with

the descriptive results which show limited evidence on �missing mass� immediately to the left of

the SSO threshold.

The dashed lines in Figure 9 correspond to the di¤erent health trajectories for a new LTCH

patient whose health status at admission is at the median of the distribution. For such a patient,

we simulate health status forward (including death, which is an absorbing state), and plot the

percentiles of this distribution. The cross sectional health distribution is reasonably stable at

better health, but due to mortality is gradually deteriorating if the patient is sicker. The �at

pattern of the percentiles for healthier patients helps explain what happens at the SSO threshold:

the health distribution is not very di¤erent before and after the threshold, but the sharp change in

the policy function means LTCH discharge patients, which otherwise would have been kept at the

LTCH, to SNFs and other �downstream�locations.

4.2.2 Spending under counterfactual �nancial incentives

We use the model to examine how patient �ows and total spending are a¤ected by alternative

payment schedules. Trying to stay close to the observed variation, we consider payment schedules

which are �capped� in the sense that marginal payments are (eventually) reduced to zero. These

schedules are in the spirit of the current PPS system, which caps payments at the PPS amount

but do not generate the perverse �nancial incentives caused by the jump in payments. Under the

capped payment schedules we consider, most patients are discharged within 30 days of admission,

meaning that our estimates are not excessively sensitive to assumptions on the health process at

longer time horizons.

Figure 10 compares the observed payment schedule to the three counterfactual payment sched-

ules we consider. The top panel shows a counterfactual schedule we call �no jump, lower cap,�which

simply eliminates the jump in payments at the SSO threshold by reducing the PPS payment. This

schedule is less generous than the current schedule: holding discharge patterns unchanged, it pays

LTCHs the same amount for patients discharged before the SSO, but pays them less for patients

who are discharged at the SSO or after. The middle panel shows a counterfactual we call �no jump,

extended SSO threshold.� This schedule is still less generous than the baseline schedule but more

generous than the �rst counterfactual: it continues to pay LTCHs the per-day amount after the

SSO until the total payment hits the PPS value. The bottom panel shows a counterfactual we call

�no jump, higher rate per day,�which eliminates the jump by paying the LTCHs at a higher daily

rate leading up to the SSO threshold. This schedule is more generous than the current schedule:

are discharged to the relevant destination.
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holding discharge patterns unchanged, it pays LTCHs the same amount for patients discharged at

the SSO or after, but pays them more for any patient who is discharged prior to the SSO threshold.

We use our model to simulate discharge decisions and Medicare payments under each of these

three counterfactuals. In particular, we assume that the initial distribution of health of admitted

patients stays the same but that the subsequent discharge decisions re�ect the incentives provided

by the counterfactual payment schedules. Figure 11 shows the discharge patterns under each

schedule and Table 3 summarizes the impact of these payments schedules on Medicare payments

to the LTCH and to other facilities.

This latter aspect �payments to other facilities �is not part of our model, and requires some

elaboration prior to our discussion of the results. For our counterfactual analysis, we are interested

in the e¤ect of alternative payment schedules on government costs for the entire episode of care,

which includes the LTCH stay but also post-LTCH stays at other facilities within and outside the

PAC system. For instance, if a less generous payment schedule induces LTCHs to more quickly

discharge patients to an SNF, it would decrease LTCH payments. However, to the extent that

these patients are sicker than the typical SNF patient, they may have longer SNF stays, generating

an o¤setting increase in Medicare payments to SNFs. To account for these potentially o¤setting

e¤ects, we construct data on the average post-discharge cost Pjt by discharge day t and destination

j 2 A;S,19 and project lnPjt on hjt, where hjt is the average health status (as predicted by the
estimated model) of patients discharged to destination j on day t. We �nd, naturally, that sicker

dischargees are associated with somewhat higher post-discharge costs, thus capturing potential

o¤set e¤ects. See the Appendix for more details.

As shown in Figure 11, under the �lower cap�payment schedule, the elimination of the jump in

payments induces LTCHs to discharge a much higher share of patients before the SSO threshold,

with the daily share of discharges to S increasing four-fold and discharges to A increasing more

modestly over most of the pre-threshold period. The pool of remaining patients becomes healthier

on average as indicated by the lower share of patients who die at the LTCH. Table 3 (column (2))

shows that under this counterfactual, the average length of stay at the LTCH is reduced from 18.2

to 13.5 days,20 and Medicare payments to the LTCH are reduced by $11,751 or 45 percent. We

decompose this reduction in payments into a �mechanical�e¤ect, calculated as Medicare payments

under the counterfactual payment schedule holding discharge patterns constant at their baseline

levels, and a behavioral response. The mechanical e¤ect of the �lower cap�payment schedule is

a reduction in payments of $8,744 or about 75% of the overall reduction, with the remaining 25%

due to the behavioral response of LTCHs to the counterfactual incentives.

