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Abstract

A literal interpretation of neo-classical consumer theory suggests

that the consumer solves a very complex problem. In the presence of

indivisible goods, the consumer problem is NP-Hard, and it appears

unlikely that it can be optimally solved by humans. An alternative

approach is suggested, according to which the household chooses how

to allocate its budget among product categories without necessarily

being compatible with utility maximization. Rather, the household

has a set of constraints, and among these it chooses an allocation in a

case-based manner, influenced by choices of other, similar households,

or of itself in the past. We offer an axiomatization of this model.

1 Introduction

Economists seem to be in agreement about two basic facts regarding neo-

classical consumer theory. The first is that the depiction of the consumer as

maximizing a utility function given a budget constraint is a very insightful

tool. The second is that this model is probably a poor description of the
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mental process that consumers go through while making their consumption

decisions at the level of specific products.

The first point calls for little elaboration. The neoclassical model of

consumer choice is extremely powerful and elegant. It lies at the heart, and

is probably the origin of “rational choice theory”, which has been applied

to a variety of fields within and beyond economics. Importantly, utility

maximization, as a behavioral model, does not assume that a mental process

of maximization actually takes place. Behaviorally, utility maximization was

shown to be equivalent to highly cogent assumptions regarding consumer

choices (see Debreu, 1959).

Yet, many writers have commented on the fact that a literal interpretation

of the theory does not appear very plausible. Recent literature in psychology,

decision theory, and economics is replete with behavioral counter-examples

to the utility maximization paradigm. These include direct violations of ex-

plicit axioms such as transitivity, as well as examples that violate implicit

assumptions, such as the independence of reference points (see Kahneman

and Tversky, 1979, 1984). In this paper we focus on one specific reason

for which the neoclassical model does not always appear to be cognitively

plausible, namely, computational complexity. One aspect of the latter is em-

phasized by the example below. It illustrates the implicit and often dubious

assumption that consumers are aware of all the bundles in their budget set.

Example 1 Every morning John starts his day in a local coffee place with

a caffe latte grande and a newspaper. Together, he spends on coffee and

newspaper slightly over $3 a day. He then takes public transportation to get

to work. One day Mary joins John for the morning coffee, and he tells her

that he dislikes public transportation, but that he can’t afford to buy a car.

Mary says that she has just bought a small car, financed at $99 a month.

John sighs and says that he knows that such financing is possible, but that

he can’t even afford to spend an extra $99 a month. Mary replies that if he

were to give up on the caffe latte and newspaper each morning, he could buy
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the car. John decides to buy the car and give up on the morning treat.

What did Mary do to change John’s consumption pattern? She did not

provide him with new factual information. John had been aware of the

existence of inexpensive financing for small cars before his conversation with

Mary. She also did not provide him with new information about the benefits

of a car; in fact, it was John who brought up the transportation issue. Rather

than telling John of new facts that he had not known before, Mary was

pointing out to him certain consumption bundles that were available to him,

but that he had failed to consider beforehand. Indeed, the number of possible

consumption bundles in John’s budget set is dauntingly large. He cannot

possibly be expected to consider each and every one of them. In this case, he

failed to ask himself whether he preferred the coffee or the car. Consequently,

it would be misleading to depict John as a utility maximizing agent. Such

an agent should not change his behavior simply because someone points out

to him that a certain bundle is in his budget set.

This example is akin to framing effects (Tversky and Kahneman, 1981) in

that it revolves around reorganization of existing knowledge. However, our

example differs from common examples of framing effects in one dimension:

the ability of the consumer to learn from her mistake and to avoid repeating

it. Many framing effects will disappear as soon as the decision problem is

stated in a formal model. By contrast, the richness of the budget set poses

an inherent difficulty in solving the consumer problem. In our example, John

didn’t fail to consider all alternatives due to a suggestive representation of the

problem. We argue that he failed to do so due to the inherent complexity

of the problem. Specifically, in section ?? we prove that, in the presence

of indivisible goods, the consumer problem is NP-Complete. This means

that deviations from neoclassical consumer theory cannot be dismissed as

“mistakes” that can be avoided should one be careful enough. It is practically

impossible to avoid these deviations even if one is equipped with the best

software and the fastest computers that are available now or in the foreseeable
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future.

1.1 The Affluent Society 1

There are many problems for which utility maximization can be viewed as

a reasonable, if admittedly idealized model of the consumer decisions. Con-

sider, for example, a graduate student in economics, who has to survive on

a stipend of $25,000 a year. This is a rather tight budget constraint. Taking

into account minimal expenditure on housing and on food, one finds that

very little freedom is left to the student. Given the paucity of the set of

feasible bundles, it seems reasonable to suggest that the student considers

the possible bundles, compares, for instance, the benefit of another concert

versus another pair of jeans, and makes a conscious choice among these bun-

dles. When such a choice among relatively few bundles is consciously made,

it stands to reason that it would satisfy axioms such as transitivity or the

weak axiom of revealed preference. The mathematical model of utility maxi-

mization then appears as a reasonable description of the actual choice process

of the student.

Next consider the same student after having obtained a job as an assistant

professor. Her tastes have probably changed very little, but her budget is

now an order of magnitude larger than it used to be. Housing and food are

still important to her, but they are unlikely to constrain her choice in a way

that would make her problem computationally easy. In fact, the number

of possible bundles she can afford has increased to such an extent that she

cannot possibly imagine all alternatives. Should she get box tickets for the

opera? Save more money for a Christmas vacation? Buy diamonds? Save for

college tuition of her yet-unborn children? For such an individual, it seems

that the utility maximization model has lost much of the cognitive appeal it

had with a tight budget constraint. Correspondingly, it is far from obvious

1The title of the subsection is that of the well known book by John Kenneth Galbraith

(1958).
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that her choices satisfy the behavioral axioms of consumer theory.

Galbraith (1958) suggested that neoclassical consumer theory was devel-

oped with poverty in mind, and he pointed out the need to develop alter-

native theories for affluent societies. Without any pretense to have risen to

Galbraith’s challenge, we wish to explore what such a theory might look like.

