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Abstract

We study incomplete information games involving players who perceive ambiguity

about the types of others and may be ambiguity averse as modeled through smooth

ambiguity preferences (Klibanoff, Marinacci and Mukerji, 2005). Our focus is on multi-

stage games with observed actions and on equilibrium concepts satisfying sequential

optimality —each player’s strategy must be optimal at each stage given the strategies

of the other players and the player’s conditional beliefs about types. We show that for

the purpose of identifying strategy profiles that are part of a sequential optimum, it is

without loss of generality to restrict attention to beliefs generated using a particular

generalization of Bayesian updating. We propose and analyze two strengthenings of

sequential optimality. Examples illustrate new strategic behavior that can arise under

ambiguity aversion. Our concepts and framework are also suitable for examining the

strategic use of ambiguity.
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1 Introduction

Dynamic games of incomplete information are the subject of a large literature, both theory

and application, with diverse fields including models of firm competition, agency theory, auc-

tions, search, insurance and many others. In such games, how players perceive and react to

uncertainty, and the way it evolves over the course of the game, is of central importance. In

the theory of decision making under uncertainty, preferences that allow for decision makers

to care about ambiguity1 have drawn increasing interest (Gilboa and Marinacci, 2013). We

propose equilibrium notions for incomplete information games involving ambiguity about

players’types. This allows us to examine effects of introducing ambiguity aversion in strate-

gic settings, static and dynamic. In our analysis, players have smooth ambiguity preferences

(Klibanoff, Marinacci and Mukerji, 2005) and may be ambiguity averse. In the smooth ambi-

guity model it is possible to hold the players’information fixed while varying their ambiguity

attitude from aversion to neutrality (i.e., expected utility). This facilitates a natural way to

understand the effect of introducing ambiguity aversion into a strategic environment. Our

focus is on extensive form games, specifically multi-stage games with observed actions, and

on equilibrium notions capturing perfection analogous to those in standard theories for am-

biguity neutral players, such as Sequential equilibrium (Kreps and Wilson, 1982) and Perfect

Bayesian equilibrium (PBE) (e.g., Fudenberg and Tirole, 1991a,b).

We first define an ex-ante equilibrium concept allowing for aversion to ambiguity about

players’types. When there is no type uncertainty, this collapses to Nash equilibrium. When

there are common beliefs and ambiguity neutrality, it becomes Bayesian Nash equilibrium.

Next, we refine ex-ante equilibrium by imposing perfection in the form of a sequential op-

timality requirement — each player i’s strategy must be optimal at each stage given the

strategies of the other players and i’s conditional beliefs about types. When there is no type

uncertainty, sequential optimality reduces to subgame perfection. Sequential optimality and

our subsequent analysis and extensions of it are the main contributions of the paper.

We find that sequential optimality has a number of attractive properties along with the

potential to cut through the vexing issue of what update rule to impose in dynamic games

with ambiguity aversion. We show that for the purpose of identifying strategy profiles that

are part of a sequential optimum, it is without loss of generality to restrict attention to

belief systems updated using a dynamically consistent generalization of Bayesian updating

for smooth ambiguity preferences, called the smooth rule (Hanany and Klibanoff 2009).

An important method facilitating analysis of dynamic games with standard preferences is

1In this literature, ambiguity refers to subjective uncertainty about probabilities (see e.g., Ghirardato,
2004).
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the suffi ciency of checking only one-stage deviations (as opposed to general deviations) when

verifying optimality. We show that this method retains its validity when applied to sequential

optimality: a strategy profile is part of a sequential optimum if and only if there are no

profitable one-stage deviations with respect to beliefs updated according to the smooth rule.

Sequential optimality places little restriction on player i’s beliefs about types at stage

games that could be reached only immediately following a deviation of at least one other

player j 6= i. We propose two refinements of sequential optimality restricting such beliefs: Se-

quential Equilibrium with Ambiguity (SEA) and Perfect Equilibrium with Ambiguity (PEA).

In addition to sequential optimality, SEA imposes a generalization of Kreps and Wilson’s

(1982) consistency condition from their definition of sequential equilibrium. PEA replaces

this additional requirement of SEA with the property that, under certain conditions, any

player i’s conditional beliefs about player j 6= i’s type remain the same as they were at

the previous stage if player j had no choice (or only one action) available at that stage.

These strengthenings are nested: any SEA is shown to be a PEA. We show that even the

strongest of these concepts, SEA, exists for any multi-stage game with observed actions and

incomplete information, and for any specification of players’ambiguity aversion and initial

beliefs.

In Section 3, we provide several examples that apply our equilibrium notions. First, we

present a game with a path that is played in an SEA given suffi cient ambiguity aversion, but

is never an ex-ante equilibrium (and thus also not sequentially optimal, a PEA, an SEA, a

PBE or a sequential equilibrium) given ambiguity neutrality. This example is truly strategic

in that it relies on one player recognizing the ambiguity aversion of others and changing

play because of it. In fact, we show (Theorem 2.7) that strategic interaction is necessary

for ambiguity aversion to generate new equilibrium behavior in any example. Second, we

consider a game with a path that is played in an SEA given suffi cient ambiguity aversion,

but is never played in a PEA (or PBE) given ambiguity neutrality. This example illustrates

how differential screening based on beliefs and ambiguity attitudes can give rise to strategic

behavior ruled out under ambiguity neutrality. Third, we present an example of a Milgrom

and Roberts (1982)-style limit pricing entry game with an SEA involving limit pricing and

non-trivial smooth rule updating on the equilibrium path that departs from Bayes’rule. We

provide conditions under which ambiguity aversion makes limit pricing more robust.

In Section 4, building on ideas of Aumann (1974) and Bade (2011), we demonstrate

that our equilibrium notions and framework can also be used to model strategic ambiguity

through strategies that are optimally chosen to be contingent on payoff irrelevant types about

which there is ambiguity. We present an example in which a principal strictly benefits from

conditioning her cheap talk message to her agents on such payoff-irrelevant ambiguous types.
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Our analysis establishes that this strategic use of ambiguity occurs as part of a sequential

optimum. This feature is missing in the analyses in recent literature on the role of ambiguous

communication (e.g., Bose and Renou, 2014 and Kellner and Le Quement, 2015).

To the best of our knowledge, we are the first to propose an equilibrium notion for dy-

namic games with incomplete information that requires sequential optimality while allowing

for ambiguity averse preferences. A number of previous papers have analyzed incomplete

information games with ambiguity sensitive preferences in settings without dynamics, in-

cluding Salo and Weber (1995), Ozdenoren and Levin (2004), Kajii and Ui (2005), Bose,

Ozdenoren and Pape (2006), Chen, Katuscak and Ozdenoren (2007), Lopomo, Rigotti and

Shannon (2010), Azrieli and Teper (2011), Bade (2011), Bodoh-Creed (2012), di Tillio, Kos,

Messner (2012), Auster (2013), Riedel and Sass (2013), Wolitzky (2013, 2014) and Kellner

(2015). In contrast, there have been only a very few papers investigating aspects of dynamic

games with ambiguity aversion (e.g., Lo 1999, Eichberger and Kelsey 1999, 2004, Bose and

Daripa 2009, Kellner and Le Quement 2013, 2015, Bose and Renou 2014, Mouraviev, Riedel

and Sass 2015, Battigalli et al. 2015a,b, Dominiak and Lee 2015). Instead of sequential

optimality, these other papers involving dynamic games take a variety of approaches. These

include, e.g., optimality under consistent planning in the spirit of Strotz (1955-56), the no-

tion of no profitable one-stage deviations, or taking a purely ex-ante perspective. In Section

5, we define optimality under consistent planning and say more about how these approaches

relate to ours, and also discuss some possible extensions, including to Maxmin expected

utility (Gilboa and Schmeidler, 1989) preferences.

2 Model

We begin by defining the central domain of the paper, multi-stage games with observed

actions and incomplete information (cf. Fudenberg and Tirole, 1991a, Chapter 8.2.3) where

players have (weakly) ambiguity averse smooth ambiguity preferences. It is on this domain

that we will develop and apply our equilibrium concepts. While this class of games is

broad enough to cover many applications to economics and elsewhere, it does embody some

limitations. In such games, the only observation that a player may see while others do not is

what is revealed to her at the start of the game by nature. There are no private observations

as the game proceeds. Note that (finite) normal form games with incomplete information

and (weakly) ambiguity averse smooth ambiguity preferences are the special case where there

is a single stage (i.e., T = {0}).

Definition 2.1 A (finite) extensive-form multi-stage game with observed actions and in-

complete information and (weakly) ambiguity averse smooth ambiguity preferences, Γ, is

4



a tuple (N, T , (Ati)i∈N,t∈T , (Θi)i∈N , (µi)i∈N , (ui, φi)i∈N) where N is a finite set of players,

T = {0, 1, ..., T} is the set of stages, Ati(ηt) gives the finite set of actions (possibly singleton)
available to player i in stage t as a function of the partial history ηt ∈ H t of action profiles

up to (but not including) time t, where the sets of partial histories are defined by H0 = {∅}
and, for 1 ≤ t ≤ T + 1, H t ≡ {(ηt−1, a) | ηt−1 ∈ H t−1, a ∈

∏
j∈N

At−1
j (ηt−1)}, Θi is the finite

set of possible “types” for player i, µi is a probability over ∆ (Θ) having finite support such

that
∑

π∈∆(Θ)

µi(π)π(θ) > 0 for all i ∈ N and θ ∈ Θ, where Θ ⊆
∏
j∈N

Θj and ∆ (Θ) is the set

of all probability measures over Θ, ui : H ×Θ→ R is the utility payoff of player i given the
history of actions (H ≡ HT+1) and the type of each player, and φi : ui(H × Θ) → R is a
continuously differentiable, concave and strictly increasing function.

All of the definitions and formal results of this paper continue to hold if restricted to the

class of games with a common µ such that µi = µ for all players i. Furthermore, none of our

examples or the conclusions we draw from them will rely on differences in the µi.

To interpret ui in this definition, one can think of this utility function as coming from

the composition of two more fundamental functions. The first function ci : H × Θ → Z

is a consequence function determined by the structure of the game —for each history and

type profile, it specifies the consequence or prize or outcome z ∈ Z received by player i.

The second function is a vNM utility over consequences, wi : Z→ R.2 Assume that Z is big
enough so that ui(H ×Θ) is interior in wi(Z).3

Given a history h ∈ H and stage t ≤ T +1, ht ∈
∏
j∈N

∏
s<t

Asj(h
s) is the partial history up to

but not including t specified by h. It is useful to define a strategy for player i as specifying

the distribution over i’s actions conditional on each possible partial history and each possible

type of player i. Formally:

Definition 2.2 A (behavior) strategy for player i in a game Γ is a function σi such that

σi (h
t, θi) ∈ ∆(Ati(h

t)) for each type θi, history h and stage t.

Given a strategy σi for player i, the continuation strategy at stage t given partial history

ht, σh
t

i , is the restriction of σi to the set of all partial histories starting with h
t. Let Σi

denote the set of all strategies for player i. A strategy profile, σ ≡ (σi)i∈N , is a strategy for

each player. Similarly, the associated continuation strategy profile at stage t given partial

history ht is σh
t ≡ (σh

t

i )i∈N .

2Notice that wi is independent of θ, so that even though it might appear that ui = wi ◦ ci is state-
dependent, this does not mean that decision-theoretically we are in a state-dependent setting, since the
dependence is only via the usual dependence of the consequence of an act on the state.

3This will be convenient for some later optimality characterizations, the proofs of Theorem 2.3 and Lemma
A.1 in particular.
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For a history h, the action taken at stage s by player j is denoted by hs,j. Given a

strategy profile σ, type profile θ, history h and 0 ≤ r < t ≤ T + 1, the probability of

reaching ht starting from hr is pσ,θ(ht|hr) ≡
∏
j∈N

∏
r≤s<t

σj (hs, θj) (hs,j). It will be useful in what

follows to separate this probability into a part affected only by σi and θi and a part affected

only by σ−i and θ−i. These are pi,σ,θ(ht|hr) ≡
∏

r≤s<t
σi (h

s, θi) (hs,i) and p−i,σ,θ(h
t|hr) ≡∏

j 6=i

∏
r≤s<t

σj (hs, θj) (hs,j) respectively, with pi,σ,θ(ht|hr)p−i,σ,θ(ht|hr) = pσ,θ(h
t|hr). With this

notation, we can now state formally the assumption that players ex-ante preferences over

strategies are smooth ambiguity preferences (Klibanoff, Marinacci and Mukerji 2005) with

the ui, φi and µi as specified by the game.

Assumption 2.1 Fix a game Γ. Ex-ante (before own-types are known), each player i ranks

strategy profiles σ according to

Vi(σ) ≡
∑

π∈∆(Θ)

φi

∑
θ̂∈Θ

∑
ĥ∈H

ui(ĥ, θ̂)pi,σ,θ̂(ĥ|h
0)p−i,σ,θ̂(ĥ|h

0)π(θ̂)

µi (π) . (2.1)

Using these preferences we define ex-ante equilibrium:

Definition 2.3 Fix a game Γ. A strategy profile σ∗is an ex-ante equilibrium if, for all

players i,

Vi(σ
P ) ≥ Vi(σ

′
i, σ

P
−i)

for all σ′i ∈ Σi.

When there is no type uncertainty, the definition collapses to Nash equilibrium. Thus,

in a game with complete information, we have nothing new to say compared to the standard

theory. Also, in the case where the φi are linear (expected utility) and µi = µ for all players

i, the definition reduces to the usual (ex-ante) Bayesian Nash Equilibrium definition.

We next turn to defining preferences beyond the ex-ante stage. Given a player i of type

τ i a partial history ht, and a strategy profile σ, consider the set of type profiles consistent

with τ i that make ht reachable without requiring a deviation from σ by players other than

i. It is possible that this set might be empty (i.e., ht can be reached only by some player(s)

deviating from σ−i). For this reason, consider the furthest point back from ht for which there

is some θ−i such that getting to ht from that point requires no deviation from σ−i. Note that

such a point always exists, as ht is always reachable from ht itself. We will be interested in

the set of type profiles consistent with τ i that make ht reachable from such a point without

requiring a deviation from σ by players other than i. Formally this set is the following:
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Notation 2.1 Θi,τ i,ht ≡ {θ ∈ Θ | θi = τ i and p−i,σ,θ(ht|hmi(h
t)) > 0}, where

mi(h
t) ≡ min

⋃
θ

{
r ∈ {0, ..., t} | p−i,σ,θ(ht|hr) > 0

}
.

Using mi(h
t) we can make precise what it means for one partial history to be reachable

from another:

Definition 2.4 Given a strategy profile σ, player i views partial history ht with t ≥ 1 as

reachable from hs (where 0 ≤ s ≤ t) if mi(h
t) ≤ s.

The following expresses a defining property for interim (second-order) beliefs of player

i of type τ i given partial history ht and strategy profile σ: that they assign weight only to

type distributions that assign positive probability to type profiles in Θi,τ i,ht .

Definition 2.5 An interim belief for player i of type τ i in a game Γ given partial history ht

and strategy profile σ is a finite support probability measure νi,τ i,ht over ∆ (Θ) such that

νi,τ i,ht ({π ∈ ∆ (Θ) | π(Θi,τ i,ht) > 0}) = 1. (2.2)

Given a strategy profile σ, an interim belief system ν ≡ (νi,τ i,ht)i∈N,τ i∈Θi,ht∈Ht is an interim

belief for each type of each player at each partial history. The associated interim belief profile

given partial history ht is νh
t ≡ (νi,τ i,ht)i∈N,τ i∈Θi.

Fundamental to our equilibrium notion will be sequential optimality. It requires that

each player plays optimally for each partial history and each own-type realization given the

strategies of the others. This optimality is required even when the partial history is before-

the-fact viewed as a null event according to the given strategy profile combined with the

beliefs of the player. In order to describe optimality for i given τ i and ht, we need to write

i’s conditional preferences. These make use of interim beliefs.

Assumption 2.2 Fix a game Γ and an interim belief system ν. Any player i of type τ i at

partial history ht ranks strategy profiles σ according to

Vi,τ i,ht(σ; ν) ≡
∑

π∈∆(Θ)|π(Θi,τi,ht
)>0

φi

∑
θ̂∈Θ

∑
ĥ∈H|ĥt=ht

ui(ĥ, θ̂)pi,σ,θ̂(ĥ|h
t)p−i,σ,θ̂(ĥ|h

t)πΘi,τi,ht
(θ̂)

 νi,τ i,ht (π) ,

(2.3)
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where

πΘi,τi,ht
(θ) =

p−i,σ,θ(h
t|hmi(ht))π(θ)∑

θ̂∈Θi,τi,ht

p−i,σ,θ̂(h
t|hmi(ht))π(θ̂)

if θ ∈ Θi,τ i,ht and 0 otherwise. (2.4)

Compared to the ex-ante preferences given in (2.1), the conditional preferences (2.3)

differ only in that (1) the beliefs may have changed in light of τ i and ht (µi is replaced by

νi,τ i,ht and π by πΘi,τi,ht
), and (2) the probabilities of reaching various histories according to

the strategy profile are now calculated starting from ht rather than from the beginning of

the game. Observe that, while πΘi,τi,ht
is calculated using Bayes’formula (see the Remark

below), there is no restriction placed at this point on the ν other than (2.2).

