
Delegating Resource Allocations
in a Multidimensional World

Simone Galperti*

UCSD

December 10, 2015

Abstract
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only one good or information is only on the intertemporal utility trade-off, the
individual may want to inefficiently cap his spending on specific goods—in some
cases without and in others on top of committing to a minimum-savings rule. The
individual uses the caps when his bias is weak, but only a minimum-savings rule
when his bias is strong. These results contribute to our understanding of phe-
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1 Introduction
In many settings, a principal delegates a better informed agent to allocate finite resources
across multiple categories. For example, the owner of a company delegates a manager
to allocate its cash across promoting its products and investing in R&D; an employer
delegates a worker to allocate his time across job tasks and resting; an individual delegates
his myopic, short-run self to allocate income across consumption goods and savings.1 In
these settings, the richness of the allocation problem is often coupled with richness of the
agent’s information, which affects the trade-offs between all categories under his control:
The manager knows which products need advertising, the worker which tasks deserve
attention, and the short-run self which goods are on sale or best suit his tastes. Finally,
the principal’s and the agent’s interests usually disagree, but this conflict may arise only
from some categories: The manager may underweight R&D, the worker may overvalue
taking breaks, and the short-run self may undervalue saving for the future.

The paper studies this class of delegation problems in which there is a finite resource
constraint, the agent’s allocation as well as information have multiple dimensions, and
we can identify one clear source of the conflict between the agent’s and the principal’s
interests. It examines how the principal designs delegation policies to address the fun-
damental trade-off between rules and discretion in these problems: By restricting the
available allocations, rules can limit the consequences of the agent’s bias, but at the
same time can reduce the benefits of letting him act on his valuable information. The
paper reveals that, in the solution to this trade-off, the resource constraint plays an
important role. It investigates when and how the principal can limit the effects of the
agent’s bias on the final allocation by regulating dimensions which cause no conflict of
interest; in particular, it explains how this hinges on whether the trade-offs between those
dimensions are affected by the agent’s information and on the strength of his bias.

For the sake of concreteness, I will present the analysis in the context of a consumption-
savings model with imperfect self-control. In each period, an individual has to allocate a
finite amount of resources (his income) between buying a bundle of consumption goods
for the present and saving for the future. The optimal allocation depends on his varying
tastes and aspects of the environment, such as prices and qualities of the goods. These
tastes and aspects constitute the individual’s information, which we shall call the state
of the world. Importantly, part of this information affects the intratemporal trade-offs
between goods and part of it affects the intertemporal trade-off between present and
future utility. The individual can be interpreted as a single person, a household, the
government, or the head of a department in some organization. The model is similar to
that in Amador et al. (2006) and Halac and Yared (2014), but differs from their work
by considering settings in which consumption involves multiple goods and information
also affects the intratemporal trade-offs; also, in contrast to the second paper, here in-
formation is not persistent over time. Allowing for persistency seems an interesting but
challenging extension, which is left for future research.

1Thaler and Shefrin (1981) were the first to recognize the similarities between self-control problems
and delegation problems within organizations.
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Following the literature on self-control, I model the individual as having two selves
with conflicting interests: a long-run self or “planner” (the principal) and a short-run self
or “doer” (the agent).2 The planner (she) delegates the income allocation to the doer (he),
who is present biased.3 Anticipating the doer’s bias, the planner wants to impose some
rules which restrict his choices to a subset of all feasible allocations. However, such rules
often have to be set up ex ante, prior to learning the state. To capture this, in the model
only the doer observes the state, which is non-contractible. Consequently, the planner
also wants to grant the doer some discretion to act on his information. This leads to the
non-trivial delegation problem of finding commitment policies that optimally balance
rules and discretion. Formally, a commitment policy defines a subset of the resource
constraint containing all allocations that the doer is allowed to choose. One aspect is
worth noting here: Due to his present bias, the doer disagrees with the planner on the
value of saving for the future; however, given any level of savings, the planner and the
doer always agree on how to divide the remaining resources across goods in the present.
For this reason, we will refer to savings as the conflict dimension and to the consumption
goods as the agreement dimensions of the allocation problem.

The planner’s problem of finding an optimal commitment policy is a mechanism-
design problem with multidimensional decisions and information. Such problems are
notoriously hard, even without a resource constraint, because often one cannot focus
only on local incentive constraints; in particular, here standard methods based on direct
mechanisms are not helpful, as they do not simplify the task of characterizing optimal,
incentive-compatible, and resource-feasible mechanisms (see Section 2). To make any
progress, some structure needs to be added to the environment. This paper allows in-
formation to have general distributions, but mostly focuses on policies that belong to a
plausible, tractable class: The planner can impose either a cap or a floor (or both) on
how much the doer is allowed to allocate to savings and to each consumption good. Such
policies are the multidimensional equivalent of Holmström’s (1977) “interval controls.”
As he noted, interval controls “are simple to use with minimal amount of information
and monitoring needed to enforce them” and “are widely used in practice” (Holmström
(1977), p. 68).4 Simple policies may be attractive in organizational contexts as well as
for self-control problems: According to Thaler and Shefrin (1981), commitment “rules
by nature must be simple.” For settings with unidimensional decisions and information,

2See Thaler and Shefrin (1981) for a first dual-self approach to imperfect self-control. Other papers
include Benabou and Pycia (2002), Bernheim and Rangel (2004), Benhabib and Bisin (2005), Fuden-
berg and Levine (2006a, 2012), Loewenstein and O’Donoghue (2007), Brocas and Carrillo (2008), and
Chatterjee and Krishna (2009).

3Present bias may arise from individual preferences in the case of a single person (as in Strotz
(1955) and Laibson (1997)), from aggregating heterogeneous time-consistent preferences in the case of a
household or department head (as in Jackson and Yariv (2015)), or from uncertain political turnover in
the case of a government (as in Aguiar and Amador (2011)).

4Discussing multidimensional delegation, Armstrong (1995) writes, “in order to gain tractable results
it may be that ad hoc families of sets such as rectangles or circles would need to be considered, and that
[...] simple results connecting the dispersion of tastes and the degree of discretion could be difficult to
obtain. Moreover, in a multidimensional setting it will often be precisely the shape of the choice set that
is of interest.” (p. 20, emphasis in the original). The results of the present paper will address the role of
the dispersion of tastes as well as the shape of the choice set.
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Alonso and Matouschek (2008) and Amador and Bagwell (2013b) provide conditions for
interval controls to be fully optimal. Unfortunately, no such condition is currently known
for the multidimensional case.

The main result of the paper characterizes how the planner optimally uses caps and
floors to design commitment policies. Since the doer tends to overspend on consumption
but always agrees with the planner on how to divide spendable income across goods,
it is intuitive to expect that the planner wants to set only an aggregate limit on total
consumption expenditures, which she can implement with a minimum-savings rule (that
is, a savings floor). However, this is not true. Leveraging the resource constraint, the
planner can benefit from imposing specific caps that restrict spending on some goods,
even though such caps will end up distorting the bundles that the doer buys. This result
crucially depends on the fact that the doer has information on the intratemporal trade-
offs across goods, but the correlation across his pieces of information is irrelevant—for
that matter, they can be fully independent. Perhaps counterintuitively, optimal policies
must always involve good-specific caps when present bias is sufficiently weak; by contrast,
they must involve only a savings floor when present bias is sufficiently strong. Finally,
although one may expect that a savings floor is always part of an optimal policy—this
is the case, for example, in Amador et al. (2006)—the paper shows that in some settings
optimal policies rely exclusively on the caps.

The intuition for the main result can be seen as follows. The information on intratem-
poral trade-offs implies that both the planner and the doer want to spend the most on
one good in the states where its marginal utility is much higher than that of all other
goods; by contrast, they want to spend the most in aggregate in states where all goods
have high marginal utilities. An aggregate limit on total consumption deals with the
doer’s bias in the latter states. However, it may not curb overspending in the former
states if it is set relatively high—which is indeed what the planner wants to do when the
bias is weak. To overcome this issue, she can add good-specific caps that bind only when
the aggregate limit does not. Such caps force the doer to buy inefficient bundles (that
is, marginal rates of substitutions do not equal price ratios), but in so doing they lower
the consumption utility that he can achieve in such a way that curbs his incentive to
undersave.5 This also highlights why the multidimensionality of consumption can help
the planner design superior commitment policies, even though her consumption utility
coincides with the doer’s. Nonetheless, distorting the doer’s consumption choices curbs
his undersaving less and less as his bias becomes stronger. In this case, it is better to
rely only on a savings floor, for it limits undersaving without distorting consumption.

The theory developed in this paper has several implications (further discussed in
Section 5.2). First, for unidimensional delegation problems we know that in general
the principal wants to remove options from the set of feasible decisions for one of two
reasons: to prevent the agent from making decisions that severely damage the principal,
or to render the agent’s decisions more sensitive to changes in the state (see, e.g., Alonso
and Matouschek (2008)). The present paper shows that in multidimensional delegation
another economic reason emerges for reducing the agent’s choice set: to modify the trade-

5Imposing binding good-specific floors would also lead to inefficient bundles, but such distortions
strictly harm the planner (Lemma 6). Therefore, how consumption is distorted matters.
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offs he faces between dimensions of his decision causing no conflict of interest, so as to
alleviate the consequences of the conflict in another dimension.

Second, in a consumption-savings scenario, for instance, we may observe that an
individual uses richer commitment policies with more rules than do other individuals
and conclude that this is because he is more present biased. The paper shows, however,
that the correlation between richness of policies and intensity of the planner-doer conflict
may actually be negative, as richer policies can work better for weaker conflicts and
simpler ones for stronger conflicts.

Third, the theory provides a formal analysis for the idea that some people use “mental
budgeting” as a method to deal with their self-control problems involving savings. This
idea has often been informally suggested or directly assumed in the behavioral literature
(among others by Thaler (1985, 1999), Heath and Soll (1996), Prelec and Loewenstein
(1998), and Antonides et al. (2011)).6 The theory also suggests some qualifications of
existing views on budgeting. Budgets can involve goods that an external observer would
not classify as temptations, a property that Heath and Soll (1996) found puzzling in their
data. Only individuals who have (or naively think to have) a weak present bias may rely
on good-specific budgets, a prediction that finds consistent evidence in Antonides et al.
(2011). This last point is also important for how we view and model self-control. To
explain mental budgeting, the doer in a dual-self model cannot be fully myopic—that is,
care only about the present (as in Thaler and Shefrin (1981) and Fudenberg and Levine
(2006b), for example). This provides another argument in favor of modeling the doer as
not completely myopic, as advocated by Fudenberg and Levine (2012).

Fourth, the theory expands our understanding of the demand for commitment devices
(see Bryan et al. (2010) for an extensive literature review). Since the seminal work of
Thaler and Shefrin (1981) and Laibson (1997), the literature has often emphasized the
key role of devices like illiquid assets and mandatory pension systems as ways to imple-
ment minimum-savings rules. In a model with one consumption good, Amador et al.
(2006) showed that under weak conditions such rules fully characterize optimal commit-
ment policies. However, when consumption involves multiple goods, minimum-savings
rules can be strictly dominated by policies that (also) rely on good-specific budgets.
This may explain why some individuals demand services that allow them to budget ex-
penses by categories (such as those offered by companies like Mint.com, Quicken.com,
and StickK.com). Markets of such services cannot be explained by existing theories.

Since standard direct mechanisms prove unsuited for solving the planner’s problem,
to derive the above results the paper follows a different approach. First, it divides
the problem into simpler parts, each examining how restricting one dimension of the
doer’s decision at a time affects the planner’s payoff. Intuitively, the paper exploits
the information contained in the Lagrange multipliers for the constraints that caps and
floors add to the doer’s optimization problem. Relying on sensitivity-analysis results
(Luenberger (1969)), we can use this information to infer, once we adjust for the known

6Bénabou and Tirole (2004) provide an explanation based on self-reputation of why personal rules
(such as mental budgets) may be effective commitment devices. Benhabib and Bisin (2005) model how
ex-ante plans can trigger internal control processes that prevent impulsive processes from deviating from
such plans. Bernheim et al. (2015) offer an alternative analysis of self-enforcing commitment rules.
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conflict of interest, the marginal effects of tightening a cap or a floor on the planner’s
payoff. Having understood how the planner would use caps and floors for each dimension
in isolation, the paper then shows how she optimally combines them depending on the
strength of the doer’s bias. The analysis uses the assumption that information has a
distribution with continuous support, but otherwise allows for mass points and general
forms of dependence across its components.

To highlight the role that information on intratemporal trade-offs has in the theory,
Section 6 studies the case in which information is only about the intertemporal utility
trade-off (as in Amador et al. (2006) and Halac and Yared (2014)), but consumption is
still multidimensional. In this case, most of the time the (fully) optimal commitment
policy involves only a savings floor—especially when the doer’s bias is weak! Thus, the
multiplicity of consumption goods no longer matters for designing commitment policies.
The key step here is to show that when information is only on the intertemporal trade-off,
it is without loss of generality to focus on policies that take the form of any subset of
feasible allocations defined only in terms of savings and total consumption expenditures.
Given this, optimal policies coincide with a minimum-savings rule under a weak condition
on the information distribution, as shown by Amador et al.’s (2006) main result.

Finally, one might wonder what happens when Amador et al.’s (2006) condition fails.
In this case, they argue that optimal policies may have to involve “money burning,” in
the sense of inducing allocations strictly inside the resource constraint.7 The present
paper shows that, by exploiting the multidimensionality of consumption, the planner can
design optimal policies which require less money burning. It also provides a sufficient
condition for money burning to be superfluous.

The delegation problems analyzed in this paper arise in many other settings, for
instance in the areas of public finance, corporate governance, and organization design.
In these settings, the delegated decisions need not involve dynamic considerations and
the principal-agent conflict need not stem from their time preferences. The theory offers
insights on how the principal may use simple interval policies in these settings. A detailed
discussion appears in Sections 3.1 and 7.

2 Related Literature
This paper contributes to the mechanism-design literature on the trade-off between rules
(commitment) and discretion (flexibility) and its numerous applications. The closest pa-
pers are Amador et al. (2006) and Halac and Yared (2014).8 Relative to both papers,
the present theory shows how dimensions of the agent’s decisions causing no conflict
with the principal and idiosyncratic information on them can play an important role in
the solution to the rules-discretion dilemma, opening the door to superior (yet simple)
commitment policies. Relative to Halac and Yared (2014), another difference should be

7Other papers that study money burning as a tool to shape incentives in delegation problems include
Ambrus and Egorov (2009), Ambrus and Egorov (2013), Amador and Bagwell (2013a), Amador and
Bagwell (2013b).

8See also Athey et al. (2005), Ambrus and Egorov (2013), Amador and Bagwell (2013b).
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noted. They also consider consumption-savings problems with a present-biased doer in
which, however, consumption involves one good and information is only on the intertem-
poral trade-off and is persistent over time. In such environments, optimal commitment
policies can distort future consumption levels, even though they cause no conflict be-
tween planner and doer once present consumption (the conflict dimension) is fixed. This
may resemble the results of the present paper, but the economics is totally different.
With information persistency, the doer’s expected utility from future choices is linked
to his present information, and hence the planner can leverage those choices to relax his
incentive constraints, as in other dynamic mechanism-design problems.9 By contrast, in
the present paper agreement dimensions may be distorted to exploit the link with other
dimensions created by the resource constraint, and this is true even if the doer’s pieces of
information are fully independent. Finally, Brocas and Carrillo (2008) briefly discuss a
consumption-savings model in which consumption involves two goods, one of which has
ex-ante uncertain utility, and the doer is fully myopic. This model does not allow for
an analysis that examines the roles of information on intratemporal and intertemporal
trade-offs and of the intensity of the doer’s bias.

This paper also relates to the rich literature on principal-agent delegation problems
following Holmström (1977, 1984). The work on problems with multidimensional deci-
sions and information, however, is very scarce and does not examine the kind of settings
studied here.10 In Koessler and Martimort (2012), information has one dimension, deci-
sions have two unconstrained dimensions, and payoffs are quadratic, which implies that
they ultimately depend on the decision’s mean and spread. This turns the problem
into a screening exercise where the spread works as a pseudotransfer. In Frankel (2014,
2015), both information and decisions are multidimensional. In Frankel (2014), the agent
has the same bias for all dimensions, but the principal is uncertain about its properties
(strength, direction, etc.). In this case, the best policies against the worst-case bias (max-
min policies) may require the agent’s average decision to satisfy a preset value (called
“budget”). Such policies should not be confused with the caps and floors in the present
paper. Frankel (2015) considers policies that set a cap not directly on decisions, but on
the gap between the agent’s and the principal’s final payoffs. Under the assumption that
information is i.i.d. across dimensions, such policies are optimal in some settings and,
more generally, ensure that with a large number of dimensions the per-dimension loss
from the first best is small. By contrast, the present paper allows for general distributions
and considers a different class of delegation policies, which can dominate those in Frankel
(2015). It also provides useful results for settings with a small number of dimensions.

Finally, this paper relates to the literature on multidimensional screening (see Stole
and Rochet (2003) for a detailed survey). Screening and delegation problems differ be-
cause in the latter the principal cannot use transfers. This prevents us from applying the
insights of that literature here and forces us to restrict the class of delegation policies.
In the present paper, we could use the dual approach and other methods in Rochet and
Choné (1998) to simplify the agent’s incentive constraints and the principal’s objective.

9See, for example, Courty and Li (2000), Battaglini (2005), Pavan et al. (2014).
10In Alonso et al. (2013), a fixed amount of resources has to be allocated across multiple categories,

but each category is controlled by a different agent with a unidimensional piece of information.
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However, the fixed resources add a state-wise constraint to the problem. General tech-
niques exist for such problems (for example, Luenberger (1969)), but are not helpful in
our case to characterize the optimal unrestricted mechanisms, which need not follow the
same logic of the unidimensional case—as suggested by Rochet and Choné (1998)—or,
for that matter, of monopolistic screening. One benefit of the approach of this paper is
that its results are insensitive to details of the information structure. By contrast, such
details can matter significantly in the theory of multidimensional screening (see Manelli
and Vincent (2007)).

3 The Model
This section introduces the model as a consumption-savings problem with imperfect self-
control. Section 3.1 explains how this model can capture many other settings that lead
to similar delegation problems.