1.2 Budget Allocation

The computational difficulties with the neoclassical model demonstrate why

this model does not accurately describe the way households make decisions,

at least not at the level of specific products. The question then arises, how

do they make their decisions?

One way to deal with a complicated problem is to decompose it. Looking

for an optimal budget allocation among goods, one might use a top-down

approach, first dividing the overall budget among a few major categories of

goods, then subdividing these amounts among finer categories, and so on.

This is a natural heuristic, which may not be guaranteed to produce an

optimal solution, but which seems sufficiently reasonable and intuitive as a

starting point. In this paper we focus only on the first step of this heuristic,

namely, the choice of a budget allocation among a few categories at the top

level.

Suppose that the household conceives of a few natural categories of goods

such as “housing”, “education”, “transportation”, “food”, etc. (as is cus-

tomary in empirical work — see, for instance, Deaton and Muellbauer, 1980,

Blundell, 1988, and Sabelhaus, 1990.) How does it determine the budget

allocation among these categories? Applying the neoclassical consumer op-

timization model would require that the household have a notion of “util-

ity” derived from vectors of amounts of money allocated to each category.

This would entail solving the lower-level optimization problem before one

can tackle the top-level one, a process as complex as the initial problem the

household started with.
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In this paper we offer an alternative model, according to which the top-

level budget allocation is not done by maximizing a utility function, whether

consciously or not. Rather, it is done in two stages: first, the household

has a set of self-imposed constraints, or “rules of thumb”, which simplify

the problem by ruling out classes of budget allocations. For example, such

rules can be “always save at least 20% of your income” or “do not spend

more than 15% of the budget on entertainment”. After considering these

rules, which presumably leave a non-empty feasible set of budget allocations,

the household may well be left with a collection of feasible, or acceptable

allocations. How should it choose among these?

Our model suggests that, at this second stage, the household looks around

and observes what other households do. Then it chooses an allocation that

is similar to those chosen by similar households. Thus, families would ob-

serve what other families, with similar income, size, religion, or background

do, and decide to allocate their budgets among categories such as housing,

transportation, education and vacations in a similar way to these families.

This mode of behavior is compatible both with social learning (see, for in-

stance, Goyal, 2005) and with conformism (as in Bernheim, 1994).

In our model this imitation is done in a “case-based” way, where the

household can be thought of as though it chooses the similarity-weighted

average of the budget allocations of similar households, provided that these

allocations were within the acceptable set. In case an observed allocation is

not acceptable to the household, it is replaced by the closest one that is. Thus

the household chooses a similarity-weighted average of closest-acceptable al-

locations. This paper offers an axiomatization of this model.

Our formal model deals with only one step of the budget allocation prob-

lem. It is, however, both natural and straightforward to extend the model to

multiple levels. In this case one can get a budget tree, where expenditures

are allocated to sub-categories, and then to sub-sub-categories, and so forth.

However, when the number of levels grows, one may find that the graph
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generated is not a tree: a particular product may be attributed to several

possible categories. This may explain phenomena that are referred to as

mental accounting (Thaler and Shefrin, 1981; Thaler, 1980, 1985, 2004). To

see a simple example, suppose that a sub-category of expenses is split into

“standard expenses” and “special events”. In this case, the consumer may

decide to buy an item if it is considered a birthday gift, but refrain from

buying it if it is not associated with any special event. In other words, the

top-down approach implies that the same bundle will be viewed differently

depending on the categorization used. Combining this with our basic moti-

vation, we find that computational complexity of the consumer problem may

result in mental accounting. Conversely, while mental accounting is certainly

a deviation from classical consumer theory, it appears to involve only a very

mild form of “bounded rationality”. Treating money as if it came from dif-

ferent accounts is not simply a mistake that can be easily corrected. Rather,

it is a by-product of a reasonable heuristic adopted to deal with an otherwise

intractable problem.

The rest of this paper is organized as follows. Section 2 states the com-

plexity result. In Section 3 we offer a simple model that captures a house-

hold’s budget allocation decision along the lines suggested above. Section 4

provides an axiomatic derivation of the model. Section 5 concludes with a

discussion.

2 A Complexity Result

Many writers have observed that the consumer problem is, intuitively speak-

ing, a complex one. Some (see MacLeod, 1996, Arthur, Durlauf, and Lane,

1997) have also made explicit reference to the combinatorial aspects of this

problem, and to the fact that, when decisions are discrete, the number of

possible bundles grows as an exponential function of the parameters of the
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problem.2 However, the very fact that there exist exponentially many pos-

sible solutions does not mean that a problem is hard. It only means that a

brute-force algorithm, enumerating all possible solutions, will be of (worst-

case) exponential complexity. But for many combinatorial problems with an

exponentially large set of possible solutions there exist efficient algorithms,

whose worst-case time complexity is polynomial. Thus, in order to convince

ourselves that a problem is inherently difficult, we need to prove more than

that the number of possible solutions grows exponentially in the size of the

problem.

In this section we show that, when some goods are indivisible, the con-

sumer problem is “hard” in the sense of NP-Completeness. This term is

borrowed from the computer science literature, and it refers to a class of

combinatorial problems that are deemed to be “hard” in the following sense.

For any NP-Complete problem the number of steps in any known algorithm

solving the problem grows exponentially in the size of the problem. Conse-

quently, for even moderate size problems, it might take the fastest computers

that exist years to solve the problem. Further, if an algorithm were found

for which the number of steps in the algorithm was a polynomial in the size

of the problem for any NP-Complete problem, the algorithm could be used

to construct polynomial algorithms for all NP-Complete problems. Since a

variety of these problems have been exhaustively studied for years and no

efficient (polynomial) algorithm is known for any of them, proving that a

new problem is NP-Complete is taken to imply that it is a hard problem as

well.

Thus, the vague intuition that it is hard to maximize a utility function

over a large budget set is supported by our complexity result. As rational as

consumers can possibly be, it is unlikely that they can solve in their minds

2For example, assume that there are  binary decisions, each regarding the purchase

of a product at price . With income , the consumer can afford to purchase 

products.

