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Economists have become increasingly 

interested in studying the nature of production 

functions in social policy applications, Y = 

f(L, K), with the goal of improving 

productivity. For example what is the effect 

on student learning from hiring an additional 

teacher, ∂Y/∂L, in theory (Lazear, 2001) or in 

practice (Krueger, 2003)? What is the effect of 

hiring one more police officer (Levitt, 1997)? 

While in many contexts we can treat labor 

as a homogenous input, many social programs 

(and other applications) involve human 

services and so the exact identity of the 

worker can matter a great deal. Variability in 

worker productivity (e.g., Gordon, Kane and 

Staiger, 2006) means ∂Y/∂L depends on which 

new teacher or cop is hired. Heterogeneity in 

productivity also means that estimates for the 

effect of hiring one more worker are not stable 

across contexts – they depend on the 

institutions used to screen and hire the 

marginal worker.  

With heterogeneity in labor inputs, 

economics can offer two contributions to the 

study of productivity in social policy. The first 

is standard causal inference around shifts in 

the level and mix of labor and other inputs. 

The second, which is the focus of our paper, is 

insight into selecting the most productive 

inputs – workers. This requires prediction. 

This is a canonical example of what we 

have called prediction policy problems 

(Kleinberg et al., 2015), which require 

different empirical tools from those common 

in micro-economics. Our normal tools are 

designed for causal inference- that is, to give 

us unbiased estimates for some  �̂�. These tools 

do not yield the most accurate prediction, 

𝑌� , because prediction error is a function of 

variance as well as bias. In contrast new tools 

from machine learning (ML) are designed for 

prediction. They use the data adaptively to 
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decide how to trade off bias and variance to 

maximize  out-of-sample prediction accuracy.  

In this paper we demonstrate the social-

welfare gains that can result from using ML to 

improve predictions of worker productivity. 

We illustrate the value of this approach in two 

important applications – police hiring 

decisions, and teacher tenure decisions. 

I. Hiring Police  

Our first application relates to efforts to 

reduce excessive police use-of-force and 

improve police-community relations, a topic 

of great policy concern. We ask: By how 

much we could reduce the rate of police 

misbehavior by using ML rather than current 

hiring systems to identify high-risk officers 

and replace them average-risk officers?  

For this analysis we use data from the 

Philadelphia Police Department (PPD) on 

1,949 officers hired by the department and 

enrolled in 17 academy classes from 1991-98 

(Greene and Piquero, 2004). Our dependent 

variables capture whether the officers were 

ever involved in a police shooting or accused 

of physical or verbal abuse (see appendix). 

Candidate predictors from the application data 

capture socio-demographic attributes, veteran 

and marital status, surveys that capture prior 

behavior and other topics (e.g., ever fired from 

a job, ever arrested or had a suspended 

driver’s license), and polygraph results. 

We randomly divide the data into a training 

and test set, and use five-fold cross-validation 

within the training set to choose the optimal 

prediction function and amount by which we 

should penalize model complexity to reduce 

risk of over-fitting the data, or 

“regularization” (see appendix). The algorithm 

we wind up using is stochastic gradient 

boosting, which combines the predictions of 

multiple decision trees that are built 

sequentially to focus on observations not well 

predicted by the sequence of trees up to that 

point (Hastie, Tibshirani and Friedman, 2008).  

Figure I shows that de-selecting the 

predicted bottom decile of officers using ML 

and replacing them with officers from the 

middle segment of the ML-predicted 

distribution reduces shootings by 4.81% (95% 

confidence interval -8.82 to -0.20%). In 

contrast de-selecting and replacing bottom-

decile officers using the rank-ordering of 

applicants from the PPD hiring system that 

was in place at the time would if anything 

increase shootings, by 1.52% (-4.81 to 

5.05%). Results are qualitatively similar for 

physical and verbal abuse complaints. 

One potential concern is that we may be 

confusing the effects on misbehavior risk of 

the workers versus their job assignments – 



what we call task confounding. The PPD may, 

for example, send their highest-rated officers 

to the most challenging assignments, which 

would lead us to understate the performance 

of PPD’s ranking system relative to ML. We 

exploit the fact that PPD assigns new officers 

to the same high-crime areas. Task-

confounding predicts the ML vs. PPD 

advantage should get smaller for more recent 

cohorts – which does not seem to be the case 

(see appendix). 

II. Promoting Teachers 

The decision we seek to inform is different 

in our teacher application: We try to help 

districts decide which teachers to retain 

(tenure) after a probationary period, rather 

than (as in the policing application) whom to 

hire. Like previous studies, we find that a very 

limited signal can be extracted during the 

teacher application and hiring stage about who 

will be effective in the classroom in the future. 

Once people have been in the classroom, in 

contrast, it is possible to use a (noisy) signal to 

predict whether they will be effective. 

Our data come from the Measures of 

Effective Teaching (MET) project. We use 

data on 4th through 8th grade teachers in math 

(N=664) and English and Language Arts 

(ELA; N=707). We assume schools make 

tenure decisions to promote student learning 

as measured by test scores. Our dependent 

variable is a measure of teacher quality in the 

last year of the MET data (2011), Teacher 

Value-Add (TVA). Kane et al. (2013) 

leverage the random assignment of teachers to 

students in the second year of the MET study 

to validate TVA, overcoming the problem of 

task confounding.  

We seek to predict future productivity using 

ML techniques (in this case, regression with a 

Lasso penalty for model complexity – see 

appendix) to separate signal from noise in 

observed prior performance. We examine a 

fairly “wide” set of candidate predictors from 

2009 and 2010, including measures of 

teachers (socio-demographics, surveys, 

classroom observations), students (test scores, 

socio-demographics, surveys), and principals 

(surveys about the school and teachers).  

Figure II shows that the gain from using ML 

to deselect the predicted bottom 10% of 

teachers and replacing them with average 

quality teachers is .0167σ for Math and 

.0111σ for ELA. This is an improvement over 

our proxy for the modal current system - 

principal ratings – of .0072 (.0002 to .0138) 

for Math and .0057 (.0017 to .0119) for ELA.1  
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 ML also shows gains relative to the TVA method by Kane et al. 
(2013), which are 30-40% as large as ML versus principal gains. We 
can also compare the ML approach to a model with two lags, which 
also yields an ML advantage – but these relative gains are smaller 
and, with the current data, not statistically significant. 