Consider an individual who lives for multiple periods and in each period, given his
income, chooses a bundle of consumption goods for the present and a level of savings
for the future. Hereafter, we focus on one of these periods. The individual’s per-period
income is known and is normalized to 1. His consumption bundle involves n > 1 goods
and is represented by x = (x1, . . . , xn) ∈ Rn

+; his level of savings is represented by
x0 ∈ R+.11 The set of feasible allocations is then

B = {(x, x0) ∈ Rn+1
+ :

∑n
i=0xi ≤ 1}.

How the individual wants to allocate his income depends on his tastes as well as other
aspects of the environment. These tastes and aspects define the individual’s information,
which affects in part how he trades off consumption goods in the present and in part how
he trades off present vs. future utility. Let the first part on the intratemporal trade-offs
be represented by r ∈ Rn, where ri is the idiosyncratic component on good i; let the
second part on the intertemporal trade-off be represented by θ ∈ R. This setting is
similar to that in Amador et al. (2006) (hereafter, AWA), but departs from it in two
ways: First, consumption involves multiple goods, whereas in AWA it involves only one
good (that is, n = 1); second, information also affects the trade-offs across consumption
goods, whereas in AWA it consists only of θ.

As in existing dual-self models of self-control (see Footnote 2), the individual consists
of a long-run self or “planner” (she) and a short-run self or “doer” (he) with conflicting
preferences. Given (θ, r), the planner’s and the doer’s utility functions are respectively

θu(x; r) + v(x0) and θu(x; r) + bv(x0),

where the function v : R+ → R represents the expected utility from saving x0 for the
future. The assumption here is that information is independently distributed across
periods (in contrast to Halac and Yared (2014)) and that the individual anticipates how
he will use his savings in the future.12 The parameter b ∈ (0, 1) captures in a tractable

11The model can be extended to allow for negative savings (or borrowing) along the lines of Halac and
Yared (2014) (see Section 3.1).

12Under this independence assumption, this reduced-form one-period formulation can be derived from
a full-fledged multi-period model along the lines of Amador et al. (2003).
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way the doer’s bias towards present consumption, and hence the conflict with the planner.
The level of b is known to the planner.13 This formulation of present bias is consistent
with the single-agent, quasi-hyperbolic discounting model (Laibson (1997)), but also with
interpreting the individual as the representative of a group—like a household, a political
committee, or the board of a firm—who aggregates the preferences of its heterogeneous,
time-consistent members. In this case, Jackson and Yariv (2015) show that under weak
conditions the resulting aggregate preference exhibits present bias. To add clarity and
tractability to the model, assume that

u(x; r) =
n∑

i=1

ui(xi; ri) with ui
12 > 0 for all i.

Additive separability may rule out realistic interactions across goods, but it will help to
isolate the mechanisms of interest for this paper. This assumption is superfluous for some
of the results below, which I will point out; I expect that the other results are robust at
least to moderate interactions across goods (see below).

The information structure involves some degree of redundancy, as both an increase
in θ and an increase in all components of r render consumption more valuable. This
approach, however, has several advantages: It clarifies the conceptual distinction between
information on the intratemporal and intertemporal trade-offs; it will allow us to keep the
same model for the entire analysis, thereby focusing on the core messages of the paper; it
simplifies the comparison with the literature. Note that the model allows us to interpret
information as taste shocks or as the observation of prices, which determine how dollars
spent on good i, xi, translate into its physical units.14

The planner (principal) delegates the doer (agent) to choose an income allocation.
Knowing his bias, the planner would like to design a commitment policy dictating which
allocations the doer is allowed to implement. In general, such a policy defines a nonempty
subset D of the feasibility set B. For example, D = B grants the doer full discretion,
whereas a set D containing only one element grants him no discretion at all. If the
planner can condition D on the realization of (θ, r)—either because she observes it or
because it is contractible—her problem would be trivial, as she can let D contain only
her most preferred allocation given that information. However, in reality commitments
are usually chosen prior to observing all the necessary information to make a decision.
One way to capture this is to assume that information (θ, r) is non-contractible and only
the doer observes it. This creates a non-trivial delegation problem in which the planner
faces a trade-off between rules and discretion: She wants to limit the doer’s freedom,
but at the same time let him act on his information. In short, the timing is as follows:

13Ali (2011) concludes that sophistication is a plausible assumption in frameworks similar to the one
considered here, as by experimenting the individual can learn his true bias. Allowing for partial naiveté
(for example, as in O’Donoghue and Rabin (2001)) would not change the message of the paper, as the
entire analysis is from the ex-ante viewpoint of the planner.

14For instance, for all i = 1, . . . , n, let ui(zi) =
z
1−γi
i

1−γi
with γi > 0 be the utility from zi units of good i,

and let πi > 0 be its price. If we define xi = πizi for all i, we can write the usual resource constraint
as

∑n
i=1 xi + x0 ≤ 1. Letting ri = πγi−1

i , we can define ui(xi; ri) = riu
i(xi), which satisfies all our

assumptions. This example can be generalized by allowing each ui to be a smooth, strictly increasing,
and strictly concave function.
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First, the planner commits to a policy D. Then, the doer observes (θ, r) and implements
some (x, x0) ∈ D, which determines the payoffs. The planner designs D to maximize her
expected payoff from the doer’s resulting decisions. Section 4 will be more precise about
the class of policies examined in this paper.

The following assumptions complete the model and are mostly technical:
• Information: Let S = [θ, θ] × [r1, r1] × · · · × [rn, rn], where 0 < θ < θ < +∞ and
−∞ < ri < ri < +∞ for all i = 1, . . . , n. The joint distribution of (θ, r) is represented
by the probability measure G which has full support over S; that is, G(S ′) > 0 for every
open S ′ ⊂ S.15 Note that this assumption allows for rich forms of dependence across
information components, but of course also for full independence across all of them.
• Differentiability, monotonicity, concavity: The function v : R+ → R is twice con-
tinuously differentiable with v′ > 0 and v′′ < 0. For all i = 1, . . . , n, the function
ui : R+ × [ri, ri] → R is twice differentiable with ui

1(·; ri) > 0 and ui
11(·; ri) < 0 for all

ri ∈ [ri, ri]; also, ui
1 and ui

11 are continuous in both arguments.
• Boundary conditions: limx0→0 v

′(x0) = +∞ and limxi→0 u
i
1(xi; ri) = +∞ for all ri ∈

[ri, ri] and i = 1, . . . , n. This will allow us to focus on interior solutions.

Notation and Definitions

In the rest of the paper, we shall call every element of S state and denote it by
s = (θ, r1, . . . , rn). Given this, express the planner’s and the doer’s payoffs from alloca-
tion (x, x0) as

U(x, x0; s) = û(x; s) + v(x0) and V (x, x0; s) = û(x; s) + bv(x0), s ∈ S, (1)
where û(x; s) = θ

∑n
i=1 u

i(xi; ri). For each s, let p∗(s) denote the allocation that the
planner would like the doer to choose in that state and a∗(s) denote the allocation that
the doer (the agent) actually chooses under full discretion:

p∗(s) = argmax
B

U(x, x0; s) and a∗(s) = argmax
B

V (x, x0; s), s ∈ S. (2)

Hereafter, we refer to p∗ as the first-best allocation and to a∗ as the full-discretion al-
location. These allocations satisfy some properties, summarized in the following lemma,
which we will use later.

Lemma 1.
• Both p∗ and a∗ are continuous in s.
• For all i = 0, . . . , n, the range of p∗i (resp. a∗i ) equals an interval [p∗

i
, p∗i ] (resp. [a∗i , a∗i ]),

• with 0 < p∗
i
< p∗i < 1 (resp. 0 < a∗i < a∗i < 1).

• For all s ∈ S, a∗0(s) is continuous and strictly increasing in b and a∗0(s) < p∗0(s) if and
• only if b < 1.
• For all s ∈ S, each a∗i (s) is continuous and strictly decreasing in b.

These properties follow immediately from (1) the assumptions on U and V , (2) compact-
ness, connectedness, and convexity of S, and (3) standard comparative-statics arguments.

15This holds, for instance, if G has a strictly positive and continuous density function over S.
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Two other observations will be useful later. First, all consumption goods are normal: For
both the planner and the doer, higher spendable income (1−x0) always leads to a higher
optimal allocation to each good.16 Second, if we fix savings, the planner and the doer
always agree on how to divide the remaining resources across goods: Given x̂0 ∈ [0, 1],

argmax
{(x,x0)∈B:x0=x̂0}

U(x, x0; s) = argmax
{(x,x0)∈B:x0=x̂0}

V (x, x0; s), s ∈ S.

Hence, we will refer to x0 as the conflict dimension and to x as the agreement dimensions.

3.1 Alternative Interpretations and Applications

This section outlines other settings that create delegation problems which can be modeled
using the above framework. The reader interested in the results can skip this part.

Corporate governance. The owner of a company appoints a manager, who each
year decides how to divide some total resources, I, between investment in R&D, x0,
and overall spending on sales activities, y. The company sells multiple products and the
manager also chooses which share of y goes to promoting which product (x1, x2, etc.). As
a result of compensation schemes and career goals, the manager may be more concerned
with the company’s cash flows than the owner is; hence, the manager may assign relatively
more importance to current sales than to R&D (b < 1). Since he manages the business on
a daily basis, he has better information on the returns from marketing each product (r) as
well as from funding R&D (θ), information that the owner would like to be incorporated
in the allocation of I. However, due to the manager’s bias, the owner may restrict his
choices to some subset D of all feasible allocations B.

Workers’ time management. An employer hires a worker under a contract that
specifies a workday of I hours and a fixed wage. The worker is in charge of multiple
tasks and chooses how to allocate his time across them (x1, x2, etc.). Moreover, he can
take breaks during the day, represented by x0. Being on the shop floor, the worker has
firsthand information on which task demands more attention at each moment. Given
this, the employer would like to let him choose how to allocate his time. However, the
worker is likely to weigh his benefits from taking breaks more than does the employer
(that is, b > 1 in the model).17 Thus, she may also want to set up some rules to avoid that
the worker spends too much time on breaks. We can model such rules with a subset D
of the feasible time allocations B.

Fiscal-constitution design. Society delegates a government to allocate the econ-
omy resources, I, between private consumption, x0, and total public spending, y. The
government incorporates the preference of a representative agent in society, but is biased
in favor of public spending (b < 1).18 The government spends y to fund multiple services
under its control (x1, x2, etc.). Although it is biased in favor of public spending, at a first
approximation the government may not favor any specific service more than others rel-

16Given our assumptions, this property follows, for instance, from Proposition 1 in Quah (2007).
17The paper focuses on the case of b < 1, but Section 7 explains how the analysis works for b > 1.
18This hypothesis is supported by theoretical as well as empirical work in the political-economy liter-

ature (Niskanen (1975), Romer and Rosenthal (1979), Peltzman (1992), Funk and Gathmann (2011)).
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ative to society’s representative agent.19 Thus, given any level of y, the parties agree on
how to allocate y across services. Before the government chooses an allocation, it observes
non-contractible information which affects the social value of each service, captured by
r (for example, threats to national security or needs for natural-disaster relief), as well
as the overall trade-off between private consumption and public spending, captured by θ
(for example, the state of the business cycle). Due to these different goals and informa-
tion, behind a veil of ignorance society may want to design a fiscal constitution—that is,
a delegation policy D—that specifies which allocations the government can choose.

Research vs. teaching in academia. A university employs a professor to teach
and conduct research. Each week, the professor has a total amount of hours I that he can
allocate to research, y, or teaching, x0. Also, he works on several research projects and
has to choose how much of y to spend on each of them (x1, x2, etc.). The professor may
care about teaching less than does the university (b < 1). Nonetheless, he has better
information on which activity is more likely to advance his as well as the university’s
interests on an ongoing basis. Thus, the university would like to let the professor choose
how to allocate his time, but also establish some rules to limit the risk that he overlooks
teaching. We can capture such rules with a subset D of the professor’s feasible time
allocations B.

Public finance. As in Halac and Yared (2014), each year t the government chooses
how much to borrow, zt, and spend, yt, subject to the constraint yt ≤ τ + zt/ρ − zt−1,
where zt−1 is the nominal debt inherited from period t−1, τ is a fixed tax revenue, and ρ
is an exogenous (gross) interest rate. Differently from their setup, here the government
divides yt across multiple services, xt, and its information, (θt, rt), is i.i.d. over time. At
the beginning of each year, before observing (θt, rt), the government evaluates allocations
using the function θtu(xt; rt) + v̂(zt), where v̂(zt) is the expected payoff from entering
period t+1 with debt zt. After observing (θt, rt), however, it chooses allocations using the
function θtu(xt; rt)+bv̂(zt) with b ∈ (0, 1). The government’s present bias can arise when
it aggregates the preferences of heterogeneous citizens, even if they are all time consistent
(as in Jackson and Yariv (2015)), or because of uncertainty in the political turnover (as
in Aguiar and Amador (2011), for example). Anticipating its inconsistency, ex ante
the government may commit to some fiscal rules. Since information is not persistent,
considering fiscal rules that bind only for one year is without loss of generality (Amador
et al. (2003); Halac and Yared (2014)). To map this setting into the previous model,
we can assume an exogenous upper bound on borrowing Z < +∞, let xt

0 = −zt/ρ
and I(xt

0) = τ + ρxt
0, and define v(xt

0) = v̂(−ρxt
0). The feasibility constraint becomes∑n

i=1 x
t
i + xt

0 ≤ I(xt−1
0 ). At the beginning of each year t, given xt−1

0 the government can
design fiscal rules that restrict the implementable allocations to some D ⊂ B(xt−1

0 ).
19This property is arguably strong, but it is consistent with some empirical evidence. For example,

Peltzman (1992) finds that U. S. voters penalize federal spending growth, but its composition seems
irrelevant.
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4 Tractable Delegation Policies: Caps and Floors
In principle, we would like to find the planner’s best policy among all possible commit-
ment rules, that is, all D ⊂ B. The usual mechanism-design approach would rely on the
revelation principle to turn the problem of finding an optimal set D ⊂ B into the equiva-
lent problem of finding an optimal, incentive compatible, and resource-feasible allocation
function of the state. Searching among such functions is usually easier than searching
among sets, but in the present setting it remains an intractable problem as explained in
Section 2.

This calls for a different approach. As Holmström (1977) noted, “one might want
to restrict D to [...] only certain simple forms of [policies], due to costs of using other
and more complicated forms or due to the fact that the delegation problem is too hard
to solve in general.” In his setting where the agent’s decision is unidimensional, Holm-
ström (1977) focused on interval policies, because they “are simple to use with minimal
amount of information and monitoring needed to enforce them” and “are widely used
in practice.”20 In a similar spirit, discussing multidimensional delegation, Armstrong
(1995) acknowledged that “in order to gain tractable results it may be that ad hoc fam-
ilies of sets such as rectangles or circles would need to be considered.” With regard to
the consumption-savings application, Thaler and Shefrin (1981) argue that commitment
“rules by nature must be simple.”21 For these reasons, this paper focuses on the class of
policies that correspond to the multidimensional version of Holmström’s intervals, that
is, rectangles. Of course, one may want to consider other classes of policies. However, it
is difficult to identify classes of sets which not only are sensible for our setting, but also
have enough structure to render the problem tractable.

The class of rectangle policies implies that the planner can commit to imposing a cap
or a floor on how much the doer is allowed to save and to spend on each consumption
good. Formally, given f, c ∈ [0, 1]n+1 that satisfy fi ≤ ci for all i and

∑n
i=0 fi ≤ 1, a

rectangle policy is defined by
Df,c = {(x, x0) ∈ B : fi ≤ xi ≤ ci for all i}.

Denote the collection of all such policies by R. Given Df,c, some floors and caps may
never affect the doer’s decision and others may constrain it only in some states. Therefore,
when describing a policy from the ex-ante viewpoint, I will call a floor (or cap) binding if it
constrains the doer in a set of states with strictly positive probability. When considering
policies in R, I will also leave f and c implicit unless required by the circumstances.

The planner has to choose D ∈ R so as to maximize

U(D) =

ˆ
S

U(a(s); s)dG (3)

20For Holmström’s (1977) settings, the literature has recently identified conditions for intervals to
be optimal among all possible delegation policies (see Alonso and Matouschek (2008) and Amador and
Bagwell (2013b)). Similar conditions are not available, however, for multidimensional settings like in the
present paper.

21Benhabib and Bisin (2005) provide a rationale for why people may prefer simple commitment rules
based on higher psychological costs of complying with complex rules.
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subject to
a(s) ∈ argmax

(x,x0)∈D
V (x, x0; s), s ∈ S. (4)

This problem has a solution. The proof of this result as well as all the others appear in
the Appendix.

Lemma 2. There exists D that maximizes U(D) over R.

Given this, we can turn to characterizing the optimal policies. To this end, we will first
examine the effects of restricting savings and spending on each consumption good in
isolation. This will provide useful insights for understanding how she combines caps and
floors, thus paving the way for the main result of the paper in Section 5.

4.1 Restricting Conflict Dimensions

The planner and the doer disagree on how much they value present vs. future utility
and hence on how income should be allocated between consumption and savings. Since
present bias leads to overconsumption, it seems intuitive that the planner wants to restrict
the total amount that the doer spends on consumption. A simple way to implement such
a constraint is to impose a floor on savings. When binding, the floor prevents the doer
from splurging, but never affects how he divides spendable income across goods, a decision
which raises no conflict.

The following preliminary result shows that, if the planner can only restrict how
much the doer is allowed to save, then a binding floor f0 strictly improves on the full-
discretion policy (D = B). Also, the optimal f 0 is strictly higher than the lowest first-best
savings level (f0 > p∗

0
). This result relies only on monotonicity and concavity in x of the

function û in (1). Hence, it continues to hold if we allow for general interactions across
goods and dependence on s.22

Lemma 3. When the only available delegation policies involve a floor on x0, it is optimal
to set f0 strictly between p∗

0
and p∗0.

In some settings, for practical reasons it may be possible to restrict only x0. For example,
in the application to research vs. teaching in academia, a university can easily request
and monitor that a professor allocates at least f0 hours per week to teaching, but may
not be able to restrict the time that she spends on each of her research projects.

The intuition for Lemma 3 is simple. On the one hand, under full discretion the doer
saves strictly less than p∗

0
for some states, which is never justifiable from the planner’s

viewpoint. On the other hand, fixing any x0, both parties always agree on how to
divide 1 − x0 across consumption goods; therefore, even when f0 is binding, it never
distorts the final consumption bundle. These two observations imply that the planner
always wants to set f0 ≥ p∗

0
. To see why this inequality must be strict, note that for

states in which the planner would save x0 > p∗
0
, she strictly prefers setting f0 = x0

than f0 = p∗
0
, which leads to overconsumption. By contrast, for states in which the

22Proposition 6 will imply that it is never optimal to impose a binding cap on savings (that is, c0 < a∗0).
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planner would save x0 = p∗
0
, setting f0 = p∗

0
already induces the doer to choose the first-

best allocation. Therefore, a marginal increase in f0 above p∗
0
has a first-oder positive

effect and only a second-order negative effect on the planner’s payoff. A similar logic
explains the inequality f0 < p∗0.