She therefore must consider
¡




¢
different bundles. If  is relatively large, this expression

is of the order of magnitude of 

 , namely, exponential in .
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problems that prove intractable for computer scientists equipped with the

latest technology. Correspondingly, it is always possible that a consumer

will fail to even consider a bundle that, if pointed out to her, she would

consider desirable. It follows that one cannot simply teach consumers to

maximize their utility functions. In a sense, this type of violation of utility

maximization is more robust than some of the examples of framing effects

and related biases. In the example given in the Introduction, John failed

to consider a possible bundle that was available to him. After this bundle

was pointed out to him by Mary, he could change his behavior and start

consuming it. But he had no practical way of considering all consumption

bundles, and he could not guarantee himself that in his future consumption

decisions he would refrain from making similar omissions.

An NP-Complete problem has the additional feature that, once a solution

to it is explicitly proposed, it is easy to verify whether it indeed solves the

problem (this is the “NP” part of the definition). Thus, for an NP-Complete

problem it is hard to find a solution, but it is easy to verify a solution as

legitimate if one is proposed. In this sense, problems that are NP-Complete

present examples of “fact-free learning”: asking an individual whether a

certain potential solution is indeed a solution may make the individual aware

of it, accept it, and change her behavior as a result. Aragones, Gilboa,

Postlewaite, and Schmeidler (2005) show that finding a “best” regression

model is an NP-Complete problem, and thus that finding regularities in a

given database may result in fact-free learning. This section shows that fact-

free learning can also occur in the standard consumer problem, arguably the

cornerstone of economic theory.

We now turn to show that the neoclassical consumer problem, of maximiz-

ing a quasi-concave utility function with a budget constraint is NP-Complete.

Consider a problem  =
­
 ()≤   

®
whose input is:

 ≥ 1 — the number of products;
 ∈ Z+ is the price of product  ≤ ;
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 ∈ Z+ is the consumer’s income; and
 : Z+ → R is the consumer’s utility function.

The function  is assumed to be given by a well-formed arithmetic formula

involving the symbols “1”,...,“”,“+”,“∗”,“−”,“”,“ˆ”,“(”,“)”,“0”,...,“9”
with the obvious semantics (and where “ˆ” stands for power). As is standard

in consumer theory, we assume that this formula, when applied to all of R
+,

defines a continuous, non-decreasing, and quasi-concave function.

Let theConsumer Problem be: Given a consumer problem =
­
 ()≤   

®
and an integer ̄ can the consumer obtain utility ̄ in ?

(That is, is there a vector (1  ) ∈ Z+ such that
P

≤  ≤  and

(1  ) ≥ ̄ ?)

We can now state:

Proposition 1 The Consumer Problem is NP-Complete.

It will be clear from the proof that approximating the solution to the

Consumer Problem is also a hard problem; it is not the case that settling

for an “almost optimal” choice is less difficult. (The Appendix, where all

proofs are gathered, comments on approximations following the proof of the

Proposition.)

3 A Model of Case-Based Constrained Imi-

tation

How do households make consumption decisions? We confine our attention to

planned consumption.3 We imagine the household thinking about its budget

and allocating it to product categories. This may be but the first step in

an iterative process, where budget is allocated in a top-down way. We seek

3Actual consumption choices might differ from the planned ones as a result of random-

ness in the process in which consumption opportunities present themselves, as a result of

problems of self-control, and so forth.
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a model that could be imagined as a description of actual mental decision

processes that households go through.

Formally, the household is faced with the problem of dividing income 

among the expenditures 1   where  ≤  is a category of goods and

1 + + = 

It will be convenient to think of the budget shares of the categories,

 =




so that the vector of budget shares (1  ) is a point in the (− 1)-
dimensional simplex.

If   0 is a price index of category  (say, an index of food prices), the

quantity of the aggregate good of category  consumed is readily computed

from  as





The context of the problem is a database of past choices, made by the

household itself and by others, described as

 = ((1  )  (1  ))


=1

where (1  ) describes the characteristics of consumption problem 

and (1  ) — its solution. We think of (1  ) as including (i) in-

come; (ii) demographic variables: the relevant household size, its age distrib-

ution, and so forth; (iii) problem variables such as the time of consumption;

(iv) the household’s identity, which can help us capture personal effects such

as habit formation.

It will be convenient to assume that all past problems in a database 

were faced given the same vector of price indices (1  ), and that this

vector also applies to the current problem. One may use the model more

generally, allowing prices to vary across the database and/or between the

database and the new problem.
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The household in question has a set of characteristics (1  ), among

which is its income, , and has to choose a budget allocation vector  =

(1  ) in the (− 1)-dimensional simplex. We assume that it has sev-
eral constraints on the way it splits the budget  among the expenditures

1  , and that these are linear constraints in . That is, we assume that

for some set  there exists a collection

{  () ≥  | ∈  }

where  is a linear function and  ∈ R.
Typically such constraints could be:

— Minimal quantities, say, the amount spent on food should suffice to

cope with hunger:



≥ 

or

 ≥ 




Note that this constraint is linear in  as  and  are considered to be fixed

for the problem at hand (even if they differ from those appearing in past

cases in the database).

— Ratios, say, the amount spent on entertainment cannot exceed 20% of

the budget:

 ≤ 

Clearly, equality constraints can be described by two opposite inequality

constraints

The set of constraints {  () ≥  | ∈  } should be expected to define
a non-empty feasible set. In some situations, the constraints will uniquely

determine the household’s choice. For example, consider a household who

maximizes a Cobb-Douglas utility function



µµ




¶

=1

¶
=

Y
=1

µ




¶


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As the optimal solution is given by  = , we can think of the household

as picking the unique point  satisfying

 ≤ 

 ≥ 

for all . Indeed, a Cobb-Douglas household can be thought of as if it were

operating by “rules of thumb” such as “housing expenditure should always

by 30% of the budget”, “entertainment expenditure should always be 15% of

the budget” and so forth. Note that in such a case the household’s choice is

independent of the database .