Remark 2.1 To see that the conditioning formula for π in (2.4) is the usual Bayes’formula,
note that, because θi = τ i for all θ ∈ Θi,τ i,ht ,

p−i,σ,θ(h
t|hmi(ht))π(θ)∑

θ̂∈Θi,τi,ht

p−i,σ,θ̂(h
t|hmi(ht))π(θ̂)

=
pσ,θ(h

t|hmi(ht))π(θ)∑
θ̂∈Θi,τi,ht

pσ,θ̂(h
t|hmi(ht))π(θ̂)

if θ ∈ Θi,τ i,ht and pi,σ,θ(h
t|hmi(ht)) > 0.

Furthermore, as long as mi(h
t) < t (so that one may go back at least one stage from

ht without a deviation by players other than i and therefore mi(h
t) = mi(h

t−1)), such

conditional probabilities are also related by the one-step-ahead Bayes’formula

πΘi,τi,ht
(θ) =

p−i,σ,θ(h
t|ht−1)πΘi,τi,ht−1 (θ)∑

θ̂∈Θi,τi,ht

p−i,σ,θ̂(h
t|ht−1)πΘi,τi,ht−1 (θ̂)

if θ ∈ Θi,τ i,ht and 0 otherwise. (2.5)

Using these preferences, we may now define sequential optimality:

Definition 2.6 Fix a game Γ. A pair
(
σP , νP

)
consisting of a strategy profile and interim

belief system is sequentially optimal if, for all players i, all types τ i and all partial histories

ht,

Vi(σ
P ) ≥ Vi(σ

′
i, σ

P
−i) (2.6)

and

Vi,τ i,ht(σ
P ; νP ) ≥ Vi,τ i,ht((σ

′
i, σ

P
−i); ν

P ) (2.7)

for all σ′i ∈ Σi, where the Vi and Vi,τ i,ht are as specified in (2.1) and (2.3).
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Note that since Vi,τ i,ht(σ; ν) = Vi,τ i,ht(σ̂; ν) if σh
t

= σ̂h
t

for type τ i, requiring the inequal-

ities for the Vi,τ i,ht to hold as i changes only her continuation strategy given h
t and τ i would

result in an equivalent definition. A strategy profile σ is said to be sequentially optimal

whenever there exists an interim belief system ν such that (σ, ν) is sequentially optimal.

While sequential optimality does not place restrictions on the interim belief system be-

yond (2.5), observe that Vi,τ i,ht does entail the assumption that, even at stages immediately

following a deviation by some player other than i, player i continues to assume that the

players −i will play according to σ−i from the current stage onward.

Assuming a common µ, sequential optimality implies subgame perfection adapted to

allow for smooth ambiguity preferences. In multistage games with observed actions, the

only proper subgames occur at stages where all type uncertainty (if any) has been resolved.

For any such proper subgame, (2.7) ensures that the continuation strategy profile derived

from σP forms a Nash equilibrium of the subgame. For the overall game, (2.6) ensures σP is

an ex-ante equilibrium, which, with common µ, is the natural extension of Nash equilibrium

to allow for smooth ambiguity preferences.

Sequential optimality identifies a set of strategy profiles. Each such profile is sequentially

optimal with respect to some interim belief system. Recall that we have placed little restric-

tion on how a player i’s beliefs at different points in the game relate to one another and to

the ex-ante beliefs µi. We now show (Theorem 2.1) that every such profile is sequentially

optimal with respect to an interim belief system generated by one particular update rule.

This update rule was proposed by Hanany and Klibanoff (2009) and is called the smooth

rule. The smooth rule is defined as follows:

Definition 2.7 An interim belief system ν satisfies the smooth rule using σ as the ex-ante

equilibrium if the following holds for each player i and type τ i: First, for all π ∈ ∆ (Θ) such

that π(Θi,τ i,∅) > 0,

νi,τ i,∅(π) ∝
φ′i

(∑̂
θ∈Θ

∑
ĥ∈H

ui(ĥ, θ̂)pσ,θ̂(ĥ|ĥ0)π(θ̂)

)

φ′i

(∑̂
θ∈Θ

∑
ĥ∈H

ui(ĥ, θ̂)pσ,θ̂(ĥ|ĥ0)πΘi,τi,∅
(θ̂)

)π(Θi,τ i,∅)µi(π);

Second, for each partial history ht such that i views ht as reachable from ht−1, for all π ∈
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∆ (Θ) such that π(Θi,τ i,ht) > 0,

νi,τ i,ht(π) ∝
φ′i

(∑̂
θ∈Θ

∑
ĥ∈H|ĥt−1=ht−1

ui(ĥ, θ̂)pσ,θ̂(ĥ|ht−1)πΘi,τi,ht−1 (θ̂)

)

φ′i

(∑̂
θ∈Θ

∑
ĥ∈H|ĥt=ht

ui(ĥ, θ̂)pσ,θ̂(ĥ|ht)πΘi,τi,ht
(θ̂)

) (2.8)

·

 ∑
θ̂∈Θi,τi,ht

p−i,σ,θ̂(h
t|ht−1)πΘi,τi,ht−1 (θ̂)

 νi,τ i,ht−1(π).

Note that under ambiguity neutrality (φi linear, which is expected utility), φ
′
i is constant,

and thus the φ′i terms appearing in the formula cancel and the smooth rule coincides with

standard Bayesian updating. More generally, the φ′i ratio terms, which reflect changes in

the motive to hedge against ambiguity (see Hanany and Klibanoff 2009 and Baliga, Hanany

and Klibanoff 2013), are the only difference from Bayesian updating. These changes can be

motivated via dynamic consistency. For ambiguity averse preferences, Bayesian updating

does not ensure dynamic consistency. The smooth rule is dynamically consistent for all

ambiguity averse smooth ambiguity preferences (Hanany and Klibanoff 2009).

We now show that, for the purposes of identifying sequentially optimal strategy profiles,

restricting attention to beliefs updated according to the smooth rule is without loss of gen-

erality. Specifically, considering only interim belief systems satisfying the smooth rule yields

the entire set of sequentially optimal strategy profiles. The proof of this and all subsequent

results in the paper may be found in the Appendix.

Theorem 2.1 Fix a game Γ. Suppose
(
σP , νP

)
is sequentially optimal. Then, there exists

an interim belief system ν̂P satisfying the smooth rule using σP as the ex-ante equilibrium

such that
(
σP , ν̂P

)
is sequentially optimal.

Why is it enough to consider smooth rule updating to identify sequentially optimal pro-

files? For each player individually, sequential optimality reduces to, essentially, dynamic

consistency, and it is this property of smooth rule updating that ensures its suffi ciency. Note

that Theorem 2.1 would be false if we were to replace the smooth rule with Bayes’rule —

restricting attention to interim belief systems satisfying Bayesian updating generally rules

out some (or all) sequentially optimal strategies. A Bayesian version of the theorem is true,

however, if we restrict attention to expected utility preferences, for in that case the smooth

rule and Bayes’rule agree. Perfect Bayesian Equilibrium (PBE) imposes sequential opti-

mality (defined using only expected utility preferences) and also that beliefs are related via
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Bayesian updating wherever possible (plus some auxiliary conditions, which we ignore for

now). From our theorem, it follows that in the expected utility case, sequential optimal-

ity alone (i.e., without additionally requiring Bayesian updating) identifies the same set of

strategy profiles as sequential optimality plus Bayesian updating. This Bayesian version of

the result was first shown by Shimoji and Watson (1998) in the context of defining extensive

form rationalizability.

The next result shows that, in common with most refinements of Nash equilibrium under

ambiguity neutrality, the power of sequential optimality to refine ex-ante equilibrium comes

from the presence of off-path actions. In particular, all ex-ante equilibria for which all partial

histories before the last stage are on-path can be supported as sequentially optimal.

Theorem 2.2 Fix a game Γ. Suppose σ is an ex-ante equilibrium, all players view all partial

histories ht with 1 ≤ t ≤ T as reachable from h0. Then, there exists an interim belief system

ν such that (σ, ν) is sequentially optimal.

To verify that a pair (σ, ν) where ν obeys smooth rule updating is sequentially optimal

it is suffi cient to check one-stage deviations. To show this, we formally define what it means

to have no profitable one-stage deviations and what we mean by obeying the smooth rule in

this context.

Definition 2.8 The pair (σ, ν) satisfies the no profitable one-stage deviation property if for

each player i and each partial history ht, σi is optimal for i given interim belief νi,τ i,ht among

all σ′i satisfying σ
′
i(η, τ i) = σi(η, τ i) for all η ∈

⋃
t∈T

H t such that η 6= ht.

For our next result, it is helpful to apply the smooth rule given a strategy profile σ,

even when σ is not necessarily an ex-ante equilibrium. We say that an interim belief system

ν satisfies extended smooth rule updating using σ as the strategy profile if ν satisfies the

conditions in Definition 2.7 with respect to σ. With extended smooth rule updating, the

absence of profitable one-stage deviations implies sequential optimality:

Theorem 2.3 If (σ, ν) satisfies the no profitable one-stage deviation property and ν satis-

fies extended smooth rule updating using σ as the strategy profile then (σ, ν) is sequentially

optimal.

It follows that a strategy profile is part of a sequential optimum if and only if there are

no profitable one-stage deviations with respect to beliefs updated according to the smooth

rule. Also notice that, fixing the strategies of i’s opponents, at any stage in the game where i

has a non-trivial strategy choice, i may identify an optimal strategy for the remainder of the

11



game using a “folding back”algorithm. It works as follows —for each partial history leading

to a final stage where i may move, i calculates an optimal mixture over the actions she has

available at that stage given the partial history, the strategies of the other players and i’s

beliefs about types. Then, holding these fixed, i repeats this process for partial histories one

stage earlier in the game, and so on. The only thing that (in common with the standard

approach under ambiguity neutrality) cannot be calculated via folding back are the beliefs

about types at each partial history. These may be determined by updating according to the

smooth rule (which reduces to Bayes’rule under ambiguity neutrality). Recall that smooth

rule updating is without loss of generality for the purposes of identifying sequentially optimal

strategies.

Do sequential optima always exist? In the next two sections we explore refinements of

sequential optimality, SEA and PEA. We show existence for these refinements, thus implying

existence of sequential optima.

2.1 Sequential Equilibrium with Ambiguity

To describe our proposed Sequential Equilibrium with Ambiguity (SEA), we consider an

auxiliary condition that imposes requirements on beliefs even at those points where sequential

optimality has no implications for updating. These points are those a player i thinks are

only reached immediately following deviation(s) of other player(s). Formally, these are partial

histories ht such that t > 0 and mi(h
t) = t. The condition is an extension of Kreps and

Wilson’s (1982) consistency condition that they use in defining Sequential Equilibrium. We

modify consistency in order to accommodate ambiguity aversion by replacing Bayes’rule in

their definition with the (extended) smooth rule. Recall that if we simply limited attention

to Bayesian updating then sequentially optimal strategies might fail to exist. Also, observe

that this is a true extension of Kreps and Wilson’s consistency because Bayes’rule and the

smooth rule coincide under ambiguity neutrality.

Definition 2.9 Fix a game Γ. A pair
(
σS, νS

)
consisting of a strategy profile and interim

belief system satisfies smooth rule consistency if there exists a sequence of completely mixed

strategy profiles {σk}∞k=1, with limk→∞ σ
k = σS, such that νS = limk→∞ ν

k, where νk is

determined by extended smooth rule updating using σk as the strategy profile.

Definition 2.10 A sequential equilibrium with ambiguity (SEA) of a game Γ is a pair(
σS, νS

)
consisting of a strategy profile and interim belief system such that

(
σS, νS

)
is se-

quentially optimal and satisfies smooth rule consistency.

12



By definition, any SEA is sequentially optimal. In general, a sequential optimum might

not be an SEA. However, if all actions before the last stage of the game are on the equilibrium

path, any strategy profile that is part of a sequential optimum is also part of an SEA. Thus

the SEA refinement has bite only through restricting off-path beliefs. Formally:

Theorem 2.4 Fix a game Γ. Suppose (σ, ν) is sequentially optimal and all players view all

partial histories ht with 1 ≤ t ≤ T as reachable from h0. Then, there exists an interim belief

system ν̂ such that (σ, ν̂) is an SEA.

We show that every game Γ has at least one SEA (and thus also at least one sequential

optimum). Since the functions φi describing players’ambiguity attitudes are part of the

description of Γ, this result goes beyond the observation that an SEA would exist if players

were ambiguity neutral, and ensures existence given any specified ambiguity aversion.

Theorem 2.5 An SEA exists for any game Γ.

Finally, we show that smooth rule consistency implies extended smooth rule updating in

the limit, and use this plus Theorem 2.3 to conclude that replacing sequential optimality in

the definition of SEA by the no profitable one-stage deviation property would not change

the set of equilibria.

Lemma 2.1 If (σ, ν) satisfies smooth rule consistency, then ν satisfies extended smooth rule

updating using σ as the strategy profile.

Corollary 2.1 (σ, ν) satisfies the no profitable one-stage deviation property and smooth rule

consistency if and only if (σ, ν) is an SEA.

2.2 Perfect Equilibrium with Ambiguity

In this section, we consider a weaker auxiliary condition than smooth rule consistency.

Though weaker, it has the advantage of not invoking limits of sequences of strategies and

beliefs. This auxiliary condition relates to beliefs exactly at those points where sequential

optimality has no implications for updating. The condition requires that, absent consid-

erations related to hedging against ambiguity, if players’types are viewed as independent,

there should be no updating of player i’s belief about player j’s type immediately following a

partial history at which player j has no choice (i.e., only one action) available. This reflects

an idea present in versions of PBE (see e.g., Fudenberg and Tirole 1991b, p. 241) that when

players’types are independent, only player j has information to reveal about her own type

and so i’s beliefs about player j’s type should not be affected by another player’s deviation.

13



When j has only one action, she has no means to reveal anything, and so, absent reasons

related to hedging against ambiguity, player i should not change her marginal on j’s type.

To formalize this in our setting we need to define i’s marginal on j’s type, as well as

a condition ensuring that no change in ambiguity hedging concerns occurs in moving from

ht−1 to ht.

Definition 2.11 Given an interim belief system ν, player i’s marginal on player j’s type at

partial history ht is ∑
π∈∆(Θ)

πΘi,τi,ht
({{θj} ×Θ−j}) νi,τ i,ht(π).

Definition 2.12 Given a strategy profile σ and an interim belief system ν, if player i does

not view a partial history ht with t ≥ 1 as reachable from ht−1, i has no costly ambiguity

exposure under σ at ht−1 and ht if

φ′i

∑
θ̂∈Θ

∑
ĥ∈H|ĥt−1=ht−1

ui(ĥ, θ̂)pσ,θ̂(ĥ|h
t−1)πΘi,τi,ht−1 (θ̂)


is constant for all π in the support of νi,τ i,ht−1, and

φ′i

∑
θ̂∈Θ

∑
ĥ∈H|ĥt=ht

ui(ĥ, θ̂)pσ,θ̂(ĥ|h
t)πΘi,τi,ht

(θ̂)


is constant for all π in the support of νi,τ i,ht.

Observe that there are essentially two ways that a player i could have no costly ambiguity

exposure under σ at ht−1 and ht —strategies might be such that i is fully hedged against

ambiguity from the points of view of the two partial histories (i.e., the conditional expected

utility arguments of φ′i in the definition do not vary with π) or, where i is exposed to

fluctuations in these conditional expected utilities, φ′i is constant (i.e., i is ambiguity neutral

over some range) so the ambiguity exposure is not costly. We can now state our auxiliary

condition:

Definition 2.13 Fix a game Γ. A pair
(
σP , νP

)
consisting of a strategy profile and interim

belief system naturally extends updating if, for all players i,j 6= i, all types τ i and all partial

histories ht with t ≥ 1, if

(a) player i does not view ht as reachable from ht−1,

(b)
∑

π∈∆(Θ) πΘi,τi,ht−1ν
P
i,τ i,ht−1(π) ∈ ∆ (Θ) is a product measure,
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(c) player j has no choice (i.e., only one action) available at ht−1 and

(d) i has no costly ambiguity exposure under σ at ht−1 and ht,

then

i’s marginal on player j’s type at partial history ht must remain the same as it would be at

ht−1 if the smooth rule using σP as the ex-ante equilibrium were used to derive νi,τ i,ht−1 from

νP
i,τ i,hmi(h

t−1)
.

In the case where players are ambiguity neutral, Definition 2.13 is implied by Fudenberg

and Tirole’s (1991b) PBE requirement that Bayes’rule is used to update beliefs whenever

possible (see Fudenberg and Tirole (1991b) condition (1) of Definition 3.1, p.242).

Adding this condition to sequential optimality leads to the following equilibrium defini-

tion:

Definition 2.14 A perfect equilibrium with ambiguity (PEA) of a game Γ is a pair
(
σP , νP

)
consisting of a strategy profile and interim belief system such that

(
σP , νP

)
is sequentially

optimal and naturally extends updating.

Theorem 2.1 showed that interim belief systems using smooth rule updating generate all

sequentially optimal strategy profiles. Similarly, they generate all PEA strategy profiles.

Corollary 2.2 Fix a game Γ. Suppose
(
σP , νP

)
is a PEA of Γ. Then, there exists an

interim belief system ν̂P satisfying the smooth rule using σP as the ex-ante equilibrium such

that
(
σP , ν̂P

)
is a PEA of Γ.