The remaining rows of Table 3 consider the impact of this counterfactual payment schedule

on Medicare payments throughout the rest of the episode of care. The counterfactual payment

schedules can in�uence post-LTCH Medicare payments for two reasons. First, under the counter-

19This is the same as the data used to generate Figure 5.
20Length of stay is measured from day -15. To make it comparable to the summary statistics reported in Table 1,

both numbers should be increased by 7.5 days (because the average SSO threshold across admissions in our sample

is 22.5 days).
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factuals, patients may be discharged to di¤erent locations with di¤erent implications for Medicare

spending. For example, a patient whose health is improving and would be retained until the SSO

threshold and discharged to a SNF under the baseline schedule might be immediately discharged

to an ACH under a less generous counterfactual. Second, holding discharge location �xed, patients

may be discharged on di¤erent days and at di¤erent health levels, also a¤ecting Medicare spending.

For instance, a patient whose health is declining might be discharged to an SNF at the SSO thresh-

old under the baseline schedule but discharged to an SNF at an earlier date under a less generous

counterfactual. Because SNF payments depend on health at admission, Medicare might pay less

under the counterfactual because the admitted patient was in better health.

Under the �lower cap�counterfactual, there is a small increase in the share of patients discharged

to A and a small change in payments per patient discharged to this location, consistent with LTCHs

�moving up�the health distribution in their discharge decisions. On net, these e¤ects raise post-

LTCH costs by a modest $750. On the S margin, there is a 4 percentage point increase in the share

of discharges but also a $1,000 decrease in payments per discharge. The decline in payments results

from LTCHs discharging patients with declining health at shorter lengths of stay, when they are

in better health, and their associated SNF payments are lower. The e¤ects almost perfectly o¤set

each other, yielding virtually no e¤ect to post-LTCH cost.

The �extended SSO� counterfactual is more generous than the �rst counterfactual but still

less generous than the baseline schedule. Under this schedule, discharge patterns to S and A fall

roughly between those under the �rst counterfactual and the baseline. Table 3 shows that average

length of stay is actually longer than the baseline, as LTCHs have an incentive to retain patients to

day 9 (rather than day 0), when the per-day payments are capped. However, Medicare payments

decrease by $4,348, which is about half the size of the decrease under the �rst counterfactual. The

o¤setting nature of this counterfactual payment schedule makes the average behavioral response

more similar to the observed one, so most of the decrease (88%) in LTCH payments is driven by

the mechanical e¤ect while only 12% is due to the behavioral response. Post-LTCH payments for

patients discharged to A are very similar to those under the baseline schedule. Post-LTCH costs for

patients discharged to S decline by almost $2,000, primarily due to reduced payments per discharge.

Thus for this counterfactual, accounting for post-LTCH payments is important, raising Medicare

savings to $5,926 or about 36% more than the direct savings from reduced payments to LTCHs.

The �higher rate per day�counterfactual, while eliminating the jump at the SSO threshold, is

more generous than the baseline payment schedule. Under this schedule, discharge rates to S and

A are similar to the baseline discharge patterns in days -15 to -7. Because of the elimination of the

jump, however, there is less incentive to retain patients in the days immediately before the SSO

threshold. Because of the reduced incentive to hang onto patients, average length of stay under this

schedule is about 2 days shorter than under the baseline. LTCH payments, perhaps surprisingly,

are only $560 or 2.1% higher than under the baseline schedule. This is due to o¤setting mechanical

and behavioral e¤ects. Holding discharge patterns �xed, applying this schedule would increase

Medicare payments by $1,588, which is almost 3 times larger then the overall increase, implying

that the behavioral e¤ect is a reduction in Medicare payments of $1,028. Post-LTCH Medicare
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payments are almost identical to the baseline values.

4.2.3 For-pro�t vs. not-for-pro�t LTCHs

In the end of Section 3, we presented descriptive evidence where we split the sample by whether

the LTCH was a for-pro�t or non-pro�t hospital. In particular, we showed that while payment

schedules were similar for for-pro�t and non-pro�t LTCHs, for-pro�ts exhibited a larger increase

in discharges at the SSO threshold, suggesting that these facilities are more sensitive to �nancial

incentives. However, we cautioned against drawing too strong conclusions from the descriptive

results, as this �nding might, in part, re�ect di¤erences in the health of patients admitted to these

facilities. Our model allows us to adjust for di¤erences in health, allowing us to more precisely

isolate heterogeneity in the response to incentives.