However, more generally one shouldn’t expect rules of thumb to single out

a unique point (1  ). For example, it stands to reason that a household

would have some general guidelines as “housing expenditure should not exceed

40% of the budget” or “savings should be at least 25% of the budget” without

identifying a unique vector . Rather, these rules of thumb, or constraints

define a set of expenditure proportions as acceptable to the household.

How does the household select a point in the acceptable set? We propose

that it is at this stage that the database of past cases is brought to bear.4

Intuitively, one can think of the constraints as the information the household

has about its own preferences. It might be aware, say, that spending more

than 40% of income on housing will result in undesirable outcomes. Or, it

might insist that it save enough. But beyond these constraints the household

may well be unsure about its own preferences. Among all the budget allo-

cations that are acceptable, the household does not have a clear ranking or

a utility function that can be maximized. In these situations, the household

resorts to its available information about the behavior of other households —

including its own behavior in the past — and seeks guidance there.

4The household may well be affected by a database of past and/or others’ consumption

also at the stage of determining the constraints. However, we do not explicitly model this

phenomenon here.
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Several empirical studies document the causal effect of household con-

sumption decisions on those of other households. (See, for example, Brun-

nenberg, Dube, and Gentzkow (2012) for packaged goods and Andersen et

al. (2013) for automobile brands.) Other studies attempt to go beyond the

mere causal effect and show that it is due to social learning, as opposed to

conformism. For example, Sorensen (2006) finds social learning in the choice

of health plans, and Cai, Chen, and Fang (2009) establish it as a factor in

dish selection in restaurants. While there are cases in which the social causal

effect is quite clearly a matter of learning, and others in which it is evidently

a matter of conformism, often one cannot easily disentangle the effects em-

pirically. Indeed, a person’s own introspection might not be able always to

tell them apart.5 In this paper we do not attempt to distinguish between

the two. We offer a model that we interpret as causal, but that can be read

either as social learning or as conformism.

Specifically, we assume that the household chooses the similarity-weighted

average of the closest points — in the acceptable set — to the consumption

proportions in the database. More formally, the household is characterized

by

(i) a similarity function  :  → R++
and

(ii) a set of constraints

 ≡ {  () ≥  | ∈  }

such that

 ≡ ∩∈ {  ∈ ∆(Ω) |  () ≥  } 6= ∅
and, for every  ≥ 1 and every  = ( )



=1 (where  = (1  )

 = (1  )) the household chooses the expenditure proportion vector 

5Indeed, one may argue that the taste for conformity has been evolutionarily selected

because it allows for social learning. This would suggest that the distinction between the

two is rather tricky. There are situations where one can isolate one of the factors, but

there are likely to be many others in which they are intertwined.
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that is given by P
≤ () ()P

≤  ()

where  () is the closest point to  in .

The similarity function  would normally put considerable weight on in-

come , suggesting that the household will tend to mimic the behavior of

households with similar income. Similarly, demographic variables such as

the number of people in the household, their ages and genders, are likely

to play an important role in similarity judgments. This assumption seems

plausible whether we think of the household as imitating others in order to

learn what its choices should be based on other households’ experience, or

whether we tend to view imitation as driven by conformism. We emphasize

that our model is compatible with both interpretations, and does not purport

to distinguish between them.

This model is axiomatized in Section 4. We assume there that the house-

hold’s behavior is observable given any database of choices, and is given by a

function from databases to points in the simplex of expenditure proportions.

We then impose several assumptions on this function, under which it can be

represented as above for an appropriately chosen set of constraints  and

similarity function .

3.1 Relation to the Neoclassical Model

Before proceeding to the axiomatic derivation, it is worthwhile to compare

our model with the standard one, that is, the neoclassical model of (expected)

utility maximization subject to a budget constraint.

The two models differ in some obvious ways: in the neoclassical model

the household has a complete ordering over all bundles, so that it is never at

a loss when asked which bundle is preferred among several ones. By contrast,

in our model the household doesn’t have well-defined preferences. It consid-

ered some budget allocations acceptable, and the others — as unacceptable.
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Thus, one can certainly say that the acceptable allocations are considered to

be better than the unacceptable ones. But beyond this the household’s con-

straints are silent on the ranking of allocations. Importantly, the constraints

do not provide any guidance for the choice of a bundle among the acceptable

ones.

It is here that past cases and the similarity function enter the game in our

model. The model thus allows to describe the way that other households’

choices and the same household’s past choices affect the choice in the new

problem. This type of effects cannot be described in the standard neoclassical

model.6

While the two models seem to be very different, we have noticed that

some types of household behavior can be compatible with both, as indicated

by the example of Cobb-Douglas preferences, which can be fully captured by

constraints in our model. It turns out that this can be generalized:

Proposition 2 Let there be given a concave utility function . Then there

exists a (typically infinite) set of constraints  ≡ {  () ≥  | ∈  } such
that, for every similarity function  and every database  every optimal

solution to  ( ) defines a maximizer of  (with quantities ).

However, the construction used in the proof of this proposition is some-

what artificial, and does not correspond to constraints as rules of thumb

or otherwise cognitively meaningful concepts. We therefore suggest that the

two models are quite different in nature, where ours assumes that preferences

are not complete, and that choices are being made partly as a result of the

constraints of the specific household, and partly as a result of imitation.

6One may enrich the standard model by allowing utility to depend on past choices, as

well as on others’ choices. But in this case the model will have to be further specified in

order to remain meaningful.
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4 Axiomatic Foundations

The model suggested in the previous section is motivated mostly by introspec-

tion. It attempts to formalize some mental processes that would hopefully

sound plausible to the reader, at least in some cases, as does utility maxi-

mization in other cases. However, the introspective judgment of plausibility

is far from sufficient to consider a model as a basis for consumer theory. One

naturally asks, Can the theoretical concepts used in the model be measured

by observations? Are there any modes of behavior that are incompatible with

the model? What are the testable implications that such a model might have?

More precisely, what type of observable data are needed to test the model?

What hypotheses could be stated about these data that would be consistent,

or inconsistent, with the model? Further, a sympathetic reader might accept

the basic tenets of the model, and yet wonder about the particular modeling

choices made in it: Why are the constraints linear? Why should we assume

the similarity-weighted average, rather than some other formula?