 

How large are these effects? One possible 

benchmark are the relative benefits and costs 

associated with class size reduction, as 

estimated from the Tennessee STAR 

experiment (Krueger, 2003). We assume 

following Rothstein (2015) that the cost of the 

decision we study here - replacing the bottom 

10% of teachers with average teachers - would 

require a 6% increase in teacher wages. Our 

back-of-the-envelope calculations suggest that 

using ML rather than the current system to 

promote teachers may be on the order of 3 

times as cost-effective as reducing class size 

by one-third for the first few years of school.  

III. General Lessons 

In settings where workers vary greatly in 

their productivity, using ML rather than 

current systems to hire or promote workers 

can improve social welfare. These gains can 

be large both absolutely and relative to those 

from interventions studied by standard causal 

analyses in applied micro-economics. 

Our analysis also highlights several more 

general lessons. One is that for ML 

predictions to be useful for policy they need to 

be developed to inform a specific, concrete 

decision. Part of the reason is that the decision 

necessarily shapes and constrains the 

prediction. For example, for purposes of 

hiring new police, we need a tool avoids using 

data about post-hiring performance. In 

contrast for purposes of informing teacher 

tenure decisions, using data on post-hiring 

performance is critical.  

Another reason why it is so important to 

focus on a clear decision for any prediction 

exercise is to avoid what we call omitted 

payoff bias. Suppose an organization ranks 

workers using multiple criteria, but an 

algorithm predicts their performance on just 

one dimension. The use of that algorithm 

could potentially lead to a net reduction in the 

organization’s goals (see Luca et al. 2016 for 

managerial examples). We are less worried 

about this in the teacher tenure application, 

since focus on test scores is widespread in the 

research and policy communities, although we 

do acknowledge concerns that test scores may 

not capture everything society wishes schools 

to teach (such as critical thinking).  

But omitted payoff bias could be more of a 

concern in our police-hiring application, since 

the dataset we use does not include measures 

of “positive” productivity such as officer 

efforts to prevent crime. One response is that 

in debates about police use of force no one 

ever defends officers accused of malfeasance 

by pointing to other indicators of productivity. 

The public may have lexicographic 

preferences over what it wants from police.  



A final general lesson comes from the 

frequent challenge of having to train 

algorithms on data generated by past 

decisions, which can systematically censor the 

dependent variables (or “labels” in computer 

science). What Kleinberg et al. (2016) call the 

selective labels problem is particularly clear in 

our police-hiring application, where we only 

have data on people the department actually 

hired. This means we cannot help select who 

to hire out of the original applicant pool, 

which could in principle reshuffle the ranking 

of applicants in a way that could lead to a gain 

in productivity at no cost. Instead we can only 

inform a different decision – replacing 

predicted high-risk hires with average-risk 

officers – that would entail costs (higher 

wages to expand the applicant pool). Quasi-

experimental variation in, say, how applicants 

are assigned to interview teams could help 

analysts determine whether department hiring 

decisions are based partly on information that 

is not made available to the algorithm.  

There are many of these “picking people” 

applications for which ML prediction tools 

could be applied. Our goal with this paper is 

to stimulate more work on these problems. 
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1 Appendix A - Police Hiring

1.1 Introduction

In this appendix we provide additional details about our data and estimation procedures for predicting future
officer performance with the Philadelphia Police Department (PPD) dataset (Greene and Piquero, 2006).

We are seeking to identify, using information available at the time a police officer is hired, which officers are
most likely to engage in serious misconduct on the job in the future. In this application our proxy for serious
misconduct refers to one of the following:

1. An incident leading to the provision of departmental discipline

2. An internal investigation

3. An off duty incident

4. An officer-involved shooting

5. Other misconduct

6. A citizen complaint for lack of service

7. A citizen complaint for physical abuse

8. A citizen complaint for verbal abuse

One limitation of the dataset we have available for analysis is that for many of these measures (such as phys-
ical or verbal abuse, or lack of service) the dataset captures allegations rather founded complaints. Another
limitation is that it does not distinguish between police shootings that are founded versus unfounded.

For the analysis, we use data collected from the PPD on all 1,949 officers hired from 17 police academy cohorts
between 1991-1998. While the available predictors are measured at the time the officer is hired, outcome
variables are measured at a single point in time in 2000 and capture whether an officer has ever been accused of
the above types of misconduct, but do not capture the number of misconduct accusations. For an outcome like
a police shooting which is relatively rare, the binary indicator is likely to be highly correlated with the count of
incidents. However, for an outcome like verbal abuse which is more common, the available data cannot be used
to identify the most troublesome officers among the class of accused officers. Given this limitation, the number
of events we estimate that could have been abated with the use of a prediction model is a lower bound.

1.2 Descriptive Statistics

We begin with a description of the incidence of each type of misconduct among the 1,949 officers in our sample
— the means for each of these binary variables are presented in Table 1. These descriptive statistics provide
the base rate against which our predictive model can be compared. Across all 17 academy cohorts, misconduct
allegations are relatively rare, though they are naturally more common among the older cohorts which have the
longest observation period and are less common among the most recent cohorts for whom on-the-job behavior
is observed only for 1 or 2 years.

1.2.1 Outcome Variables

Overall, the most common type of complaint is for physical abuse (17 percent), followed by verbal abuse (10
percent), and lack of service (8 percent). It is worth noting that these are incidents that are made known to the
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police department when a citizen complains. It is easy to imagine that verbal abuse might in fact be the most
common type of misconduct but might be less likely to be reported by citizens to the department. If citizen
reporting is systematically related to officer characteristics, then our model would understate the risk of the
most serious officers relative to the least serious officers. Officer-involved shootings (5 percent) and, to a lesser
extent, off-duty incidents (10 percent) may provide a less confounded outcome to study as these incidents are
far less sensitive to citizen reporting.