To conduct this analysis, we estimate the model separately on the set of for-pro�t and non-

pro�t LTCHs. Appendix Table 1 shows parameter estimates from these separate runs of the

model. Our estimate of costs is slightly lower for for-pro�t ( = 0:88) versus non-pro�t ( = 0:92)

hospitals, which is consistent with slightly higher operational e¢ ciency by the private sector. For

for-pro�t hospitals, the slope parameters on patient preferences (v1;H and v1;S) are approximately

one-quarter smaller in magnitude, indicating that for-pro�ts are relatively more elastic in their

discharge decisions to changes in �nancial incentives.

Comparing for-pro�ts and non-pro�ts parameter by parameter is unsatisfying. To quantify

the di¤erence between for- and non-pro�ts over the full set of parameters, Table 4 conducts the

counterfactual of assigning every LTCHs for-pro�t versus non-pro�t status. For reference, column

(1) shows outcomes under the baseline organizational form. To construct column (2), we assign

all LTCHs the , �1;A , �0;S , and �1;S estimates for for-pro�t hospitals but maintain the health

process parameters that di¤er by organization formal so that there is �no change� in the health

distribution of the patients. For column (3), we do the same but assign all LTCHs the non-pro�t

estimates for , �1;A , �0;S , and �1;S holding the health process �xed. Appendix Figure 3 shows

discharge patterns under these counterfactuals.

Consistent with the increased responsiveness to incentives, Medicare payments are $1,728 (or

about 7%) higher under the for-pro�t counterfactual than under the counterfactual where we assign

every hospital non-pro�t status. Comparing the non-pro�t counterfactual to the baseline, the

estimates imply that �converting� the current set of for-pro�ts to non-pro�t status would reduce

payments by $1,351 or about 5% of their current level, holding the distribution of patient health

�xed.

4.2.4 Accounting for the endogeneity of PAC patient mix

TBA
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5 Conclusions

TBA
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Figure 1: LTCH payment schedules before and after PPS

Figure presents the payment schedule (in 2012 dollars) in both the pre-PPS and PPS periods. Sample pools

admissions that are associated with di¤erent SSO thresholds, and x-axis is normalized by counting days

relative to the threshold. The linear payment schedule begins with the �rst day of admission, and the y-axis

is normalized to zero for day -15.
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Figure 2: Patents �ow into and out of Post-Acute Care
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Top panel shows patient �ow from acute care hospitals (ACHs) to the di¤erent destinations: post-acute

care (PAC), home and home health agencies, and death or hospice. Bottom panel shows how the pattern

is di¤erent, within PAC, between Long-Term Care Hospitals (LTCHs) and other PAC facilities (SNFs and

IRFs). All numbers for this �gure use the universe of Traditional Medicare admissions during the PPS period

(Oct 2007 to Sept 2012). Numbers are shares of total discharges from each type of facility, excluding a small

share of discharges (never greater than 5%) that are more di¢ cult to classify. See Appendix for more details.
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Figure 3: Discharge patterns by length of stay

Figure presents the distribution of the time of discharge relative to the SSO threshold. That is, each

number graphed represents the number of discharges at a given (relative) day divided by the total number

of LTCH admissions. Sample pools admissions that are associated with di¤erent SSO thresholds, and x-axis

is normalized by counting days relative to the threshold.
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Figure 4: Discharge patterns across discharge destinations

Figure is similar to Figure 3, but presents the distribution separately by discharge destination. Top panel

presents discharges �downstream� (to SNF, IRF, or home), middle panel presents discharges �upstream�

(ACH or hospice), and the bottom panel presents discharges due to death.
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Figure 5: Post-discharge costs

Figure presents the post-discharge costs, by discharge day and discharge destination. To construct it, we

follow each patient discharged from the LTCH and add up total TM costs associated with the recovery

episode. We then average across all discharges by day and destination. We de�ne a recovery episode as

ongoing until there is a break of at least two days that does not involve a facility stay.
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Figure 6: Mortality patterns by length of stay

Figure presents mortality hazard rates by day. Mortality includes any mortality, whether it occurs within

the LTCH or after discharge. Each panel presents hazard rates for di¤erent subsequent horizons: same day

(top) and 30-day forward (bottom).
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Figure 7: Di¤erential patterns for for-pro�ts and not-for-pro�t LTCHs

Figure replicates earlier �gures, but separates the analysis for for-pro�t and non-pro�t LTCHs (the latter

includes government-operated LTCHs). The top panel reports the payment schedule, replicating Figure

1. The middle panel reports discharge patterns, replicating Figure 3. The bottom panel reports mortality

patterns, replicating the top panel of Figure 6.
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Figure 8: Model �t

Figure shows the moments we use for estimation, and how the model is able to �t them. Black bars in each

panel represent the actual moments from the data, and the gray bars represent the predicted moments from

the model estimates. The left three panel represent the PPS period, and the right three panels represent

the pre-PPS period. The top panels show discharge rates to ACH, the middle panels show discharge rates

to SNF, and the bottom panels show mortality rates (within the LTCH).