These questions call for setting axiomatic foundations for the model. In

doing so, this section will (i) describe the type of in-principle-observable data

that are needed to test the model; (ii) characterize which of these data sets

are and which aren’t compatible with our model; (iii) determine the degree

of uniqueness of the theoretical concepts used in the model; (iv) provide

some arguments for the modeling choices made, and show that they are not

arbitrary.

4.1 General Framework7

Let Ω = {1  } be a set of expenditure categories,  ≥ 3. Let  be a

non-empty set of cases. Each case consists of a pair ( ) where  denotes

some economic and demographic variables, and  is a point in the simplex

7This sub-section is adapted from Billot, Gilboa, Samet, and Schmeidler (2005). While

their model and result deal with probabilities, we re-interpret the vector in the simplex as

expenditure proportions.
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∆(Ω), denoting the way that the budget was split among the categories in

Ω. Thus

 =  ×∆(Ω)

with being a subset of R for some  ≥ 0. A database is a sequence of cases,
 ∈  for  ≥ 1. The set of all databases is denoted ∗ = ∪≥1. The

concatenation of two databases,  = (1  ) ∈  and  = (01  
0
) ∈

 is denoted by◦ and it is defined by◦ = (1   01  0) ∈ +.

Observe that the same element of  may appear more than once in a

given database. In our model additional observations of the same case would

have an impact on the household choices. The reason is that we do not think

of the appearance of a case  = ( ) in the database mostly as a source

of information but also as a causal determinant of behavior. If the only

pathway in which one household’s behavior affects another were awareness

— that is, bringing a certain budget allocation to the household’s awareness

— then repetitions of the same case would have no additional impact beyond

that of its first appearance. But if we believe that a given household might

imitate others because it takes their choices as implicit evidence that these

choices are good ideas, or if the reason for imitation is conformism, then

we should expect repeated appearances of the same case to have additional

impact.

Household behavior is defined as a choice of a single point in the simplex

∆(Ω) for each  ∈ ∗. Thus, we are interested in functions

 : ∗ → ∆(Ω)

defined for all non-empty databases. (As will be clarified soon, excluding the

empty database simplifies notation.)

For  ≥ 1, let Π be the set of all permutations on {1  }, i.e., all
bijections  : {1  }→ {1  }. For  ∈  and a permutation  ∈ Π,

let  be the permuted database, that is,  ∈  is defined by () =

() for  ≤ .
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We formulate the following axioms.

Invariance: For every  ≥ 1, every  ∈ , and every permutation

 ∈ Π, () = ().

Concatenation: For every  ∈ ∗, ( ◦ ) = () + (1 −
)() for some  ∈ (0 1).
The Invariance axiom might appear rather restrictive, as it does not allow

cases that appear later in  to have a greater impact on behavior than

do cases that appear earlier. But this does not mean that cases that are

chronologically more recent cannot have a greater weight than less recent

ones: should one include time as one of the variables in , all permutations

of a sequence of cases would contain the same information. In general, cases

that are not judged to be exchangeable differ in values of some variables.

Once these variables are brought forth, the Invariance axiom seems quite

plausible.

The Concatenation axiom states that the expenditure behavior induced

by the concatenation of two databases cannot lie outside the interval con-

necting the expenditure behavior induced by each database separately.

The following result appeared in Billot, Gilboa, Samet, and Schmeidler

(2005):

Theorem 3 Let there be given a function  : ∗ → ∆(Ω). The following

are equivalent:

(i)  satisfies the Invariance axiom, the Concatenation axiom, and not

all { ()}∈∗ are collinear;
(ii) There exists a function  :  → ∆(Ω), where not all {()}∈ are

collinear, and a function  :  → R++ such that, for every  ≥ 1 and every
 = (1  ) ∈ ,

 () =

P
≤ ()()P

≤ ()
. (∗)
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Moreover, in this case the function  is unique, and the function  is

unique up to multiplication by a positive number.

4.2 Constrained Case-Based Behavior

Theorem 3 deals with the way that accumulation of cases results in behavior.

However, it remains silent on the behavior that corresponds to any single

case. It focuses on the function  :  → ∆(Ω) which is basically the function

 restricted to databases of length 1, but it doesn’t restrict this function

in any way. In particular, it is possible that for two cases,  = ( ) and

0 = ( 0) (with  6= 0) we will have  () = 0 and  (0) = . This type of

behavior might make sense if, for instance, the household in question is non-

conformist, and wishes to behave differently from those it observes around

it. Yet, this is not the type of behavior we seek to model. We devote this

sub-section to additional assumptions, which will restrict the behavior of the

function .

Recall that, for any case  = ( ),  () =  (( )) is the expenditure

proportion chosen by the household if it only observed a single case  = ( ).

In light of Concatenation, this would also be the expenditure chosen by the

household if it observed a very large database consisting of cases of type

 = ( ) alone. It will often be more productive to think of large databases.

In this context, a “single case ” should be thought of as a large database

consisting only of repeated appearances of .

We will impose the following assumptions on the function :

A3 Independence: For all  0 ∈ , and all  ∈ ∆(Ω),  (( )) =

 ((0 )) 

Independence says the following: imagine that the household has observed

only cases of type ( ). Thus, asking itself “what do others do?” it gets an

unequivocal answer: households choose the budget allocation . This might

suggest that the household would choose , too. Notice that the households

observed had characteristics , which might well differ from the household in
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question. Yet, in the absence of any other households, there is no meaningful

way in which more similar households can be more relevant.

If, having observed only , the household also chooses , Independence

would hold: in this case we would have, for all  0 ∈ , and all  ∈ ∆(Ω),

 (( )) =  =  ((0 )). However, this might be too strong: the household

in question might have some constraints that render  unacceptable. In this

case, even if all the others have chosen , our household might opt for another

allocation. The Independence axiom only requires that this other allocation

will not depend on the (only)  observed in the database. That is, it retains

the requirement that  (( )) =  ((0 )) but allows it to differ from .

Under Independence we can simplify notation and write  () for  (( )).