1.2.2 Predictors

The decision we are interested in informing is whether the PPD should have hired a given officer in the first
place. While PPD has broad discretion over which officers to hire, once an officer is hired, and particularly
once an officer completes a probationary period, it is comparatively difficult to terminate an officer. Hence we
focus on factors that are known to PPD at the time of the hiring decision. The data are fairly rich and capture
basic demographics (though we exclude race from the prediction model), prior military experience and work
history including involuntary separation, prior drug use and criminal involvement and outcomes of polygraph
testing. Table 2 shows summary statistics for the predictors used in our machine learning model.

Officers who are eventually hired are, on average, 27 years old at the time they apply to work as a Philadelphia
police officer; 55 percent are nonwhite and one third are female. Seventeen percent of officers have served in
the military and 2 percent are current members of the U.S. military reserve. Nearly all officers are registered to
vote in Philadelphia, which reflects the fact that the city has a residency requirement in place for new officers.
Officers have, on average, 13 years of schooling and have held an average of 5 prior jobs. Sixty-eight percent of
officers have been unemployed in the past and over one quarter have been dismissed or fired. The majority of
officers have never been arrested (84 percent), been a defendant in a criminal case (94 percent), been convicted
of a crime (96 percent) or placed on probation pr parole (97 percent). Nearly half of officers report prior drug
use but 100 percent of the drug use that officers reported during the hiring stage involved use of marijuana. The
failure rate for polygraph tests was 28 percent for the sample.

1.3 Prediction Procedure

The features of standard econometric methods that make them less than ideal for purposes of generating accu-
rate out-of-sample predictions are overcome by new methods in computer science and, in particular, the field
of machine learning. Methods such as regularized (penalized) regression seek to balance the objectives of min-
imizing prediction bias and variance by minimizing a loss function that includes both in-sample fit and a term
that penalizes more complex models that tend to increase variance when predicting out of sample. Similarly
methods like tree-based classifiers make it possible to fully exploit increasingly rich data sources and to bet-
ter understand the complicated interactions and non-linear relationships between large numbers of predictive
factors.

A key lesson from the field of machine learning is that combining diverse signals can greatly improve prediction
accuracy. For example the method of “ensemble training" (Hastie et al., 2009) involves generating a prediction
model that combines multiple prediction models, including models that may capture limited signal and so have
relatively weak predictive power when taken on their own. Previous research shows that the strength of the
ensemble prediction model is enhanced when there is relatively more diversity in the underlying prediction
models that are drawn upon (Kuncheva and Whitaker, 2003; Touretzky et al., 1996). The same logic applies
to prediction models that are able to draw on diverse sources of data, each of which may be limited in its own
way but by combining different data sources multiple types of signal can be combined and brought to bear on
the prediction problem.

Recent work has demonstrated the success of ensemble decision-tree methods such as random forest and the
related stochastic gradient boosting (Caruana and Niculescu-Mizil, 2006). Decision trees are nonparametric
prediction models which split the input space of predictors into a set of rectangles where the splitting decision
at each non-leaf node in the tree is based on a criterion such as squared loss. Each non-leaf node in the tree
represents and if-then decision. A prediction can be generated for a new data point by dropping it down the tree
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and following the if-then decision path to a leaf node. The predicted value is a function, typically the mean for
regression and majority vote for classification, of the outcome values of the subset of data points in the training
set which ended up in the leaf node. One downside of decision trees is that they can be unstable; that is, the
structure of these trees can vary considerably depending on slight chance changes to the dataset used to build
the tree. To address this problem random forest builds many trees, where each tree is trained on a different
bootstrapped sample of the original data and splitting decisions in tree nodes are based on a randomly sampled
subset of the potential predictors. The final prediction model is a weighted average of the individual trees.
These techniques help reduce model variance and prevent over-fitting.

Similar to random forest, gradient boosting Mayr et al. (2014) also grows an ensemble of trees but a key dif-
ference is that trees are developed sequentially. Intuitively, boosting works by iteratively upweighting difficult
to predict data points. At any iteration t, the focus of a boosting algorithm is shifted to the mispredicted data
points in the previous t− 1 iterations. In the case of gradient boosting with a squared error loss function, each
subsequent tree is essentially built to fit the previous trees’ residuals. The estimator for the full model at any
particular iteration is a weighted sum of all previous trees. The results reported here are from a set of gradient
boosted tree models built for each misconduct outcome.

Given a response y and a set of predictors x1 to xk, the number of trees T , and a desired loss function (e.g.
squared error for regression or Bernoulli deviance for classification), the gradient boosting algorithm works as
follows:

Set initial guess to a constant value

For t = 1, ..., T

1. Evaluate the gradient of the loss function at each point to construct a new response

2. Fit a regression tree with K terminal nodes to the new response

3. Compute new predictions for each terminal node

4. Add the new tree to the ensemble at the learning rate γ

The number of terminal nodes K determines the number of interactions (K − 1) allowed. Over-fitting can be
avoided by reducing the influence of each new tree on the output of the model via a small value for γ in step
4, building short trees, randomly sampling a subset of the data in each iteration at step 2 to reduce prediction
variance, and limiting the number of trees built. We select the optimal values for T , γ, and K via five-fold
cross-validation.

1.4 Results

In this section we provide additional detail describing the results of our prediction models as well as statistical
tests used to evaluate the quality of these models. We evaluate model quality using two benchmarking pro-
cedures: 1) a test of precision in the top decile of our prediction model relative to the departmental ranking
established by PPD and 2) a counterfactual exercise in which we replace the officers who we identify as being
a priori at greatest risk to commit misconduct with officers in the middle of the distribution.