Lemma 3 is reminiscent of the results in AWA, but differs in several respects. In
AWA’s setting both consumption and information are unidimensional, which allows AWA
to consider all subsets of the resource constraint as feasible delegation policies and show
that the optimal one must always involve a binding minimum-savings rule. AWA derive
their result through a clever application of mechanism-design techniques. As is well
known,23 similar techniques are not available for the present multidimensional setting,
which significantly complicates the problem of finding the optimal policy among all sets
D ⊂ B. Therefore, compared to AWA, this paper restricts attention to policies which
can involve only a floor or cap on savings, and to prove the optimality of a binding floor,
it relies on different techniques.

The key step is to show that the planner’s payoff is differentiable in the floor f0.
If we let Df0 be the policy which involves only f0, Lemma 10 in the Appendix shows
that d

df0
U(Df0) exists and provides a simple expression for it. Of course, at an interior

optimum we must have d
df0

U(Df0) = 0. The expression of d
df0

U(Df0) shows that this
first-order condition captures the following trade-off. Consider f0 ∈ (p∗

0
, p∗0) and the

consequences of increasing it marginally. In some states the planner would save more
than f0 (that is, p∗0(s) > f0), and hence benefits from increasing the doer’s savings
when f0 binds. In other states the planner would save less than f0 (that is, p∗0(s) < f0),
and hence loses by inducing the doer to save even more than in the first best. The first-
order condition says that, when f0 affects the doer’s decision, the expected benefit for
the states that demand higher savings should be equal to the expected loss for the states
that demand lower savings.

To derive the main result below, it will be useful to know how the optimal floor changes
as the doer becomes more biased. Everything else equal, the planner should tighten f ∗

0 .
Indeed, it turns out that d

df0
U(Df0) decreases in b, and hence U(Df0) is a submodular

function of (f0, b). Intuitively, as the bias worsens, the doer penalizes savings more; so
any f 0 is more likely to bind. This strengthens the expected benefit of raising f 0 for the
states where the planner would save more than f0, but does not change the expected cost
of raising f 0 for the states where she would save less than f0: In such states f 0 binds for
any bias, as the doer always prefers to save less than does the planner.

Lemma 4. The set of optimal floors, denoted by F (b), is decreasing in b in the strong
set order.24 In particular, maxF (b) is decreasing in b and converges to p∗

0
as b ↑ 1.

Moreover, there exists b > 0 such that F (b) = {f 0} for all b ≤ b, where f 0 satisfies

U(Df0
) = max

f0∈[p∗0,p
∗
0]

{
v(f0) +

ˆ
S

û(xf0(s); s)dG
}

23See, for example, Rochet and Choné (1998) and their discussion on direct and dual approaches to
screening problems.

24Given two sets F and F ′ in R, F ≥ F ′ in the strong set order if, for every f ∈ F and f ′ ∈ F ′,
min{f, f ′} ∈ F ′ and max{f, f ′} ∈ F (Milgrom and Shannon (1994)).
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and
xf0(s) = argmax

{x∈Rn
+:

∑n
i=1 xi≤1−f0}

û(x; s), s ∈ S.

Thus, when the bias is sufficiently strong, the planner sacrifices entirely the option of
letting the doer adjust savings to information. This happens even though the doer does
care about the future and hence would adjust x0 to the state.

4.2 Restricting Agreement Dimensions

Besides by imposing a savings floor, the planner can limit the doer’s splurging by re-
stricting consumption directly. When there is only one consumption good, a saving
floor is always equivalent to a consumption cap, and hence nothing else can be done
within the class of rectangle policies. This is no longer true when consumption involves
multiple goods. A savings floor is equivalent to a limit on total consumption (that is,∑n

i=1 xi ≤ 1 − f0), but there are many ways to enforce this limit using good-specific
caps. Moreover, the planner can impose such caps in addition to an aggregate limit on
consumption (via f0). For example, she can require that consumption never exceed 80%
of her income and that “going out” alone never exceed 10%, or “gifts” never exceed 5%.”
Since the planner and the doer have the same preference when it comes to dividing money
across goods, we may expect specific caps to be useless, or even harmful. This section
examines this conjecture, starting with two observations.

First of all, good-specific caps cannot implement the same allocations as a policy which
relies only on a binding savings floor—unless information affects only the intertemporal
utility trade-off and the component r is known from the outset. A formal statement
of this property appears in the Appendix (Lemma 11). To see the intuition, consider a
binding floor f0. Since r can vary, the doer does not always choose the same consumption
bundle while f0 binds: As the marginal utility of some good i rises (higher ri), he spends
on it a larger share of 1 − f0. Thus, if the planner wants to let him respond to r as
under f0, she has to set a cap on each good at least as large as the highest amount
of that good consumed under f0. By the previous observation, however, the sum of
such caps must exceed 1 − f0, and hence cannot ensure that the doer saves at least f0.
Therefore, to ensure this minimum savings, some caps must be set strictly lower and
hence prevent the doer from responding to r as under f0. Since the doer always chooses
an efficient consumption bundle under f0—that is, marginal utilities coincide across all
goods—it follows that trying to implement f0 using good-specific caps must induce the
doer to choose inefficient bundles.

The second observation is that, when binding, a good-specific cap mitigates the doer’s
aggregate overconsumption, but without other constraints it also exacerbates overcon-
sumption in all other goods. Lemma 12 in the Appendix states this formally. To see
the logic, note that since income is fixed, overspending on good j comes at the cost of
subtracting money from savings, which the doer undervalues, or from other goods like i,
which he values on par with j. When good i is already capped, however, the second cost
decreases, inducing the doer to overspend on j even more. Note the key role that the

16



resource constraint plays in this logic, which is further highlighted by the absence of any
utility interaction across goods.

Given these observations, one may wonder whether the planner can ever benefit from
imposing specific caps. To answer this question, we will use the next result, which shows
that capping even only one good strictly dominates granting the doer full discretion.

Lemma 5. Fix i ̸= 0 and consider policies D0,c with cj = 1 for all j ̸= i. There
exists ci < a∗i such that the planner strictly benefits from it, that is, U(D0,c) > U(B).

To gain intuition, start from ci = a∗i and imagine lowering it a bit. On the one hand,
when binding, the cap distorts the allocation across consumption goods. This reduces
the planner’s expected payoff, but this loss is initially of second-order importance. The
reason is that, under full discretion, the doer’s allocation across x is always efficient;
moreover, both parties have the same preference regarding x. Hence, marginal distortions
in x do not change the planner’s payoffs. On the other hand, the cap induces the
doer to save more with strictly positive probability. Since the doer undersaves from the
planner’s viewpoint, this reallocation causes a first-order gain in her payoff. Overall the
cap should then benefit the planner, provided that the doer does not reallocate money to
the unrestricted goods at a much faster rate than to savings, which is not obvious and
not always true. This key property is guaranteed by the additive structure of preferences.
It should continue to hold if the goods are complements: Capping one of them renders
all the others less valuable and hence should incentivize the doer to save even more. In
this case, the thrust of the paper does not change.

Lemma 5 suggests that the planner may always benefits by combining a savings floor
with good-specific caps. Perhaps surprisingly, this depends on the strength of the doer’s
bias and the nature of his information: Whether it only affects the intertemporal utility
trade-off (θ) or also the intratemporal trade-offs across goods (r). Before deriving these
results in the next section, Lemma 6 shows that binding caps on savings or floors on
consumption goods are never part of the planner’s optimal policy.

Lemma 6. For any Df,c ∈ R, let Df0,c−0 be the policy obtained by removing the savings
cap and all good-specific floors. Then U(Df0,c−0) ≥ U(Df,c), where the inequality is strict
if under Df,c either c0 or fi for some i ̸= 0 binds with strictly positive probability.

One implication of this is that policies which impose only a binding floor on some good
strictly harm the planner. When binding, good-specific floors and caps distort the doer’s
choice of a consumption bundle and thus lower the consumption utility he can derive from
the income he does not save. However, only caps do so in a way that curbs his tendency
to undersave. More generally, this shows that how a policy distorts consumption matters
for it to successfully address the doer’s bias.
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5 The Main Result: Restrictions on both Conflict
and Agreement Dimensions

This section examines the leading case with information on both the intratemporal and
intertemporal trade-offs. It provides conditions for the optimal delegation policy withinR
to involve good-specific caps and to involve only a savings floor. It also considers how
reducing the doer’s idiosyncratic information on consumption goods renders the second
policy more likely to be optimal, thereby highlighting the role of that kind of information.
Note that these results hold under the very weak assumptions on the distribution of
information introduced in Section 3.

Proposition 1 shows that, everything else equal, there always exists a sufficiently weak
degree of the doer’s bias such that every optimal policy must involve good-specific caps.

Proposition 1. There exists b∗ ∈ (0, 1) such that, if b > b∗, then every optimal D ∈ R
must involve binding good-specific caps.25

Proposition 1 relies on the following properties of the first-best and full-discretion al-
locations (p∗ and a∗). They hold because the planner and the doer want to reallocate
resources to good i when its marginal utility rises relative to all other goods and savings.

Lemma 7. The allocations p∗ and a∗ satisfy the following properties:
• p∗

0
= p∗0(θ, r) < p∗0(θ, ri, r−i) and a∗0 = a∗0(θ, r) < a∗0(θ, ri, r−i),

• p∗i (θ, r) < p∗i (θ, ri, r−i) = p∗i and a∗i (θ, r) < a∗i (θ, ri, r−i) = a∗i for every i ̸= 0.

To gain intuition, suppose that there are only two goods and the model is fully sym-
metric with regard to them. Figure 1 shows the surface of the resource constraint B as
the two-dimensional simplex. We can focus on this surface due to monotonicity of pref-
erences and the fact that it is never optimal to use a savings cap or good-specific floors
(Lemma 6). We can represent savings floors as horizontal lines and good-specific caps as
lines parallel to the oblique edges of the simplex. The doer can choose only allocations
above all these lines; the higher the line, the tighter the corresponding constraint. Fig-
ure 1 also represents the range of p∗ and a∗ as the areas inside the dotted and solid lines,
respectively. Both the planner and the doer want to spend more on good i as its value
relative to good j or savings rises. Hence, the states in which their optimal consumption
of good 1 (respectively 2) is highest are not the states in which their optimal savings
level is lowest (Lemma 7). In Figure 1, the former states map to the light-shaded areas,
the latter to the dark-shaded areas.

A savings floor primarily targets the doer’s decisions in the dark-shaded areas, but
may have no effect in the light-shaded areas. Yet, in these states the doer continues to
overconsume and the planner would like to intervene. To see how, recall our preliminary
results in Sections 4.1 and 4.2. By Lemma 4, if policies can involve only a savings floor,
the planner sets it lower and lower as the doer’s bias weakens; thus the floor becomes
less and less likely to affect the states in which, say, good 1 is very valuable but good 2 is

25The Appendix describes a procedure to calculate the threshold b∗.
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Figure 1: Optimal Delegation Policy – Intuition

not. We can see this by comparing the levels of f0 in panels (a) and (b) of Figure 1. To
address those states, the planner does not want to use the floor when the bias is weak,
but she can add a cap on good 1 that binds only when the floor does not (as c1 < a∗1 in
Figure 1(a)). By Lemma 5, such a cap will mitigate overconsumption when the allocation
to good 1 is high, and despite its distorting effects, it strictly benefits the planner.

Although Proposition 1 says that good-specific caps must be part of an optimal policy,
it does not say that they are always combined with a savings floor. Indeed, it is possible
to have situations in which the planner combines some caps with the floor as well as
situations in which she uses only caps. Section 5.1 illustrates this.

Does the optimal policy always rely on some good-specific cap? The answer is no.
There always exists a sufficiently strong degree of the doer’s bias such that, to be optimal,
a policy should impose only a savings floor.

Proposition 2. There exists b∗ ∈ (0, 1) such that, if b < b∗, then every optimal D ∈ R
involves only a binding savings floor. Moreover, if r′ ≥ r and r′ ≤ r with r′ ̸= r and
r′ ̸= r, then the corresponding b′∗ and b∗ satisfy b′∗ > b∗.26

Proposition 2 uses the following lemma, which shows that every optimal policy sets an
effective lower bound on savings which is at least as high as the lowest first-best level p∗

0
.

Lemma 8. For every b ∈ (0, 1), if D ∈ R is optimal, then max{f0, 1−
∑n

i=1 ci} ≥ p∗
0
.

If D lets the doer save x0 < p∗
0
, the planner realizes that no state justifies such a low x0.

By increasing f0 up to p∗
0
, she uniformly improves her payoff with regard to savings.

Moreover, as a consequence of the lower level of spendable income, caps (if any) become
less likely to bind—recall that all goods are normal—and hence less likely to distort the
consumption bundle. Thus, the planner also benefits on this front.

26The Appendix shows how to calculate the threshold b∗; importantly, b∗ does not depend on the
distribution G.
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We can now see the intuition behind Proposition 2. When b is very small, the doer
wants to save much less than p∗

0
, no matter what information he observes. By Lemma 8,

however, the planner never allows him to save less than p∗
0
. Hence, when a cap forces

the doer to consume less of good i, he reallocates all the unspent money across the other
goods, but not to savings. Since binding caps distort the chosen consumption bundle,
the planner cannot benefit from imposing them if they do not improve savings. This
reasoning also leads to the following simple observation, which may be useful to discard
certain policies.
Remark 1. Suppose that D ∈ R involves binding caps but always induces the same level
of savings, say x′

0. Then D cannot be optimal. The planner can strictly improve on D
by imposing only a floor f0 = x′

0.

Proposition 2 also gives an idea of how reducing the doer’s idiosyncratic information
on each consumption good may affect the optimal commitment policy. By shrinking
the range of such information—without changing the information on the intertemporal
trade-off (θ)—it becomes more likely that the simple policy with only a savings floor is
optimal for a fixed degree of the doer’s bias. Given this, one may wonder what happens
in the limit when the doer’s information is only about θ, but consumption still involves
multiple goods. Does the optimal policy always involve only a savings floor? If not,
which conditions ensure this? Section 6 will provide the answers.

The weakest bias for which optimal policies include good-specific caps obviously de-
pends on the details of the setting at hand. Intuitively, as b falls below b∗, for any
policy D it increases the probability that the doer ends up in a state where D’s effec-
tive lower bound on savings, denoted by x0, binds. Since in these states binding caps
only create inefficiencies, their appeal for the planner falls accordingly. How the planner
balances the inefficiencies in those states with the benefits that a cap can yield in other
states ultimately depends on their distribution G. Nonetheless, since she can always
set f0 = x0, for biases below some level b̂ ≥ b∗ every optimal policy will involve only a
savings floor.

Overall Propositions 1 and 2 suggest that richer commitment policies involving many
rules may in fact prevail when the individual has weaker self-control problems, whereas
simple policies may prevail when such problems are stronger. This prediction perhaps
goes against an initial intuition that if the planner adds good-specific restrictions on
consumption to an aggregate one when the conflict with the doer is weak, then a fortiori
she should do so when the conflict becomes stronger. Put differently, at first glance one
might think that when the conflict is weak more rules are actually less valuable than
discretion: As the doer bias weakens, the planner cares relatively more about allowing
him to act on his information, especially along the dimensions for which their preferences
agree.

5.1 Caps and Floor or Only Caps?

This section shows that there exist both cases in which the planner combines binding
good-specific caps with a savings floor and cases in which she uses only the caps. We
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will first consider a setting with three states to develop the key intuitions. We will
then show that the two types of optimal polices can exist with a continuum of states.
Throughout this section, we will focus on the following symmetric setting: Let n = 2,
u1(x; r) = u2(x; r) = r ln(x), r1 = r2 = r > 0, r1 = r2 = r > r, and v(x) = ln(x).27

Suppose that the possible states are s0 = (θ, r1, r2), s1 = (θ, r1, r2), and s2 =
(θ, r1, r2); let their distribution be (g, 1

2
(1 − g), 1

2
(1 − g)), where g is the probability

of s0. By Lemma 1 and symmetry, we have that
a∗0(s0) < a∗0(s1) = a∗0(s2), a∗1(s2) = a∗2(s1) < a∗1(s1) = a∗2(s2), a∗1(s0) = a∗2(s0);

similar properties hold for p∗. Relying on continuity, we can always find b < 1 sufficiently
high so that a∗0(s1) = a∗0(s2) > p∗0(s0); also, we can always find θ < θ sufficiently close
to θ so that p∗1(s1) > p∗1(s0) and p∗2(s2) > p∗2(s0). Figure 2(a) represents such a situation.
Concretely, we can think about this situation in the following terms. Imagine an individ-
ual, Bob, who enjoys going out for dinner (x1) and attending live-music events (x2). In a
given period, his best friend Ann may visit him (θ) or not (θ). If on his own, depending
on the mood Bob prefers to either go to a fancy restaurant with a piano bar (s1) or grab
a quick sandwich and attend a great concert (s2). By contrast, when Ann is in town,
Bob prefers to combine a good restaurant with a good concert (s0), caring more about
her company.

Letting g be the only free parameter, we obtain the following.

Proposition 3. There exists g∗ ∈ (0, 1) such that, if g > g∗, then the optimal D ∈ R
satisfies f0 = p∗0(s0), c1 = p∗1(s1), and c2 = p∗2(s2).

The intuition is as follows. If Bob knew for sure that Ann was not planning to visit him, he
could impose a savings floor that prevents him from splurging in both s1 and s2. However,
such a floor is too stringent if Ann happens to visit (see Figure 2(a)). Therefore, if he
thinks that Ann’s visit is sufficiently likely, in expectation Bob views raising f0 enough to
influence his choices in s1 and s2 as too costly, and hence prefers to set f0 = p∗0(s0). Such
a floor grants full discretion in s1 and s2. In these states, however, the logic of Lemma 5
applies and Bob can again limit the consequences of his bias by using good-specific caps;
moreover, here he can do so without affecting his choice in s0. The fact that the optimal
caps coincide with the first-best allocation to the respective good is just a consequence
of the logarithmic payoffs.