Our main assumption is the following:

A4 Distance: For all  ∈ ∆(Ω) and all 0 00 ∈ Im (), if 0 =  () and

00 6= 0 then k0 − k  k00 − k.
(Where Im denotes image of a function.)

The intuition behind this assumption is the following: when the household

observes that everyone is selecting the allocation , it tends to do the same.

However, it is possible that the point  is not feasible for the household. For

example, the household may have a constraint on the minimal amount of food

it requires, and even if everyone in its sample consumes less, it would find it

unacceptable to do the same. However, if two points, 0 00 are acceptable to

the household — as evidenced by the fact that they are in the image of , that

is, that they can be chosen for some databases — then the choice among them

is based on their distance from the point . That is, given that everyone else

chooses , the household chooses the closest acceptable point to .

We can now state the following:

Theorem 4 The following are equivalent:

(i) The function  satisfies A3 and A4;
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(ii) There exists a set of constraints

{  () ≥  | ∈  }

where  are linear functions and  ∈ R such that

 ≡ ∩∈ {  ∈ ∆(Ω) |  () ≥  } 6= ∅

and, for all  ∈  and all  ∈ ∆(Ω),  () =  (( )) is the closest point to

 in .

Further, in this case the set  is unique and it is the image of .

Putting two theorems together yields the desired result. It is an imme-

diate corollary of these theorems, and we dub it “theorem” only to indicate

its conceptual import:

Theorem 5 The following are equivalent:

(i)  is not collinear, it satisfies A1, A2, and the resulting  satisfied A3

and A4;

(ii) There exists a  :  → R++ and a set of constraints

{  () ≥  | ∈  }

such that

 ≡ ∩∈ {  ∈ ∆(Ω) |  () ≥  }
is a non-empty set which is not contained in an interval, and, for every  ≥ 1
and every  = (1  ) ∈ ,  () isP

≤ ()()P
≤ ()

where, for each  = ( ),  () is the closest point to  in .

Furthermore, in this case the set  is unique and the similarity function

is unique up to multiplication by a positive constant.
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Observe that the formula derived in the Theorem 5 differs from ?? in

two ways: first, in the Theorem it is derived only for the case in which 

isn’t collinear, whereas in the description of the model it was assumed to

hold more generally. Second, the Theorem yields a similarity function ()

that depends on the entire case  = ( ) whereas in the previous section

we assumed that this function is based solely on the similarity between the

vector of characteristics in the past case, , and the corresponding vector

in the present one (whose notation is suppressed). One may formally add

another axiom that would render (( )) independent of .

5 Discussion

5.1 Mental accounting

As briefly mentioned in the introduction, our model can be used to explain

some mental accounting phenomena: given the consumer’s (planned) budget

allocation, and given a new consumption opportunity, the consumer might

find that she cannot afford it if it belongs to one budget, but she can if

the good is differently categorized. For example, a consumer who admires

a cashmere sweater (Thaler, 1985) might think that she has spent all the

money allocated to the clothes category, but still has funds in the birthdays

category. Likewise, in the example we started out with, John might not have

money in the category of “large, one-time expenses” in order to buy a car,

but he may have money in the category of “small, daily expenses” to finance

a car, at least if is willing to give up on caffe latte from that category.

It is sometimes suggested that mental accounting is a tool a consumer sub-

ject to self-control problems might use to control spending. An individual

might use a mental accounting system to “... keep spending under control”

(Thaler, 2004). Roughly the idea is that an individual can be thought of as

consisting of multiple selves, with the current self setting out rules and bud-

gets to discipline future selves and to limit their deviations from the plans
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that are optimal from the current self’s point of view. In the present paper

consumers might employ mental accounting, but for fundamentally different

reasons. In our framework, consumers are as coherent as in the neoclassical

model, but face complexity constraints in making decisions. In particular,

they can be made better off if someone were to point out alternatives that

they hadn’t considered, as in the example in the introduction, but there is

no difficulty in determining whether changing their consumption choices is

beneficial, as there is in multiple selves models. In this sense our “expla-

nation” of mental accounting is conceptually a smaller deviation from the

neoclassical model. At the same time, while multiple selves model are usu-

ally analyzed by standard game theoretic techniques, it is less obvious how

consumer theory should be expanded to deal with the complexity challenges

we discuss here.

We should make clear that we are not arguing that the account above

for why a consumer might employ mental accounting is the only, or even the

best, foundation for doing so. The suggestion is only that the complexity of

the consumer’s problem can lead to mental accounting by consumers with

completely standard neoclassical preferences.

5.2 Causal Accounts

Our model suggests that a household’s budget allocation is causally affected

by budget allocations of other, similar households, as well as the same house-

hold’s past choices. Such a causal relationship may come in different flavors:

is it driven by the fact that a household implicitly believes that others around

it have learnt something that would be relevant to itself, or it is a result of

conformism? That is, are we discussing a type of social learning, where

others’ experiences are merely a source of information in a highly uncertain

environment,8 or is it the case that these experiences are direct determinants

8Note that even in deterministic set-ups there exists uncertainty about one’s own pref-

erences. Indeed, the psychological literature suggests that people do not seem to be par-
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of one’s preferences?

As stated above, our model does not formally distinguish between these

explanations. Admittedly, the additive nature of the concatenation axiom

may be more easily reconciled with conformism than with learning: if learning

were the key factor to imitate others, then the accumulation of data should

exhibit a decreasing marginal value of information. Yet, the model can be

interpreted in both ways.

5.3 Normative Questions

One of the obvious differences between the Neoclassical model and ours is

that the former features a notion of a utility function, which allows one

to address normative questions, whereas the latter does not, at least not

explicitly. If consumers behave according to the model proposed here, how

can we tell if they are better off as a result of trade? How can we judge

allocations for something along the lines of Pareto optimality?

These questions are of paramount importance. However, that fact that

welfare economics exercises might be conceptually more challenging in the

present model than in the classical one is not a reason to reject the former

in favor of the latter. We hold that we should not choose a model only

because it facilitates welfare economics exercises; rather, we should pose the

normative questions within a model that is cognitively plausible.