In making these comparisons there is an implicit assumption that the PPD’s ranking procedure was established
solely to minimize misconduct. This may not be the case in practice, which as we note in our main paper text
could lead to the problem of omitted payoff bias. However as we argue in the paper, recent public debates about
officer misconduct make clear that there is no additional amount of police-officer productivity that the public is
willing to tolerate in exchange for overlooking officer misconduct. In some sense the public’s preferences over
police behavior seems to be lexicographic. Unfortunately the dataset we have available to us does not include
any direct measures of "positive" officer productivity, so we cannot compare whether selecting officers based
on ML predictions of misconduct yields a pool of officers with lower values of other productivity measures
compared to PPD’s current hiring system. This type of exercise, which would require different (and more) data,
would be a valuable topic for future research.
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1.5 Prediction Accuracy

Following standard practice in the machine learning literature, we report precision for each model — the pro-
portion of officers in a given subsample of the data who actually commit misconduct. The advantage of focusing
our attention on precision, one of several available metrics for assessing model quality, is that it is explicitly
related to the decision a policymaker needs to make – which potential officers should the police department
hire? We compute precision for each outcome by taking a weighted average of the class-level precision where
the weights are equal to proportion of all officers in the top decile of a particular class. Table 4 shows that
while neither ranking is highly predictive of misconduct, the machine learning ranking outperforms the PPD
list across most outcomes and, as such, represents an improvement relative to the status quo.1

1.6 Precision

In order to establish that our prediction model is superior in identifying misconduct to the departmental ranking
established by PPD, we motivate a formal test that compares precision between the two models. We focus
here on a comparison of the top decile of predictions generated by our ML model and PPD’s internal ranking.2

Complicating this test is the fact that officers are independently ranked within 17 different academy classes and
so, using the PPD ranking, we can only compare officers within but not between academy classes. We could test
the null hypothesis that precision for the two models is equal for each academy class-outcome cluster but that
would result in a series of severely underpowered tests as a given decile for an academy class-outcome cluster
will consist of between 10-20 officers. Instead, we generate a stacked dataset in which, for a given outcome,
we jointly test precision for all officers, conditional on academy class fixed effects that allow the base rate to
vary by class. The test is outlined in model (1) below:

Yij = α+ βDij + φj + εij (1)

In (1), Yij is a binary indicator variable indicating whether officer i in academy class j committed a particular
type of misconduct. Each observation comes from either the top risk decile of either predictions from our ML
model or in the PPD ranking. Dij is a dummy variable indicating whether the observation is found in the ML
ranking or the PPD ranking and φj are academy class fixed effects which allow each class to have a different
base rate. β tests the null hypothesis that Ȳ is equal between the ML and PPD samples. Because some officers
(typically around 6 percent) will be in the top decile in both our ML model and the PPD ranking, we cluster
standard errors on the officer to account for the fact that these are not completely independent samples.3

Results for this exercise can be found in Table 4. In the table, we provide precision at the top decile for both
the ML model and the PPD ranking. Asterisks on the difference correspond to the significance of the result.
Because the sample size across academy classes is fairly small (N 195), only two of the differences are
significant at conventional levels — physical abuse (p < 0.05) and verbal abuse (p < 0.10). However, results for
all eight outcomes indicate that precision is higher for the ML model than the PPD ranking and p-values for
several outcomes (internal investigations, off duty incidents and shootings) are below 0.15.

In order to provide an omnibus test for the equality of precision between the two models that is sufficiently well-
powered, we pool across all outcomes in a single model that stacks outcomes for each officer in each academy
class-outcome cluster, conditioning on interacted academy class × outcome fixed effects — thus allowing the

1We also report the area under the curve (AUC) (Table 3) for the machine learning and PPD-generated risk rankings. The AUC
can be interpreted as the probability that a randomly chosen officer with a misconduct will be predicted to be riskier than a randomly
chosen officer without a misconduct. An AUC of 0.5 indicates that the ranking does no better than chance in discriminating between
the two cases.

2The difference in precision between the two models is, in fact, greatest at the top decile compared to the nine other deciles. We
argue that it is sensible to focus on the top 10 percent of the distribution which is where an outsize amount of misconduct occurs.

3In practice, due to the relatively small amount of overlap between the two samples, clustered and OLS standard errors are approx-
imately identical.
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base rate to differ by both academy class and outcome. This test is a natural extension of the test motivated in
(1) except here we add an additional index, k, for the different outcome variables.

Yijk = α+ θDijk + ρjk + εijk (2)

In (2), ρjk are now academy class × outcome fixed effects and θ tests whether Ȳ differs across all outcomes.
Results for this model are presented in the row entitled “stacked" in Appendix Table XX. Here, the raw dif-
ference in precision is 4.5 percent indicating that, within the top decile of the data, averaging across the 8
outcomes, the ML model correctly identifies nearly 5 percent more officers who have committed some type of
misconduct than the PPD ranking. The result is significant at p < 0.001.

1.7 Changes in Misconduct

After establishing that our algorithm outperforms the PPD list at the top of the risk distribution in identifying
a greater number of misconduct events, we next test whether use of the machine learning model could have
reasonably led to a reduction in misconduct. To do so, we perform the following deselection exercise. We
replace the top 10 percent of riskiest officers with a sample of officers drawn from the middle of the risk
distribution in each academy class for both the PPD and machine learning list. We then compare the percentage
change in misconducts between the new pool of officers versus the status quo. Figures 1, 2, and 3 show these
results when the riskiest officers are replaced by those in the middle 33 percent, 50 percent, and 66 percent of
the risk distribution, respectively. For nearly all outcomes and risk ranges, replacing risky officers using the
machine learning ranking results in a reduction in misconducts. Replacement using PPD rankings tends to lead
to an increase in misconducts.

To test whether these results are significant we use a bootstrapping procedure where, for each risk range, we
perform the deselection exercise 1,000 times, resampling with replacement from the middle X percent of the
risk distribution. Table 5 shows that when replacing with the PPD-generated list there is no significant change in
the number of misconducts when compared to the status quo. For the machine learning list, there is a significant
reduction in departmental discipline, physical abuse, verbal abuse, shooting, and other outcomes. The strength
of the significance is stronger for departmental discipline and verbal abuse than for physical abuse, shooting
and other outcomes.

1.8 Task Confounding

One potential concern with our approach is that we may confuse each person’s contribution to productivity
(misbehavior) from the contribution of the setting or job assignment — we refer to this problem as task con-
founding. Imagine, for instance, that PPD assigns its highest-rated officers to the most challenging beats in the
city. This would create a relationship between each officer’s unobservables and the outcome and would lead us
to understate the predictive accuracy of the PPD’s ranking system relative to that of the algorithm.4

To test for possible task confounding we exploit the fact that PPD assigns all new officers during their first year
on the job (their probationary period) to similarly high-crime areas. So for the latest academy cohorts in our
sample (those who started in 1998) the majority of time spent before the end of the study period in 2000 will be
spent in essentially the same job assignment. More generally, the later the academy cohort, the less opportunity
there is for this sort of task confounding. As a result, under the null hypothesis of task-confounding, the
algorithm’s advantage over PPD’s system should be smaller for more recent cohorts.