33



Figure 9: Implied health processes and optimal discharge policy

Figure describes the implications of the estimated model. The two black solid lines represent the policy

function. The top black line approximates the health level above which a patient is discharged to S, and the

bottom black line approximates the health level below which a patient is discharged to A. The black dashed

lines show the health status distribution of patients who got admitted (and day -15) at a median health

status, and then followed the estimated health process. Each line represents a di¤erent percentile (from top

to bottom: 90th, 75th, median, 25th, and 10th). Recall that a health status of zero implies mortality, which

is an absorbing state. The dashed gray line represents the cumulative share of individuals who died prior to

that day (again, conditional on entering the LTCH with median health status).
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Figure 10: Counterfactual payment schedules

Figure shows the observed (PPS) payment schedule (thick gray line in all panels) and the three counterfactual

payment schedules we consider (black line in each panel). All counterfactual schedules eliminate the jump in

payments at the SSO threshold, but do this in di¤erent, increasingly generous (from top to bottom) ways.

35



Figure 11: Counterfactual discharge patterns

Figure show discharge and within-LTCH mortality patterns from three counterfactual payment schedules.

The solid black line reports results that are based on our parameter estimates (reported in Table 2) and

the observed payment schedule, and each other line reports the results from predicted discharge and mortal-

ity patterns under a di¤erent counterfactual payment schedule. The counterfactual payment schedules we

consider are described in the main text and illustrated in Figure 10.
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Table 1: Summary statistics

ACH LTCH SNF/IRF ACH LTCH SNF/IRF

Number of admissions (000s) 29,223 220 5,058 51,191 635 12,264
Panel A. Patient attributes

Average age 74.5 73.9 80.2 73.5 71.7 79.1
Fraction male 0.43 0.44 0.35 0.44 0.48 0.37
Fraction white 0.84 0.74 0.87 0.82 0.73 0.85
Fraction black 0.11 0.20 0.10 0.12 0.20 0.11
Fraction qualified for Medicare via age 0.86 0.83 0.94 0.81 0.76 0.91
Fraction dual eligible 0.24 0.31 0.27 0.27 0.38 0.27

Panel B. Patient health indicators

Number of Chronic Conditions 5.6 6.4 6.6 6.7 7.8 7.9
Number of inpatient days in prev. year

30 Day Mortality Since Admission 0.082 0.149 0.114 0.079 0.160 0.087
90 Day Mortality Since Admission 0.142 0.283 0.219 0.139 0.310 0.185
Fraction who are home after 90 days

Three most common DRGs:

Panel C. Procedures during stay

Fraction with no procedures 0.428 0.613 0.949 0.397 0.281 0.976
Number of procedures (cond. on any) 2.51 2.43 1.97 2.70 2.91 2.12
Three most common procedures:

Transfusion (6.2%) Cath (7.4%) Phys. Therapy (2.6%) Transfusion (10.3%) Cath (19.3%) Occ. Therapy (1.2%)
Arteriography (5.5%) Transfusion (5.5%) Occ. Therapy (2.4%) Cath. (6.5%) Transfusion (18.4%) Phys. Therapy (1.2%)
Cardiac cath. (5.2%) Occ. Therapy (4.9%) Transfusion (0.3%) Dialysis (4.6%) Ventilation (14.4%) Transfusion (0.2%)

Length of stay 5.6 26.6 23.5 5.2 25.5 25.9
Panel D. Payments and cost

Total Medicare payments per stay 9,425 28,386 9,727 10,865 35,402 13,124
Medicare payments per day 1,671 1,068 414 2,087 1,390 507
Outofpocket payments 772 2,344 1,568 839 1,916 1,990
Outofpocket payments per day 137 88 67 161 75 77
Total reported costs  28,386   36,218 
Reported cost per day  1,068   1,422 

PrePPS (Jan 2000  Sep 2002) PPS (Oct 2007  Sep 2012)

Some of the entries in the table are empty. They will get populated in future versions of this paper.
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Table 2: Parameter estimates