Should one accept the constrained imitation model, there are several is-

sues to be addressed regarding its interpretation. Consider first the set of

constraints. If these are thought of as basic needs, such as minimal amounts

spent on food and shelter, than the “size” of the feasible set may be taken

as a measure of welfare, where a household who has more leeway beyond

these constraints may be considered to be better off. But, as we saw in the

Cobb-Douglas example, the constraints may also represents peculiarities of

ticularly successful in predicting their own well-being as a result of future consumption.

Consumers do not excel in “affective forecasting” (see Kahneman and Snell, 1990, and

Gilbert, Pinel, Wilson, Blumberg, and Wheatley, 1998).
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tastes rather than basic needs. A household who has a very clear idea of

its “utility” function may have constraints that leave no room for imitation,

without necessarily being any worse off than without more lax constraints.

Similarly, the mechanism of imitation can be differently interpreted. If

the main reason for imitation is social learning, then imitation is, overall,

a desirable phenomenon, whereby households use each other’s experience to

solve an otherwise unwieldy problem. If, however, imitation is largely due

to conformism and social pressure, household who imitate others may not

necessarily be thereby maximizing their independently-defined well-being.

The descriptive model proposed in this paper is insufficient to resolve

these interpretational questions. It should probably be augmented by addi-

tional data that would help us determine whether constraints are an expres-

sion of needs or of tastes, and whether imitation is driven by learning or by

conformism, before we could address the major normative questions.

6 Appendix: Proofs

Proof of Proposition 1:

It is straightforward that the Consumer Problem is in NP. Indeed, veri-

fying that a proposed solution obtains the utility level ̄ is done in a number

of algebraic operations that is linear in the length of the formula describing

.

To see that the problem is NP-Complete, we reduce to it the classical

minimal set cover problem:

Problem COVER: Given a natural number , a set of  subsets of

 ≡ {1  }, S = {1  }, and a natural number  ≤ , are there 

subsets in S whose union contains ?

(That is, are there indices 1 ≤ 1 ≤  ≤  ≤  such that
S

≤  =  ?)

Let there be given an instance of COVER: a natural number , a set of

subsets of  ≡ {1  }, S = {1  }, and a natural number . Let
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()≤≤ be the incidence matrix, namely  = 1 if  ∈  and  = 0 if

 ∈ .

We now define the associated consumer problem. Let  = . For  ≤ ,

let  = 1, and define  = . Next, define  by

(1  ) =
Y
≤

X
≤



Finally, set ̄ = 1.

A bundle (1  ) ∈ Z+ satisfies
P

≤  ≤  and (1  ) ≥ ̄

iff
P

≤  ≤  and
P

≤  ≥ 1 for every  ≤ . In other words, the

consumer has a feasible bundle  ≡ (1  ) obtaining the utility of 1 iff
(i) no more than  products of {1  } are purchased at a positive quantity
at , and (ii) the subsets  corresponding to the positive  form a cover

of  = {1  }. Observe that the construction above can be performed in
linear time.

It is left to show that we have obtained a legitimate utility function .

Continuity holds because this is a well-defined function that is described by

an algebraic formula. Since  ≥ 0,  is non-decreasing in the ’s. We turn
to prove that it is quasi-concave.

If there exists  ≤  such that  = 0 for all  ≤ , (1  ) = 0,

and  is quasi-concave.9 Let us therefore assume that this is not the case.

Hence  is the product of  expressions, each of which is a simple summation

of a non-empty subset of {1  }. On the domain { |()  0 }, define
 = log() It is obviously sufficient to show that

(1  ) =
X
≤
log

ÃX
≤



!

is quasi-concave. But it is not hard to see that  is concave, hence quasi-

concave: for every  ≤ , log
¡P

≤ 
¢
is a concave function, and the sum

9One may wish to rule out these instances of COVER as they result in a satiable .
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of concave functions is concave. This completes the proof of the proposition.

¤
A comment on approximations is in order. When we think of the con-

sumer problem as maximization of the function , approximation is naturally

defined relative to this function. However, in the construction above the ques-

tion is whether  can obtain the value 1, and no value can approximate it

from below. (To be more precise, one may addmax andmin operations to the

language, and define  above as min
P

≤ , so that the approximation

will be limited to {0 1}.)
One can also look at the dual problem, and ask what is the minimal cost

needed to obtain the level of utility ̄. In our construction this would be

equivalent to the minimal size of the set cover, for which approximations are

unimpressive. (The problem is approximable only up to a factor 1+ log ().)

Proof of Proposition 2:

Let there be given a concave . A maximizer of  is a vector  =

(1  ) (of quantities of the aggregate goods in each category) such that,

for every (other) 0,

 () ≥  (0) 

Noticing that  = , we observe that  =  defines an optimal

solution () if and only if, for every 0,

 (11  ) ≥  (0) 

As prices  and income are fixed,  is a concave function of (1  ). Hence

it is the minimum of a collection of linear functions. That is, there exists a

set

{  () |  is linear,  ∈  }
such that

 (11  ) = min
∈

 () 
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It follows that  defines a maximizer of  if and only if, for every 0 ∈ ∆ (Ω),

and every  ∈ ,

 () ≥  (0) .

It remains to define the set  as the set of all such linear constraints, where

its index would be the cross product of  and ∆ (Ω). ¤

Proof of Theorem 4: (i) implies (ii): Consider Im () which is a non-

empty subset of ∆(Ω). Clearly, A4 implies that for every  ∈ Im () is a fixed
point of , that is,  () = . Conversely, every fixed point of  is in Im ().

Let us denote the image of , which is also the set of its fixed points, by .

Since A4 says that the point  () is the closest one to  in .

Since the function , selecting the closest point in , is well-defined, by

Motzkin’s Theorem (Motzkin, 1935, see also Phelps, 1957) it follows that 

is closed and convex. Hence  can be written as the intersection of weak

linear inequalities, proving the representation in (ii).