The following result tells us that smooth rule consistency implies naturally extending

updating, and thus any SEA is also a PEA.

Theorem 2.6 Fix an SEA,
(
σS, νS

)
, of a game Γ.

(
σS, νS

)
is also a PEA of Γ.

From this result and the existence of SEA (Theorem 2.5), it immediately follows that

a PEA exists for any game Γ. That some PEA may not be SEA, and so SEA can be a

strictly stronger concept for some games, follows from the observation that PEA does not

restrict i’s beliefs at partial histories immediately following a deviation by another player

unless conditions (b), (c), and (d) of naturally extends updating are satisfied. In contrast,

smooth rule consistency does place restrictions on beliefs at such partial histories.
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2.3 No new behavior without strategic interaction

Before we turn to examples and use of these new concepts, we show that strategic interaction

is necessary for any new equilibrium behavior to occur under ambiguity aversion that would

never occur under ambiguity neutrality. Specifically, we show that in any game where only

one player, j, has non-trivial choice of strategies, any path played with positive probability

in an ex-ante equilibrium (the weakest of the concepts we have defined) is also played with

positive probability under ambiguity neutrality in an SEA (the strongest concept we have

defined) for some initial beliefs µ̂j. This shows that our preference generalization alone

(i.e., allowing ambiguity aversion) is not what is generating any new behavior that we find,

but rather it is the combination of ambiguity aversion with strategic interaction. For a

result that in individual decision problems, under standard assumptions (including reduction,

broad framing, statewise dominance and expected utility evaluation of objective lotteries),

all observed behavior optimal according to ambiguity averse preferences is also optimal for

some subjective expected utility preferences, see e.g., Kuzmics (2015).

Theorem 2.7 Fix a game Γ such that all players other than a player, j, have singleton

action sets following every partial history. If σ is an ex-ante equilibrium of Γ and h is a

history such that
∑
π

∑
θ

pσ,θ(h|h0)π(θ)µj(π) > 0, then there exists a game Γ̂, identical to Γ

except that (1) all players are ambiguity neutral and (2) the belief of player j (µ̂j) may differ

from that in Γ, such that σ is part of an SEA of Γ̂ and
∑
π

∑
θ

pσ,θ(h|h0)π(θ)µ̂j(π) > 0.

Theorem 2.7 says that with only one player having real choices, no paths of play occur

under ambiguity aversion that could not also occur for some beliefs under ambiguity neu-

trality. The converse —that no paths of play occur under ambiguity neutrality that could

not also occur for some beliefs under ambiguity aversion —is also true: let the beliefs under

ambiguity aversion, µ̂j, place probability 1 on the reduced measure (
∑
π

π(θ)µj(π)). In sum

then, when there is only one player with choices, neither the presence nor the absence of

ambiguity aversion affects what paths of play may occur under some beliefs. This is true

despite the fact that, for fixed beliefs µ, changing ambiguity aversion generally does change

the optimal strategy.

3 Examples

In this section, we present a number of examples designed to illustrate different aspects of our

equilibrium concepts and compare with standard concepts that limit attention to ambiguity

neutral players. All of our examples look at games where there is a common belief µ such
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Figure 3.1: SEA Example

that µi = µ for all players i. Thus the behavior in our examples is never driven by differences

in ex-ante beliefs.

3.1 Ambiguity Aversion Generates New Strategic Behavior in Equi-

librium

3.1.1 Example 1: Opting in and different hedges

We present a 3-player game, with incomplete information about player 1, in which a path of

play can occur as part of an SEA when players 2 and 3 are suffi ciently ambiguity averse, but

never occurs as part of even an ex-ante equilibrium if we modify the game by making players

2 and 3 ambiguity neutral (expected utility). Furthermore, under the SEA we construct,

player 1 achieves a higher expected payoff than under any ex-ante equilibrium of the game

with ambiguity neutral players, and even outside the convex hull of such ex-ante equilibrium

payoffs. The game is depicted in Figure 3.1.

There are three players: 1,2 and 3. First, nature determines whether player 1 is of type
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I or type II and 1 observes her own type. Players 2 and 3 have only one type, so there

is complete information about them. The payoff triples in Figure 3.1 describe vNM utility

payoffs given players’actions and players’types (i.e., (u1, u2, u3) means that player i receives

ui). Players 2 and 3 have ambiguity about player 1’s type and have smooth ambiguity

preferences with an associated φ2 = φ3 = φ and µ2 = µ3 = µ. Player 1 also has smooth

ambiguity preferences, but nothing in what follows depends on either φ1 or µ1. Player 1’s

first and only move in the game is to choose between action P (lay) which leads to players

2 and 3 playing a simultaneous move game in which their payoffs depend on 1’s type, and

action Q(uit), which ends the game (equivalently think of it leading to a stage where all

players have only one action).4

Proposition 3.1 Suppose players 2 and 3 are ambiguity neutral and have a common belief

µ. There is no ex-ante equilibrium such that player 1 plays P with positive probability.

Since σ being part of a sequentially optimal (σ, ν) implies σ is an ex-ante equilibrium,

Proposition 3.1 immediately implies that none of the stronger concepts such as PEA, SEA,

PBE or Sequential Equilibrium can admit the play of P with positive probability under

ambiguity neutrality. The next result shows that the situation changes dramatically under

suffi cient ambiguity aversion.

Proposition 3.2 There exist φ and µ such that in an SEA both types of player 1 play P

with probability 1, and (U,R) is played with probability greater than 1
2
.

If one modifies the example in Figure 3.1 by reversing the 0’s and 2’s in player 1’s payoffs

then, by similar reasoning as in the proof of Proposition 3.2, it should be possible to construct

an SEA where Q is played with probability 1 by both types of player 1. There should not be

such an SEA under ambiguity neutrality (and thus no such sequential equilibrium), though

there would be such a PEA.

3.1.2 Example 2: Hedging plus Screening on beliefs

We now present an example of a 3-player game, with incomplete information about player 3,

in which a path of play can occur as part of an SEA when player 2 is suffi ciently ambiguity

averse, but never occurs as part of a PEA (nor a PBE) when player 2 has expected utility

preferences (and is thus ambiguity neutral). Furthermore, under the SEA we construct,

4Note that to eliminate any possible effects of varying players’risk aversion, think of the playoffs being
generated using lotteries over two “physical”outcomes, the better of which has utility u normalized to 5/2
and the worse of which has u normalized to 0. So, for example, the payoff 1 can be thought of as generated
by the lottery giving the better outcome with probability 2/5 and the worse outcome with probability 3/5.
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Figure 3.2: 3-Player Game

player 3 achieves a higher expected payoffthan under any PEA with player 2 having expected

utility preferences. The example is constructed so that if player 2 is suffi ciently ambiguity

averse then 3 changes his strategy to allow an action by 2 that is favorable to 3. The role

of player 1 is to effectively “screen”player 2 and prevent the part of the game that has the

play path in question from being reached when 2 puts suffi ciently high weight on player 3

being of a particular type (type II). This screening, by design, catches player 2 for a smaller

range of parameters when 2 is more ambiguity averse. When 2 is ambiguity neutral, the

screening works for a large enough range of parameters that the part of the game in question

is reached only when player 2 does not have incentive to carry out the action favorable to

player 3, thus 3 opts out of this portion of the game. The game is depicted in Figure 3.2.

There are three players: 1,2 and 3. First, nature determines whether player 3 is of type

I or type II and 3 observes his own type. Players 1 and 2 have only one type, so there

is complete information about them. The payoff triples in Figure 3.2 describe vNM utility

payoffs given players’actions and players’types (i.e., (u1, u2, u3) means that player i receives

ui). Player 2 has ambiguity about player 3’s type and has smooth ambiguity preferences

with an associated φ2 and µ2. Players 1 and 3 also have smooth ambiguity preferences, but

nothing in what follows depends on either φj or µj for j = 1, 3. Player 1’s first and only move
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in the game is to choose between action T (wo) which gives the move to player 2 and action

(th)R(ee), which gives the move to player 3. If T , then 2 makes a single move that ends the

game, by choosing between F (ixed) and B(et) (i.e., player 2 effectively chooses between a

fixed payoff and betting that player 3 is of type II). If R, then player 3’s move is a choice

between C(ontinue) which leads to player 2 being given the move, and S(top) which ends

the game. If C, then player 2 has a choice between G(amble) and H(edge) after which the

game ends.5

In any sequential optimum where only type I of player 3 plays C with positive probability,

(2.3) requires player 2, following C, to put weight only on type I. Thus, 2 would then always

play G if given the move in any such sequential optimum. Notice that if 2 plays G, player 3

is always better off playing S than C. Therefore no sequential optimum can have only type I

of player 3 play C with positive probability. Similarly, no sequential optimum can have only

type II of player 3 play C with positive probability as 2 would play H and type I would gain

from deviating to C. Observe that for any pure strategy sequential optimum, player 3 plays

(C,C) if and only if player 2 plays H. Thus (C,C), H is part of a sequential optimum if

and only if Player 2 is behaving optimally by playing H (with suffi ciently high probability)

from the point of view of both stage 1 and stage 2. From (2.3), the only difference in the

point of view of these stages can be the beliefs and the event the π are conditioned on. For

extreme beliefs such as putting all weight on player 3 being type II with probability 1, H is

indeed optimal. For other beliefs, such as, putting all weight on player 3 being type I with

probability 1, H is not optimal. Are there beliefs supporting it as part of an SEA?

Our first result shows that C may be played on the equilibrium path as part of an SEA.

Proposition 3.3 There exist φ2 and µ2 such that C is played on the equilibrium path with

probability 1 as part of an SEA.

The proof of Proposition 3.3 relies on ambiguity aversion on the part of player 2. Our

next result shows that this is essential:

Proposition 3.4 Regardless of the beliefs of any player, if player 2 is ambiguity neutral

(φ2 affi ne), then no PEA results in C being played on the equilibrium path with positive

probability.

Thus, under ambiguity neutrality no PEA can ever result in play of C, while, when there

is enough ambiguity aversion there are SEA involving the play of C with probability 1. Note

5Note that to eliminate any possible effects of varying 2’s risk attitude, think of the playoffs of player 2
being generated using lotteries over two “physical”outcomes, the better of which has utility u2 normalized
to 6 and the worse of which has u2 normalized to 0. So, for example, the payoff 2 can be thought of as
generated by the lottery giving the better outcome with probability 1/3 and the worse with probability 2/3.

20



that if we were looking only for profiles satisfying sequential optimality then (R,F, (C,C), H)

could be the equilibrium strategies under ambiguity neutrality if 2’s initial reduced prob-

ability that 3 is of type II were suffi ciently high. This is compatible with 2’s play of F if

given the move by 1 by specifying (off-path) beliefs for 2 following T that place suffi cient

weight on type I. Such off-path beliefs are unrestricted by sequential optimality, but are not

compatible with PEA or SEA.

3.2 Example 3: Limit Pricing under Ambiguity

In this section we present an example of a game with an SEA involving non-trivial updating

on the equilibrium path that departs from Bayes rule. The example is based on the Milgrom

and Roberts (1982) limit pricing entry model. In this example, an incumbent has private

information concerning his production costs. The incumbent chooses a quantity, an entrant

observes the quantity (or, equivalently, price) and decides whether or not to enter, in which

case he pays a fixed cost K > 0. Then the private information is revealed and the last stage

of game played, either by both firms competing in a Cournot duopoly or by the incumbent

again being a monopolist.6 To make this a finite game, suppose there are three possible

costs for the incumbent (H,M,L) and a finite set of feasible quantities (including at least

the monopoly quantities for each possible production cost and the complete information

Cournot quantities).7 ,8 We construct an SEA where in the first period, types M and L pool

at the monopoly quantity for L, and type H plays the monopoly quantity for H. Then the

entrant, with known cost, enters after observing any quantity strictly below the monopoly

quantity for L and does not enter otherwise. If entry occurs, the firms play the complete

information Cournot quantities in the second period. If no entry occurs, the incumbent

plays its monopoly quantity in the second period. We will see that after observing the

monopoly quantity for L (on-path), sequential optimality will require that the entrant’s

6As stated, it might seem that, due to the revelation of private information following entry, this is not
a multi-stage game with observed actions. Observe, however, that the following technique may be used to
embed such revelation in any multi-stage game with observed actions: model the revelation of a player’s
private information as a stage in which that player has actions equal to the set of types (and no other player
has any choice of actions) and payoffs are such that playing her realized type leads to the game continuing
as described, while playing any other type ends the game with a payoff to the player worse than under any
other outcome of the game (and any payoffs to the other players).
In any sequentially optimal strategy profile, the revealing player’s strategy will involve playing its realized

type with probability one at the revelation stage. Thus, it is safe to ignore the formal revelation stage and
simply assume complete information about that player from that point forward in any analysis of sequential
optima.

7The use of at least three costs is necessary to have non-trivial updating on the equilibrium path under
pure strategy limit pricing. With only two possible costs, pure limit pricing strategies involve full pooling.

8The strategies we construct remain SEA strategies no matter what finite set of feasible quantities is
assumed as long as the monopoly and Cournot quantities for each cost are included.
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updating under ambiguity aversion departs from Bayes rule. Sequential optimality also

ensures that the Cournot quantities in the complete information duopoly game following

entry are played (there are ex-ante equilibria violating sequential optimality that involve the

incumbent deterring all entry by threatening to flood the market if entry occurs).

We assume that the inverse market demand is given by P (Q) = a− bQ, a, b > 0. Given

the incumbent’s cost cI and quantity qI and entrant cost cE and quantity qE, the complete

information Cournot reaction functions are given by

qE(qI) = arg max(P (qE + qI)− cE)qE =
a− cE

2b
− qI

2

and

qI(qE) = arg max(P (qE + qI)− cI)qE =
a− cI

2b
− qE

2
.

This yields equilibrium values:

qI =
a+ cE − 2cI

3b
, qE =

a+ cI − 2cE
3b

and corresponding profits:

b(
a+ cE − 2cI

3b
)2, b(

a+ cI − 2cE
3b

)2.

Similarly, if there is only one firm in the market, with cost cI and quantity qI , the

monopoly quantity is defined by

arg max
qI

(P (qI)− cI)qI =
a− cI

2b
.

Thus monopoly profits are

b(
a− cI

2b
)2.

For later reference, we collect here conditions on the parameters assumed explicitly or im-

plicitly already plus restrictions equivalent to the monopoly and duopoly quantities above

being non-negative:

Assumption 3.1 a, b > 0, K ≥ 0, cH > cM > cL ≥ 0, cE ≥ 0, a ≥ cH , a + cE − 2cH ≥ 0

and a+ cL − 2cE ≥ 0.

We proceed to check whether the strategies described above satisfy condition (2.6) of

sequential optimality. First, we take the incumbent’s point of view.

1. Check that type H does not prefer to pool with M,L at the monopoly quantity for L thus
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deterring entry. Profits for H in the conjectured equilibrium are b(a−cH
2b

)2+b(a+cE−2cH
3b

)2.

Profits if it instead pools with M,L at monopoly quantity for L and deters entry are
a−cL

2b
(a− a−cL

2
− cH) + b(a−cH

2b
)2. For H to be better off not pooling, must have

b(
a+ cE − 2cH

3b
)2 ≥ a− cL

2b
(a− a− cL

2
− cH).

This is equivalent to

(
a+ cE − 2cH

3
)2 ≥ a− cL

2
(a− a− cL

2
− cH) (3.1)

2. Check that type M does not prefer to produce the monopoly quantity for M and fail

to deter entry. Profits for M in the conjectured equilibrium are a−cL
2b

(a− a−cL
2
− cM) +

b(a−cM
2b

)2. If it instead produced at the monopoly quantity for M and fails to deter

entry, profits are b(a−cM
2b

)2 + b(a+cE−2cM
3b

)2. For M to be better off pooling with L, must

have
a− cL

2b
(a− a− cL

2
− cM) ≥ b(

a+ cE − 2cM
3b

)2.

This is equivalent to

a− cL
2

(a− a− cL
2
− cM) ≥ (

a+ cE − 2cM
3

)2. (3.2)

3. Type L is playing optimally since its profit maximizing strategy in the absence of a

potential entrant also deters entry.

Now for the entry decision of the entrant. We assume that the entrant views each of

the three types (L,M,H) as non-null events ex-ante. This means
∑

π µ(π)π(t) > 0 for

t ∈ {L,M,H}. Denote the entrant’s Cournot profit net of entry costs when facing an

incumbent of type t by wt ≡ b(a+ct−2cE
3b

)2 − K. As a best-response to the incumbent’s

strategy, ex-ante the entrant wants to maximize∑
π

µ(π)φ [λL(π(L)wL + π(M)wM) + λHπ(H)wH ] (3.3)

with respect to λH , λL ∈ [0, 1], where λH and λL are the mixed-strategy probabilities of

entering contingent on seeing the monopoly quantity for H and the monopoly quantity for

L, respectively, and K ≥ 0 is the fixed cost of entry. We need it to be the case that this is

maximized at λH = 1 and λL = 0. Notice, by monotonicity, some maximum involves λH = 1
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if and only if

wH ≥ 0 (3.4)

and the strict version of this is equivalent to λH = 1 being part of every maximum. This says

that entering against a known high cost incumbent is profitable. Assuming this is satisfied,

so that λH = 1 is optimal, then λL = 0 is optimal if and only if the derivative of (3.3) with

respect to λL evaluated at λL = 0 and λH = 1 is non-positive:∑
π

µ(π)(π(L)wL + π(M)wM)φ′ (π(H)wH) ≤ 0. (3.5)

Since φ′ > 0, a necessary condition for (3.5) is wL < 0 (i.e., entering against a known

low cost incumbent is not profitable). To sum up, the equilibrium strategies we described

will satisfy condition (2.6) of sequential optimality if and only if the four inequalities (3.1),

(3.2), (3.4) and (3.5) are satisfied.