We perform two tests of task confounding of the following form:

Advantageco = β0 + β1class+ β2outcome (3)

4Figuring out the optimal way to assign officers to beats is beyond the scope of this exercise but we note that this may well be a first
order issue in minimizing police misconduct.
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In the first test, Advantageco is defined as 4ML − 4PPD where 4j is the percent change in the number of
officers committing misconduct o in academy class c when the top risk decile is replaced by officers in the
middle of the risk distribution using risking ranking j ∈ {ML,PPD}, class is a time trend ranging from 1
to 17 and outcome is a set of indicators for misconduct type. For the second test, Advantageco is defined
as MLprec − PPDprec where jprec is the precision in the top decile for risk ranking j. If 4ML < 4PPD

(MLprec > PPDprec), then the algorithm is outperforming the police’s ranking and a positive (negative)
coefficient on class implies that this advantage is decreasing over time, consistent with task confounding.

We estimate the significance of β1 for the first test via a bootstrap approach where we sample with replacement
at the class and outcome level 1,000 times. For each replication we estimate (3) and store up the value of β1
and use the empirical distribution to assess significance. The first two columns of Table 6 show that there is
no evidence that the algorithm systematically outperform the police rankings for earlier than late cohorts when
the deselection exercise sampling is performed with the middle 60 percent of the risk ranking. Results are
equivalent for the other risk ranges. For the second test, we alter our bootstrap approach where we sample with
replacement the entire dataset 1,000 times and estimate the precision for the machine learning and PPD lists at
the class and outcome level. We estimate (3) and examine the distribution of β1. The last two columns of Table
6 again reveal no evidence that our algorithm performs better for earlier than later cohorts.

References

Caruana, Rich and Alexandru Niculescu-Mizil, “An empirical comparison of supervised learning algo-
rithms,” in “Proceedings of the 23rd international conference on Machine learning” ACM 2006, pp. 161–
168.

Greene, Jack R. and Alex R. Piquero, “Supporting Police Integrity in the Philadelphia [Pennsylvania] Police
Department, 1991-1998 and 2000,” 2006.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman, The Elements of Statistical Learning Springer
Series in Statistics, New York, NY, USA: Springer New York Inc., 2009.

Kuncheva, Ludmila I. and Christopher J. Whitaker, “Measures of Diversity in Classifier Ensembles and
Their Relationship with the Ensemble Accuracy,” Machine Learning, May 2003, 51 (2), 181–207.

Mayr, A., H. Binder, O. Gefeller, and M. Schmid, “The Evolution of Boosting Algorithms: From Machine
Learning to Statistical Modelling,” Methods of Information in Medicine, August 2014, 53 (6), 419–427.

Touretzky, D. S., M. C. Mozer, and M. E. Hasselmo, “Learning with Ensembles: How over-fitting can be
useful,” in “Advances in Neural Information Processing Systems” MIT Press 1996, pp. 190–196.

6



Outcome Variables Mean SD

Physical Abuse (ever) 0.17 0.37
Verbal Abuse (ever) 0.1 0.3
Lack of Service (ever) 0.08 0.28
Internal Investigations (ever) 0.15 0.36
Off Duty Incidents (ever) 0.1 0.3
Police Shootings (ever) 0.05 0.22
“Other" Misconduct 0.08 0.28
Departmental Discipline 0.3 0.46

TABLE 1: Summary statistics for outcome variables

Predictors Mean SD

Age 26.71 6.19
Race (1 = non-white) 0.55 0.5
Sex (1=female) 0.33 0.47
Recipient of veteran’s Preference (1=yes) 0.08 0.38
Military Reserve Status (1=yes) 0.02 0.13
Number of Files 1.16 0.49
Total # of addresses in past 10 years 3.42 2.28
Registered voter in Philadelphia (1=yes) 0.95 0.21
Registered voter in other location (1=yes) 0.03 0.16
Has valid PA driver’s license (1=yes) 1 0.02
PA license ever suspended (1=yes) 0.2 0.4
License from other state suspended (1=yes) 0.02 0.14
Ever involved in car accident (1=yes) 0.67 0.47
Total # of car accidents involved in 1.51 0.86
Received traffic ticket in past 5 years (1=yes) 0.39 0.49
Total # of traffic tickets issused 1.54 1.07
Years of schooling 13.24 1.77
Total # of schools listed 4.6 1.83
Total # of prior jobs 5.23 2.71
Any length of unemployment? (1=yes) 0.68 0.47
Ever been dismissed / fired (1=yes) 0.28 0.45
Ever been dismissed from organization (1=yes) 0.02 0.13
Ever member of violent organization (1=yes) 0 0.04
Behind on bills? (1=yes) 0.28 0.45
Any loans, debt in excess of $1000 (1=yes) 0.66 0.47
Total amount owed-consumer debt (USD) 5972.19 8452.52
Ever filed for bankruptcy (1=yes) 0.03 0.16
Under court order? (1=yes) 0.07 0.26
Ever member of military (1=yes) 0.17 0.38
Type of military discharge 0.03 0.17
Any parent a police officer (1=yes) 0.11 0.31
Total # of children 0.94 1.28
Total # of siblings 3.2 2.3
Total # of family members arrested 0.6 0.97
Currently charged with any crime (1=yes) 0 0.05
Currently on probation/parole (1=yes) 0 0
Presently free on bail or ROR (1=yes) 0 0
Currently wanted on outstanding warrant (1=yes) 0 0.03
Currently subject of a protection from abuse complaint (1=yes) 0 0.05
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Predictors Mean SD