That (ii) implies (i) is immediate, as is the uniqueness of . ¤
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7 Appendix (Not Intended for Publication):

Computational Complexity

A problem can be thought of as a set of legitimate inputs, and a correspon-

dence from it into a set of legitimate outputs. For instance, consider the

problem “Given a graph, and two nodes in it,  and , find a minimal path

from  to ”. An input would be a graph and two nodes in it. These are as-

sumed to be appropriately encoded into finite strings over a given alphabet.

The corresponding encoding of a shortest path between the two nodes would

be an appropriate output.

An algorithm is a method of solution that specifies what the solver

should do at each stage. Church’s thesis maintains that algorithms are

those methods of solution that can be implemented by Turing machines.

It is neither a theorem nor a conjecture, because the term “algorithm” has

no formal definition. In fact, Church’s thesis may be viewed as defining

an “algorithm” to be a Turing machine. It has been proved that Turing

machines are equivalent, in terms of the algorithms they can implement, to

various other computational models. In particular, a PASCAL program run

on a modern computer with an infinite memory is also equivalent to a Turing

machine and can therefore be viewed as a definition of an “algorithm”.

It is convenient to restrict attention toYES/NO problems. Such prob-

lems are formally defined as subsets of the legitimate inputs, interpreted as

the inputs for which the answer is YES. Many problems naturally define

corresponding YES/NO problems. For instance, the previous problem may

be represented as “Given a graph, two nodes in it  and , and a number

, is there a path of length  between  and  in the graph?” It is usually

the case that if one can solve all such YES/NO problems, one can solve the

corresponding optimization problem. For example, an algorithm that can

solve the YES/NO problem above for any given  can find the minimal  for

which the answer is YES (it can also do so efficiently). Moreover, such an
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algorithm will typically also find a path that is no longer than the specified

.

Much of the literature on computational complexity focuses on time

complexity: how many operations will an algorithm need to perform in

order to obtain the solution and halt. It is customary to count input/output

operations, as well as logical and algebraic operations as taking a single unit

of time each. Taking into account the amount of time these operations ac-

tually take (for instance, the number of actual operations needed to add two

numbers of, say, 10 digits) typically yields qualitatively similar results.

The literature focuses on asymptotic analysis: how does the number of

operations grow with the size of the input. It is customary to conductworst-

case analyses, though attention is also given to average-case performance.

Obviously, the latter requires some assumptions on the distribution of inputs,

whereas worst-case analysis is free from distributional assumptions. Hence

the complexity of an algorithm is generally defined as the order of magnitude

of the number of operations it needs to perform, in the worst case, to obtain

a solution, as a function of the input size. The complexity of a problem is

the minimal complexity of an algorithm that solves it. Thus, a problem is

polynomial if there exists an algorithm that always solves it correctly within

a number of operations that is bounded by a polynomial of the input size.

A problem is exponential if all the algorithms that solve it may require

a number of operations that is exponential in the size of the input, and so

forth.

Polynomial problems are generally considered relatively “easy”, even though

they may still be hard to solve in practice, especially if the degree of the

polynomial is high. By contrast, exponential problems become intractable

already for inputs of moderate sizes. To prove that a problem is polynomial,

one typically points to a polynomial algorithm that solves it. Proving that

a YES/NO problem is exponential, however, is a very hard task, because it

is generally hard to show that there does not exist an algorithm that solves
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the problem in a number of steps that is, say, (17) or even (2
√
).

A non-deterministic Turing machine is a Turing machine that allows

multiple transitions at each stage of the computation. It can be thought of

as a parallel processing modern computer with an unbounded number of

processors. It is assumed that these processors can work simultaneously,

and, should one of them find a solution, the machine halts. Consider, for

instance, the Hamiltonian path problem: given a graph, is there a path

that visits each node precisely once? A straightforward algorithm for this

problem would be exponential: given  nodes, one needs to check all the

! permutations to see if any of them defines a path in the graph. A non-

deterministic Turing machine can solve this problem in linear time. Roughly,

one can imagine that ! processors work on this problem in parallel, each

checking a different permutation. Each processor will therefore need no more

than () operations. In a sense, the difficulty of the Hamiltonian path

problem arises from the multitude of possible solutions, and not from the

inherent complexity of each of them.

The class NP is the class of all YES/NO problems that can be solved

in Polynomial time by a Non-deterministic Turing machine. Equivalently,

it can be defined as the class of YES/NO problems for which the validity of

a suggested solution can be verified in polynomial time (by a regular, deter-

ministic algorithm). The class of problems that can be solved in polynomial

time (by a deterministic Turing machine) is denoted P and it is obviously a

subset of NP. Whether P=NP is considered to be the most important open

problem in computer science. While the common belief is that the answer is

negative, there is no proof of this fact.

A problem  is NP-Hard if the following statement is true (“the con-

ditional solution property”): if there were a polynomial algorithm for ,

there would be a polynomial algorithm for any problem  in NP. There may

be many ways in which such a conditional statement can be proved. For

instance, one may show that using the polynomial algorithm for  a poly-
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nomial number of times would result in an algorithm for . Alternatively,

one may show a polynomial algorithm that translates an input for  to an

input for , in such a way that the -answer on its input is YES iff so is the

-answer of its own input. In this case we say that  is reduced to .

A problem is NP-Complete if it is in NP, and any other problem in NP

can be reduced to it. It was shown that the SATISFIABILITY problem

(whether a Boolean expression is not identically zero) is such a problem by a

direct construction. That is, there exists an algorithm that accepts as input

an NP problem  and input for that problem, , and generates in polynomial

time a Boolean expression that can be satisfied iff the -answer on  is YES.

With the help of one problem that is known to be NP-Complete (NPC), one

may show that other problems, to which the NPC problem can be reduced,

are also NPC. Indeed, it has been shown that many combinatorial problems

are NPC.

NPC problem are NP-Hard, but the converse is false. First, NP-Hard

problems need not be in NP themselves, and they may not be YES/NO

problems. Second, NPC problems are also defined by a particular way in

which the conditional solution property is proved, namely, by reduction.

There are by now hundreds of problems that are known to be NPC.

Had we known one polynomial algorithm for one of them, we would have

a polynomial algorithm for each problem in NP. As mentioned above, it is

believed that no such algorithm exists.
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