The following theorem provides suffi cient conditions for the existence of a SEA of the

form described above. One of the conditions is that the entrant is ambiguity averse enough.

All else equal, as a player’s φ becomes more concave, the player becomes more ambiguity

averse (see e.g., Klibanoff, Marinacci, Mukerji (2005), Theorem 2). Thus, formally, when

we say a player is ambiguity averse enough we mean that there exists a φ̂ such that the

conclusion of the theorem holds if the player’s φ is at least as concave as φ̂.

Proposition 3.5 Suppose Assumption 3.1, (3.1), (3.2), and the strict version of (3.4) hold,
and that µ is such that µ ({π | π(L)wL + π(M)wM < 0}) > 0 or µ ({π | π(L)wL + π(M)wM = 0}) =

1, and the support of µ can be ordered in the likelihood-ratio ordering. Then, if the entrant is

ambiguity averse enough, the limit pricing strategy profile described above is part of an SEA.

One observation following from the above result is that for any µ ∈ ∆(∆({H,M,L}))
such that µ ({π | π(L)wL + π(M)wM < 0}) > 0 and (3.5) is violated when φ is linear, there

exists a strictly increasing and twice continuously differentiable concave function φ such that

(3.5) is satisfied. In this way, ambiguity aversion leads to an expansion in the set of µ

that can support such a semi-pooling equilibrium. The numerical example below shows that

this expansion can be strict. Similarly, increasing ambiguity aversion increases the set of µ

that can support such a semi-pooling equilibrium. We also conjecture that in the limit as

ambiguity aversion becomes infinite, the set of such µ approaches the set of all µ satisfying

µ ({π | wL(π) < 0}) > 0 or µ ({π | wL(π) = 0}) = 1.

An example of parameters that satisfy the four inequalities so that the limit pricing

strategies are part of a PEA are the following: µ puts equal weight on type distributions π0 =
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(1/6, 1/3, 1/2) and π1 = (1/2, 1/3, 1/6), where the vector notation gives the probabilities of

L,M,H respectively, φ(x) = −e−αx, with α > 189
65

log(39
23

) ≈ 1.53546, a = 2, b = 7
128
, cH =

3
2
, cM = 11

8
, cL = 1, cE = 5

4
and K = 1. With these parameters, wL = −31

63
, wM = 35

63

and wH = 65
63
. Applying Bayesian updating after observing the monopoly price for L gives

νBE,qL(π0) = 3
8
. Applying the smooth rule, the updated beliefs after observing the monopoly

price for L are νE,qL(π0) = 3e−α(
νH
2 )

3e−α(
νH
2 )+5e−α(

νH
6 )

= 1

1+ 5
3
eα( 65

189 )
< 3

8
. For example, when α = 2,

νE,qL(π0) = 1

1+ 5
3
e(

130
189 )
≈ 0.232. If the entrant had used Bayesian updating in this example

then these limit pricing strategies would not have been sequentially optimal. Specifically,

after observing the monopoly quantity for L, the entrant would have wished to deviate by

entering.

4 Modeling Strategic Ambiguity

At first glance, since the only source of ambiguity in our framework is ambiguity about

players’ types, one might think that this is too restrictive to address strategic ambiguity

(i.e., ambiguity about the strategies of other players). We show that, in fact, ambiguous

strategies may be modeled within our framework. The approach builds on that introduced

by Bade (2011) in normal form games who in turn built on Aumann (1974). The basic

idea is as follows: in the framework of this paper, players may perceive ambiguity about

types. Thus, a type-contingent strategy of a single player may be viewed as ambiguous

since the ambiguity about that player’s type will translate through to ambiguity about that

player’s actions. However, since players’payoff functions may also depend on the types, this

method of generating strategic ambiguity might in general be confounded with the desire to

make actions type contingent due to this payoff dependence. To allow for “pure”strategic

ambiguity, we can impose some structure on the type space so that some aspects of a players

type are assumed not to affect payoffs, i.e., players’payoff functions are constant with respect

to those aspects of the types. In such a game, if a player prefers, in equilibrium, to make

his strategy responsive to the realization of such “action”types, the only reason for this can

be a desire to affect the ambiguity that other players’perceive about his strategy. One may

think of a mixed strategy as choosing a strategy contingent on the outcome of a roulette

wheel or other randomizing device. Here, instead of a roulette wheel, there is an “Ellsberg

urn” (or, more generally, a payoff irrelevant "natural event") and the player may make

his strategy contingent on the draw from the urn(s). Observe that sequential optimality

ensures that whenever a player chooses to condition her strategy on these payoff-irrelevant

but ambiguous aspects of types, she also necessarily wants to carry out that conditioning
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even after the type is realized. Thus our approach to strategic ambiguity is able to satisfy

this important implementation issue that was raised in the context of Ellsberg strategies and

normal form games by Riedel and Sass (2013).

Formally, consider placing the following structure on the finite set of types for each player

i: Θi ≡ ΘUi × ΘAi (with generic element θi ≡ (θUi , θ
A
i )) where ΘAi ≡

∏
t∈T

∏
ηt∈Ht

ΘAi,ηt and the

utility payoff function for each player i depends only on the ΘU ≡
∏
j∈N

ΘUj component of the

space of type profiles, i.e., for each history h ∈ H, ui(h, θ) = ui(h, θ̂) for all θ, θ̂ ∈ Θ such

that θUj = θ̂
U
j for all players j.

We call a strategy for a player an Ellsberg strategy if it makes play depend on the

(payoff-irrelevant) ΘAi component of i’s type.

Definition 4.1 A strategy for player i, σi, is an Ellsberg strategy if σi (ηt, θi) 6= σi

(
ηt, θ̂i

)
for some θi, θ̂i ∈ Θi such that θ

U
i = θ̂

U
i , some partial history η

t ∈ H t, and some t ∈
{1, . . . , T + 1}.

Notice that if µ makes ΘAi ambiguous given some θ
U
i ∈ ΘUi then an Ellsberg strategy allows

player i to create ambiguity about his strategy even fixing the payoff relevant component of

the type. Because ignoring θAi is always an option, if, in a sequential optimum/PEA/SEA,

a player uses such an Ellsberg strategy it must be the case that she views choosing to

create this strategic ambiguity (and follow through on it) as a best response. This is a key

difference with the older literature on complete information games with ambiguity about

others’strategies (e.g., Dow and Werlang 1994, Lo 1996,1999, Klibanoff 1996, Eichberger

and Kelsey 2000, Marinacci 2000, Mukerji and Shin 2002). In that literature, while each

player is assumed to best respond to the ambiguity she has about the others’strategies, the

others’strategies in the support of that ambiguity are not all required to be part of others’

best responses. A notable exception is Lo (1996, 1999), which does require this best response

property. Even in Lo (1996, 1999) however, there is no choice on the part of a player to

create (or not) ambiguity about her play, as the ambiguity there is based on the set of a

player’s best responses and not just on the best response chosen by the player.

Mouraviev, Riedel and Sass (2015) define Ellsberg behavior strategies and Ellsberg mixed

strategies and show that in games of perfect recall the two are not generally equivalent,

violating Kuhn’s theorem. Their Ellsberg behavior strategies allow only, for each node,

conditioning of the mixture over actions at that node on an ambiguous urn for that node.

This restricts the ability to connect the mixture used across nodes and generates their non-

equivalence. Since our notion of Ellsberg (behavior) strategies allows conditioning on the
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overall type space, the same issue does not arise for us.9

4.1 Example 4: Strategic Ambiguity

Examples with strategic ambiguity involving actions that have payoff consequences may

be found in the literature. For instance, Greenberg’s (2000) peace negotiation example in

which he argues that a powerful country mediating peace negotiations between two smaller

countries would wish to introduce ambiguity about which small country will suffer from

worse relations with the powerful country if negotiations break down, has been discussed in

Mukerji and Tallon (2004) and modeled as an equilibrium in Riedel and Sass (2013). It is

straightforward to construct similar examples as equilibria involving Ellsberg strategies in our

framework. di Tillio, Kos and Messner (2012) consider a mechanism design problem where

the designer may choose the mapping from participants actions to the mechanism outcomes

to be ambiguous. In our framework, this corresponds to allowing mechanism outcomes to

be conditioned on the payoff-irrelevant ambiguous types in addition to participants’actions.

Ayouni and Koessler (2015) examine a principal-multi-agent auditing game and show that

the principal may benefit from an ambiguous auditing strategy. All these examples have

ambiguity about payoff-relevant actions. Most are also “static”in the sense that they may

be analyzed using only an ex-ante level of optimality.

We present here a novel example where strategic ambiguity about actions without payoff

consequences (“cheap talk”) proves valuable in equilibrium. The most closely related exam-

ples in the literature are analyzed in Bose and Renou (2014) and Kellner and Le Quement

(2015). Aside from the specifics of the game, the most important difference from previous

analyses is in the dynamics —specifically, demonstrating that strategic ambiguity occurs as

part of a sequential optimum. In particular, Kellner and Le Quement (2015) do not show

that ex-ante equilibrium obtains, while the strategic ambiguity in Bose and Renou (2014)

may fail to be sequentially optimal.

The example is a game with three players, a principal, P , and two agents, a1 and a2. The

principal’s type has two components, a payoff-relevant component, which takes the value I

or II, and a payoff-irrelevant component, which takes the value B or R. Thus the possible

types for the principal are given by the set {IB, IR, IIB, IIR}. The principal is privately
informed of his type. The agents have no private information. After learning his type, the

principal publicly sends a message m ∈ {m1,m2} that is seen by all players. This message is
cheap talk in that it does not have any direct effect on payoffs. After seeing the message, the

9In Aryal and Stauber (2014), it is not Kuhn’s theorem itself, but optimality results that follow from it in
the standard framework that are shown may fail under ambiguity aversion due to dynamic inconsistencies.
The failures they identify cannot occur for any sequentially optimal strategies.
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agents play a simultaneous-move game in which each agent chooses between the actions g

and h. Payoffs for the three players contingent on the payoff-relevant part of the principal’s

type and the agents’actions are given in the following matrices:

I g2 h2

g1 0, 0, 5 0, 0, 1

h1 2, 1, 5 2, 2, 2

II g2 h2

g1 0, 5, 0 0, 5, 1

h1 0, 1, 0 2, 2, 2

Observe that the principal would always like a1 to play h and, in event I is indifferent

to the play of a2, while in event II also wants a2 to play h. Each agent is indifferent to

the other agent’s play when herself playing g, and strictly prefers the other agent to play h

when herself playing h. If informed of the state, a1 prefers to play h if I and g if II, while

a2 prefers to play g if I and h if II. Suppose that φa1(x) = −e−11x. The specification of φP
and φa2 is not important for what follows.

The beliefs µ for all players are 1
2
-1

2
over distributions π1 and π2 given by:

IB IR IIB IIR

π1
1
4

1
2

1
12

1
6

π2
1
20

3
20

1
5

3
5

Notice that there is ambiguity about the payoff-relevant component of the principal’s type

and, fixing that component, ambiguity about the payoff-irrelevant component of the princi-

pal’s type. This belief structure is, for example, consistent with there being an underlying

parameter γ ∈ {γ1, γ2} (generating π1 vs. π2) about which there is ambiguity, and both

the payoff-relevant, {I, II}, and payoff-irrelevant, {R,B}, parts of the principal’s type are
determined as conditionally independent stochastic functions of γ with Prob(I| γ1) = 3/4,

Prob(I| γ2) = 1/5, Prob(B| γ1) = 1/3, Prob(B| γ2) = 1/4. For instance, γ might be some

scientific principle that is not well understood, and it influences both the functioning of a

technology relevant for the task-at-hand (I vs. II) and the findings of a laboratory experi-

ment (B vs. R) not affecting the task-at-hand.

Consider the following strategy for the principal: if his type is IB send message m1,

otherwise send message m2. Observe that this strategy makes use of the payoff-irrelevant

component of the principal’s type, and is thus an Ellsberg strategy. We will show that this

strategy is an equilibrium strategy for the principal (Proposition 4.1), and, that the principal

does strictly better than if he were restricted to play a non-Ellsberg strategy (Proposition

4.2). This establishes that the strategic ambiguity is strictly valuable for the principal.
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Proposition 4.1 The following strategies are part of an SEA: P sends message m1 if his

type is IB and sends m2 otherwise. a1 plays h after both messages. a2 plays g after m1

and h after m2. In such an SEA, the principal attains his maximum possible payoff for each

type.

Remark 4.1 The above strategies remain an SEA for any φP , φa2, and, by Lemma A.5, for

any φa1 more concave than the one stated above.

Proposition 4.2 If the principal were restricted to play a non-Ellsberg strategy, there would
be no ex-ante equilibrium yielding the principal the maximum possible payoff for each type.

One lesson from the proof of Proposition 4.2 is that, fixing I or II, ambiguity about B vs.

R is necessary for the principal to do better by playing an Ellsberg strategy. Specifically, if

π1 and π2 were modified so that the uncertainty about the payoff-relevant component of type

remained the same as above, but, given the payoff-relevant component of the type, there were

no ambiguity about the payoff-irrelevant component (i.e., π1(IB) + π1(IR) = 3
4
, π2(IB) +

π2(IR) = 1
5
, π1(IB)/π1(IR) = π2(IB)/π2(IR) and π1(IIB)/π1(IIR) = π2(IIB)/π2(IIR))

then any Ellsberg strategy could be replaced by a non-Ellsberg strategy using appropriate

mixtures conditional on the payoff-relevant component of the type without changing the best

responses of the agents.

Remark 4.2 If a1 becomes suffi ciently more ambiguity averse, Proposition 4.2 no longer

holds: in addition to being able to attain the maximum by using an Ellsberg strategy, there

will be an equilibrium in non-Ellsberg strategies that allows the maximum possible payoff

for each type of the principal. Intuitively, with enough ambiguity aversion, the additional

ambiguity generated by the Ellsberg strategy is no longer needed to induce the principal’s

desired behavior.

5 Extensions and Other Approaches

5.1 Other Approaches in the literature

In order to compare with some of the existing literature investigating dynamic games with

ambiguity, the following condition, describing a consistent planning requirement in the spirit

of Strotz (1955-56), is useful.
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Definition 5.1 Fix a game Γ and a pair
(
σP , νP

)
consisting of a strategy profile and interim

belief system. Specify Vi and Vi,τ i,ht as in (2.1) and (2.3). For each player i, type τ i and

history h, let

CPi,τ i,hT+1 ≡ Σi.

Then, inductively, for 0 ≤ t ≤ T , let

CPi,τ i,ht ≡ argmax
σ̂i∈

⋂
ĥ∈H|ĥt=ht

CPi,τi,ĥt+1

Vi,τ i,ht((σ̂i, σ
P
−i); ν

P ).

Finally, let

CPi ≡ argmax
σ̂i∈

⋂
τ̂ i∈Θi

CPi,τ̂i,∅

Vi(σ̂i, σ
P
−i).

(
σP , νP

)
is optimal under consistent planning if, for all players i,

σPi ∈ CPi.

Equivalently,
(
σP , νP

)
is such that for all players i, all types τ i and all partial histories ht,

Vi(σ
P ) ≥ Vi(σ̂i, σ

P
−i) for all σ̂i ∈

⋂
τ̂ i∈Θi

CPi,τ̂ i,∅

and

Vi,τ i,ht(σ
P ; νP ) ≥ Vi,τ i,ht((σ̂i, σ

P
−i); ν

P ) for all σ̂i ∈
⋂

ĥ∈H|ĥt=ht
CPi,τ i,ĥt+1.

If
(
σP , νP

)
is sequentially optimal then it is also optimal under consistent planning. How-

ever, if
(
σP , νP

)
is optimal under consistent planning it may fail to be sequentially optimal

(even when limiting attention to ambiguity neutrality). For such a failure to occur, the opti-

mal strategy from player i’s point of view at some earlier stage must have a continuation that

fails to be optimal from the viewpoint of some later reachable stage. This is what makes the

extra constraints imposed in the optimization inequalities under consistent planning bind.

Sequential optimality is a feature of PEA and SEA. The above shows that sequential

optimality is not generally satisfied by the consistent planning approach taken in much

existing literature using extensive-form games of incomplete information with ambiguity.

Sequential optimality is a relatively uncontroversial part of the main equilibrium concepts

for extensive-form games with incomplete information under ambiguity neutrality, such as

Perfect Bayesian Equilibrium and Sequential Equilibrium. Thus, it is both important and
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Figure 5.1: Violation of sequential optimality

interesting to explore sequential optimality in the context of games with ambiguity.

Furthermore, when updating is according to the smooth rule,
(
σP , νP

)
optimal under

consistent planning implies
(
σP , νP

)
is sequentially optimal, making the two equivalent under

smooth rule updating. This follows from Theorem 2.3 and the fact that consistent planning

implies no profitable one-stage deviations. Thus, under smooth rule updating, sequential

optimality, optimality under consistent planning, and no profitable one-stage deviations are

equivalent. These observations are generalizations of the fact that updating according to

Bayes’rule makes all three concepts equivalent for expected utility preferences.