Currently under indictment (1=yes) 0 0
Ever interviewed or questioned by law enforcement? (1=yes) 0.53 0.5
Ever been arrested? (1=yes) 0.16 0.36
Ever been convicted of a crime? (1=yes) 0.04 0.2
Ever on probation / parole? (1=yes) 0.03 0.16
Ever paid a fine? (1=yes) 0.37 0.48
Ever had to pay restitution? (1=yes) 0.02 0.15
Ever had to pay any court cost? (1=yes) 0.1 0.3
Ever had to post bail? (1=yes) 0.02 0.15
Ever lost or forfeited posted bail? (1=yes) 0 0.05
Ever been a defendant in a criminal case (1=yes) 0.06 0.23
Ever been questioned about a crime (1=yes) 0.25 0.43
Ever received a subpoena (1=yes) 0.26 0.44
Ever plead "no contest" to a criminal charge (1=yes) 0.02 0.13
Ever had police come to your house to investigate a crime (1=yes) 0.21 0.41
Ever been subject of a protection from abuse order (1=yes) 0.03 0.17
Ever been subject of a criminal complaint (1=yes) 0.02 0.15
Ever been a character witness (1=yes) 0.04 0.2
Ever been investigated for child abuse / neglect(1=yes) 0.03 0.16
Ever been investigated for spousal abuse (1=yes) 0 0.03
Ever applied for LE job? (1=yes) 0.51 0.5
Total # of times not hired 0.91 1.5
Ever been a member of PPD or other lae enforcement agency? (1=yes) 0.09 0.29
Ever applied for job with city of Philadelphia (1=yes) 0.45 0.5
Total # of times not hired for city job 0.53 0.85
Ever used solvents, inhalants, etc. (1=yes) 0.05 0.21
Ever sold solvents, inhalants, etc. (1=yes) 0.04 0.19
Ever sold or given prescription drugs (1=yes) 0.21 0.41
Possessed marijuana past 6 months (1=yes) 0.02 0.14
Ever possessed marijuana (1=yes) 0.45 0.5
Used marijuana past 6 months (1=yes) 0 0.03
Ever used marijuana (1=yes) 0.48 0.5
Ever possessed any illegal drug (1=yes) 0.46 0.5
Ever purchased any illegal drug (1=yes) 0.14 0.35
Ever "chipped-in" to purchase illegal drug (1=yes) 0.04 0.2
Ever used any illegal drug (1=yes) 0.48 0.5
Ever been present when someone else used an illegal drug (1=yes) 0.86 0.35
Ever sold any type of illegal drug (1=yes) 0.2 0.4
Now or ever owned firearm (1=yes) 0.25 0.43
Ever obtained a permit to carry firearm (1=yes) 0.12 0.33
Polygraph - total number of times taken 1.54 0.99
Polygraph - total # of times deception indicated 0.43 0.88
Polygraph - total # of inconclusive tests 0.02 0.15

TABLE 2: Summary statistics for predictor variables
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AUC
PPD ML

Dept. Discipline 0.5560695 0.5701806
Internal Investigation 0.5552798 0.5440366
Lack of Service 0.5683092 0.5755264
Off Duty 0.5349831 0.5832576
Other 0.5899378 0.5882592
Physical Abuse 0.582911 0.5617264
Shooting 0.5881667 0.6350581
Verbal Abuse 0.5515384 0.6066207

TABLE 3: Area under the curve for the machine learning and PPD rankings.

Precision PPD Precision ML Difference p-value

Stacked 0.119 0.165 0.045*** 0.001
Departmental Discipline 0.296 0.367 0.071 0.100
Internal Investigations 0.143 0.173 0.030 0.370
Lack of service complaints 0.092 0.097 0.005 0.848
Off duty incidents 0.071 0.117 0.046 0.117
Physical abuse complaints 0.138 0.224 0.086** 0.020
Verbal Abuse complaints 0.087 0.143 0.056* 0.054
Shootings 0.046 0.082 0.036 0.144
Other 0.082 0.112 0.030 0.303
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

TABLE 4: Outcome-level and stacked precision.

Comparison ML vs. Status Quo PPD vs. Status Quo ML vs. PPD

Risk Range 33% 50% 66% 33% 50% 66% 33% 50% 66%

Dept. Discipline -0.029*** -0.029*** -0.029*** 0.003 0.003 0.005 -0.032** -0.030** -0.034**
Internal Investigation -0.003 -0.007 -0.007 -0.007 -0.007 -0.003 0.007 0.003 0.000
Lack of Service 0.000 0.000 0.000 -0.012 -0.025 -0.031 0.012 0.025 0.025
Off Duty -0.015 -0.01 -0.005 0.015 0.015 0.015 -0.031 -0.023 -0.021
Other -0.036* -0.036* -0.03 0.012 0.012 0.006 -0.048* -0.048* -0.036
Physical Abuse -0.028 -0.028* -0.031** 0.006 0.006 0.006 -0.034* -0.034* -0.040*
Shooting -0.038* -0.048* -0.048* 0.038 0.029 0.019 -0.077* -0.077** -0.067**
Verbal Abuse -0.047** -0.053** -0.053** 0.039 0.032 0.026 -0.089** -0.079*** -0.079***
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

TABLE 5: The change in misconducts at the median from 1,000 bootstrap samples of the deselection exercise.
The first set of results compare the change in misconducts between the machine learning-altered list and original
list, the second set for PPD-altered list and the original list, and the third set for the machine learning-altered
and the PPD-altered list.

Outcome 4ML −4PPD 4ML −4PPD MLprec − PPDprec MLprec − PPDprec

class −0.0052∗ 0.0039 −0.0022 0.0065
(0.0030) (0.0111) (0.0024) (0.0104)

class2 −0.0005 0.0065
(0.006) (0.0104)

∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

TABLE 6: Tests for task confounding.
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FIGURE 1: Change in misconducts when deselecting by sampling from the middle 33% of the risk disrtibution.
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FIGURE 2: Change in misconducts when deselecting by sampling from the middle 50% of the risk disrtibution.
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Appendix B

1 Introduction

Our goal is to identify which teachers will best serve students. The primary
outcome of interest is student performance on test scores. The standard way in
which economists and policymakers pursue this objective is to develop a �value-
add� measure�a score that re�ects the e�ect a teacher has on a student's test
scores relative to the average e�ect of all teachers.