A simple change of the previous three-state setting suffices to show that the optimal
policy can involve only good-specific caps. Fix g > g∗ and all the other parameters
of the model, except θ. If we increase θ, the planner and the doer want to consume
more of each good in s0. This eventually leads to a situation as in Figure 2(b), where
p∗1(s0) > p∗1(s1) and p∗2(s0) > p∗2(s2). Continuing our previous story, we can interpret this
case as a situation in which, being a spendthrift, Ann always insists on choosing fancy
restaurants and attending the best concerts.

Proposition 4. There exists θ′ such that in the optimal policy D ∈ R both caps bind, but
the floor never binds. In particular, c1 = c2 and p∗i (s0) < ci < p∗i (si) for every i = 1, 2.

27The function ln(x) violates the continuity and differentiability assumptions of Section 3 at x = 0,
but this is irrelevant for the analysis. On the other hand, this function will greatly simplify the analysis.
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Figure 2: Three-State Example

Figure 2 helps us see the intuition. In this case, Bob would want to spend more both on
restaurants and on concerts when Ann is in town than when she is not. Therefore, the
good-specific caps that Bob would set to curb his splurging in s1 and s2 already create
an aggregate limit on consumption which binds in s0. As a result, he is willing to relax
such caps; and if his first-best consumption is not too high in s0, he may keep the caps
sufficiently low so as to still curb overspending in s1 and s2. However, since these caps
already push savings above the first-best level in s0, Bob would be strictly worse off by
also imposing a savings floor sufficiently high to bind.

It remains to show that the qualitative properties of the policies in Propositions 3
and 4 can also arise in settings with a continuum of states. Intuitively, this should be the
case if the planner assigns sufficiently high probability to states that induce similar trade-
offs as do s0, s1, and s2. To formalize this idea, we can consider distributions that are
sufficiently concentrated on s0, s1, and s2. One way to do this is the following. Let Gfc be
a distribution over (s0, s1, s2) that leads to Proposition 3 and G the uniform distribution
over [θ, θ]× [r, r]2. Similarly, let Gc be a distribution that leads to Proposition 4 and G

′

the uniform distribution over [θ, θ′]×[r, r]2, where θ′ is as in Proposition 4. Finally, define

Gfc
α = αGfc + (1− α)G and Gc

α = αGc + (1− α)G
′
, α ∈ [0, 1].

Corollary 1.
(1) There exists α ∈ (0, 1) such that, given Gfc

α , every optimal D ∈ R involves a binding
savings floor as well as binding caps for both goods.
(2) There exists α′ ∈ (0, 1) such that, given Gc

α′, for every optimal D ∈ R both good-
specific caps bind, but the savings floor never binds.

Note that, given this Gc
α′ , for a set of states with strictly positive probability the doer’s

choices are unaffected by the optimal D and a savings floor would curb his overconsump-
tion. However, imposing such a floor requires forcing the doer to save even more in s0
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than the level induced by the good-specific caps, which already exceeds the first-best
level. Hence, when the planner cares enough about s0, she will not use any savings floor.

5.2 Discussion: Consumer Behavior and Demand of Commit-
ment Devices

The previous results may be of interest with regard to the consumption-savings behavior
of individuals with self-control problems for several reasons.

The first is that they shed light on a phenomenon called “mental budgeting.” It has
often been observed that some individuals earmark their income according to multiple
spending categories—sometimes by dividing it into use-specific envelopes or “tin cans,”
and more recently by setting up category-specific budgets via services like Mint.com,
Quicken.com, or StickK.com. Individuals set up these budgets with the goal of controlling
their spending on certain categories, similarly to how good-specific caps work in our
model. Heath and Soll (1996) argue that “descriptions of consumers over the past 50
years indicate [that budgeting] is a pervasive part of consumer behavior” and discuss a
body of evidence supporting this view. According to Bénabou and Tirole (2004), “mental
accounts and other personal rules [...] appear to be common in economic decisions;” their
analysis provides an answer, based on the idea of self-reputation, to the question of what
renders such rules effective. Ameriks et al. (2003) found that 37% of households in
their TIAA-CREF survey sets detailed spending budgets for themselves, and that “a
substantial minority of them [45%] agrees that their budgeting help them refrain their
spending.” Antonides et al. (2011) show that “mental budgeting appears to be widely
practiced in the Netherlands,” where they conducted their study.

Budgeting has important implications for consumer behavior—beyond satiation and
income effects (Heath and Soll (1996)): Most notably, it violates fungibility of money,
which has far-reaching consequences for how firms market their products or how gov-
ernments design policies that regulate saving and borrowing devices. The literature has
informally suggested or assumed that budgeting represents how individuals deal with self-
control problems which lead them to overconsume and undersave (Thaler (1985, 1999),
Heath and Soll (1996), Prelec and Loewenstein (1998), Antonides et al. (2011)).

The present paper offers the first (to the best of my knowledge) explicit foundation
of budgeting. Using a standard consumption-savings model, it shows that a well-studied
cause of self-control problems, namely present bias, can induce individuals to optimally
limit how much income they can allocate to some consumption goods, besides savings.28

The theory is consistent with the existing evidence. For instance, in Heath and Soll’s
(1996) study, when a budget is not binding people tend to overconsume in that cate-
gory; however, after previous expenses reduce the balance of a budget, people tend to
underconsume in that category. Antonides et al. (2011) show that having saving goals

28In Brocas and Carillo’s (2008) model with two consumption goods, one of which has ex-ante uncertain
utility, the optimal commitment policy is not a simple budgeting rule, but rather a rule that punishes
higher spending in one good by requiring lower spending in the other. Also, since in their model the
doer is fully myopic (b = 0), an optimal interval policy would involve only a savings floor.
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has a positive effect on budgeting, which is consistent with the reason why the planner
imposes caps in our model.

The theory also suggests some qualifications of existing views on mental budgeting.
First, Heath and Soll (1996) emphasize that their data show that budgets lead to under-
consumption and in particular for “unobjectionable goods”—goods that one would not
obviously classify as temptations. Given this, they conclude that the planner may impose
budgets that are too stringent. According to our theory, this conclusion may be invalid:
Optimal budgets have to bind with positive probability and are imposed on what we
called agreement categories. Second, the theory predicts that, in fact, category-specific
budgets are used only by individuals who have a weak present bias.29 This, perhaps
counterintuitive, prediction is consistent with some evidence in Antonides et al. (2011):
Their analysis shows that people who exhibit a short-term time orientation—which can
be interpreted as a low b in our model—are less likely to set up budgets, whereas people
who exhibit a long-term time orientation—that is, a b closer to 1—are more likely to set
up budgets. Of course, further empirical tests of these predictions are needed.

The results in this paper may also be of interest for researchers eager to understand the
demand of commitment devices. According to Bryan et al. (2010), “there is insufficient
work to understand [this] demand,” especially for what they call “soft commitments” (like
mental budgeting). Since the seminal work of Thaler and Shefrin (1981) and Laibson
(1997), the previous literature on consumption and savings has focused on the individu-
als’ problem of curbing their undersaving, often stressing the key role played in this by
external commitment devices like illiquid assets. More recently, Amador et al. (2006)
reached the conclusion that, under weak conditions, a minimum-savings rule coincides
with the optimal commitment and argued that illiquid assets may suffice to implement
it (see also the next section). However, we saw that in a world with multiple consump-
tion goods, minimum-savings rules alone may be strictly dominated by commitment
strategies involving good-specific budgets. Such budgets cannot be implemented using
illiquid assets, which therefore no longer allow individuals to achieve their desired form
of commitment. This can explain why, besides possibly adopting internal rules, some
individuals demand services that allow them to budget expenses by categories, such as
those offered by companies like Mint.com, Quicken.com, or StickK.com. Such services
should have no value according to the existing theory, which therefore cannot explain
their active market.

6 No Information on Intratemporal Trade-offs
Motivated in part by Proposition 2, this section considers settings in which consumption
continues to involve multiple goods, but information is only about the intertemporal
utility trade-off (θ). Even though it may seem unrealistic or special that at the time
of committing the planner faces no uncertainty at all about the trade-offs across goods,

29This prediction refers to the ex-ante optimal commitment strategy and hence continues to hold for
partially naive individuals who incorrectly think, ex ante, that their present bias is weak (O’Donoghue
and Rabin (2001)).
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studying this case will provide further understanding of the leading case considered be-
fore. We will show that most of the time the optimal commitment policy within R will
involve a savings floor but no good-specific caps. This result further highlights that the
uncertainty on intratemporal trade-offs plays a key role in the usefulness of good-specific
caps as commitment rules.

To capture the settings of interest in this section with the formalism used so far,
let ri = ri for all i = 1, . . . , n. Given this, G now denotes the distribution of θ ∈ [θ, θ];
for this section, assume that G has a density function g which is strictly positive and
continuous on [θ, θ]. Since r is fixed, hereafter we will omit it from the consumption
utility û. As will become clear, the results in this section do not hinge at all on the
separability of û across goods.

Given that now the doer’s information is only about the intertemporal trade-off, does
the multidimensionality of consumption still play any role in the planner’s problem? Note
that the same level of total consumption expenditure y yields different utilities û(x)
depending on how y is divided across goods. This fact can be exploited to curb the
doer’s tendency to overconsume. For instance, by requiring (perhaps via caps) that y be
allocated in a distorted way which does not yield much more utility than some y′ < y, a
policy curbs the doer’s willingness to spend y in states where the planner prefers y′.

However, if the goal is only to lower the utility that the doer can derive from the
income that he does not save, a simpler method may be to prevent him from spending
all of it in the first place. This method, usually called “money burning,” assumes that
the planner can force the doer to literally “throw away” part of what he does not save.30

It is easy to see that any utility level û achieved by spending y = 1 − x0 inefficiently
can also be achieved by burning part of 1− x0 and spending the rest to buy an efficient
consumption bundle. Indeed, for any y ∈ [0, 1] and x′ ∈ Rn

+ that satisfy
∑n

i=1 x
′
i = y, the

utility û(x′) belongs to the interval [û(0), u∗(y)], where
u∗(y) = max

{x∈Rn
+:

∑n
i=1 xi≤y}

û(x). (5)

Since u∗ is strictly increasing and continuous and u∗(0) = û(0), there always exists y′ ≤ y
such that u∗(y′) = û(x′).

These observations suggest that it should be possible to restrict attention to delegation
policies that regulate only savings and total consumption expenditures. This is true,
provided that we allow money burning to freely depend on the level of savings—which
requires to go beyond simple rectangle policies. Formally, let Bac be the set of feasible
allocations defined only in terms of total consumption y and savings x0:

Bac = {(y, x0) ∈ R2
+ : y + x0 ≤ 1}.

Given any Dac ⊂ Bac, for each θ the doer’s problem becomes to maximize θû(x)+ bv(x0)
subject to

∑n
i=1 xi ≤ y and (y, x0) ∈ Dac.

30One way to do this might be committing to some charitable donations conditional on the level of
savings. Note, however, that such donations qualify as “money burning” only if the individual derives
no utility directly from them (for example, due to altruism).
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Lemma 9. Suppose information affects only the intertemporal utility trade-off. There
exists an optimal D ⊂ B with U(D) = U∗ if and only if there exists an optimal Dac ⊂ Bac

with U(Dac) = U∗.

Remark 2. If money burning cannot be tailored to the level of savings, Lemma 9 need not
hold. Without money burning, for instance, constraints on x0 translate one-to-one into
constraints on y. Yet, using the richer policies D ⊂ B, the planner can still regulate how
the doer is allowed to divide any amount y across goods, thereby affecting his resulting
consumption utility (see also Proposition 6 below).

Lemma 9 allows us to recast our problem into AWA’s analysis. Since the function û is
strictly increasing, the constraint

∑n
i=1 xi ≤ y will always bind when the doer faces Dac.

Using (5), we can express the planner’s problem as choosing Dac ⊂ Bas so as to maximize
ˆ θ

θ

[θu∗(ay(θ)) + v(a0(θ))]g(θ)dθ

subject to
(ay(θ), a0(θ)) ∈ argmax

(y,x0)∈Dac
{θu∗(y) + bv(x0)}, θ ∈ [θ, θ]. (6)

AWA show that this problem is equivalent to another problem in which the planner’s
objective can be written as

ˆ θ

θ

H(θ)u∗(ay(θ))g(θ)dθ + k,

where k ∈ R and
H(θ) = 1−G(θ)− (1− b)θg(θ), θ ∈ [θ, θ].

To understand what H(θ) captures, ignore feasibility for the moment. Suppose that the
planner allows the doer to save a bit less in state θ, without changing his total payoff—so
that he does not select other allocations. Doing so requires inducing the doer to consume
a bit more. Overall this adjustment harms the planner when θ occurs, because she cares
discretely more about savings. This explains the negative term −(1 − b)θg(θ). The
adjustment, however, also renders the allocation chosen in θ more attractive for the doer
in the states where he values present utility more: in all θ′ > θ, which have mass 1−G(θ).
Thus, the planner can induce the doer to save more in these states, which is exactly what
she wants. This explains the positive term 1−G(θ).

AWA’s main result shows that the solution to the planner’s problem crucially depends
on the following condition, where θ∗ is defined by

θ∗ = min
{
θ ∈ [θ, θ] : ∫ θθ′H(θ̂)dθ̂ ≤ 0 for all θ′ ≥ θ

}
. (7)

Condition 1. The function H is non-increasing over [θ, θ∗].

Also, let
Dac(θ∗) = {(y, x0) ∈ Bac : x0 ≥ a∗0(θ

∗)},
which is essentially a rectangle policy which involves only the savings floor f0 = a∗0(θ

∗).
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Proposition 5 (Amador et al. (2006)). The policy Dac(θ∗) is optimal among all subsets
of Bac if and only if Condition 1 holds.31

As AWA noted, Condition 1 is satisfied for all b ∈ [0, 1] by many distributions, especially
those commonly used in applications. More generally, since G is strictly increasing,
Condition 1 is more likely to hold when the doer’s bias is weak (that is, b is close to 1).
Recall that AWA proved the optimality of policies that use only a savings floor for
environments with one consumption good. Thus, together with Lemma 9, Proposition 5
implies that the multiplicity of consumption goods adds no useful tool to achieve superior
commitment policies when information is only about the intertemporal trade-off.

By Proposition 1, however, AWA’s result does not extend to settings in which infor-
mation also affects the intratemporal trade-offs. In these settings, for any distribution Ĝ
with full support on S—even if Ĝ(·, r) satisfies Condition 1 for all r—we can always find
a sufficiently weak bias that renders policies involving only a savings floor strictly dom-
inated. Note that, by contrast, a weak bias characterizes exactly those settings where
Condition 1 almost certainly holds if information is only about θ, and hence those policies
would be optimal.

Together with Lemma 9, Proposition 5 provides a sufficient condition for a policy Df0

which involves only a savings floor to be optimal within the class of rectangle policies.

Corollary 2. Define θ∗ as in (7). If Condition 1 holds, then Df0 with f0 = a∗0(θ
∗) is

optimal within R.

In general, Condition 1 is not necessary for the conclusion of Corollary 2. This is because
policies that improve on Df0 may lie outside R (see AWA for an example). Hence, Df0

can be optimal for an even larger family of distributions.
Even though most distributions satisfy Condition 1, what can we say about the op-

timal policies when it fails? AWA argue that in this case an optimal policy may have
to rely on money burning. This reopens the door for the planner to benefit from the
multidimensionality of consumption. By forcing the doer to choose inefficient bundles
based on the level of savings, the planner can achieve the same curbing effect on the
doer’s tendency to overconsume with strictly less (possibly no) money burning. This
highlights a possible limitation of treating consumption as a monolithic entity, even if
information is only about θ. To state the result, define

u∗(y) = min
{x∈Rn

+:
∑n

i=1 xi=y}
û(x), y ∈ [0, 1].

Note that, since û is strictly concave, u∗(y) < u∗(y) for all y > 0.

Proposition 6. Suppose that the optimal Dac ⊂ Bas induces an allocation a in (6)
which exhibits positive consumption and money burning over some set Θ ⊂ [θ, θ] (that is,
ay(θ) > 0 for all θ ∈ [θ, θ] and ay(θ) < 1− a0(θ) for all θ ∈ Θ).
(1) There exists D′ ⊂ B that satisfies U(D′) = U(Dac) and involves less money burning:

31It can be easily checked that, when the function û is strictly increasing, concave, and continuously
differentiable, then the function u∗ in (5) satisfies the same properties, as assumed in AWA.
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The induced allocation a′ in (4) satisfies a′0(θ) = a0(θ) and
∑n

i=1 a
′
i(θ) ≥ ay(θ) for all θ,

with strict inequality over Θ.
(2) If u∗(1 − a0(θ)) ≤ u∗(ay(θ)) for all θ ∈ Θ, then D′ can be chosen so that money
burning never occurs:

∑n
i=0 a

′
i(θ) = 1 for all θ ∈ [θ, θ].

In words, the condition in part (2) means the following: In every state in which the
planner wants to burn some money, she can instead let the doer spend all the unsaved
income, but in such an inefficient way that the extra money does not yield higher util-
ity than the efficient bundle induced with money burning. This condition holds if, for
instance, zero consumption of some good is extremely inefficient and leads to a very
low present utility. Examples of such goods may include one’s favorite drink or food,
or going out with friends.32 Reducing the share of 1 − x0 allocated to these goods can
replicate the effect of money burning. In these settings, if money burning is infeasible,
the planner may achieve strictly higher expected payoffs by again imposing distortions
along dimensions which cause no conflict of interest with the doer. Finally, note that one
way to implement these distortions is again to use good-specific caps and floors, which
however may now have to vary based on how much the doer saves.

7 Implications for Other Applications
This section discusses the implications of our analysis for the other applications outlined
in Section 3.1.

Corporate governance. Our results suggest that to best incentivize a manager
who undervalues R&D, the owner of a multi-product company may have to impose caps
on how much can be spent each year on promoting specific products, possibly in addition
to requiring a minimum investment in R&D. Due to the caps, the manager may end up
promoting too little some products and others too much from the owner’s viewpoint.
This, however, is a risk she should take, as it is more than compensated in expectation
by better allocations to R&D. A detailed budget plan with rules applying to specific
products is more likely to benefit the owner when she agrees enough with the manager
on how important R&D is for the company. This may be true, for instance, if the manager
himself has significant stakes in the company. Otherwise, the owners can simply demand
only a minimum investment in R&D, or even impose a fix one if she thinks that the
manager is seriously biased. Of course, in this case she may consider addressing the
manager’s bias by changing his compensation scheme, or hiring a new manager.