Under ambiguity aversion without smooth rule updating, when sequential optimality is

a stronger requirement than just consistent planning or no profitable one-stage deviations,

what kinds of behavior does sequential optimality rule out? Consider the following example

(Figure 5.1), which shows how consistent planning or no profitable one-stage deviations

allows strategy profiles that are not even ex-ante (Nash) equilibria of a game (and thus

clearly not sequentially optimal).

To analyze the game, let us consider player 2. Observe that each type of player 2 has a

strictly dominant strategy if given the move: types I and II play U, and type III plays D.
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Given this strategy for player 2, observe that for player 1, the payoff to playing i followed

by d if U is, type-by-type, strictly higher than the payoff to playing o followed by anything.

Thus no strategy involving o can be a best reply to 2’s optimal strategy no matter what

player 1’s ambiguity attitude or beliefs about 2’s type. This immediately implies that o is

not part of any ex-ante equilibrium, let alone a sequentially optimal strategy profile.

In contrast, it is easy to specify φ1, µ and an interim belief system for player 1 such that

o can be played with positive probability while satisfying consistent planning. For example,

this is the case if φ1(x) = −e−10x, µ is 1/2 on (1/3, 1/9, 5/9) and 1/2 on (1/3, 5/9, 1/9), and

1’s beliefs after seeing U are given by Bayes’rule applied to µ: 1/3 on (3/4, 1/4, 0) and 2/3

on (3/8, 5/8, 0). With these parameters and beliefs, the following strategy profile satisfies

no profitable one-stage deviations and consistent planning: player 1 plays o with probability

1− 9
20

ln(29
11

) ≈ 0.564 and mixes evenly between u and d if U , while player 2 plays her strictly

dominant strategy if given the move.

Battigalli et al. (2015b) is another paper exploring dynamic games with smooth ambigu-

ity preferences (building on Battigalli et al. (2015a), which analyzed games in strategic form

and so took a purely ex-ante perspective). A key difference from our approach is that instead

of sequential optimality, they require no profitable one-stage deviations plus Bayesian updat-

ing. Thus, while both approaches satisfy no profitable one-stage deviations, the equilibria

described by their approach may fail both sequential optimality and optimality under consis-

tent planning. Additionally, because restricting attention to interim belief systems satisfying

Bayesian updating generally rules out some (or all) sequentially optimal strategies, equilibria

we identify might fail to be equilibria according to their approach. A further difference is

that they focus on a form of self-confirming equilibria while we concentrate on a form of

sequential equilibria.

5.2 Extensions

5.2.1 Maxmin Expected Utility

We have assumed players have smooth ambiguity preferences (Klibanoff, Marinacci and

Mukerji, 2005). This facilitated our analysis by allowing ambiguity aversion (via φ) and

beliefs (via µ) to be separately and conveniently specified. Can our approach be applied to

players with Maxmin expected utility (Gilboa and Schmeidler, 1989) preferences? We suggest

one way to do so. If the set of probability measures in the Maxmin EU representation is

taken to be the (convex hull of) the support of µ, then these preferences can be interpreted

as a model of an infinitely ambiguity averse player with beliefs given by the support of µ. By

modifying our framework to specify this set rather than µ, eliminate the specification of φ,
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and use the Maxmin EU functional rather than the smooth ambiguity functional to evaluate

strategies, the key definitions of ex-ante equilibrium, interim belief system, and Sequential

Optimality can all be naturally adapted. We conjecture the following version of Theorem

2.1 would be true: for the purposes of identifying such sequentially optimal strategies, it

is without loss of generality to limit attention to interim belief systems derived according

to any one of the dynamically consistent update rules described in Hanany and Klibanoff

(2007) for Maxmin EU preferences. With this in hand, one could then explore analogues

of the rest of our analysis and see to what extent they remain true with infinite ambiguity

aversion and if any new phenomena arise.

5.2.2 Implementation of mixed actions

Recall that the objects of choice of a player are behavior strategies, which, for each type

of the player, specify a mixture over the available actions at each point in the game where

the player has an opportunity to move. Suppose at some point a player’s strategy specifies

a non-degenerate mixture, and, as can happen under ambiguity aversion, this strategy is

strictly better than any specifying a pure action. If such a mixture is to be implemented

by means of playing pure actions contingent on the outcome of a (possibly existing in the

player’s mind only) randomization device, then an additional sequential optimality concern

beyond that formally reflected in Definition 2.6 may be relevant. Specifically, after the

realization of the randomization device is observed, will it be optimal for the player to play

the corresponding pure action? A way to ensure this is true is to consider behavior strategies

that, instead of specifying mixed actions, specify pure actions contingent on randomization

devices, and extend the specification of beliefs and preferences of a player to include points

after realization of her randomization device but before she has taken action contingent on

the device, and add to Definition 2.6 the requirement of optimality also at these points. The

properties of sequential optimality shown and used in this paper would remain true under

these modifications.
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A Appendix: Proofs

We begin with a key lemma on the preservation of optimality under smooth rule updating:

Lemma A.1 Fix a game Γ and (σ, ν) such that σ is an ex-ante equilibrium. For t 6= 0 and

i, τ i, h
t such that mi(h

t) 6= t, or for t = 0, if νi,τ i,ht is derived from ν
i,τ i,hmi(h

t) (or, if t = 0,

from µi) via the smooth rule using σ as the ex-ante equilibrium and σi is optimal for player

i given σ−i and given τ i, hmi(h
t) (or, if t = 0, given ex-ante optimality), then σi is optimal

for player i given σ−i, τ i and ht: for all σ′i ∈ Σi,

Vi,τ i,ht(σ; ν) ≥ Vi,τ i,ht((σ
′
i, σ−i); ν).

It is useful for the proof of this result (as well as that of Theorem 2.3) to refer to a player’s

“local ambiguity neutral measure”after some partial history in the game. Given (σ, ν), for

any player i and type τ i, let qσ,i(h, θ) denote i’s ex-ante σ- local measure, defined for each
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θ ∈ Θ and h ∈ H by

qσ,i(h, θ) ≡
∑

π∈∆(Θ)

φ′i

∑
θ̂∈Θ

∑
ĥ∈H

ui(ĥ, θ̂)pσ,θ̂(ĥ|ĥ
0)π(θ̂)

 (A.1)

· p−i,σ,θ(h|h0)π(θ)µi(π);

additionally, for any partial history η ∈
⋃
t∈T

H t, let q(σ,ν),i,τ i,η denote i’s (σ, ν)- local measure

given τ i and η, defined for each θ ∈ Θ and h ∈ H with θi = τ i and ht = η and by

q(σ,ν),i,τ i,η(h, θ) ≡
∑

π∈∆(Θ)|π(Θi,τi,η)>0

φ′i

∑
θ̂∈Θ

∑
ĥ∈H|ĥt=η

ui(ĥ, θ̂)pσ,θ̂(ĥ|η)πΘi,τi,η
(θ̂)

 (A.2)

· p−i,σ,θ(h|η)πΘi,τi,η
(θ)νi,τ i,η(π).

Proof of Lemma A.1. Consider first the case where t 6= 0 and mi(h
t) 6= t. By

assumption, σi is optimal given τ i, h
mi(h

t) and σ−i. This is equivalent (see Hanany and

Klibanoff 2009, Lemma A.1) to the condition that σi solves

max
σ′i∈Σi

∑
θ̄∈Θ|θ̄i=τ i

∑
h̄∈H|h̄mi(ht)=hmi(ht)

ui(h̄, θ̄)pi,(σ′i,σ−i),θ̄(h̄|h
mi(h

t))q(σ,ν),i,τ i,h
mi(h

t)

(h̄, θ̄), (A.3)

where q(σ,ν),i,τ i,h
mi(h

t)
is i’s (σ, ν)- local measure given τ i and hmi(h

t) (defined in (A.2)). Notice

that the objective function in (A.3) can be equivalently written as∑
θ̄∈Θ|θ̄i=τ i

∑
h̄∈H|h̄mi(ht)=hmi(ht)

and h̄t 6=ht

ui(h̄, θ̄)pi,(σ′i,σ−i),θ̄(h̄|h
mi(h

t))q(σ,ν),i,τ i,h
mi(h

t)

(h̄, θ̄)

+pi,(σ′i,σ−i),θ̄(h
t|hmi(ht))

∑
θ̄∈Θ|θ̄i=τ i

∑
h̄∈H|h̄t=ht

ui(h̄, θ̄)pi,(σ′i,σ−i),θ̄(h̄|h
t)q(σ,ν),i,τ i,h

mi(h
t)

(h̄, θ̄).

The advantage of doing so is making clear that only the term∑
θ̄∈Θ|θ̄i=τ i

∑
h̄∈H|h̄t=ht

ui(h̄, θ̄)pi,(σ′i,σ−i),θ̄(h̄|h
t)q(σ,ν),i,τ i,h

mi(h
t)

(h̄, θ̄) (A.4)

is affected by σ′i(η, θi) for partial histories η that include h
t and only those same components

of σ′i affect (A.4). Therefore (A.3) implies that σi maximizes (A.4).

38



We want to show that σi is optimal given τ i, h
t and σ−i. This is equivalent to the

condition that σi solves

max
σ′i∈Σi

∑
θ̄∈Θ|θ̄i=τ i

∑
h̄∈H|h̄t=ht

ui(h̄, θ̄)pi,(σ′i,σ−i),θ̄(h̄|h
t)q(σ,ν),i,τ i,h

t

(h̄, θ̄).

where q(σ,ν),i,τ i,h
t
is the gradient of the interim indifference curve given τ i and ht at σ, which,

for each θ̄ ∈ Θ and h̄ ∈ H with θ̄i = τ i and h̄t = ht, is given by

q(σ,ν),i,τ i,h
t

(h̄, θ̄) ≡
∑

π∈∆(Θ)|π(Θi,τi,ht
)>0

φ′i

∑
θ̂∈Θ

∑
ĥ∈H|ĥt=ht

ui(ĥ, θ̂)pσ,θ̂(ĥ|h
t)πΘi,τi,ht

(θ̂)

(A.5)
· p−i,σ,θ̄(h̄|ht)πΘi,τi,ht

(θ̄)νi,τ i,ht(π).

Thus it is suffi cient to show that q(σ,ν),i,τ i,h
t
(h̄, θ̄) ∝ q(σ,ν),i,τ i,h

mi(h
t)

(h̄, θ̄) for each θ̄ ∈ Θ and

h̄ ∈ H with θ̄i = τ i and h̄t = ht. This follows by using the local measure definition (A.2),

applying the smooth rule to substitute for νi,τ i,ht(π) for all π ∈ ∆ (Θ) such that π(Θi,τ i,ht) > 0

(as νi,τ i,ht(π) = 0 for other π) and then using the definitions of πΘi,τi,ht
(θ) and πΘ

i,τi,h
mi(h

t)

and cancelling terms.

The case where t = 0 is similar.

Proof of Theorem 2.1. We show that
(
σP , ν̂P

)
, where, for all i, τ i, ν̂

P
i,τ i,ht

= νPi,τ i,ht

whenever (t > 0 and mi(h
t) = t), and where, everywhere else, ν̂i,τ i,ht is derived via the

smooth rule, is sequentially optimal. First, observe that ν̂P does not enter into the function

Vi, so the fact that
(
σP , νP

)
is sequentially optimal directly implies that Vi(σP ) ≥ Vi(σ

′
i, σ

P
−i)

for all σ′i ∈ Σi. Second, by construction, ν̂
P satisfies the smooth rule using σP as the ex-ante

equilibrium except, possibly, for i, τ i, ht where (t > 0 and mi(h
t) = t). However, from the

definition of the smooth rule (Definition 2.7), observe that it is exactly for i, τ i, ht where

(t > 0 and mi(h
t) = t) for which the smooth rule allows any interim beliefs. Thus ν̂P

satisfies the smooth rule using σP as the ex-ante equilibrium. Finally, to see that
(
σP , ν̂P

)
satisfies Vi,τ i,ht(σ

P ; ν̂P ) ≥ Vi,τ i,ht((σ
′
i, σ

P
−i); ν̂

P ) for all σ′i ∈ Σi, observe that (a) for i, τ i, ht

such that (ht 6= ∅ and mi(h
t) = t), it directly inherits this from

(
σP , νP

)
and (b) everywhere

else, Lemma A.1 shows that smooth rule updating ensures the required optimality.

Proof of Theorem 2.2. By ex-ante optimality of σ, (2.6) in the definition of sequen-

tial optimality is satisfied. Choose a ν satisfying the smooth rule using σ as the ex-ante

equilibrium. Since all players view all partial histories ht with 1 ≤ t ≤ T as reachable

from h0, ν is pinned down completely except possibly after partial histories hT+1 for which

mi(h
T+1) < T + 1 for at least one player i (i.e., except after histories involving off-path ac-
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tion(s) in the final stage). By Lemma A.1, (2.7) in the definition of sequential optimality is

satisfied for all i, τ i, ht with t ≤ T . Note however, using the definition of Vi,τ i,hT+1, optimality

after the last stage is trivial because there are no actions remaining, and so how ν is specified

after off-path play at T + 1 is irrelevant for sequential optimality.

Proof of Theorem 2.3. Suppose that (σ, ν) satisfies the no profitable one-stage devi-

ation property and ν satisfies extended smooth rule updating using σ as the strategy profile.

First, for each player i, the no profitable one-stage deviation property implies conditional

optimality of σi according to νi,τ i,ηT for all η
T ∈ HT . Next we proceed by induction on

the stage t. Fix any t such that 0 < t ≤ T , and suppose that, for each player i, σi is

conditionally optimal according to νi,τ i,ηt for all η
t ∈ H t. We claim that, for each player

i, σi is conditionally optimal according to νi,τ i,ηt−1 for all ηt−1 ∈ H t−1. The argument for

this is as follows: Fix ηt−1 ∈ H t−1 and fix a player i. Consider any strategy σ′i for player i.

For any h ∈ H such that ht−1 = ηt−1 and i views ht as reachable from ηt−1, the conditional

optimality of σi according to νi,τ i,ht implies (see Hanany and Klibanoff 2009, Lemma A.1)∑
θ̄∈Θ|θ̄i=τ i

∑
h̄∈H|h̄t=ht

ui(h̄, θ̄)pi,σ,θ̄(h̄|h̄t)q(σ,ν),i,τ i,h̄
t

(h̄, θ̄) (A.6)

≥
∑

θ̄∈Θ|θ̄i=τ i

∑
h̄∈H|h̄t=ht

ui(h̄, θ̄)pi,(σ′i,σ−i),θ̄(h̄|h̄
t)q(σ,ν),i,τ i,h̄

t

(h̄, θ̄).

Since i’s preferences satisfy extended smooth rule updating using σ, for all such h, q(σ,ν),i,τ i,h̄
t
(h̄, θ̄) ∝

q(σ,ν),i,τ i,η
t−1

(h̄, θ̄) for all θ̄ ∈ Θ and h̄ ∈ H with θ̄i = τ i and h̄t = ht. Thus, after substi-

tuting for q(σ,ν),i,τ i,h̄
t
(h̄, θ̄), cancelling the constant of proportionality and multiplying by

pi,(σ′i,σ−i),θ̄(h̄
t|ηt−1) (which is identical for all θ̄ with θ̄i = τ i, as it depends only on τ i, and for

all h̄ with h̄t = ht), (A.6) becomes∑
θ̄∈Θ|θ̄i=τ i

∑
h̄∈H|h̄t=ht

ui(h̄, θ̄)pi,(σ′i,σ−i),θ̄(h̄
t|ηt−1)pi,σ,θ̄(h̄|h̄t)q(σ,ν),i,τ i,η

t−1

(h̄, θ̄)

≥
∑

θ̄∈Θ|θ̄i=τ i

∑
h̄∈H|h̄t=ht

ui(h̄, θ̄)pi,(σ′i,σ−i),θ̄(h̄
t|ηt−1)pi,(σ′i,σ−i),θ̄(h̄|h̄

t)q(σ,ν),i,τ i,η
t−1

(h̄, θ̄)

=
∑

θ̄∈Θ|θ̄i=τ i

∑
h̄∈H|h̄t=ht

ui(h̄, θ̄)pi,(σ′i,σ−i),θ̄(h̄|η
t−1)q(σ,ν),i,τ i,η

t−1

(h̄, θ̄).
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Summing for all such h, yields:∑
h∈H|ht−1=ηt−1

and mi(ht)≤t−1

∑
θ̄∈Θ|θ̄i=τ i

∑
h̄∈H|h̄t=ht

ui(h̄, θ̄)pi,(σ′i,σ−i),θ̄(h̄
t|ηt−1)pi,σ,θ̄(h̄|h̄t)q(σ,ν),i,τ i,η

t−1

(h̄, θ̄)

=
∑

θ̄∈Θ|θ̄i=τ i

∑
h̄∈H|h̄t−1=ηt−1

and mi(h̄t)≤t−1

ui(h̄, θ̄)pi,(σ′i,σ−i),θ̄(h̄
t|ηt−1)pi,σ,θ̄(h̄|h̄t)q(σ,ν),i,τ i,η

t−1

(h̄, θ̄)

=
∑

θ̄∈Θ|θ̄i=τ i

∑
h̄∈H|h̄t−1=ηt−1

ui(h̄, θ̄)pi,(σ′i,σ−i),θ̄(h̄
t|ηt−1)pi,σ,θ̄(h̄|h̄t)q(σ,ν),i,τ i,η

t−1

(h̄, θ̄) (A.7)

≥
∑

h∈H|ht−1=ηt−1

and mi(ht)≤t−1

∑
θ̄∈Θ|θ̄i=τ i

∑
h̄∈H|h̄t=ht

ui(h̄, θ̄)pi,(σ′i,σ−i),θ̄(h̄|η
t−1)q(σ,ν),i,τ i,η

t−1

(h̄, θ̄)

=
∑

θ̄∈Θ|θ̄i=τ i

∑
h̄∈H|h̄t−1=ηt−1

ui(h̄, θ̄)pi,(σ′i,σ−i),θ̄(h̄|η
t−1)q(σ,ν),i,τ i,η

t−1

(h̄, θ̄).

where the second and third equalities follow since, for all θ̄ ∈ Θ | θ̄i = τ i and all h̄ ∈ H |
h̄t−1 = ηt−1 with mi(h̄

t) > t− 1, q(σ,ν),i,τ i,η
t−1

(h̄, θ̄) = 0 because p−i,σ,θ̄(h̄|ηt−1) = 0.