Assume student i's test score is a function of some observable student char-
acteristics Xi and section characteristics, Xs (for example, the prior test scores
of students in her class). That is, we have:

Yi = βXi + ΓXs + εis

Here εis captures other in�uences on student test scores apart from student
and class characteristics. In particular, we will assume it includes a variable
τs, the causal e�ect of that student's teacher on her test scores (relative to the
average e�ect teachers have on students of this type) and other sources of noise,
νis : εis = τs + νis. Since a teacher has many students, we can estimate τ with
TV A, the mean of the residuals from the equation above.1

TV A = 1
N

∑
i

Yi − Ŷi

= 1
N

∑
i

βXi + ΓXis + εis − βXi − ΓXs

= 1
N

∑
i

εis

= τ +
1

N

∑
i

νis

We now have a measure of teacher e�ectiveness, TVA, which includes (1) a true
measure of teacher value-add, τ and (2) some noise, 1

N

∑
i νis. Two challenges

arise:

1This assumes that τs is orthogonal to XiandXs, an assumption that has been shown to
be wrong. However, as most of the variation comes from within sections, this only mildly
a�ects the estimation of the model.
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1. Bias - Can we show that E[ν|τ ] = 0? That is, are TVA measures unbiased
on average?

2. Noise - Can we minimize E[(TV A − τ)2]? That is, can we reduce the
noise in the estimate?

Most research has focused on (1), but (2) is very important if we want to rely
on TVA as a measure of an individual teacher's e�ectiveness - for performance
pay or teacher selection, for example.

2 Prior Work

We focus here on progress made by Kane et al. (2013) using data from the Mea-
sures of E�ective Teaching Project and Chetty et al. (2014) using administrative
data from a large urban school district.

2.1 Investigating Bias

Kane et al. focus on answering (1) above. Their data also come from the MET
project. The main part of the project lasted two years. Kane et al. develop
measures of TVA from the �rst year of the project. They then validate these
measures in the second year, for which teachers were randomly assigned to
classrooms. They �nd that their measure is an unbiased predictor of teacher
contributions to student test scores in the second year.

Chetty et al. (2014) use a quasi-experimental research design and IRS data
to show that the bias in similar teacher-value add measures is very small. The
authors leverage teacher movements between schools in their research design.
They show that on average, test scores in the relevant grade level of the new
school shift as predicted by the change in teacher value add caused by the
teacher's move. Moreover, conditional on prior test scores, TVA is almost un-
correlated with previously unobserved variables from IRS data about students'
parents.

2.2 Handling Noise

Both papers handle noise in a similar manner. They use �shrinkage� of the
estimators to reduce noise. Speci�cally, they use a lag model and regress TV A
in year t on TV A in prior years.

TV At =
∑
k

βkTV At−k

The intuition is that TVA as measured in any given year will include noise,
but by obtaining �tted values from a regression including prior years, we will
reduce the noise uncorrelated across years.2 The regressions produce coe�cients

2Kane et al. (2013) also add teacher observational scores, experience and degree status.
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signi�cantly smaller than one. The �tted values can then be used as predictors
for future TV A.

2.3 Gaps

While these papers establish that TVA is unbiased, their estimates of TVA still
contain signi�cant noise. This is evident from the reliability statistics reported
in Chetty et al. (2014) and in a companion paper to Kane et al., Mihaly
et al. (2013). Their �ndings suggest that using just one year, about half of the
variation in TVA still comes from noise. Our calculations con�rm this as well.
This implies that the chances of a teacher truly at the bottom p percentile of
TVA obtaining a predicted TVA score above the median is approximately p.
For example, a teacher actually in the bottom 25th percentile of TVA would
have roughly a 25% chance of being ranked above the 50th percentile.

These shortcomings are vexing for policy makers interested in using TVA to
make decisions about individual teachers. Below, we outline how our approach
with machine learning helps solve the problem of noise and produce predictions
that can deliver better results for students.

3 Data

Our data come from the Measures of E�ective Teaching (MET) project. The
project collected potential indicators of teacher quality over two years and im-
plemented a randomized controlled trial in the second year (AY 2010-2011) to
validate them.

The data include student test scores; surveys of students, teachers, and
principals; expert ratings of videos of teachers in the classroom; and assessments
of teacher curriculum knowledge. We have tried di�erent levels of aggregation
of the data, but they did not seem to in�uence the results.

Six large school districts participated in the project, covering 317 schools,
and more than 2,500 teachers from the fourth through ninth grade. Our analysis
uses the subset of 4th-8th grade teachers present in both years of the data who
participated in the randomized-controlled trial. We develop quality measures
at the teacher-subject level (i.e. Math or ELA), yielding a sample size of 865
Math teachers and 922 English and Language Arts (ELA) teachers. Note that
while our data is very wide (i.e. it has a large number of predictors), it is not
very long (i.e. it does not have a very large number of observations).

To predict teacher performance, we use the measure of teacher quality pre-
viously validated from the MET data - Teacher-Value Add (TVA). For details
on the construction and validation of this measure, see Kane et al. (2013).

4 Prediction Procedure

Our goal is to develop robust predictors of teacher performance in the following
year. ML techniques allow the data to determine the right tradeo� between
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bias and variance for maximum predictive accuracy out of sample, allowing us
to reduce the noise in measures of performance in the current year. A key
element of this process is regularization � a technique that penalizes algorithms
for choosing complex functions that likely over-�t the data, while retaining the
ability to �nd signal among a wide set of variables and potential functional
forms.

To �nd the optimal predictor of TVA, we �rst let the data select the optimal
regularization parameter for a standard set of algorithms using 20-fold cross-
validation. The algorithms we use include Random Forests3, Boosted Trees4,
Lasso5 and Ridge.6 The regularized linear algorithms we used performed simi-
larly well and better than algorithms using decision trees.

We focus here on our results from using Lasso as it typically performs well in
data sets with similar numbers of variables and observations like ours. Lasso is
a form of regularized linear regression that imposes an L1-norm penalty on the
coe�cients, shrinking most coe�cients to zero as a result. The �nal prediction
for each teacher is produced with Lasso trained on a subsample that excludes
that particular teacher.

We compare the results from Lasso to results from principal ratings. Prin-
cipals were asked to rank their teachers relative to other teachers in the same
grade/subject on a scale of one to six. We normalize this score to have zero
mean and standard deviation of one, so that di�erences in scores across teach-
ers are not due to di�erences across principals in the propensity to use high or
low numbers on the scale. Put another way, each teacher's rating is relative to
other teachers graded by the same principal, but on a scale comparable across
principals.