Fiscal-constitution design. When designing a fiscal constitution behind the veil of
ignorance, society can limit the consequences of the government’s tendency to overspend
on public services either by imposing an aggregate cap on public spending (via a floor
on private consumption), or by setting specific caps on how much the government can

32In other applications, this condition may be even easier to satisfy. For instance, in the fiscal-
constitution and public-finance applications where the agreement dimensions are public services, the
payoff of society may be very low if the government allocates no resources to services like national
defense, law enforcement, or criminal detention.
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allocate to some services. The government’s spending bias may depend on the incentives
created by the country’s political institutions, for instance. The analysis shows that if
these institutions lead to a sufficiently weak bias, then an optimal fiscal constitution
must involve service-specific caps. The analysis highlights that such caps are “no free
lunch,” in the sense that they cause inefficiencies in the composition of public spending.
However, these inefficiencies are more than compensated by the resulting higher level of
private consumption. On the other hand, if the political institutions lead to governments
that are strongly biased, the constitution should involve only an aggregate spending cap;
any binding specific cap distorts public spending without producing enough benefits in
terms of private consumption.

Research vs. teaching in academia. Research universities usually specify a
minimum amount of time that professors have to allocate each week to their teaching
duties (lectures, office hours, etc.), granting them discretion on, say, course-preparation
time. However, we do not observe universities restricting how much time professors should
spend on each of their research projects. This is consistent with our theory if we believe
that universities’ view professors as severely biased against teaching, so that they always
allocate to it only the required minimum time—which may be plausible. Alternatively,
the theory suggests that existing practices may leave room for improvements. Of course,
other reasons can explain the absence of restrictions on research: Monitoring how much
time a professor spends on a project may simply be infeasible, or it may be in conflict
with some principle that one should not interfere with the creative process of research. In
either case, the theory identifies when minimum teaching requirements can still achieve
the optimum.

Public finance. When setting the fiscal rules for the coming year, a government
may realize that, due to its present bias, it will tend to borrow excessively against future
tax revenues. It is then intuitive that, ex ante, the government benefits from committing
to a cap on how much it will be allowed to borrow (recall that this is equivalent to a floor
on xt

0 = −zt/ρ, where zt is the amount borrowed at time t). We often observe such a rule
in reality in the form of budget-deficit ceilings. The paper shows, however, when and
how the government can easily improve on a policy that imposes only a deficit ceiling.
Although present bias never interferes with how the government trades off public services
within a period, introducing specific caps on how much it will be allowed to spend on
some services can lead to a superior policy. Such caps often appear in reality as part of
fiscal budgets. The theory offers one explanation for why we observe both deficit ceilings
and service-specific budgets; it also suggests that a government introduces specific caps
not when it anticipates to be severely biased, but in fact when it anticipates to be mildly
biased. Another point highlighted in the paper is again that service-specific caps are no
free lunch: Even though they are useful to curb excessive borrowing, they also distort
public spending.

Workers’ time management. In this application, the worker overvalues his break
time, x0, which causes the conflict with the employer (b > 1). An analysis similar to that
above is possible and leads to results in which caps and floors swap roles. If the employer
can only impose a cap or floor on how much time the worker spends on x0, she sets a
cap c0 which is strictly below the maximum time that she finds acceptable (analogously
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to Lemma 3). Moreover, c0 becomes tighter as the worker’s bias worsens (analogously to
Lemma 4). Regarding task-specific rules, a floor on task i induces the worker to allocate
less time to x0, but also less time to the other tasks. Nonetheless, the employer would
strictly benefit from a single binding floor on any task relative to granting the worker
full discretion (analogously to Lemma 5).

The main result of the paper (Propositions 1 and 2) changes as follows. If the worker’s
tendency to indulge in breaks is sufficiently strong, the employer should impose only a
cap on x0. By contrast, if that tendency is sufficiently weak, an optimal delegation policy
must involve binding task-specific floors. In practice, it may be impossible to monitor
the worker’s breaks; nonetheless, c0 can always be implemented by setting an overall
minimum for the time the worker has to allocate to his tasks, which are easier to monitor.
The main result highlights that the possibility of monitoring each task individually may
allow the employer to design strictly superior policies by adding specific floors on top of
an aggregate one.

8 Concluding Remarks
This paper examines a new, broad class of principal-agent delegation problems which
arise in many economic settings, from individual commitment problems to public finance,
corporate governance, and workforce management. In such problems, the agent controls
how to allocate finite resources (money, time, etc.) across multiple categories, having
better information on their returns than the principal but pursuing different goals from
hers.

The paper characterizes how optimal delegation policies trade off rules and discretion
and how they depend on the degree of conflict between parties as well as the nature of
the agent’s information. Perhaps counterintuitively, it can be optimal for the principal to
impose distorting restrictions on categories for which there is no conflict of interest with
the agent, so as to curb how the conflict along other categories affects his overall resource
allocation. Moreover, such restrictions are more likely to be optimal when the conflict
of interest is weaker and when the agent’s information is about the specific value of
categories causing no conflict. The paper also shows that requiring distorted allocations
across these categories can reduce or even eliminate the need for money burning as a way
to manage the agent’s incentives. By considering a tractable class of simple delegation
policies, this paper offers insights that can be easily applied to many concrete problems,
which existing models cannot handle.
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A Appendix: Proofs

A.1 Proof of Lemma 2

Each D ∈ R is defined by a vector (f, c) ∈ R2(n+1)
+ . Without loss we can restrict attention to

the following compact subset of R2(n+1)
+ :

FC = {(f, c) ∈ [0, 1]2(n+1) : f ≤ c,
n∑

i=0

fi ≤ 1}.

Thus, we can think that the planner chooses (f, c) ∈ FC.
Given any such (f, c), let a(s|f, c) be the doer’s optimal allocation in state s from the compact

set Df,c. Since Df,c is convex (Theorem 2.1 in Rockafellar (1997)), a(s|f, c) is unique for every
s ∈ S by strict concavity of V (·; s). Clearly, the correspondence that for each (f, c) ∈ FC maps
to Df,c is non-empty, compact valued, and continuous. It follows from the Maximum Theorem
that a(s; ·, ·) is continuous for every s ∈ S.

We can now show that the planner’s payoff is continuous in (f, c). For each (f, c) ∈ FC, let

U(f, c) =
ˆ
S
U(a(s|f, c); s)dG.

Since U(a(s|f, c); s) is continuous in (f, c) for every s ∈ S and is uniformly bounded over B,
Lebesgue’s Dominated Convergence Theorem implies the claimed property of U(·, ·).

A second application of the Maximum Theorem gives the result.

A.2 Lemma 10

For any floor f0 ∈ [a∗0, p
∗
0],33 for simplicity denote by Df0 the corresponding policy in R.

Lemma 10. Define S(f0) = {s ∈ S : a∗0(s) ≤ f0} and

xf0(s) = argmax
{x∈Rn

+:
∑n

i=1 xi≤1−f0}
û(x; s), s ∈ S.

The payoff U(Df0) is differentiable in f0 over the domain [a∗0, p
∗
0] with

d

df0
U(Df0) =

ˆ
S(f0)

[
v′(f0)−

∂

∂xi
û(xf0(s); s)

]
dG,

for any i = 1, . . . , n.

Proof. For simplicity, drop the subscript 0 from f0 and let Ψ(f) = U(Df ). Also, we will
consider only f ∈ [a∗0, p

∗
0] without specifying this every time. Given f and any s, define

ũ(f ; s) ≡ û(xf (s); s) = max
{x∈Rn

+:
∑n

i=1 xi≤1−f}
û(x; s). (8)

33Any other floor is dominated by one in this range.
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and Ũ(f ; s) = ũ(f ; s) + v(f). We first want to show that Ũ(f ; s) is strictly concave in f for
every s. Take any f , f ′, and ζ ∈ (0, 1). We have

ũ(ζf + (1− ζ)f ′; s) + v(ζf + (1− ζ)f ′) ≥ û(ζxf (s) + (1− ζ)xf ′
(s); s) (9)

+v(ζf + (1− ζ)f ′)

> ζ
[
û(xf (s); s) + v(f)

]
+(1− ζ)

[
û(xf ′

(s); s) + v(f ′)
]

= ζ [ũ(f ; s) + v(f)]

+(1− ζ)
[
ũ(f ′(s); s) + v(f ′)

]
,

where the weak inequality follows because
∑

i x
f
i (s) ≤ f and

∑
i x

f ′

i (s) ≤ f ′ implies∑
i

[
ζxfi (s) + (1− ζ)xf

′

i (s)
]
≤ ζf + (1− ζ)f ′,

and the strict inequality follows from strict concavity of û(·, s) and v(·).
Now consider the derivative of Ũ(f ; s) with respect to f . Whenever it is defined, we have

Ũ ′(f ; s) = ũ′(f ; s) + v′(f).

By considering the FOC of the Lagrangian defining ũ(f ; s), we see that ∂
∂xi

û(xf (s); s) = λ(s; f)
for any i = 1, . . . , n, where λ(s; f) is the Lagrange multiplier of the constraint

∑n
i=1 xi ≤ 1− f .

Since xf (s) is continuous in f for every s, so it λ(s; f) given our assumptions on û. By Theorem
1, p. 222, of Luenberger (1969), for every f ′, f ′′ ∈ [0, 1] we have

λ(s; f ′)(f ′′ − f ′) ≤ ũ(f ′; s)− ũ(f ′′; s) ≤ λ(s; f ′′)(f ′′ − f ′).

Continuity of λ(s; ·) then implies that ũ′(f ; s) exists for every f and equals −λ(s; f). Therefore,

Ũ ′(f ; s) = v′(f)− ∂

∂xi
û(xf (s); s) for all s. (10)

For any f , denote by af the doer’s behavior as a function of s under f . Note that af (s)
is continuous in both f and s by the Maximum Theorem. Since, given any choice of x0, the
planner and the doer choose the same bundle x in every state, by definition we have

Ψ(f) =

ˆ
S
Ũ(af0(s); s)dG.

Consider any f > f̂ . Recall that S(f) = {s : a∗0(s) ≤ f}. Then,

Ψ(f)−Ψ(f̂) =

ˆ
S

[
Ũ(af0(s); s)− Ũ(af̂0(s); s)

]
dG

=

ˆ
S(f)

[
Ũ(f ; s)− Ũ(af̂0(s); s)

]
dG

=

ˆ
S(f)∩(S(f̂))

c

[
Ũ(f ; s)− Ũ(af̂0(s); s)

]
dG

32



+

ˆ
S(f̂)

[
Ũ(f ; s)− Ũ(f̂ ; s)

]
dG.

where the second equality follows because af0(s) = af̂0(s) for s /∈ S(f) and af0(s) = f for s ∈ S(f).
Dividing both sides by f − f̂ , we get

lim
f↓f̂

Ψ(f)−Ψ(f̂)

f − f̂
= lim

f↓f̂

ˆ
S(f̂)

Ũ(f ; s)− Ũ(f̂ ; s)
f − f̂

dG (11)

+ lim
f↓f̂

ˆ
S(f)∩(S(f̂))

c

Ũ(f ; s)− Ũ(af̂0(s); s)
f − f̂

dG.

Consider the first limit. For all s, we have

lim
f↓f̂

Ũ(f ; s)− Ũ(f̂ ; s)
f − f̂

= Ũ ′(f̂ ; s).

Since Ũ(·; s) is concave,∣∣∣∣∣ Ũ(f ; s)− Ũ(f̂ ; s)
f − f̂

∣∣∣∣∣ ≤ max
{∣∣∣Ũ ′(f ; s)

∣∣∣ , ∣∣∣Ũ ′(f̂ ; s)
∣∣∣} .

Since Ũ ′(f ; s) is continuous in s and f as illustrated by (10),

max
{(f,s)∈[a∗0,p∗0]×S}

∣∣∣Ũ ′(f ; s)
∣∣∣ = M < +∞.

Therefore, by Lebesgue’s Bounded Convergence Theorem, we have

lim
f↓f̂

ˆ
S(f̂)

Ũ(f ; s)− Ũ(f̂ ; s)
f − f̂

dG =

ˆ
S(f̂)

Ũ ′(f̂ ; s)dG.

Consider now the second limit in (11). Again, by concavity of Ũ(·; s) and since af0(s) ∈
[a∗0, p

∗
0] for f ∈ [a∗0, p

∗
0], we have that∣∣∣∣∣ Ũ(f ; s)− Ũ(af̂0(s); s)

f − af̂0(s)

∣∣∣∣∣ ≤ M.

Therefore,∣∣∣∣∣
ˆ
S(f)∩(S(f̂))

c

Ũ(f ; s)− Ũ(af̂0(s); s)
f − f̂

dG

∣∣∣∣∣ ≤
ˆ
S(f)∩(S(f̂))

c

∣∣∣∣∣ Ũ(f ; s)− Ũ(af̂0(s); s)
f − f̂

∣∣∣∣∣ dG
≤
ˆ
S(f)∩(S(f̂))

c

∣∣∣∣∣ Ũ(f ; s)− Ũ(af̂0(s); s)
f − af̂0(s)

∣∣∣∣∣ dG
≤ M

ˆ
S(f)∩(S(f̂))

c
dG.
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Now, observe that S(f) ∩
(
S(f̂)

)c
= {s : f̂ < af̂0(s) ≤ f} which converges to an empty set as

f ↓ f̂ . It follows that the second limit in (11) converges to zero as f ↓ f̂ . We conclude that for
every f̂ ∈ [a∗0, p

∗
0), we have

Ψ′(f̂+) =

ˆ
S(f̂)

Ũ ′(f̂ ; s)dG.

Now consider any f < f̂ . Then,

Ψ(f)−Ψ(f̂) =

ˆ
S

[
Ũ(af0(s); s)− Ũ(af̂0(s); s)

]
dG

=

ˆ
S(f̂)

[
Ũ(af0(s); s)− Ũ(f̂ ; s)

]
dG

=

ˆ
S(f̂)

[
Ũ(f ; s)− Ũ(f̂ ; s)

]
dG+

ˆ
S(f̂)

[
Ũ(af0(s); s)− Ũ(f ; s)

]
dG

=

ˆ
S(f̂)

[
Ũ(f ; s)− Ũ(f̂ ; s)

]
dG+

ˆ
S(f̂)∩(S(f))

c

[
Ũ(af0(s); s)− Ũ(f ; s)

]
dG,

where the second equality follows because af0(s) = af̂0(s) for s /∈ S(f̂) and af̂0(s) = f̂ for s ∈ S(f̂),
and the last equality follows because af0(s) = f for s ∈ S(f). By the same argument as before,

lim
f↑f̂

ˆ
S(f̂)

Ũ(f ; s)− Ũ(f̂ ; s)
f − f̂

dG =

ˆ
S(f̂)

Ũ ′(f̂ ; s)dG,

lim
f↑f̂

ˆ
S(f̂)∩(S(f))

c

Ũ(af0(s); s)− Ũ(f ; s)
f − f̂

dG = 0.

We conclude that for everyf̂ ∈ (a∗0, p
∗
0], we have

Ψ′(f̂−) =

ˆ
S(f̂)

Ũ ′(f̂ ; s)dG.

Hence, Ψ(f) is differentiable over the restricted domain [a∗0, p
∗
0].

A.3 Proof of Lemma 3

For simplicity, drop the subscript from f0. We shall show that Ψ′(f) > 0 for all f ∈ (a∗0, p
∗
0
]

and Ψ′(f−) < 0 for f = p∗0. Recall that af (s) is continuous in f for every s and therefore Ψ(f)
is continuous in f . These observations imply that the optimal f∗ ∈ (p∗

0
, p∗0).

For any f ∈ (a∗0, p
∗
0], define

S+(f) = {s : p∗0(s) > f} and S−(f) = {s : p∗0(s) ≤ f}.

For s ∈ S+(f), consider the the following problem:

max û(x; s) + v(x0)

34



subject to
∑

i xi ≤ 1 and x0 ≤ f . The associated Lagrangian is

û(x; s) + v(x0) + µ(s)
[
1−

n∑
i=0

xi

]
+ ϕ+(s)[f − x0].

Hence, the FOC are34

v′(x0) = µ(s) + ϕ+(s) and ∂

∂xi
û(x; s) = µ(s) for all i.

Clearly, the constraint x0 ≤ f must be binding for s ∈ S+(f), which implies that x0 = f and
ϕ+(s) > 0. Also, conditional on choosing x0 = f , both the planner and the doer choose the
same x in state s, which therefore equals xf (s). Using (10), it follows that, for any i,

ϕ+(s) = v′(f)− ∂

∂xi
û(xf (s); s) = Ũ ′(f ; s) (12)

when s ∈ S+(f).
For s ∈ S−(f), consider the following problem:

max û(x; s) + v(x0)

subject to
∑

i xi ≤ 1 and x0 ≥ f . The associated Lagrangian is

û(x; s) + v(x0) + µ(s)
[
1−

n∑
i=0

xi

]
+ ϕ−(s)[x0 − f ].

Hence, the FOC are

v′(x0) = µ(s)− ϕ−(s) and ∂

∂xi
û(x; s) = µ(s) for all i,

Clearly, the constraint x0 ≥ f must be binding for s ∈ S−(f) except when p∗0(s) = f , which
implies that x0 = f and ϕ−(s) ≥ 0. Also, conditional on choosing x0 = f , both the planner
and the doer choose the same x in state s, which therefore equals xf (s). Using (10), it follows
that, for any i,

ϕ−(s) = ∂

∂xi
û(xf (s); s)− v′(f) = −Ũ ′(f ; s)

when s ∈ S−(f).
Consider any f ∈ (a∗0, p

∗
0
]. Recall that S(f) = {s : a∗0(s) ≤ f}. Using Lemma 10, we have

Ψ′(f) =

ˆ
S(f)

Ũ ′(f ; s)dG

=

ˆ
S(f)∩S+(f)

Ũ ′(f ; s)dG+

ˆ
S(f)∩S−(f)

Ũ ′(f ; s)dG

=

ˆ
S(f)∩S+(f)

ϕ+(s)dG,

34Here, as well as in the other proofs, the complementary slackness conditions are omitted
for simplicity.
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where the last equality follows because either S−(f) = ∅ or ϕ−(s) = 0 for s ∈ S−(f). The
function ϕ+(s) is strictly positive over S(f)∩S+(f). We need to show that this set has strictly
positive measure, which implies Ψ′(f) > 0. This is immediate if f ∈ (a∗0, p

∗
0
), because in this

case S+(f) = S. Consider f = p∗
0
. Clearly, S(p∗

0
) ∩ S+(p∗

0
) contains the open set

S
◦
(p∗

0
) ∩ S+(p∗

0
) = {s : a∗0(s) < p∗

0
< p∗0(s)}.