Parameter Std. error

Health process during prePPS:
μ0 8.32
σ0 3.46

μ 0.42

ρ 0.99

σ 2.27

Health process during PPS:
μ0 4.91
σ0 1.86

μ 4.26

ρ 0.19

σ 1.95

Preferences:
γ 0.93

β 0.9999

ν1
A (000s) 35.69

ν0
S (000s) 72.85

ν1
S (000s) 6.27

Table presents parameter estimates of the parameters in our baseline speci�cation. Standard errors will get

populated in future versions of this paper.
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Table 3: Discharges and payments from counterfactuals scenarios

Observed sched. Lower cap Extended SSO Higher per day
(1) (2) (3) (4)

LTCH payments:
Total payments 26,294 14,543 21,946 26,854
Average LOS* 18.2 13.5 18.5 16.4
Payment per day 1,444 1,079 1,188 1,642

Discharges to ACH:
Total payments 5,104 4,332 5,359 4,762
Share of discharges 0.11 0.10 0.12 0.11
Payment per discharge 44,427 44,027 44,397 44,318

Discharges to SNF:
Total payments 15,302 14,883 12,993 14,975
Share of discharges 0.79 0.83 0.78 0.80
Payment per discharge 19,485 17,903 16,657 18,627

Total Medicare payments 46,700 33,758 40,298 46,591

Table presents results from three counterfactual payment schedules. Column (1) reports results that are

based on our parameter estimates (reported in Table 2) and the observed payment schedule, and each

other column reports the results from predicted discharge patterns under a di¤erent counterfactual payment

schedule. The counterfactual payment schedules we consider are described in the main text and illustrated

in Figure 10.
� Length of stay is measured from day -15. To make it comparable to the summary statistics reported in

Table 1, all numbers should be increased by 7.5 days (because the average SSO threshold across admissions

in our sample is 22.5 days).
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Table 4: Results from additional counterfactuals exercises

Observed (PPS) All ForProfit All NonProfit PrePPS
admission mix

(1) (2) (3) (4)

LTCH payments:
Total payments 26,294 26,671 24,943
Average LOS* 18.2 18.2 17.9
Payment per day 1,444 1,466 1,391

Discharges to ACH:
Total payments 5,104 4,906 4,969
Share of discharges 0.11 0.11 0.11
Payment per discharge 444,277 44,600 44,542

Discharges to SNF:
Total payments 15,302 15,440 15,031
Share of discharges 0.79 0.79 0.79
Payment per discharge 19,485 19,610 19,045

Total Medicare payments 46,700 47,017 44,944

Table reports the discharge and payment patterns under the observed schedule (column (1)), as well as

two counterfactual scenarios, where we apply the model estimates from for-pro�t hospitals only and from

non-pro�t hospitals only (see Appendix Table 2) to all LTCHs hospitals. In future version of this paper, we

will also report (in column (4), which is currently empty) a third counterfactual, where we use the pre-PPS

health process and the PPS payment schedule in order to quantify the importance of the change in the

patient mix.
� Length of stay is measured from day -15. To make it comparable to the summary statistics reported in

Table 1, all numbers should be increased by 7.5 days (because the average SSO threshold across admissions

in our sample is 22.5 days).
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Appendix Figure 1: Discharge patterns, re-weighted

Figure is the same as Figure 3 in the main text, except that pre-PPS line is re-weighted to re�ect the same

DRG mix as in the PPS period.
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Appendix Figure 2: Post-discharge mortality rates

Figure presents the (forward looking) 30-day mortality rate after discharge date as a function of the day of

discharge.
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Appendix Figure 3: Discharge patterns, by for-pro�ts status

Figure presents the counterfactual discharge patterns associated with the counterfactuals reported in columns

(2) and (3) of Table 4.
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Appendix Table 1: Parameter estimates, by for-pro�ts status

Parameter Std. error Parameter Std. error

Health process during prePPS:
μ0 7.97 7.53
σ0 3.16 3.17

μ 0.41 0.43

ρ 0.99 0.99

σ 2.20 2.12

Health process during PPS:
μ0 4.89 5.11
σ0 1.85 1.98

μ 4.23 4.67

ρ 0.19 0.16

σ 1.93 2.14

Preferences:

γ 0.88 0.92

β 0.9999 0.9999

ν1
A (000s) 27.37 37.53

ν0
S (000s) 65.89 83.56

ν1
S (000s) 6.14 7.43

Forprofit LTCHs Nonprofit and govowned LTCHs

Table presents estimates of the parameters, when we estimate the model separately for for-pro�t and non-

pro�t hospitals. Standard errors will get populated in future versions of this paper.
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