Since (σ, ν) satisfies the no profitable one-stage deviation property, the conditional optimality

of σi according to νi,τ i,ηt−1 among all strategies deviating only at t− 1 implies∑
θ̄∈Θ|θ̄i=τ i

∑
h̄∈H|h̄t−1=ηt−1

ui(h̄, θ̄)pi,σ,θ̄(h̄|ηt−1)q(σ,ν),i,τ i,η
t−1

(h̄, θ̄) (A.8)

≥
∑

θ̄∈Θ|θ̄i=τ i

∑
h̄∈H|h̄t−1=ηt−1

ui(h̄, θ̄)pi,(σ′i,σ−i),θ̄(h̄
t|ηt−1)pi,σ,θ̄(h̄|h̄t)q(σ,ν),i,τ i,η

t−1

(h̄, θ̄).

Combining (A.7) and (A.8) implies∑
θ̄∈Θ|θ̄i=τ i

∑
h̄∈H|h̄t−1=ηt−1

ui(h̄, θ̄)pi,σ,θ̄(h̄|ηt−1)q(σ,ν),i,τ i,η
t−1

(h̄, θ̄) (A.9)

≥
∑

θ̄∈Θ|θ̄i=τ i

∑
h̄∈H|h̄t−1=ηt−1

ui(h̄, θ̄)pi,(σ′i,σ−i),θ̄(h̄|η
t−1)q(σ,ν),i,τ i,η

t−1

(h̄, θ̄).

Since (A.9) holds for any σ′i, σi is conditionally optimal according to νi,τ i,ηt−1 . Since this

conclusion holds for any ηt−1 ∈ H t−1, the induction step is completed. It follows that (σ, ν)

satisfies the second set of inequalities in the definition of sequentially optimal.

To show it also satisfies the first set of inequalities, note that for any τ i ∈ Θi, the conditional
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optimality of σi according to νi,τ i,∅ implies∑
θ̄∈Θ|θ̄i=τ i

∑
h̄∈H

ui(h̄, θ̄)pi,σ,θ̄(h̄|h̄0)q(σ,ν),i,τ i,∅(h̄, θ̄) (A.10)

≥
∑

θ̄∈Θ|θ̄i=τ i

∑
h̄∈H

ui(h̄, θ̄)pi,(σ′i,σ−i),θ̄(h̄|h̄
0)q(σ,ν),i,τ i,∅(h̄, θ̄).

Since i’s preferences satisfy extended smooth rule updating using σ, for all τ i, q(σ,ν),i,τ i,∅(h̄, θ̄) ∝
qσ,i(h̄, θ̄) for all θ̄ ∈ Θ and h̄ ∈ H. Substituting back into (A.10), cancelling the constant of
proportionality and summing for all τ i, yields:∑

θ̄∈Θ

∑
h̄∈H

ui(h̄, θ̄)pi,σ,θ̄(h̄|h̄0)qσ,i(h̄, θ̄) (A.11)

≥
∑
θ̄∈Θ

∑
h̄∈H

ui(h̄, θ̄)pi,(σ′i,σ−i),θ̄(h̄|h̄
0)qσ,i(h̄, θ̄).

Since (A.11) holds for any σ′i, (σ, ν) also satisfies the first set of inequalities in the definition

of sequentially optimal, thus it is sequentially optimal.

Proof of Theorem 2.4. By Theorem 2.1, there exists an interim belief system ν̃

satisfying the smooth rule using σ as the ex-ante equilibrium such that (σ, ν̃) is sequentially

optimal. Consider a sequence of a completely mixed strategy profiles converging to σ and

the corresponding sequence of interim belief systems determined by extended smooth rule

updating using the strategies in the sequence as the strategy profile. Let ν̂ be the limit of this

sequence of interim belief systems. By construction, (σ, ν̂) satisfies smooth rule consistency.

It remains to show that (σ, ν̂) is sequentially optimal. By continuity of extended smooth

rule updating in the strategy profile and the fact that all players view all partial histories ht

with 1 ≤ t ≤ T as reachable from h0, ν̂ = ν̃ except possibly after partial histories hT+1 for

whichmi(h
T+1) < T +1 for at least one player i (i.e., except after histories involving off-path

action(s) in the final stage). Note however, using the definition of Vi,τ i,hT+1, optimality after

the last stage is trivial because there are no actions remaining, and so how interim beliefs

are specified after off-path play at T + 1 is irrelevant for sequential optimality. Therefore,

(σ, ν̂) inherits sequential optimality from (σ, ν̃).

Proof of Theorem 2.5. Fix a sequence εk = (εkθj ,η)
k

θj∈∪i∈NΘi,η∈
⋃
t∈T

Ht
of strictly positive

vectors of dimension

∣∣∣∣ ⋃
t∈T

H t

∣∣∣∣∑j∈N |Θj|, converging in the sup-norm to 0 and such that

εkθj ,ht ≤
1

|Atj(ht)| for all types θj and all histories h and all stages t. For any k, let Γk be

the restriction of the game Γ defined such that the set of feasible strategy profiles is the
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set of all completely mixed σk satisfying σkj (ht, θj) (atj) ≥ εkθj ,ht for all j, θj, h
t and actions

atj ∈ Atj(ht). Consider the agent normal form Gk of the game Γk (see e.g., Myerson, 1991,

p.61). Since the payoff functions are concave and the set of strategies of each player in Gk is

non-empty, compact and convex, Gk has an ex-ante equilibrium by Glicksberg (1952). Let

σ̂k be the strategy profile in the game Γk corresponding to this equilibrium. Then σ̂k is an

ex-ante equilibrium of Γk. Let ν̂k be a belief system in Γk that satisfies the smooth rule using

σ̂k as the ex-ante equilibrium. Since the strategy of each player (ht, θj) in Gk according to

σ̂k is an ex-ante best response to σ̂k, and since all partial histories ht are on the equilibrium

path, by Lemma A.1 smooth rule updating ensures that (σ̂k, ν̂k) is a sequential optimum

of Γk. By compactness of the set of strategy profiles, the sequence σ̂k has a convergent

sub-sequence, the limit of which is denoted by σ̂. By continuity of the payoff functions, σ̂ is

an ex-ante equilibrium of Γ. Inspection of Definition 2.7 reveals that the beliefs generated

by the smooth rule vary continuously in the ex-ante equilibrium σ, as σ enters continuously

in pi,σ,θ(ht|hr) and p−i,σ,θ(ht|hr) and only affects mi(h
t) when the weight on some action hits

zero, in which case the smooth rule becomes less restrictive and so the same beliefs can be

maintained in that case. By this continuity of the smooth rule in the ex-ante equilibrium

σ̂k, the associated sub-sequence of ν̂k converges to a limit denoted by ν̂. Given any partial

history ht and continuation strategy σ̃h
t

j of player j of type θj in Γ, let σ̃k,h
t

j be a feasible

strategy in Γk for this player that is closest (in the sup-norm) to σ̃h
t

j . Since, by sequential

optimality of (σ̂k, ν̂k) for each k, σ̂k,h
t

j is weakly better than σ̃k,h
t

j for player j of type θj given

belief ν̂kj,θj ,ht, and since, along the sub-sequence, σ̃
k,ht

j converges to σ̃h
t

j and ν̂k converges to

ν̂, continuity of the payoff functions implies that σ̂h
t

j is weakly better than σ̃
ht

j for this player

given belief ν̂j,θj ,ht. Therefore (σ̂, ν̂) satisfies sequential optimality. Finally, observe that

(σ̂, ν̂) satisfies smooth rule consistency (since it is explicitly constructed as the limit of an

appropriate sequence). Therefore (σ̂, ν̂) is an SEA of Γ.

Proof of Lemma 2.1. By smooth rule consistency and upper semi-continuity of

the extended smooth rule in the strategy profile at i, τ i, ht such that i does not view ht as

reachable from ht−1 in the limit and continuity of the extended smooth rule in the strategy

profile everywhere else, ν satisfies extended smooth rule updating using σ as the strategy

profile. (The upper semi-continuity comes from the fact that at unreachable partial histories

the extended smooth rule is less restrictive than at reachable partial histories.)

Proof of Corollary 2.1. It is enough to show that the no profitable one-stage deviation

property and smooth rule consistency imply (σ, ν) is sequentially optimal. This follows

directly from Lemma 2.1 and Theorem 2.3.

Proof of Corollary 2.2. We show that
(
σP , ν̂P

)
, where, for all i, τ i, ν̂

P
i,τ i,ht

= νPi,τ i,ht

whenever (t > 0 and mi(h
t) = t), and where, everywhere else, ν̂i,τ i,ht is derived via the
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smooth rule, is a PEA. By the proof of Theorem 2.1,
(
σP , ν̂P

)
is sequentially optimal. It

remains to show that it naturally extends updating. This imposes restrictions on i’s beliefs

only at partial histories ht where i does not view ht as reachable from ht−1. By construction

of ν̂P , at all such ht, ν̂Pi,τ i,ht = νPi,τ i,ht. Thus
(
σP , ν̂P

)
naturally extends updating because(

σP , νP
)
does.

Lemma A.2 Any (σ̂, ν̂) satisfying smooth rule consistency also naturally extends updating.

Proof of Lemma A.2. Fix any (σ, ν) such that ν satisfies extended smooth rule

updating using σ as the strategy profile. Consider players i, j 6= i, type τ i and partial

histories ht that player i views as reachable from ht−1 and for which conditions (b)-(d) in the

definition of naturally extends updating are satisfied. Since player i has no costly ambiguity

exposure under σ at ht−1 and ht, the smooth rule updating formula (2.8) simplifies to

νi,τ i,ht(π) = A ·

 ∑
θ̂∈Θi,τi,ht

p−i,σ,θ̂(h
t|ht−1)πΘi,τi,ht−1 (θ̂)

 νi,τ i,ht−1(π)

for π such that π(Θi,τ i,ht) > 0, where A is the normalization factor ensuring the left-hand

side sums (over π) to 1.

Since player j has only one action at ht−1, p−i,σ,θ(ht|ht−1) =
∏
k 6=i,j

σk (ht−1, θk) (ht−1,k). Thus,

for each θj,

πΘi,τi,ht
({θj} ×Θ−j)νi,τ i,ht(π)

= AπΘi,τi,ht
({θj} ×Θ−j)

 ∑
θ̂∈Θi,τi,ht

( ∏
k 6=i,j

σk

(
ht−1, θ̂k

)
(ht−1,k)

)
πΘi,τi,ht−1 (θ̂)

 νi,τ i,ht−1(π).

Summing over the π yields, ∑
π s.t. νi,τi,ht−1 (π)>0 and π(Θi,τi,ht

)>0

πΘi,τi,ht
({θj} ×Θ−j)νi,τ i,ht(π) (A.12)

= A
∑

π s.t. νi,τi,ht−1 (π)>0 and π(Θi,τi,ht
)>0

πΘi,τi,ht
({θj} ×Θ−j)νi,τ i,ht−1(π)

·

 ∑
θ̂∈Θi,τi,ht

( ∏
k 6=i,j

σk

(
ht−1, θ̂k

)
(ht−1,k)

)
πΘi,τi,ht−1 (θ̂)

 . (A.13)
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By (2.2) applied to νi,τ i,ht−1 , we can replace the left hand side of (A.12) with∑
π∈∆(Θ)

πΘi,τi,ht
({θj} ×Θ−j)νi,τ i,ht(π).

By definition of πΘi,τi,ht
,

πΘi,τi,ht
({θj} ×Θ−j) =

∑
θ̂∈Θi,τi,ht

∩({θj}×Θ−j)

πΘi,τi,ht−1 (θ̂)

( ∏
k 6=i,j

σk

(
ht−1, θ̂k

)
(ht−1,k)

)
∑

θ̂∈Θi,τi,ht

πΘi,τi,ht−1 (θ̂)

( ∏
k 6=i,j

σk

(
ht−1, θ̂k

)
(ht−1,k)

) .

Thus, (A.12) becomes,∑
π∈∆(Θ)

πΘi,τi,ht
({θj} ×Θ−j)νi,τ i,ht(π) (A.14)

= A
∑

θ̂∈Θi,τi,ht
∩({θj}×Θ−j)

( ∏
k 6=i,j

σk

(
ht−1, θ̂k

)
(ht−1,k)

)

·
∑

π s.t. νi,τi,ht−1 (π)>0 and π(Θi,τi,ht
)>0

πΘi,τi,ht−1 (θ̂)νi,τ i,ht−1(π).

By (2.2) applied to νi,τ i,ht−1 , since θ̂ ∈ Θi,τ i,ht ∩ ({θj} ×Θ−j) (so that if π(Θi,τ i,ht) = 0 then

πΘi,τi,ht−1 (θ̂) = 0),

∑
π s.t. νi,τi,ht−1 (π)>0 and π(Θi,τi,ht

)>0

πΘi,τi,ht−1 (θ̂)νi,τ i,ht−1(π) =
∑

π∈∆(Θ)

πΘi,τi,ht−1 (θ̂)νi,τ i,ht−1(π).
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Since νi,τ i,ht−1 satisfies the condition that the reduced measure
∑

π∈∆(Θ) πΘi,τi,ht−1 (θ̂)νi,τ i,ht−1(π) ∈
∆ (Θ) is a product measure, for θ̂ ∈ Θi,τ i,ht ∩ ({θj} ×Θ−j)∑

π∈∆(Θ)

πΘi,τi,ht−1 (θ̂)νi,τ i,ht−1(π)

=
∏
k∈N

∑
π∈∆(Θ)

πΘi,τi,ht−1

({
θ̂k

}
×Θ−k

)
νi,τ i,ht−1(π)

=
∑

π∈∆(Θ)

πΘi,τi,ht−1

({
θ̂j

}
×Θ−j

)
νi,τ i,ht−1(π)

∏
k 6=i,j

∑
π∈∆(Θ)

πΘi,τi,ht−1

({
θ̂k

}
×Θ−k

)
νi,τ i,ht−1(π)


=

∑
π∈∆(Θ)

πΘi,τi,ht−1 ({θj} ×Θ−j) νi,τ i,ht−1(π)

∏
k 6=i,j

∑
π∈∆(Θ)

πΘi,τi,ht−1

({
θ̂k

}
×Θ−k

)
νi,τ i,ht−1(π)

 .
Substituting into (A.14) yields,∑

π∈∆(Θ)

πΘi,τi,ht
({θj} ×Θ−j)νi,τ i,ht(π) (A.15)

= A
∑

θ̂∈Θi,τi,ht
∩({θj}×Θ−j)

( ∏
k 6=i,j

σk

(
ht−1, θ̂k

)
(ht−1,k)

)

·

∏
k 6=i,j

∑
π∈∆(Θ)

πΘi,τi,ht−1

({
θ̂k

}
×Θ−k

)
νi,τ i,ht−1(π)

 ∑
π∈∆(Θ)

πΘi,τi,ht−1 ({θj} ×Θ−j) νi,τ i,ht−1(π)


= B

 ∑
π∈∆(Θ)

πΘi,τi,ht−1 ({θj} ×Θ−j) νi,τ i,ht−1(π)


where

B = A
∑

θ̂∈Θi,τi,ht
∩({θj}×Θ−j)

 ∏
k 6=i,j

(σk (ht−1, θ̂k

)
(ht−1,k)

) ∑
π∈∆(Θ)

πΘi,τi,ht−1

({
θ̂k

}
×Θ−k

)
νi,τ i,ht−1(π)

 ,
showing that i’s marginal on player j’s type at partial history ht remains the same as at

ht−1.

Since all the operations in the above argument are continuous in σ, it is also true that

to ensure that i’s marginal on player j’s type at partial history ht remains approximately

the same as at ht−1 it is suffi cient to know that conditions (b) and (d) in the definition of

naturally extends updating (Definition 2.13) hold to within a given approximation (condition

(c) always holds exactly, as it is part of the structure of the game).
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By smooth rule consistency of (σ̂, ν̂), there exists a sequence of completely mixed strategy

profiles {σk}∞k=1, with limk→∞ σ
k = σ̂, such that ν̂ = limk→∞ ν

k, where νk is determined by

extended smooth rule updating using σk as the strategy profile. Fix any i, τ i, ht such that

conditions (a)-(d) in the definition of naturally extends updating are satisfied for (σ̂, ν̂).