If we can show that this set is non-empty, we are done because G assigns strictly positive
probability to it. Both S

◦
(p∗

0
) and S+(p∗

0
) are nonempty. Suppose that there is no s ∈ S+(p∗

0
)

such that we also have s ∈ S
◦
(p∗

0
). Then, it means that for every s ∈ S+(p∗

0
), we have a∗0(s) ≥ p∗

0

and that S◦
(p∗

0
) ⊂ S−(p∗

0
) = {s : p∗0(s) = p∗

0
}. Now, consider ŝ ∈ S

◦
(p∗

0
) and any sequence {sn}

is S+(p∗
0
) converging to ŝ. We have that

lim
sn→ŝ

inf a∗0(sn) ≥ p∗
0
> a∗0(ŝ).

But this contradicts the continuity of a∗ and hence leads to a contradiction.
Now consider f = p∗0. Using again Lemma 10, we have

Ψ′(p∗0−) =

ˆ
S(p∗0)

Ũ ′(p∗0; s)dG =

ˆ
S
Ũ ′(p∗0; s)dG = −

ˆ
S
ϕ−(s)dG,

where ϕ−(s) > 0 for all s such that p∗0(s) < p∗0. Therefore, Ψ′(p∗0−) < 0.35

A.4 Proof of Lemma 4

Fix f0 ∈ [a∗0, p
∗
0]. Changes in b affect S(f0) through the change in a∗. By standard arguments,

if b < b′ < 1, then a∗0(s; b) < a∗0(s; b′) for every s and hence S(f0; b
′) ⊂ S(f0; b). On the other

hand, for every b < 1, we have S−(f0) ⊂ S(f0; b) because a∗0(s; b) < p∗0(s) for every s. So, if
b < b′ < 1, we have

Ψ′(f0; b)−Ψ′(f0; b
′) =

ˆ
(S(f0;b)\S(f0;b′))∩S+(f0)

ϕ+(s)dG ≥ 0,

where the inequality follows from (12). Standard monotone-comparative-static results then
imply that F (b) is increasing in the strong set order.

Define f0(b) = maxF (b). Since f0(b) ≥ p∗
0
for all b and f0(·) is decreasing, limb↑1 f0(b)

exists; denote it by f0(1−) ≥ p∗
0
. Clearly, f0(1) = p∗

0
. Now suppose that f0(1−) > f0(1). By a

similar argument, for any f0 > p∗
0
, limb↑1Ψ

′(f0; b) exists and satisfies

lim
b↑1

Ψ′(f0; b) = −
ˆ
S−(f0)

ϕ(s)dG < 0.

35It is easy to see that the optimal f satisfies f ≤ p∗0. Suppose f ∈ (p∗0, 1). Then, for all
s, the doer chooses x0(s) = f and x(s) = xf (s). Take any f ′ ∈ (p∗0, f). Then, for every s,
f ′ = ζ(s)f + (1 − ζ(s))p∗0(s) for some ζ(s) ∈ (0, 1). Therefore, for every s, Ũ(f ′; s) > Ũ(f ; s)
because Ũ(p∗0(s); s) > Ũ(f ; s) and Ũ(·; s) is strictly concave. It follows that the planner’s payoff
is strictly larger under f ′ than under f .
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This implies that for b close enough to 1, f0(b) ≥ f0(1−) cannot be optimal, a contradiction
which implies that f0(1−) = f0(1).

It is easy to see that, for all s ∈ S, a∗0(s; b) → 0 as b ↓ 0. Therefore, a∗0(b) = maxS a∗0(s; b)
also decreases monotonically to 0 as b ↓ 0. Let b = max{b ∈ [0, 1] : a∗0(b) ≤ p∗

0
} which is strictly

positive because p∗
0
> 0. Then, S(f0) = S for all b ≤ b and f0 ∈ [p∗

0
, p∗0], which implies that

Ψ(f0; b) = v(f0) +

ˆ
S
û(xf0(s); s)dG. (13)

From the proof of Lemma 10, we have that û(xf0(s); s) = ũ(f0; s) is strictly concave in f0 for
all s ∈ S. This implies that the maximizer of (13) is unique. From the proof of Lemma 3, we
know that the derivative of (13) is negative at p∗0 and hence f0 < p∗0.

A.5 Lemma 11

Lemma 11. Fix f0 > a∗0 and let D0,c be any policy that satisfies
∑n

i=1 ci = 1− f0 and c0 = 1.
If r is constant, then there exists a D0,c that implements the same allocations as Df0. If r is
not constant, then every D0,c implements allocations that differ with positive probability from
those implemented by Df0.

Proof.
Part 1: Fix f0 > a∗0. Suppose r is constant. For every θ ∈ [θ, θ], the doer maximizes

θ
∑n

i=1 u
i(xi; ri)+ bv(x0) subject to (x, x0) ∈ B and x0 ≥ f0, which leads to the unique optimal

allocation a(θ). By strong monotonicity of preferences,
∑n

i=1 ai(θ) = 1− a0(θ) for every θ. By
standard arguments, each ai(·) is a strictly increasing, continuous function of θ for i = 1, . . . , n.
Let ci = maxθ∈[θ,θ] ai(θ). Clearly, 1−

∑n
i=1 ci = minθ∈[θ,θ] a0(θ). Since f0 has to be binding for

some θ, minθ∈[θ,θ] a0(θ) = f0. It is clear that if we replace the floor f0 with the caps {ci}ni=1,
the doer’s choices across θ’s do not change.

Part 2: Fix f0 > a∗0. Suppose r is not constant, i.e., ri < ri for some i = 1, . . . , n. Let
r = (r1, . . . , rn). It is easy to see that a∗0(θ, r) = a∗0. Therefore, f0 must be binding in state
s = (θ, r). Since a∗ is continuous in s, there exists ε > 0 such that, if |r − r| < ε, then
a∗0(θ, r) > f0 and hence the floor is still binding. When f0 binds, the doer’s allocation â−0 must
maximize θ

∑n
i=1 u

i(xi; ri) subject to
∑n

i=1 xi ≤ 1− f0. So, for all r with |r − r| < ε, we must
have

ui1(âi(θ, r); ri) = uj1(âj(θ, r); rj) for all i, j.
It follows that there exists r′ with |r′ − r| < ε such that â−0(θ, r′) ̸= â−0(θ, r). Since

∑n
i=1 âi(θ, r′) =∑n

i=1 âi(θ, r) = 1 − f0, there exists i ̸= j such that âi(θ, r′) > âi(θ, r) and âj(θ, r′) < âj(θ, r).
Now let S(f0) be the set of states for which â0(s) = f0. By the previous argument, âi and âj
cannot be constant over S(f0).

For each k = 1, . . . , n, let ĉk = maxS âk(s). When âi(s) = ĉi, we must have âj(s) < ĉj ,
and when âj(s) = ĉj , we must have âi(s) < ĉi. Therefore,

∑n
i=1 ĉi > 1 − f0. It follows

that any collection of caps c−0 = {ci}ni=1 satisfying
∑n

i=1 ci = 1 − f0 must involve ci < ĉi
for some i = 1, . . . , n. So, when the doer faces c−0, for some i and state s, ai(s) ≤ ci for
all states s such that the doer chooses xi > ci under f0. Since â is continuous in s, the set
S(c−0) = {s : âi(s) > ci} is open and hence it has strictly positive probability under G.
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A.6 Lemma 12

Lemma 12. Fix i ̸= 0 and consider D0,c ∈ R with cj = 1 for all j ̸= i. In any state s,
if ci < a∗i (s), then the doer chooses x0 > a∗0(s), but also xj > a∗j (s) for all j ̸= i.

Proof. Without loss, let i = 1 and take any c1 ∈ (0, a∗1(s)). Consider the doer’s problem in
state s subject to c1:

max
{(x,x0)∈B:x1≤c1}

û(x, s) + bv(x0).

The first-order conditions of the associated Lagrangian are

bv′(a0(s)) = µ(s),
θu11(a1(s); r1) = µ(s) + λ1(s),
θui1(ai(s); ri) = µ(s) for all j ̸= 0, 1,

where µ(s) ≥ 0 and λ1(s) ≥ 0 are the Lagrange multipliers for constraints
∑n

i=1 xi ≤ 1 and
x1 ≤ c1.

Suppose a0(s) ≤ a∗0(s). Since a1(s) = c1 < a∗1(s) and
∑

j aj(s) =
∑

j a
∗
j (s) = 1 by strong

monotonicity of preferences, aj(s) > a∗j (s) for some j ̸= 0, 1. By strict concavity of uj and v,

θuj1(aj(s); rj) < θuj1(a
∗
j (s); rj) = bv′(a∗0(s)) ≤ bv′(a0(s)).

This violates the first-order conditions for a(s). So we must have a0(s) > a∗0(s). This in turn
implies that for j ̸= i

θuj1(aj(s); rj) = bv′(a0(s)) < bv′(a∗0(s)) = θuj1(a
∗
j (s); rj).

By concavity, we have aj(s) > a∗j (s) for j ̸= 0, 1.

A.7 Proof of Lemma 5

Fix i = 1 and consider any c1 ≤ a∗1. Let ac1 describe the doer’s choices under cap c1. Then, let

Φ(c1) =

ˆ
S
U(ac1(s); s)dG.

Let S(c1) = {s : a∗1(s) > c1}. Note that for any c1 < a∗1, since a∗1 is continuous, S(c1) is
non-empty and open and hence has strictly positive probability under G. We have

Φ(c1)− Φ(a∗1) =

ˆ
S(c1)

[U(ac1(s); s)− U(a∗(s); s)] dG

= (1− b)

ˆ
S(c1)

[v(ac10 (s))− v(a∗0(s))] dG

+

ˆ
S(c1)

[
Ṽ (ac11 (s); s)− Ṽ (a∗1(s); s)

]
dG

where
Ṽ (ĉ1; s) = V (aĉ1(s); s) = max

{(x,x0)∈Rn+1
+ :

∑n
j=1 xj≤1,x1≤ĉ1}

{û(x; s) + bv(x0)}.
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Clearly, Ṽ (a∗1(s); s) ≥ Ṽ (c1; s) for every s. From the first-order conditions of the Lagrangian
defining V (aĉ1(s); s), we have λ1(s; ĉ1) = θu11(a

ĉ1
1 (s); r) − bv′(aĉ10 (s)), where λ1(s; ĉ1) is the

Lagrange multiplier on the constraint x1 ≤ ĉ1. Since aĉ1(s) is continuous in ĉ1 as well as s,
so is λ1(s; ĉ1). Relying again on Theorem 1, p. 222, of Luenberger (1969), we conclude that
Ṽ ′(ĉ1; s) exists for every ĉ1 and equals λ1(s; ĉ1). It follows that Ṽ ′(a∗1(s); s) = 0 for every s by
the definition of a∗. Therefore, by the Mean Value Theorem,

Ṽ (ac11 (s); s)− Ṽ (a∗1(s); s) = Ṽ ′(χ(s); s)(ac11 (s)− a∗1(s)),

v(ac10 (s))− v(a∗0(s)) = v′(ξ(s))(ac10 (s)− a∗0(s)),

where χ(s) ∈ [ac11 (s), a∗1(s)] and ξ(s) ∈ [a∗0(s), a
c1
0 (s)].

Let cε1 = a∗1 − ε for some small ε > 0. Fix any s ∈ S(cε1) and, for now, suppress the
dependence on s for simplicity. Recall that

∑
i a

cε1
i =

∑
i a

∗
i = 1. Since a

cε1
0 > a∗0 for any ε > 0,

we can write

−a
cε1
1 − a∗1

a
cε1
0 − a∗0

= 1 +
∑
j ̸=0,1

a
cε1
j − a∗j

a
cε1
0 − a∗0

.

Now, for any cε1, the following first order condition must hold for every j ̸= 1:

bv′(a0)− θuj1(aj ; rj) = 0.

This defines an implicit function aj(a0) and, by the Implicit Function Theorem,

d

da0
aj(a0) =

bv′′(a0)

θuj11(aj(a0); rj)
.

Since uj11 < 0, v′′ < 0, θ > 0, we have d
da0

aj > 0 everywhere. Moreover, uj11 and v′′ are
continuous and we can restrict attention to a0 and aj that take values in the compact set
[a∗0, 1] × [a∗j , 1] where a∗0 > 0 and a∗j > 0. Therefore, d

da0
aj is bounded above by some finite

kj > 0 for all s ∈ S(cε1). Hence, for any ε > 0, ac
ε
1
j − a∗j ≤ kj(a

cε1
0 − a∗0). Letting K =

∑
j ̸=0,1 kj ,

we then have

−a
cε1
1 − a∗1

a
cε1
0 − a∗0

≤ 1 +K ⇒ a
cε1
0 − a∗0 ≥

a∗1 − a
cε1
1

1 +K
.

Using these observations, we have that Φ(cε1)− Φ(a∗1) is bounded below by
ˆ
S(cε1)

[
1− b

1 +K
v′(ξ(s))− Ṽ ′(χ(s); s)

]
(a∗1(s)− cε1)dG. (14)

Since v′ is continuous and strictly positive everywhere and ξ(s) ∈ [a∗0, 1] with a∗0 > 0 for all
s ∈ S(cε1), there exists a finite κ > 0 such that v′(ξ(s)) ≥ κ for all s ∈ S(cε1).

Next let S(cε1) = {s : a∗1(s) ≥ cε1} which is a closed and bounded set by continuity of a∗1 and
hence is compact. As a function of cε1, the correspondence S(·) is continuous by continuity of
a∗1. Note that, if a∗1(s) = cε1, then Ṽ ′(χ(s); s) = Ṽ ′(aε1(s); s) = 0. We have

sup
s∈S(cε1)

Ṽ ′(χ(s); s) = sup
s∈S(cε1)

Ṽ ′(χ(s); s) ≤ max
cε1≤ζ≤a∗1,s∈S(cε1)

Ṽ ′(ζ; s) ≡ κ(cε1).
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Clearly, κ(cε1) ≥ 0 for any ε > 0, ε′ > ε > 0 implies that κ(cε1) ≤ κ(cε
′
1 ), and limε→0 κ(c

ε
1) = 0

because κ(·) is also continuous. Therefore, there exists ε∗ > 0 such that

κ(cε
∗
1 ) < κ

1− b

1 +K
.

It follows that for ε∗, expression (14) is strictly positive and hence Φ(cε
∗
1 ) > Φ(a∗1). This also

holds for all ε ∈ (0, ε∗).

A.8 Proof of Lemma 6

Let â and â′ describe the doer’s choices across states underDf,c andDf0,c−0 . Then, U(Df0,c−0)−
U(Df,c) equals

ˆ
S

[
U(â′(s); s)− U(â(s); s)

]
dG =

ˆ
S
(1− b)

[
v(â′0(s))− v(â0(s))

]
dG

+

ˆ
S

[
V (â′(s); s)− V (â(s); s)

]
dG

=

ˆ
S
(1− b)

[
v(â′0(s))− v(â0(s))

]
dG (15)

+

ˆ
S

[
V̂ (Df0,c−0 ; s)− V̂ (Df,c; s)

]
dG,

where for any (̃f, c̃)
V̂ (Df̃,c̃; s) = max

{(x,x0)∈B :̃f≤(x,c0)≤c̃}
V (x, x0; s).

Clearly, for every s, V̂ (Df0,c−0 ; s) ≥ V̂ (Df,c; s). Moreover, the inequality is strict in states in
which either c0 or fi are binding for the doer, given the strict concavity of the doer’s payoff
function and convexity of the feasible set for the doer under both Df0,c−0 and Df,c. Therefore,
if any of them binds with strictly positive probability, the second integral in (15) is strictly
positive.

Now consider the first integral, if we can show that â′0(s) ≥ â0(s) for every s, we are done.
To show this, we proceed in steps, removing one constraint from Df,c at a time. Consider first
removing only c0 which leads to an intermediate behavior of the doer described by the function
a0. If c0 is never binding for the doer, then it does not affect his choices and hence a00(s) = â0(s)
for every s. In any state s in which c0 is binding, removing only this cap cannot decrease â0(s)
because the doer could have decreased it when the cap was in place. Thus, a00(s) ≥ â0(s) for
every s. Note that, once we remove the cap on x0, for all s we must have

∑
i xi = 1 because v

is strictly increasing.
Now consider removing one floor fi for i ̸= 0 at a time. Fix any state s and suppress the

dependence on it for simplicity. The Lagrangian of the doer’s problem after we remove only c0
is

θ
n∑

i=1

ui(xi; ri) + bv(x0) + µ

[
1−

n∑
i=0

xi

]
+

n∑
i=1

γi[ci − xi] +
n∑

i=0

ϕi[xi − fi].

Hence, the first-order necessary and sufficient conditions are

θui1(a
0
i ; ri)− µ0 + ϕ0

i − γ0i = 0 for i = 1, . . . , n,
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bv′(a00)− µ0 + ϕ0
0 = 0,

with the usual complementary-slackness conditions. Without loss, start by removing f1, thus
obtaining a1. First, if a00 = f0, then a10 ≥ a00. So suppose that a00 > f0 so that ϕ0

0 = 0. If
ϕ0
1 = 0, then removing f1 has no effect and hence again a10 ≥ a00. So suppose that ϕ0

1 > 0; since
c1 ≥ f1 = a01, it follows that γ01 = 0 without loss of generality.36 After removing f1 only, the
new conditions are

θui1(a
1
i ; ri)− µ1 + ϕ1

i − γ1i = 0 for i = 1, . . . , n,

bv′(a10)− µ1 + ϕ1
0 = 0.

Clearly, at the resulting a1, we must have a11 < a01 because the opposite choice was feasible for
the doer before removing f1. Suppose a10 < a00. Then, we must have a1j > a0j for some j ̸= 0, 1,
because

∑n
i=0 a

0
i =

∑n
i=0 a

1
i = 1, and hence uj1(a

1
j ; rj) < uj1(a

0
j ; rj) by strict concavity. To see

that this leads to a contradiction, first observe that we must have γ0j = 0, because if γ0j > 0,
then a0j = cj ≥ a1j . Given this, then

bv′(a10) + γ1j = θuj1(a
1
j ; rj) < θuj1(a

0
j ; rj) = bv′(a00)− ϕ0

j ,

but this condition cannot hold because v′(a10) > v′(a00) for a10 < a00 by our starting assumption.
We conclude that a10 ≥ a00.