We rank teachers by their predicted performance in 2011 (the following year)
according to the Lasso and principal ratings. We then simulate replacing teach-
ers predicted to be in the bottom of the distribution with average teachers (i.e.
teachers whose TVA will be 0). We calculate con�dence intervals using boot-
strap for the di�erence in performance between the two prediction methods.

3Random Forests produces its predictions by averaging over the predictions of multiple de-
cision trees. Each tree is produced by searching over a random subset of all possible variables.
A decision tree in general is built by iteratively choosing predictors that most separate the
data according to an information criterion, constructing �layers� of the tree until some model
complexity or minimum information gain is achieved.

4Boosted Trees weights multiple trees to form a prediction. In this algorithm, the trees are
built sequentially and the data fed to each iteration is re-weighted according to the previous
performance on that data.

5Lasso and Ridge are forms of �regularized� regression, in which the coe�cients are chosen
to minimize the sum of (1) the squared errors and (2) the size of the coe�cients, weighted
by a regularization parameter. In Lasso, (2) enters as the sum of the absolute values of the
coe�cients (the L1 norm). In Ridge, (2) enters as the sum of the squared values of the
coe�cients (the L2 Norm).

6For a more detailed explanation of machine learning and the algorithms discussed above,
see Abu-Mostafa et al. Learning from Data (2012) and Bishop Pattern Recognition and
Machine Learning (2007).

4



5 Results

Figure 1 shows the test score gains from replacing all teachers below particular
thresholds of predicted performance for the next year with average teachers in
the current year. Figure 1a. shows the gains for Math; Figure 1b shows the
gains for ELA. We narrow our sample to include only teachers with principal
ratings in the data (N = 664 for Math and 707 for ELA).

Both �gures demonstrate that the predictions from Lasso outperform the
principal ratings across all thresholds. To consider a particular threshold, we
compare results from deselecting 10% of teachers. The Lasso model yields test
score gains of .0167σ for Math and .0111σ for ELA7. The principal ratings yield
gains of .0095σ for Math and .0053σ for ELA. That is, for deselecting 10% of
teachers, the predictions produced by machine learning create an improvement
of .0072σ for Math and .0057σ for ELA over the principal ratings.

We also compare the performance of the Lasso model to the estimates de-
veloped by Kane et al. (2013) from the MET data. The predictions from that
model are produced using one lag of TVA and a few teacher characteristics.
Deselecting 10% using that model yields a .0138σ gain for Math and .0094σ
gain for ELA. The Lasso model thus adds an improvement of .0029σ for Math
and .0017σ for ELA over the Kane et al. estimates (roughly 30-40% of the im-
provements of the Lasso model over the principal ratings). These improvements
are nearly statistically signi�cant at the 5% level.

Finally, we compare performance relative to predictions from a model that
includes two lags of TVA, similar to estimates produced in Chetty et al. (2014).
The Lasso model still improves performance by 0.0010σ for Math (95% con�-
dence interval of -.0020 to .0051) and .0004σ for ELA (-.0055 to .0056).

Overall, the machine learning approach outperforms other models in pre-
dicting TVA (albeit not always statistically signi�cantly). It is worth noting
that these improvements would be expected to increase with more data - for
both longer and wider data.

For traditional econometric techniques such as OLS, longer data (i.e. higher
N) will merely reduce the variance of estimated parameters. In contrast, longer
data allows machine learning to develop richer models, capturing more nuanced
behavior of the data while minimizing the risk of over�tting. In part, this
explains why the machine learning approach in this project yielded a linear
model. A more complex model would likely need more data. The length of
this data set is small relative to most ML projects. For these reasons, longer
data would raise the improvement from machine learning over the traditional
approach.

Wider data (i.e. more variables) also raises the improvement from machine
learning. OLS has a tendency to over �t the data it receives; with more variables,
it's possible that OLS will even perform worse by �tting noise within the sample.
Regularization in the machine learning approach avoids �tting the noise, while

7Note that these are improvements for all students. For those students whose teacher is
replaced, the gains are .167σ for Math and .111σ for ELA.

5



0.0 0.1 0.2 0.3 0.4 0.5

0.
01

0.
02

0.
03

0.
04

0.
05

Threshold Percentile

Te
st

 S
co

re
 Im

pr
ov

em
en

t

ML
Human

(a) Math

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

Threshold Percentile

Te
st

 S
co

re
 Im

pr
ov

em
en

t

ML
Human

(b) ELA

Figure 1: Test Score Gains
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allowing the algorithm to �nd signal in a wider set of variables. Given results
from Dobbie (2011), who �nds predictive power in personality traits measured
by Teach For America, we believe that there is more signal to be found - and
machine learning is well placed to sort it from noise.

6 Cost Bene�t Analysis

We compare the cost e�ectiveness of deselecting teachers with machine learning
to another intervention in K-12 education, decreasing class size.

The increase in costs associated with stricter tenure decisions comes from the
need to compensate teachers for a system in which tenure is a riskier prospect.
Rothstein (2015) uses a structural model to estimate this amount. His model
shows that to replace the bottom 20% of teachers, we would need a 12% increase
in wages to keep the same number of teachers. An approximate required increase
in wages for deselecting the bottom 10% is therefore 6%. In AY 2011-2012,
the instruction cost per student in US public schools was $6,706, leading to a
required cost increase of $402 per student. 8

To calculate the costs of a decrease in class size, we use the same calculation
as in Krueger (2003) for the STAR experiment. The STAR experiment increased
the number of classes by 47%. The average student spent 2.3 years in the
experiment. The present value of costs to decrease class size in this example is
given by:

PV = Ct +
Ct

1 + r
+ 0.3

Ct

(1 + r)
2

Based on a total expenditure per student of $11,014 in AY2011-12 we get
that Ct = $5177 and for r = .04, PV = $11, 590.

The STAR experiment yielded an improvement in test scores of .15 standard
deviations, implying a cost to bene�t ratio of .0129 standard deviations / $1K.
In contrast, deselecting teachers yields a ratio of .0415 for Math and .0276
for ELA. That is, our approximate calculations imply that deselection using
machine learning is 2-3 times as cost e�ective as decreasing class size.

8See https://nces.ed.gov/programs/coe/indicator_cmb.asp
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