Then, by the argument above applied to (σk, νk) suffi ciently far along the sequence, (σ̂, ν̂)

naturally extends updating.

Proof of Theorem 2.6. That
(
σS, νS

)
satisfies sequential optimality follows directly

from the definition of a SEA. By Lemma A.2, and the fact that
(
σS, νS

)
satisfies smooth

rule consistency,
(
σS, νS

)
naturally extends updating and is thus a PEA of Γ.

Proof of Theorem 2.7. Fix Γ, σ, and h as in the statement of the theorem. Ex-ante

equilibrium, since only player j has non-trivial choices, is equivalent to ex-ante optimality of

σj according to j’s preferences. This ex-ante optimality implies (see Hanany and Klibanoff

2009, Lemma A.1) ∑
θ̄∈Θ

∑
h̄∈H

uj(h̄, θ̄)pj,σ,θ̄(h̄|h̄0)qσ,j(h̄, θ̄)

≥
∑
θ̄∈Θ

∑
h̄∈H

uj(h̄, θ̄)pj,(σ′j ,σ−j),θ̄(h̄|h̄
0)qσ,j(h̄, θ̄)

for all σ′j, where q
σ,j(h̄, θ̄) is the “local ambiguity neutral measure”as in (A.1):

qσ,j(h̄, θ̄) ≡
∑

π∈∆(Θ)

φ′j

∑
θ̂∈Θ

∑
ĥ∈H

uj(ĥ, θ̂)pσ,θ̂(ĥ|ĥ
0)π(θ̂)


· p−j,σ,θ̄(h̄|h̄0)π(θ̄)µj(π).

Consider any µ̂j such that, for all θ and some b > 0,∑
π

π(θ)µ̂j(π) = bqσ,j(h, θ).

Let Γ̂ be the game identical to Γ except that φi is the identity for all i and player j

has belief µ̂j. Since, by construction, σ is ex-ante optimal for player j given beliefs µ̂j,

and no other players have non-trivial choices, σ is an ex-ante equilibrium of Γ̂ such that∑
π

∑
θ

pσ,θ(h|h0)π(θ)µ̂j(π) > 0 for the history h.

We complete the proof by showing that σ is part of an SEA of Γ̂. Consider a sequence of

completely mixed strategy profiles σk with limit σ. Let ν̂k be the associated sequence of

interim belief systems defined by Bayesian updating of µ̂ given σk. Let ν̂ ≡ limk→∞ ν̂
k. Note
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that (σ, ν̂) satisfies smooth rule consistency by construction, since smooth rule updating is

Bayesian updating when players are ambiguity neutral. By Lemma 2.1, ν̂ is consistent with

Bayesian updating using σ as the strategy profile. Because only j has non-trivial choices, (1)

Bayesian updating uniquely pins down j’s interim beliefs after every partial history, and (2)

the beliefs and interim beliefs of players other than j are irrelevant for checking sequential

optimality. Therefore, since j is ambiguity neutral (subjective expected utility) in game

Γ̂ and Bayesian updating preserves ex-ante optimality under ambiguity neutrality, (σ, ν̂) is

sequentially optimal and is therefore an SEA of Γ̂.

Proof of Proposition 3.1. Observe that player 1 is willing ex-ante to play P with

positive probability if and only if, after the play of P , (U,R) will be played with probability

at least 1
2
. Suppose there is an ex-ante equilibrium, σ, in which P is played with positive

probability. Let pI and pII denote the probabilities according to σ that types I and II,

respectively, of player 1 play P . Then player 2 is finds it optimal to play U with positive

probability if and only if

pI
∑

π∈∆(Θ)

µ(π)(π(I)) + pII
∑

π∈∆(Θ)

µ(π)(1− π(I)) ≥ 5

2
pII

∑
π∈∆(Θ)

µ(π)(1− π(I))

which is equivalent to

pI
∑

π∈∆(Θ)

µ(π)(π(I)) ≥ 3

2
pII

∑
π∈∆(Θ)

µ(π)(1− π(I)). (A.16)

Similarly, player 3 finds it optimal to play R with positive probability if and only if

pI
∑

π∈∆(Θ)

µ(π)(π(I)) + pII
∑

π∈∆(Θ)

µ(π)(1− π(I)) ≥ 5

2
pI

∑
π∈∆(Θ)

µ(π)(π(I))

which is equivalent to

pI
∑

π∈∆(Θ)

µ(π)(π(I)) ≤ 2

3
pII

∑
π∈∆(Θ)

µ(π)(1− π(I)). (A.17)

Since (A.16) and (A.17) cannot both be satisfied when pI + pII > 0 (i.e., P is played

with positive probability), σ must specify that the history (P,U,R) is never realized. This

implies that player 1 has an ex-ante profitable deviation to the strategy of always playing

Q, contradicting the assumption that σ is an ex-ante equilibrium.
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Proof of Proposition 3.2. Let µ put probability 1
2
on π0 and 1

2
on π1, where π0(I) = 1

and π1(I) = 0.10 Let φ(x) ≡ −e−x.11 Let σ be a strategy profile specifying that both types of
player 1 play P with probability 1, player 2 plays U with probability λ∗ if given the move and

player 3 plays R with probability λ∗ if given the move, where λ∗ = 1− 2
5

ln(3/2). Notice that

according to σ, the history (P,U,R) occurs with probability
(
1− 2

5
ln(3/2)

)2
> 7

10
. Observe

that player 1 strictly prefers ex-ante to play P with probability 1 for both types if and only

if, after the play of P , (U,R) will be played with probability greater than 1
2
. The same is

true for each type of player 1 after her type is realized as well. Player 2 ex-ante chooses the

probability, λ ∈ [0, 1], with which to play U if given the move to maximize

−1

2
e−λ − 1

2
e−(λ+ 5

2
(1−λ)).

One can verify that the maximum is reached at λ = λ∗. Similarly, player 3 ex-ante chooses

the probability, λ ∈ [0, 1], with which to play R if given the move to maximize

−1

2
e−(λ+ 5

2
(1−λ)) − 1

2
e−λ

which is again maximized at λ = λ∗.

Now consider the following sequence of completely mixed strategies with limit σ: σk has

each type of player 1 play P with probability 1 − 1
2k
, and leaves the strategies otherwise

the same as in σ. The associated interim belief system, νk, is derived from σk according

to the extended smooth rule and we define ν as limk→∞ ν
k. Recall that only player 1

has more than one possible type. Thus νk1,I,η(π0) = 1 and νk1,II,η(π1) = 1 for all partial

histories η. Furthermore, νk2,θ2,∅(π0) =
1
2

φ′((1− 1
2k

)λ∗)
φ′((1− 1

2k
)λ∗)

1
2

φ′((1− 1
2k

)λ∗)
φ′((1− 1

2k
)λ∗)

+ 1
2

φ′((1− 1
2k

)(λ∗+ 5
2 (1−λ∗)))

φ′((1− 1
2k

)(λ∗+ 5
2 (1−λ∗)))

= 1
2
, νk3,θ3,∅(π0) =

1
2
, νk2,θ2,P

(π0) =
1
2

(1− 1
2k

)
φ′((1− 1

2k
)λ∗)

φ′(λ∗)

1
2

(1− 1
2k

)
φ′((1− 1

2k
)λ∗)

φ′(λ∗) + 1
2

(1− 1
2k

)
φ′((1− 1

2k
)(λ∗+ 5

2 (1−λ∗)))
φ′((λ∗+ 5

2 (1−λ∗)))

= 1

1+e
(5(1−λ∗))

4k

, and νk3,θ3,P
(π0) =

1
2

(1− 1
2k

)
φ′((1− 1

2k
)(λ∗+ 5

2 (1−λ∗)))
φ′(λ∗+ 5

2 (1−λ∗))

1
2

(1− 1
2k

)
φ′((1− 1

2k
)(λ∗+ 5

2 (1−λ∗)))
φ′(λ∗+ 5

2 (1−λ∗))
+ 1

2
(1− 1

2k
)
φ′((1− 1

2k
)λ∗)

φ′(λ∗)

= 1

1+e−
(5(1−λ∗))

4k

. Since limk→∞ ν
k
2,θ2,P

(π0) =

limk→∞ ν
k
3,θ3,P

(π0) = limk→∞ ν
k
2,θ2,∅(π0) = limk→∞ ν

k
3,θ3,∅(π0) = 1

2
, σ remains optimal for

players 2 and 3 following the play of P given ν. (The beliefs at other partial histories can

also be calculated using the smooth rule formula, but they will not matter for sequential

optimality because the relevant player has no moves left.) Thus, (σ, ν) is sequentially optimal

10The degeneracy of the π in the support of µ is not necessary for the argument to go through —it merely
shortens some calculations and reduces the ambiguity aversion required.
11Any more concave φ will also work, as will any φ more concave than −e−αx for α = −4(ln(2/3))

5(2−
√
2)
≈ 0.554.
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and, by construction, satisfies smooth rule consistency. It is therefore an SEA.

Rather than the “one-step ahead” formulation of smooth rule updating in (2.8) for a

partial history from an immediately prior one, one could alternatively (and equivalently)

write the smooth rule as updating ν
i,τ i,hmi(h

t) to νi,τ i,ht all at once:

For each partial history ht, for all π ∈ ∆ (Θ) such that π(Θi,τ i,ht) > 0,

νi,τ i,ht(π) ∝
φ′i

(∑̂
θ∈Θ

∑
ĥ∈H|ĥmi(ht)=hmi(ht)

ui(ĥ, θ̂)pσ,θ̂(ĥ|hmi(h
t))πΘ

i,τi,h
mi(h

t)
(θ̂)

)

φ′i

(∑̂
θ∈Θ

∑
ĥ∈H|ĥt=ht

ui(ĥ, θ̂)pσ,θ̂(ĥ|ht)πΘi,τi,ht
(θ̂)

) (A.18)

·

 ∑
θ̂∈Θi,τi,ht

p−i,σ,θ̂(h
t|hmi(ht))πΘ

i,τi,h
mi(h

t)
(θ̂)

 ν
i,τ i,hmi(h

t)(π).

This “all-at-once”formula is convenient for the proof of the next result.

Proof of Proposition 3.3. Since type uncertainty is only about player 3 and there are

only two possible types, represent probabilities over the types by the probability, p, of Type

I. Think of player 2 being subjectively uncertain whether nature used p̂ ≥ 1/2 or p̌ = 1− p̂
to determine player 3’s type. Specifically, let µ2(p̂) = µ2(p̌) = 1/2. Also assume φ2 is smooth

and strictly concave.

We now show that (R,F, (C,C), λ∗H + (1− λ∗)G) is an SEA given p̂ = 3
4
and φ2(x) = −e−2x

and defining λ∗ by

λ∗ = arg max
λ∈[0,1]

1

2
φ2(2λ+ 6(1− λ)p̂) +

1

2
φ2(2λ+ 6(1− λ)p̌). (A.19)

First, we show that the strategy profile is an ex-ante equilibrium of the game. Player 1 is

best responding (for any specification of φ1 and µ1) because he gets a payoff of 1 on path and

would get less than 1 by deviating since 2 plays F following T . Player 2 is best responding

on-path by the definition of λ∗. Player 3 has (C,C) as a best response (for any specification

of φ3 and µ3) if and only if λ
∗ ≥ 1/2. First-order conditions for an interior λ∗ are given by

(1− 3p̂)φ′2(2λ∗ + 6(1− λ∗)p̂) + (3p̂− 2)φ′2(2λ∗ + 6(1− λ∗)(1− p̂)) = 0. (A.20)

Notice that the left-hand side of (A.20) is always negative for λ∗ = 1. By concavity therefore,

λ∗ < 1. Observe that λ∗ ≥ 1/2 if and only if the left-hand side of (A.20) is non-negative at

λ∗ = 1/2 i.e.,

(1− 3p̂)φ′2(1 + 3p̂) + (3p̂− 2)φ′2(1 + 3(1− p̂)) ≥ 0. (A.21)

50



Observe that this is satisfied for our choice of p̂ and φ2. In particular λ
∗ = 1− ln(5)

6
. Thus 3

is best responding and the strategy profile is an ex-ante equilibrium.

Before specifying interim beliefs observe that, since there is no type uncertainty about players

1 or 2, player 3’s beliefs are trivial. Also, since player 1’s payoffs do not depend on 3’s type

or actions, 1’s best response to the strategies of the others is independent of his beliefs.

Thus, the only important beliefs to specify are those of player 2. We construct such beliefs

to satisfy smooth rule consistency. Consider the following sequence of strategy profiles with

limit (R,F, (C,C), λ∗H + (1− λ∗)G):

σk ≡
(

k

k + 1
R +

1

k + 1
T,

k

k + 1
F +

1

k + 1
B, (

k

k + 1
C +

1

k + 1
S,

k

k + 1
C +

1

k + 1
S), λ∗H + (1− λ∗)G

)
.

Applying the extended smooth rule using σk (in particular, applying the formula in (A.18)),

νk2,(R,C)(p) ∝

φ′i

(
p( 1

k+1
( k
k+1

2 + 1
k+1

0) + k
k+1

( 1
k+1

0 + k
k+1

(2λ∗ + 6(1− λ∗))))
+(1− p)( 1

k+1
( k
k+1

2 + 1
k+1

4) + k
k+1

( 1
k+1

0 + k
k+1

(2λ∗ + 0(1− λ∗))))

)
φ′i (p(2λ

∗ + 6(1− λ∗)) + (1− p)(2λ∗ + 0(1− λ∗)))

(
k

k + 1

)2
1

2

Thus,

νk2,(R,C)(
3

4
) =

(3 + λ∗)(−2− 4k + k2(−9 + 5λ∗))

2(−30 + 8k(−3 + λ∗) + 14λ∗ + k2(−27 + 6λ∗ + 5 (λ∗)2))

and so

ν2,(R,C)(
3

4
) = lim

k→∞
νk2,(R,C)(

3

4
) =

1

2
= lim

k→∞
νk2,(R,C)(

1

4
) = ν2,(R,C)(

1

4
).

Furthermore,

νk2,T (p) ∝

φ′i

(
p( 1

k+1
( k
k+1

2 + 1
k+1

0) + k
k+1

( 1
k+1

0 + k
k+1

(2λ∗ + 6(1− λ∗))))
+(1− p)( 1

k+1
( k
k+1

2 + 1
k+1

4) + k
k+1

( 1
k+1

0 + k
k+1

(2λ∗ + 0(1− λ∗))))

)
φ′i
(
p( k

k+1
2 + 1

k+1
0) + (1− p)( k

k+1
2 + 1

k+1
4)
) 1

k + 1

1

2

Thus,

νk2,T (
3

4
) =

(3 + 2k)(−2− 4k + k2(−9 + 5λ∗))

2(−6− 16k + k2(−23 + 7λ∗) + 4k3(−3 + λ∗))

and so

ν2,T (
3

4
) = lim

k→∞
νk2,T (

3

4
) =

9− 5λ∗

12− 4λ∗
=

24 + 5 ln(5)

48 + 4 ln(5)
≈ 0.59.
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We now verify that 2 is playing optimally with respect to these interim beliefs. By the

definition of λ∗ (via (A.19)), since ν2,(R,C)(
3
4
) = 1

2
, player 2 is indeed best responding after 1

plays R and 3 plays C. If player 2 is given the move after 1 plays T , 2 playing F if a best

response if and only if

1 ∈ arg max
γ∈[0,1]

ν2,T (
3

4
)φ2(2γ + 4(1− γ)

1

4
) + (1− ν2,T (

3

4
))φ2(2γ + 4(1− γ)

3

4
).

This may be verified for ν2,T (3
4
) = 24+5 ln(5)

48+4 ln(5)
and the φ2 assumed.

Putting everything together, (R,F, (C,C), λ∗H + (1− λ∗)G) is sequentially optimal with

respect to beliefs satisfying smooth rule consistency. Therefore all the conditions for an SEA

are satisfied.

Proof of Proposition 3.4. Suppose player 2 is ambiguity neutral (without loss of

generality, take φ2 to be the identity). Let γ be player 2’s initial reduced probability that 3

is of type I. For C to be played on the equilibrium path, player 1 must play R with positive

probability, which can be a best response if and only if player 1’s expected payoff following

T is less than or equal to 1, the sure payoff after R. This is possible if and only if 2’s strategy

plays F with probability at least 5
6
following T . If T is played with positive probability in

equilibrium, then 2 playing F with probability at least 5
6
following T is optimal for 2 if and

only if γ ≥ 1/2. In the explanation before Proposition 3.3, we showed that no PEA can have

only type I of player 3 play C with positive probability on the equilibrium path. Suppose

type II of player 3 plays C with positive probability on path. Optimality for 3 implies this

can be true only if 2 plays H with probability weakly higher than G. But then type I of

player 3 finds it strictly optimal to play C with probability 1. Note however that in this

case 2 strictly prefers G over H, making C strictly worse than S for both types of player

3. It follows that playing C with positive probability on the equilibrium path cannot satisfy

condition (2.6) of sequential optimality (and thus PEA) where T is played with positive

probability.