Continuing in this way, we can remove every fi for i = 2, . . . , n, obtaining at each step that
ai0 ≥ ai−1

0 . Since an0 = â′0, by transitivity we get â′0 ≥ â0. Since this steps assumed an arbitrary
s, we have that â′0(s) ≥ â0(s) for every s as desired.

A.9 Proof of Lemma 8

By Lemma 6, we can focus on policies D ∈ R that satisfy c0 = 1. For such policies, define

x0 = max{f0, 1−
n∑

i=1

ci}

Given D, we have that
∑n

i=0 ai(s) = 1 and hence a0(s) ≥ x0 for all s ∈ S. Without loss of
generality, we can let x0 = minS a0(s) = a0.37

Now fix b ∈ (0, 1). Suppose D′ is optimal, but x′0 < p∗
0
. Consider D′′ ∈ R identical to D′,

except that f ′′
0 = p∗

0
. We claim that U(D′′) > U(D′), which contradicts the optimality of D′.

Since D′ is convex and compact, the ensuing allocation a′ is a continuous function of s. Hence,
the set S(p∗

0
) = {s ∈ S : a′0(s) < p∗

0
} contains an open subset and hence has strictly positive

probability under G.
Consider any s ∈ S(p∗

0
). Suppose the planner faces the following problem:

max{û(x; s) + v(x0)}

subject to (x, x0) ∈ Rn+1
+ , xi ≤ c′i, and x0 ≤ f0. For any f0 < p∗

0
, the latter constraint must bind

for the planner because, by the same logic of Lemma 12, she would choose p0(s) ≥ p∗0(s) ≥ p∗
0

36Recall that, by Lagrange Duality, γ01 is the result of a minimization of the Lagrangian at
a0.

37If a0 > x0, we could simply raise f0 to a0 and nothing would change.
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if facing only the constraints xi ≤ c′i for i = 1, . . . , n. Therefore, the planner’s payoff from
this fictitious problem is strictly increasing in f0 for f0 ≤ p∗

0
. When the doer faces D′′, the

constraint x0 ≥ p∗
0
must bind. Hence, his allocation a′′(s) = (a′′−0(s), p∗0) solves max û(x; s)

subject to x ∈ Rn
+, xi ≤ c′i, and

∑n
i=1 xi ≤ 1− p∗

0
. This allocation coincides with the planner’s

allocation under the fictitious problem with f0 = p∗
0
. Hence, in s, a′′(s) is strictly better for the

planner than a′(s).
We conclude that, for all s ∈ S(p∗

0
), the planner’s payoff is strictly larger under D′′ than

under D′. Since for s /∈ S(p∗
0
) the doer’s allocation is unchanged, we must have U(D′′) > U(D′).

A.10 Proof of Proposition 1

By Proposition 4, f0(b) = maxF (b) decreases monotonically to p∗
0
when b ↑ 1. Also, for every

i = 1, . . . , n, we have that a∗0(θ, ri, r−i; b) increases monotonically to p∗0(θ, ri, r−i) as b ↑ 1. By
Lemma 7, p∗0(θ, ri, r−i) > p∗

0
. Given this, define

b∗ = inf{b ∈ (0, 1) : f0(b) < max
i

a∗0(θ, ri, r−i; b)}.

Clearly, b∗ < 1 and for every b > b∗ we have a∗0(θ, ri, r−i; b) > f0(b) for at least some i = 1, . . . , n.
Hereafter, fix b > b∗ and any i that satisfies this last condition.

For ε ≥ 0, consider cεi = a∗i − ε as in Proposition 5 where a∗i = a∗i (θ, ri, r−i) by Lemma 7.
Let Φ(cεi , f0) be the planner’s expected payoff from adding cεi to the existing optimal floor f0.
We will show that there exists ε > 0 such that Φ(cεi , f0) > Φ(c0i , f0) where Φ(c0i , f0) = Ψ(f0)
in Section (4.1). To do so, for any ε ≥ 0, let aε be the doer’s allocation function under (cεi , f0)
and S(cεi ) = {s ∈ S : a0i (s) > cεi}. Then,

Φ(cεi , f0)− Φ(c0i , f0) =

ˆ
S(cεi )

[
U(aε(s); s)− U(a0(s); s)

]
dG.

Note that, if there exists ε > 0 such that for all 0 < ε < ε we have a0(s) = a∗(s) for all s ∈ S(cεi ),
then for such ε’s the previous difference equals Φ(cεi )−Φ(a∗i ) in the proof of Proposition 5. The
conclusion of that proof then implies that there exists ε∗∗ ∈ (0, ε) such that Φ(cε

∗∗
i , f0) >

Φ(c0i , f0).
Thus we only need to prove the existence of ε. Let S(f0) = {s ∈ S : a∗0(s) ≤ f0}, which

is compact by continuity of a∗. Define ãi = maxS(f0)
a0i (s) which is well defined by continuity

of a0. Since a∗0(θ, ri, r−i) > f0, it follows that (θ, ri, r−i) /∈ S(f0) and hence a0i (θ, ri, r−i) =
a∗i (θ, ri, r−i) where a∗i (θ, ri, r−i) = a∗i by Lemma 7. We must also have ãi < a∗i : for all s ∈ S(f0),
optimality requires

θui1(ai(s); ri) = v′(f0) + λ0(s) > v′(a∗0(θ, ri, r−i)) = θui1(a
∗
i ; ri),

where λ0(s) ≥ 0 is the Lagrange multiplier for constraint x0 ≥ f0. If s ∈ S is such that
a0i (s) > ãi, then s /∈ S(f0)—otherwise it would contradict the definition of ãi—and therefore
a0(s) = a∗(s). Now define ε = a∗i − ãi > 0. By construction for any ε ∈ (0, ε), a0i (s) > cεi implies
that a0(s) = a∗(s), as desired.
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A.11 Proof of Proposition 2

We first show that there exists b∗∗ > 0 such that, if b < b∗∗, then for any D ∈ R with x0 ≥ p∗
0
the

resulting a satisfies a0(s) = x0 for all s ∈ S. It is enough to show that a0(s) = a0 = maxS a0(s)
must equal x0. By strict concavity of v, v′(a0) ≤ v′(p∗

0
) < +∞ because p∗

0
> 0. By considering

the Lagrangian of the doer’s problem in state s (see Proposition 6’s proof), we have that a(s)
must satisfy

bv′(a0(s)) + ϕ0(s) + γi(s) = θui1(ai(s); ri) for all i = 1, . . . , n,

where ϕ0(s) ≥ 0 and γi(s) ≥ 0 are the Lagrange multipliers for constraints x0 ≥ f0 and xi ≤ ci.
For every i = 1, . . . , n, since ai(s) ≤ 1 and ui(·; ri) is strictly concave, ui1(ai(s); ri) ≥ ui1(1; ri) >
0. Now let

b∗∗ = min
i

θui1(1; ri)

v′(p∗
0
)

> 0. (16)

Then, for any b < b∗∗, we have bv′(a0(s)) < θui1(ai(s); ri) for all i = 1, . . . , n. Therefore,
ϕ0(s) + γi(s) > 0 for all i = 1, . . . , n. Hence, either ϕ0(s) > 0, in which case a0 = f0 = x0; or
γi(s) > 0 for all i = 1, . . . , n, in which case a0 = 1−

∑n
i=1 ai(s) = 1−

∑n
i=1 ci = x0.

Finally, let b < b∗ = min{b, b∗∗} where b > 0 was defined in Proposition 4. Let Db ∈ R be
an optimal policy for b. By Proposition 8, xb0 ≥ p∗

0
. The previous result then implies that

U(Db) = v(xb0) +

ˆ
S
û(a−0(s); s)dG.

Hence,

U(Db) ≤ v(xb0) +

ˆ
S
û(xxb

0(s); s)dG ≤ v(f0) +

ˆ
S
û(xf0(s); s)dG = U(Df0

),

where the first inequality follows since û(a−0(s); s) ≤ max{x∈Rn
+:

∑n
i=1 xi≤xb

0}
û(x; s) = û(xxb

0(s); s)
for all s ∈ S and from the definition of f0 in Proposition 4.1. It is immediate to see that if
Db involves caps that bind for a set of states S′ whose probability is strictly positive, then
û(a−0(s); s) < û(xxb

0(s); s) for all s ∈ S′, and hence U(Db) < U(Df0
). Therefore, optimal

policies can only involve a private-consumption floor.
Finally, let r′, r, r′, and r satisfy the properties in the statement of Proposition 2. The

corresponding states s′, s, s′, and s satisfy the same properties. It follows that p∗′
0
= p∗0(s′) ≥

p∗0(s) = p∗
0
with strict inequality if s ̸= s′ (Lemma 7). Similarly, for each b ∈ (0, 1), a∗′0 (b) =

a∗0(s′; b) ≤ a∗0(s; b) = a∗0(b) again with strict inequality if s′ ̸= s. Using the definition of b∗∗ in
(16), the strict concavity of the function v, and that r′i ≥ ri, we have that b′∗∗ > b∗∗. Using the
definition of b in the proof of Proposition 4 and that a∗0 is strictly increasing in b, we have that
b′ > b. Therefore b′∗ > b∗.

A.12 Proof of Proposition 3

By an argument similar to the proof of Lemma 2, we can conclude that an optimal policy
D∗ ∈ R exists in this three-state setting. The following claims characterize its properties.
Claim 1. There exists g∗ ∈ (0, 1) such that, if g > g∗ and the planner can impose only the floor
f0, she sets f0 = p∗0(s0).
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Proof. If D can use only f0, we can clearly focus on f0 ∈ [a∗0(s1), p∗0(s1)] ∪ {p∗0(s0)}. If f0 =
p∗0(s0), the planner’s payoff is

gU(p∗(s0); s0) + (1− g)U(a∗(s1); s1);

if f0 ∈ [a∗0(s1), p∗0(s1)], her payoff is

gU(xf0(s0), f0; s0) + (1− g)U(xf0(s1), f0; s1),

where xf0(s) is defined in Lemma 10. Thus, f0 = p∗0(s0) identifies the best policy that involves
only f0 if

g

1− g
> max

f0∈[a∗0(s1),p∗0(s1)]

U(xf0(s1), f0; s1)− U(a∗(s1); s1)
U(p∗(s0); s0)− U(xf0(s0), f0; s0)

≥ 0. (17)

The term on the right-hand side is well defined; also, for all f0 ∈ [a∗0(s1), p∗0(s1)] we have
U(p∗(s1); s1) ≥ U(xf0(s1), f0; s1) ≥ U(a∗(s1); s1) and U(p∗(s0); s0) > U(xf0(s0), f0; s0) because
a∗0(s1) > p∗0(s0).

Hereafter, assume that g > g∗.
Claim 2. Suppose the planner knows that the state is s1 (resp. s2) and she can only impose a
cap c1 (resp. c2). Then, it is optimal to set c1 = p∗1(s1) (resp. c2 = p∗2(s2)).

Proof. Suppose the planner knows s1—the other case is equivalent. Replicating the argument
in the proof of Proposition 5, we can conclude that it is optimal to set c1 < a∗1(s1). To find the
optimal c1 ∈ (0, a∗1(s1)), consider first the doer’s problem to maximize θ[r ln(x1) + r ln(x2)] +
b ln(x0) subject to x0+x1+x2 ≤ 1 and x1 ≤ c1. Since both constraints must bind, this problem
becomes

max
x0∈[0,1]

{θ r ln(1− c1 − x0) + b ln(x0)}.

The solution is characterized by the first-order condition, which leads to

x0(c1) =
b

θ r + b
(1− c1) and x2(c1) =

θ r

θ r + b
(1− c1).

Given this, we can compute the planner’s payoff in state s1 as a function of c1, which equals
(up to a constant)

θ[r ln(c1) + r ln(1− c1)] + ln(1− c1). (18)
The optimal c1 is again characterized by the first-order condition, which leads to

c1 =
θ r

1 + θ(r + r)
. (19)

To complete the proof, we need to find p∗1(s1), which results from maximizing θ[r ln(x1) +
r ln(x2)] + ln(x0) subject to x0 + x1 + x2 ≤ 1. Substituting x0 = 1− x1 − x2, taking first-order
conditions, and combining them, we get

p∗1(s1) =
θ r

1 + θ(r + r)
.
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Claim 3. Suppose the planner knows that the state is s1 (resp. s2). Then she strictly prefers
to impose only c1 (resp. c2) than only c2 (resp. c1).

Proof. Suppose the planner knows s1—the other case is equivalent. Mimicking the calculations
in the proof of Claim 2, one can show that if the planner can impose only c2, then she sets

c2 =
θ r

1 + θ(r + r)
. (20)

We want to argue that her payoff in state s1 is strictly larger if she imposes only c1 as in (19)
than if she imposes only c2 as in (20). Substituting the doer’s allocations implied by c1 and c2
into the planner’s utility function and simplifying the resulting expressions, one can show that
c1 in (19) is strictly better than c2 in (20) if and only if

(1 + θr) ln(b+ θr)− (1 + θ r) ln(b+ θ r) > (1 + θr) ln(1 + θr)− (1 + θ r) ln(1 + θ r).

To show that this condition holds, consider the function φ(b, r) = (1 + θr) ln(b + θr), where
0 < b < 1 and r > 0. This function satisfies

φbr(b, r) =
∂

∂r

(
1 + θr

b+ θr

)
=

θ(b− 1)

(b+ θr)2
< 0.

Therefore, φ(b, r)− φ(b, r) is strictly decreasing in b. Continuity gives the result.

Claim 4. If D is optimal, then f0 can bind at most in s0.

Proof. If f0 binds in all states, then D is weakly dominated by a policy that involves only f0
and no caps, as the caps distort consumption without improving savings. Given g > g∗, by
Claim 4 the latter policy is strictly dominated by one imposing only the floor p∗0(s0). Clearly,
if f0 binds in s1 and s2, then it must also bind in s0.

Now suppose that f0 binds only in s0 and another state, say, s1—the same argument applies
for s2. There are two cases to consider:
Case 1: c1 does not bind in state s2. Then, removing c1 leads to a weakly superior policy
in which f0 binds only in states s0 and s1. Given g > g∗, however, the gain from raising f0
above p∗0(s0) to improve the doer’s allocation only in s1 does not justify the loss created in s0.
Therefore, D is again strictly dominated by the policy obtained if we remove c1 and set the
floor at p∗0(s0).
Case 2: c1 binds also in state s2. This implies that f0 has to bind in all states. Indeed, since c1
binds in both s1 and s2, the doer chooses x1 = c1 in both states; moreover, since in s2 good 2 is
more valuable than in s1, he wants to allocate more income to good 2 than to savings relative
to s1 and therefore f0 also binds in s2. However, we have already argued that such a policy is
strictly dominated by one that imposes only the floor p∗0(s0).

Claim 5. If D involves binding caps, then ci can bind at most in si for i = 1, 2.

Proof. Without loss, consider c1. Suppose first that c1 binds in all states, which implies that
a1(si) = c1 for all i = 0, 1, 2. There are five cases to consider:
Case 1: Neither c2 nor f0 bind in any state. Since θ > θ, we have a2(s0) > a2(s2). The policy
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cannot be optimal because, given c1, the planner would be strictly better off by adding a floor
that binds only in s0: Even if c1 were binding for her in s0, she would strictly prefer a level
x2 < a2(s0) of good 2.
Case 2: c2 binds in all states. Then, a2(si) = c2 and a0(si) = 1− c1− c2 for all i = 0, 1, 2. This
policy is strictly dominated by a one that imposes only a floor equal to 1 − c1 − c2—because
caps are distorting—which is in turn strictly dominated by the policy with only the floor p∗0(s0)
given g > g∗.
Case 3: c2 binds in no state. Then, as in case 1, for D to be optimal f0 must bind at least
in s0 and only in that state by Claim 4. Since by assumption c1 binds in all states, it must
be that c1 < p∗1(s1). Indeed, if c1 ≥ p∗1(s1), the optimal f0 equals p∗0(s0); since by assumption
p1(s0) < p∗1(s1), c1 cannot bind in s0. It follows that, with regard to s0 and s1, the planner
would be strictly better off replacing c1 and f0 with ĉ1 = p∗1(s1) and f̂0 = p∗0(s0). With regard
to s2, the planner would be better off by replacing c2 with ĉ2 = p∗2(s2): By Claim 3, even if c1
were perfectly tailored for s2, it would be strictly dominated in that state by ĉ2.
Case 4: c2 binds only in s0. Since a2(s0) > a2(s2) if the policy used only c1, it follows that the
planner can obtain in all states the same allocations induced by D if she imposes a floor that
binds only in s0. Such a policy, however, is again strictly dominated for the same reasons as in
case 3.
Case 5: c2 binds in s0 and in s2. Since a2(s0) > a2(s2) if the policy used only c1, the planner
could again obtain the same allocation in all states with a floor that binds only in s0 and s2.
By Claim 4, however, such a policy cannot be optimal.

Now suppose that c1 binds in only two states. If c1 binds only in s1 and in s0, then by the
same argument as in case 3 above the planner is strictly better off by replacing c1 and f0 with
ĉ1 = p∗1(s1) and f̂0 = p∗0(s0) as well as c2 with ĉ2 = p∗2(s2). If c1 binds in s1 and s2, then it
must also bind in s0—which is the case we considered before. Indeed, if c1 binds in s2, then it
will also bind at the fictitious state (θ, r, r) and hence in s0 where both consumption goods are
more valuable. The case left is if c1 binds only in s0 and s2, but this is impossible: It would
have to bind also in s1, since in that state good 1 is more valuable than in s2.

Finally, suppose that c1 binds in only one state. We have just argued that if c1 binds in
s2, then it must also bind in s1. Thus, we only have to rule out the case in which c1 binds
only in s0. This property is possible only if in s0 the cap c2 also binds, inducing the doer to
overconsume in good 1. However, such a c2 must also bind in s2; hence, it cannot be part of
an optimal D, because we just showed that a cap cannot bind in more than one state.

Combining Claims 1-5, we conclude that the optimal policy D ∈ R satisfies f0 = p∗0(s0),
c1 = p∗1(s1), and c2 = p∗2(s2).

A.13 Proof of Proposition 4

Start from the value of θ which implies that p∗1(s1) > p∗1(s0) and p∗2(s2) > p∗2(s0) and hence leads
to the optimal policy in Lemma 3. If we increase θ, both p∗1(s0) and p∗2(s0) increase continuously
while always satisfying p∗1(s0) = p∗2(s0). Therefore, there exists a unique θ

† such that, when
θ = θ

†, we have p∗1(s1) = p∗1(s0) and p∗2(s2) = p∗2(s0). For every θ ≤ θ
†, the optimal D ∈ R

remains c1 = p∗1(s1), c2 = p∗2(s2), and f0 = p∗0(s0), where the latter of course falls continuously
as θ rises towards θ†.
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By the same logic of Proposition 6, we can focus on the class R ⊂ R that contains all
policies that can use only f0, c1, and c2. Let D(θ) ⊂ R be the nonempty set of optimal polices
as a function of θ. By Lemma 3 and the previous argument, D(θ) is singleton for θ ≤ θ

†. Define
the distance between any two policies D and D′ as the Euclidean distance between the vector
(f0, c1, c2) describing D and the vector (f ′

0, c
′
1, c

′
2) describing D′. By the Maximum Theorem,

D(θ) is upper hemicontinuous in θ.38 Hence, by choosing θ > θ
† sufficiently close to θ

†, we
can render the distance between D(θ

†
) and every D ∈ D(θ) is arbitrarily small. Thus, there

exists ε > 0 such that, if θ ∈ (θ
†
, θ

†
+ ε), then for every D ∈ D(θ) the following holds: (1)

ci(θ) > a∗i (si) for i = 1, 2; and (2) f0(θ) can bind neither in s1 nor in s2. To see property (2),
note that D(θ

†
) contains the policy defined by ci(θ

†
) = p∗i (si) for i = 1, 2 and f0(θ

†
) = p∗0(s0),

where f0(θ
†
) = 1− c1(θ

†
)− c2(θ

†
) and hence f0 is actually redundant. Thus, D(θ) contains no

policy with f0(θ) > 1− c1(θ)− c2(θ), because such policies are strictly dominated for the same
argument that rules them out in the proof of Lemma 3. Since the largest value of f0(θ) must
be close to f0(θ

†
) for θ ∈ (θ

†
, θ

†
+ ε), it follows that f0(θ) cannot bind in s1 and s2 as well.

Hereafter, fix θ ∈ (θ
†
, θ

†
+ ε). The following claims characterize the properties of every

D ∈ D(θ).
Claim 6. For every D ∈ D(θ), both c1(θ) and c2(θ) must bind in s0—that is, ci(θ) = ai(s0) for
i = 1, 2. Given this, a0(s0) = 1− c1(θ)− c2(θ), and hence f0 can be removed.

Proof. Note that the planner’s objective in state si as a function of ci is strictly concave and
decreasing for ci > p∗i (si) (see equation (18)). Thus, if for example c1(θ) is not binding for
the doer in state s0—that is, c1(θ) > a1(s0)—the planner can lower c1 without affecting the
doer’s choice in s0 and s2 and strictly improve her payoff in s1. Hence, the policy would not be
optimal.

Claim 7. c1(θ) = c2(θ) for every D ∈ D(θ).

Proof. Without loss, suppose that c1(θ) > c2(θ). Note that c2(θ) < a∗2(s0) because, otherwise,
we would have c1(θ) > a∗1(s0) = a∗2(s0), which contradicts the previous point. Consider the
alternative policy with cδ1 = c1(θ)− δ and cδ2 = c2(θ) + δ, where δ > 0. For δ sufficiently small,
both cδ1 and cδ2 continue to be binding in s0, and hence 1− cδ1− cδ2 = a0(s0). In s0, the planner’s
payoff is higher, because given a0(s0) the consumption bundle is closer to being symmetric and
hence to the best one according to the planner’s preference. Due to symmetry and the strict
concavity in the planner’s payoff induced by ci in si for i = 1, 2 (see (18)), we have that the
decrease in the her payoff in s2 resulting from the slacker c2 is more than compensated by the
increase in her payoff in s1 resulting from the tighter c1. Hence, overall the planner’s payoff
is strictly larger with (cδ1, c

δ
2) than with (c1(θ), c2(θ)), contradicts the optimality of the latter

policy.

38Although the planner’s and doer’s utility functions are not continuous at the boundary of
R3
+ due to their logarithmic form, this is irrelevant because it is never optimal to choose D ∈ R

that forces 0 allocation to some dimension. Such a policy is always dominated by the optimal
singleton D which gives the doer no discretion. Formally, there exists ε > 0 such that, if we
required fi ≤ 1− ε and ci ≥ ε for all i = 0, 1, 2, we would never affect the planner’s problem.
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Claim 8. 1− c1(θ)− c2(θ) > p∗0(s0) for every D ∈ D(θ).

Proof. If 1− c1(θ)− c2(θ) < p∗0(s0), then the planner can set f0 = p∗0(s0) and achieve a strictly
higher payoff in s0 without affecting the doer’s choices in s1 and s2. If 1−c1(θ)−c2(θ) = p∗0(s0),
then ci = p∗i (s0) for i = 1, 2, which means that a(s0) = p∗(s0). Therefore, it would be possible
to lower both c1(θ) and c2(θ) by the same small amount δ, to induce a first-oder gain in the
planner’s payoff for both s1 and s2 because ci(θ) > p∗i (si) for i = 1, 2, and to cause only a
second-order loss in s0.

Claim 9. Every D ∈ D(θ) is unique as far as c1 and c2 are concerned and satisfies the properties
stated in Lemma 4.

Proof. The planner’s payoff in s1 and s2 is given by (18) up to a constant:

θ[r ln(c) + r ln(1− c)] + ln(1− c).

Her payoff in s0 is given, up to a constant, by

2θ r ln(c) + ln(1− 2c).

Therefore, the optimal c maximizes

(1− g) {θ[r ln(c) + r ln(1− c)] + ln(1− c)}+ g
{
2θ r ln(c) + ln(1− 2c)

}
.

Since this function is strictly concave, there is a unique optimal c. To see that p∗i (si) > ci >
p∗i (s0) for every i = 1, 2, consider the following observations. Note that ci > p∗i (si) would
be strictly dominated by ci = p∗i (si) for every i, because this is the optimal level of the cap
in the corresponding state. Consequently, we must have ci < p∗i (si) because by assumption
1 − p∗1(s1) − p∗2(s2) > p∗0(s0) for θ > θ

†, and hence reducing ci below p∗i (si) by the same small
amount for all i = 1, 2 causes a first-order gain in s0 and only a second-oder loss in s1 and s2.

A.14 Proof of Corollary 1

By Proposition 6, we can focus on the class R ⊂ R that contains all policies which can use
only f0, c1, and c2. Let Rf0 ⊂ R contain all policies that can use only f0, Rc ⊂ R contain
all policies that can use both c1 and c2, and Rci ⊂ R contain all policies that can use only ci
for i = 1, 2. To indicate that the planner’s expected payoff from D is computed using some
distribution Ĝ, we will use the notation U(D; Ĝ).

Part 1: Consider Gfc
α . For every D ∈ R and α ∈ [0, 1], the planner’s expected payoff is given

by
U(D;Gfc

α ) = αU(D;Gfc) + (1− α)U(D;G).

Now define

W fc
f0(α) = max

D∈Rf0

U(D;Gfc
α ) and W fc

c (α) = max
D∈Rc

U(D;Gfc
α ), α ∈ [0, 1].
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Both W fc
f0

and W fc
c are well defined by the same argument as in the proof of Lemma 2; moreover,

by the Maximum Theorem, they are continuous functions of α.39 Let Dfc denote the optimal
policy in Lemma 3. Note that U(Dfc;G) is finite since the doer’s resulting allocations are
bounded away from 0 in all dimensions. We have that limα↑1 U(Dfc;Gfc

α )−W fc
j (α) > 0 for both

j = f0 and j = c. Therefore, there exists α̂ ∈ (0, 1) such that Dfc strictly dominates every
D ∈ Rf0 ∪Rc given the distribution Gfc

α̂ .
Part 2: Consider Gc

α. For every D ∈ R and α ∈ [0, 1], the planner’s expected is given by

U(D;Gc
α) = αU(D;Gc) + (1− α)U(D;G

′
).

Let Dc denote the optimal policy in Lemma 4. By the same logic of the proof of Part 1,
there exists α′′ ∈ (0, 1) such that, for every α ∈ (α′′, 1), the policy Dc strictly dominates every
D ∈ Rf0 ∪ Rc ∪ Rc1 ∪ Rc2 given the distribution Gc

α. It remains to show that there exists
α′ ∈ (α′′, 1) such that Dc strictly dominates every D ∈ R given Gc

α′ .
To this end, define

D(α) = argmax
D∈R

U(D;Gc
α).

Another application of the Maximum Theorem implies that D(·) is upper hemicontinuous. Note
that D(1) is characterized by vectors (f∗

0 , c
∗
1, c

∗
2) such that c∗1 and c∗2 are unique and satisfy the

properties in Lemma 4, and f∗
0 ∈ [0, f0] where f0 = 1 − c∗1 − c∗2. Therefore, for every δ > 0,

there exists ε > 0 such that, if α ∈ (1 − ε, 1], then f0 ∈ [0, f0 + δ], c1 ∈ (c∗1 − δ, c∗1 + δ), and
c2 ∈ (c∗2 − δ, c∗2 + δ) for every (f0, c1, c2) corresponding to some D ∈ D(α). This means that, by
choosing δ sufficiently small, we can ensure that for every D ∈ D(α) the following holds: (1)
1− c1 − c2 > p∗0(s0); (2) removing f0 leads to a policy such that both c1 and c2 bind in s0; and
(3) f0 cannot bind in s1 and s2, since f0 is strictly smaller than the doer’s choice of x0 in those
states under every policy in D(1).

Take any D ∈ D(α) and fix its c1 and c2. The f0 that completes D must be optimally
chosen given c1 and c2. We claim that such an f0 must satisfy f0 ≤ 1 − c1 − c2 = k for α
sufficiently close to 1. Suppose this is not true and consider the gain in the planner’s expected
payoff from imposing f0 > k. Her gain in s0 would be

(1− b)[v(f0)− v(k)] + V (f0; s0)− V (k; s0), (21)

and her expected gain under the distribution G
′ isˆ

S(f0)

{
(1− b)[v(f0)− v(â0(s))] + V (f0; s)− V (â0(s); s)

}
dG

′
, (22)

where S(f0) ⊂ S′ = [θ, θ
′
]× [r, r]2 is the set of states in which f0 affects the doer’s choices, â is

the doer’s allocation function under the policy that involves only c1 and c2, and

V (k; s) = max
{(x,x0)∈B:x1≤c1,x2≤c2,x0≥k}

{û(x; s) + bv(x0)}, k ∈ [k, 1], s ∈ S′.

Note that V (f0; s) ≤ V (â0(s); s) and â0(s) ≥ k for all s ∈ S′; therefore, for every f0 ≥ k, the
quantity (22) is bounded above byˆ

S(f0)
(1− b)[v(f0)− v(â0(s))]dG′ ≤ (1− b)[v(f0)− v(k)].

39Recall Footnote 38.
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Note that the right-hand side of the previous expression depends on α only via k.
Now focus on V (k; s0). For every f0 > k, the following holds: (1) f0 always binds, because

k > p∗0(s0) and hence the doer wants to save strictly less than f0; (2) only one cap can bind,
because if both bind, then a0(s0) = k < f0, which is impossible; (3) one cap never binds, because
consumption goods are normal, so for every f0 > k the doer’s chooses ai(s0) < ci for at least
one i = 1, 2. Without loss, suppose that the cap that never binds is c2. Therefore, if we remove
c2, V (k; s0) coincides with the doer’s indirect utility under the policies defined by k ∈ [k, 1] and
c1 only, which we denote by V (k; s0, c1). By the same argument as in the proof of Lemma 10,
V (k; s0, c1) is continuously differentiable in k for k ∈ [0, 1] and V

′
(k; s0, c1) − λ(s0; k), where

λ(s0; k) is the Lagrange multiplier associated to the constraint x0 ≥ k. Using the Lagrangian
defining V (k; s0, c1), we have that

λ(s0; k) = θ
′
u21(a2(s0; k); r)− bv′(k).

Note that λ(s0; k) > 0 for all k ∈ [k, 1], because such levels of the floor must always bind for
the doer. Moreover, λ(s0; k) is strictly increasing in k ∈ [k, 1] because v′′ < 0, ui11 < 0, and
a2(s0; k) is non-increasing in k by normality of goods. We conclude that V ′

(k; s0) = −λ(s0; k)

for every k ∈ (k, 1] and V
′
(k+; s0) = λ(s0; k), where the plus denotes the right derivative.40

Moreover, V ′
(k; s0) is strictly decreasing in k.

Observe that
(1− b)v′(k) + V

′
(k; s0) = v′(k)− θ

′
u21(a2(s0; k); r), (23)

which is strictly negative. This is because c1 < p∗1(s0) and c2 < p∗2(s0) by Lemma 4 since α is
close to 1, which implies that both caps must bind for the planner; consequently, f0 = k and c1
must also bind for the planner. The right-hand side of (23) coincides with the negative of the
Lagrange multiplier associated with the constraint x0 ≥ k in the planner’s problem that also
includes the constraint x1 ≤ c1.

Recall that k depends on α—hence denote it by kα—and consider the quantity

gV
′
(kα; s0) + [αg + (1− α)](1− b)v′(kα). (24)

This quantity is strictly negative for α = 1, which corresponds to k1 = 1−c∗1−c∗2. By continuity
of (24) as a function of (α, k) and upper hemicontinuity of D(α), there exists ε > 0 such that
(24) remains strictly negative for all α ∈ (1− ε, 1]. Given the monotonicity properties of v′ and
V

′
(·; s0), (24) is strictly decreasing for all k ≥ kα.
Finally, for every α ∈ (1− ε, 1] and f0 > kα, we have that

[αg + (1− α)](1− b)[v(f0)− v(kα)] + g[V (f0; s0)− V (kα; s0)]

=

ˆ f0

kα

{
[αg + (1− α)](1− b)v′(k) + gV

′
(k; s0)

}
dk

<
{
[αg + (1− α)](1− b)v′(kα) + gV

′
(kα; s0)

}
(f0 − kα) < 0.

We conclude that the planner is strictly worse off by imposing a binding savings floor in addition
to the caps c1 and c2, and hence every optimal policy must involve binding caps for both goods,
but no binding floor on savings.

40In fact, V (k; s0) is not differentiable at k = k since V (k; s0) is constant for k < k and hence
V

′
(k−; s0) = 0.
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A.15 Proof of Lemma 9

Recall the definition of U(D) and a(θ|D) in (3) and (4). There exists D ⊂ B such that U(D) ≥
U(D′) for all D′ ⊂ B if and only if there exist functions χ : [θ, θ] → Rn

+ and t : [θ, θ] → R+ that
satisfy two conditions:
(1) for all θ, θ′ ∈ [θ, θ]

θû(χ(θ)) + bv(t(θ)) ≥ θû(χ(θ′)) + bv(t(θ′))

and
n∑

i=1

χi(θ) + t(θ) ≤ 1;

(2) the pair (χ, t) maximizes
ˆ θ

θ
[θû(χ(θ)) + v(t(θ))] g(θ)dθ.

On the other hand, there exists Dac ⊂ Bas such that U(Dac) ≥ U(D̂ac) for all D̂ac ⊂ Bas if
and only if there exist functions φ : [θ, θ] → R+ and τ : [θ, θ] → R+ that satisfy two conditions:
(1’) for all θ, θ′ ∈ [θ, θ]

θu∗(φ(θ)) + bv(τ(θ)) ≥ θu∗(φ(θ′)) + bv(τ(θ′)),

where u∗(y) = max{x′:∈Rn
+

∑n
i=1 x

′
i≤y} û(x

′), and

φ(θ) + τ(θ) ≤ 1;

(2’) the pair (φ, τ) maximizes
ˆ θ

θ
[θu∗(φ(θ)) + v(τ(θ))] g(θ)dθ.

Suppose (χ, t) that satisfies condition (1) and (2). Then, by our discussion on money
burning before the statement of Lemma 9, there exists a function φ : [θ, θ] → R+ such that
u∗(φ(θ)) = û(χ(θ)) and φ(θ) ≤

∑n
i=1 χi(θ) for all θ ∈ [θ, θ]. Hence, letting τ ≡ t, we have that

(φ, τ) satisfy both (1’) and (2’).
Suppose (φ, τ) satisfy conditions (1’) and (2’). For every θ ∈ [θ, θ], let

χ(θ) = arg max
{x∈Rn

+:
∑n

i=1 xi≤φ(θ)}
û(x).

Then, by definition, û(χ(θ)) = u∗(φ(θ)) for all θ ∈ [θ, θ]. Letting t ≡ τ , we have that (χ, t)
satisfy both (1) and (2).

A.16 Proof of Proposition 6

Let Dac ⊂ Bas satisfy the premise of Proposition 6. Then, as noted in the proof of Lemma 9,
we can describe the doer’s allocation from Dac with the functions (φ, τ) that satisfy condition
(1’) and such that 0 < φ(θ) < 1− τ(θ) for all θ ∈ Θ and

U(Dac) =

ˆ θ

θ
[θu∗(φ(θ)) + v(τ(θ))] g(θ)dθ.
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Now, since û is continuous and Ey = {x ∈ Rn
+ :

∑n
i=1 xi = y} is connected, û(Ey) =

[u∗(y), u
∗(y)]. Since û is strictly concave, u∗(y) < u∗(y) for all y > 0. Since û is strictly

increasing, so are u∗ and u∗. Clearly, u∗ is continuous.
These properties imply that, for every θ ∈ Θ, there exists y(θ) ∈ (φ(θ), 1 − τ(θ)] and

x(θ) ∈ Ey(θ) such that û(x(θ)) = u∗(φ(θ)). So, for every θ ∈ [θ, θ], define t(θ) = τ(θ) and

χ(θ) =

{
x(θ) if θ ∈ Θ

argmax{x∈Rn
+:

∑n
i=1 xi≤φ(θ)} û(x) if θ /∈ Θ

.

Then, by construction the pair (χ, t) satisfy conditions (1) and (2) in the proof of Lemma 9.
Now, let D′ = {(x, x0) ∈ Rn

+ : (x, x0) = (χ(θ), t(θ)), for some θ ∈ [θ, θ]}. We have D′ ⊂ B,
U(D′) = U(Dac), and the doer’s allocation satisfies a′−0(θ) = χ(θ) and a′0(θ) = τ(θ) for all
θ ∈ [θ, θ]. By construction, a′ satisfies the stated relationship with a.

The last part is immediate because we can choose y(θ) = 1 − τ(θ) for all θ ∈ Θ in the
previous construction.
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