It remains to consider the case where 1 plays R with probability 1. Then T is now an off

equilibrium path action and thus condition (2.6) places no restrictions on 2’s play following

T . However, the naturally extends updating condition requires that 2’s updated beliefs

following T must continue to place weight γ on 3 being of type I because 3 has no move at

that stage, 2’s marginal over 3’s type is a product measure, and there is no costly ambiguity

exposure (since φ′ is constant) for 2. From sequential optimality, it then follows that 2’s best

response to T is B whenever γ < 1/2, which contradicts the optimality of 1 playing R. Now

suppose γ ≥ 1/2. The same argument as used above after establishing that γ ≥ 1/2 shows

that C cannot be played with positive probability on the equilibrium path. In sum, when
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player 2 is ambiguity neutral, in any PEA if γ < 1/2 then 1 plays T and 3 never is given the

move, while if γ ≥ 1/2 then 3 never plays C if given the move.

Proof of Proposition 3.5. Consider the following limit pricing strategy profile, σ∗:

in the first period, types M and L pool at the monopoly quantity for L, and type H plays

the monopoly quantity for H. Then the entrant enters after observing any quantity strictly

below the monopoly quantity for L and does not enter otherwise. If entry occurs, the firms

play the complete information Cournot quantities in the second period. If no entry occurs,

the incumbent plays its monopoly quantity in the second period.

By Lemma A.3, under the assumptions of the Theorem there exists a φ̂ such that if the

entrant’s φ is at least as concave as φ̂, then (3.5) is satisfied. By the arguments in the text

discussing this example, the assumptions of the Theorem together with (3.5) are suffi cient

for σ∗ to satisfy inequality (2.6) of sequential optimality.

Next, we construct an interim belief system that, together with the given strategy profile,

satisfies smooth rule consistency. Consider a sequence of strategy profiles, σk, where γkt,q > 0

is the probability that type t of the incumbent chooses first period quantity q, λkq > 0

is the probability that the entrant enters after observing quantity q, δkt,(q,enter,r) > 0 and

δk(q,enter,r) > 0 are the probabilities of second period quantity r being chosen by, respectively,

type t of the incumbent and the entrant, after observing first period quantity q followed

by entry, and δkt,(q,no entry,r) > 0 is the probability of second period quantity r being chosen

by type t of the incumbent after observing first period quantity q followed by no entry.

Specifically, let γkt,q ≡
βkt,q∑
q̂ β

k
t,q̂
for k = 1, 2, ..., where βkt,q is defined by

q

t q = qH q = qL qH 6= q < qL q > qL

L 1 k2 1 k

M 1 k2 1 1

H k2 1 k 1

, λkq converge to 1 as k →∞ when q < qL and converge to 0 otherwise, δkt,(q,enter,r) converge to

1 as k →∞ when r is the Cournot quantity for type t and converge to 0 otherwise, δk(q,enter,r)
converge to 1 as k → ∞ when r is the Cournot quantity for the entrant and converge to 0

otherwise, and δkt,(q,no entry,r) converge to 1 as k → ∞ when r is the monopoly quantity for

type t and converge to 0 otherwise. Note that σk converges to σ∗. For all π in the support

of the ex-ante belief µ, let πkq(t) ≡
γkt,qπ(t)∑
t̂

γk
t̂,q
π(t̂)

denote the conditional of π after observing q
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in the first period under σk. Observe that

lim
k→∞

πkq(t) = lim
k→∞

βkt,q∑
q̂ β

k
t,q̂
π(t)∑

t̂

βk
t̂,q∑
q̂ β

k
t̂,q̂

π(t̂)
.

Thus, for q 6= qL,

lim
k→∞

πkq(H) = 1 for all q < qL,

and

lim
k→∞

πkq(L) = 1, for all q > qL.

This yields that, for q 6= qL, all measures in the support of νE,q ≡ limk→∞ ν
k
E,q have the same

conditional, limk→∞ π
k
q(t), which is the point mass on H if q < qL and the point mass on L if

q > qL, so that the limit beliefs for the entrant constructed from the sequence σk according

to the extended smooth rule are degenerate after observing anything except qL. For q = qL,

lim
k→∞

πkqL(M) =
π(M)

π(L) + π(M)
and lim

k→∞
πkqL(L) =

π(L)

π(L) + π(M)
. (A.22)

The corresponding sequence of entrant’s beliefs after observing qL, νkE,qL(π) is defined via

the extended smooth rule by

νkE,qL(π) ∝
φ′
(∑

t

π(t)
∑
q,x,y

γkt,qλ
k
qδ
k
t,(q,enter,x)δ

k
(q,enter,y)w(x, y)

)
φ′
(∑

t

πkqL(t)
∑
x,y

λkqLδ
k
t,(qL,enter,x)δ

k
(qL,enter,y)w(x, y)

) (∑
t

γkt,qLπ(t)

)
µ(π),

where w(x, y) ≡ (a− b(x+ y)− cE)y −K is the entrant’s Cournot profit net of entry costs

when the incumbent produces x and the entrant produces y. Taking limits and applying

(A.22) yields,

νE,qL(π) ∝ φ′ (π(H)wH)

φ′ (0)
(
π(L) + π(M)

2
)µ(π), (A.23)

for all π such that π(L) + π(M) > 0, recalling that wH is the entrant’s Cournot profit net

of entry costs when facing an incumbent of type H. For all other π, νE,qL(π) = 0. Notice

that νE,q is the only non-trivial part of the interim beliefs given σ∗: the incumbent is always

completely informed after the ex-ante stage and the entrant becomes fully informed after its

entry decision. As constructed, therefore, (σ∗, ν) satisfies smooth rule consistency.

The final step in the proof is to verify that (σ∗, ν) satisfies the interim optimality condi-

tions (2.7) of sequential optimality. By construction, the Cournot strategies in the last stage
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given entry are optimal with respect to the complete information degenerate beliefs. The fact

that wL < 0 plus (3.4) implies that it is optimal for the entrant to stay out if it believes the

incumbent is type L and to enter if it believes the incumbent is type H. Therefore, given the

constructed νE,q, the play specified for the entrant by σ∗ is indeed interim optimal following

q 6= qL. It remains to focus on the path where qL is observed in the first period. σ∗ says for

the entrant not to enter. This being optimal from an interim perspective is equivalent to the

following: ∑
π|π(H)<1

νE,qL(π)
1

1− π(H)
(π(L)wL + π(M)wM)φ′(0) ≤ 0. (A.24)

Substituting (A.23) into (A.24) yields that not entering remaining optimal is equivalent

to (3.5). Therefore (σ∗, ν) satisfies the interim optimality conditions (2.7) of sequential

optimality.

Having shown (σ∗, ν) is sequentially optimal and satisfies smooth rule consistency, it is

therefore an SEA.

Lemma A.3 Under the assumptions of Proposition 3.5 there exists an α > 0 such that if φ

is at least as concave as −e−αx then (3.5) is satisfied.

Proof. Assume the conditions of the theorem. We show that (3.5) is satisfied for concave
enough φ. If µ ({π | π(L)wL + π(M)wM ≤ 0}) = 1 then (3.5) is trivially satisfied for any φ.

For the remainder of the proof, therefore, suppose that µ ({π | π(L)wL + π(M)wM > 0}) >
0. Let Π− ≡ {π | π(L)wL + π(M)wM < 0}, Π+ ≡ {π | π(L)wL + π(M)wM > 0}, N ≡∑

π∈Π− µ(π)(π(L)wL + π(M)wM), and P ≡
∑

π∈Π+ µ(π)(π(L)wL + π(M)wM). Let π− ∈
arg maxπ∈Π− π(H) and π+ ∈ arg minπ∈Π+ π(H). The left-hand side of (3.5) can be bounded

from above as follows:∑
π∈Π−

µ(π)(π(L)wL + π(M)wM)φ′ (π(H)wH) +
∑
π∈Π+

µ(π)(π(L)wL + π(M)wM)φ′ (π(H)wH)

≤
∑
π∈Π−

µ(π)(π(L)wL + π(M)wM)φ′
(
π−(H)wH

)
+
∑
π∈Π+

µ(π)(π(L)wL + π(M)wM)φ′
(
π+(H)wH

)
= Nφ′

(
π−(H)wH

)
+ Pφ′

(
π+(H)wH

)
.

Consider φ(x) = −e−αx, α > 0. The upper bound above becomes

αNe−απ
−(H)wH + αPe−απ

+(H)wH .

We show that this upper bound is non-positive for suffi ciently large α, implying (3.5). The

upper bound is non-positive if and only if Pe−απ
+(H)wH ≤ −Ne−απ−(H)wH if and only if
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eα(π−(H)−π+(H))wH ≤ −N
P
if and only if α (π−(H)− π+(H))wH ≤ ln(−N

P
). Since π−(L)wL +

π−(M)wM < 0 < π+(L)wL + π+(M)wM and cL < cM , we have wL < 0 < wM . Thus,
π−(L)
π−(M)

> −wM
wL

> π+(L)
π+(M)

. By our assumption on the support of µ and Lemma A.4, π−(L)
π−(M)

>
π+(L)
π+(M)

implies π−(H) < π+(H). Therefore, α (π−(H)− π+(H))wH ≤ ln(−N
P

) if and only if

α ≥ ln(−N
P

)

(π−(H)−π+(H))wH
.

To complete the proof, fix α satisfying this inequality and consider φ such that φ(x) =

h(−e−αx) for all x with h concave and strictly increasing on (−∞, 0). We show that (3.5)

holds. Observe that φ′(x) = h′(−e−αx)αe−αx. Since π−(H) − π+(H) < 0 and wH > 0, we

have

−e−απ−(H)wH ≤ −e−απ+(H)wH

and, by concavity of h,

h′(−e−απ−(H)wH ) ≥ h′(−e−απ+(H)wH ).

Therefore the upper bound derived above satisfies

Nφ′
(
π−(H)wH

)
+ Pφ′

(
π+(H)wH

)
= αNe−απ

−(H)wHh′(−e−απ−(H)wH ) + αPe−απ
+(H)wHh′(−e−απ+(H)wH )

≤ (αNe−απ
−(H)wH + αPe−απ

+(H)wH )h′(−e−απ−(H)wH ) ≤ 0

by the first part of the proof and the assumption on α. This implies (3.5).

Lemma A.4 If the support of µ can be ordered in the likelihood-ratio ordering, then, for
any π, π′ ∈ suppµ, π(L)

π(M)
> π′(L)

π′(M)
implies π(H) < π′(H).

Proof. Suppose the support of µ can be so ordered. Fix any π, π′ ∈ suppµ. Suppose
π(L)
π(M)

> π′(L)
π′(M)

. Then π′(L)
π(L)

< π′(M)
π(M)

, and thus, by likelihood-ratio ordering, π′(L)
π(L)

< π′(M)
π(M)

≤
π′(H)
π(H)

. This implies π′(H) > π(H) since the last two ratios cannot be less than or equal to 1

without violating the total probability summing to 1.

Proof of Proposition 4.1. Since the proposed strategies involve the play of both

messages, there are no off path actions before the last stage, thus, by Theorem 2.4, it is

suffi cient to verify that the proposed strategies are sequentially optimal. Furthermore, by

Theorem 2.2, this is equivalent to verifying that these strategies form an ex-ante equilibrium,

which is established in the rest of this proof.

P’s strategy is an ex-ante best response because it leads to payoff 2 for all types, which

is the highest feasible payoff for this player. Let γl be the probability with which a1 plays h

after message ml, l = 1, 2, and similarly let δl be the corresponding probabilities for a2. The
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proposed strategies correspond to γ1 = γ2 = δ2 = 1 and δ1 = 0. We now verify that these

are ex-ante best responses. Denoting πk(IIB) + πk(IIR) by πk(II), given the strategies of

the others, a1 maximizes

1

2

2∑
k=1

φa1 (πk(IB)γ1 + 2πk(IR)γ2 + πk(II)[2γ2 + 5(1− γ2)]) .

Since this function is strictly increasing in γ1, it is clearly maximized at γ1 = 1. The first

derivative with respect to γ2 evaluated at γ1 = γ2 = 1 is

1

2

2∑
k=1

[2πk(IR)− 3πk(II)]φ′a1 (2− πk(IB))

=
11

8
e−11· 39

20

(
e−11( 7

4
− 39

20
) − 42

5

)
> 0,

where the last equality uses φa1(x) = −e−11x and the values of the πk. Thus, by concavity

in γ2, the maximum is attained at γ1 = γ2 = 1. Similarly, given the strategies of the others,

a2 maximizes

1

2

2∑
k=1

φa2 (πk(IB)[2δ1 + 5(1− δ1)] + πk(IR)[2δ2 + 5(1− δ2)] + 2πk(II)δ2) .

Since this function is strictly decreasing in δ1, it is clearly maximized at δ1 = 0. The first

derivative with respect to δ2 evaluated at δ1 = 0 and δ2 = 1 is

1

2

2∑
k=1

[−3πk(IR) + 2πk(II)]φ′a2 (3πk(IB) + 2)

= −1

2
φ′a2

(
11

4

)
+

23

40
φ′a2

(
43

20

)
≥ 3

40
φ′a2

(
11

4

)
> 0,

where the last equality uses the values of the πk. Since φa2 is weakly concave, the problem

is weakly concave in δ2, thus the maximum is attained at δ1 = 0 and δ2 = 1.

Proof of Proposition 4.2.
By definition, a non-Ellsberg strategy for P conditions only on the payoff relevant part of

the type, I and II. Denote P’s probability of playing m1 conditional on the payoff relevant

part of the type by rI and rII . Let γl be the probability with which a1 plays h after message

ml, l = 1, 2, and similarly let δl be the corresponding probabilities for a2. Given rI and rII ,
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a1 chooses γ1, γ2 to maximize

1

2

2∑
k=1

φa1( πk(I)[rI(1 + δ1)γ1 + (1− rI)(1 + δ2)γ2] (A.25)

+πk(II)[rII((1 + δ1)γ1 + 5(1− γ1)) + (1− rII)((1 + δ2)γ2 + 5(1− γ2))])

and a2 chooses δ1, δ2 to maximize

1

2

2∑
k=1

φa2( πk(I)[rI((1 + γ1)δ1 + 5(1− δ1)) + (1− rI)((1 + γ2)δ2 + 5(1− δ2))](A.26)

+πk(II)[rII(1 + γ1)δ1 + (1− rII)(1 + γ2)δ2]).

The proof proceeds by considering four cases, which together are exhaustive:

Case 1: When rI = rII = 1 (resp. rI = rII = 0) so that only one message is sent, for

P to always receive the maximal payoff of 2 it is necessary that the agents play h1, h2 with

probability 1 after this message, i.e. γ1 = δ1 = 1 (resp. γ2 = δ2 = 1). But h2 is not a best

response for a2, as can be seen by the fact that the partial derivative of (A.26) with respect

to δ1 (resp. δ2) evaluated at those strategies is

1

2
(4− 5

2∑
k=1

πk(I))φ′a2(2) = −3

8
φ′a2(2) < 0.

Similarly, one can show that h1 is not a best response for a1.

Case 2: When 0 < rII < 1, since type II sends both messages with positive probability,

it is necessary that h1, h2 are played with probability 1 after both messages in order that

the principal always receive the maximal payoff of 2. A necessary condition for this to be

a best response for a2 is that the partial derivatives of (A.26) with respect to δ1, δ2 are

non-negative at γ1 = γ2 = δ1 = δ2 = 1. This is, respectively, equivalent to 14rII ≥ 19rI and

14(1− rII) ≥ 19(1− rI), which implies 14 ≥ 19, a contradiction.

Case 3: When rII = 1 and 0 ≤ rI < 1, (A.26) is strictly decreasing in δ2, thus the

maximum is attained at δ2 = 0. For the principal to always receive the maximal payoff of 2,

it is necessary that γ1 = γ2 = δ1 = 1. However, this is not a best response for a1 because the

partial derivative of (A.25) with respect to γ1 evaluated at these strategies using the values

for the πk is,
3

8
(2rI − 1)φ′a1(

15rI + 25

20
) +

1

5
(rI − 6)φ′a1(

4rI + 36

20
) < 0.

To see this inequality, note that the second term is always negative, the first term is non-

positive if 0 ≤ rI ≤ 1
2
, and, when 1

2
< rI < 1, substituting φa1(x) = −e−11x yields that the
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left-hand side is negative.

Case 4: When rII = 0 and 0 < rI ≤ 1, (A.26) is strictly decreasing in δ1, thus the

maximum is attained at δ1 = 0. For the principal to always receive the maximal payoff of 2,

it is necessary that γ1 = γ2 = δ2 = 1. However, this is not a best response for a1 because the

partial derivative of (A.25) with respect to γ2 evaluated at these strategies using the values

for the πk is,
3

4
(
1

2
− rI)φ′a1(2− 3

4
rI) + (−1

5
rI − 1)φ′a1(2− rI

5
) < 0.

To see this inequality, note that the second term is always negative, the first term is non-

positive for 1
2
≤ rI ≤ 1, and, when 0 < rI <

1
2
, substituting φa1(x) = −e−11x yields that the

left-hand side is negative.

Lemma A.5 Let f and g be continuously differentiable, concave and strictly increasing

functions mapping reals to reals such that g is at least as concave as f and let x < y. Then

g′(x)/g′(y) ≥ f ′(x)/f ′(y).

Proof. By definition of at least as concave as, for all a in the domain of f , g(a) =

h(f(a)) for some function h that is concave and strictly increasing on the range of f . Thus,

g′(a) = h′(f(a))f ′(a). Therefore

g′(x)

g′(y)
=
h′(f(x))

h′(f(y))

f ′(x)

f ′(y)
≥ f ′(x)

f ′(y)

where the inequality follows because concavity of h and f(x) < f(y) implies h′(f(x))
h′(f(y))

≥ 1.
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