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Abstract

Can a policy maker lead an agent to form systematically biased

economic forecasts? This possibility is ruled out by the conventional

rational-expectations postulate. I revisit this question and assume

that the agent misperceives causal relations among economic variables,

which may lead to non-rational expectations. The agent forms fore-

casts of economic variables after observing the policy maker’s action.

The agent’s forecasts are based on fitting a subjective causal model

- formalized as a direct acyclic graph, following the “Bayesian net-

works”literature - to objective long-run data. I show that the agent’s

forecasts can be systematically biased if and only if the agent’s graph

is not perfect - i.e., if the direction of at least some of the causal

links he postulates is empirically meaningful. I characterize the pol-

icy maker’s optimal strategy for several examples, mainly a stylized

“monetary policy”application.
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1 Introduction

Many real-life interactions can be described as a principal-agent problem, in

which the principal’s ability to achieve his objectives depends on whether

the agent correctly anticipates the principal’s actions or their consequences.

In some situations, the principal wishes to surprise the agent. For instance,

success of a police crackdown on a drug-traffi cking operation hinges on its un-

predictability. Likewise, the immediate effect of a pay rise on worker morale

is intuitively larger when it comes as a surprise. In other situations, the

principal would like the agent to hold correct expectations. For example,

when a company’s management adapts its marketing strategy to changes in

consumer demand, it would be better served if sales and service staff could

anticipate the adaptation in advance, for the sake of swift implementation of

the new strategy.

Monetary theory offers a prominent example of this general idea. In

a well-known class of models, originated by Kydland and Prescott (1977)

and Barro and Gordon (1983), the central bank controls a policy variable

that affects inflation. The private sector forms an inflation forecast, possibly

after observing some signal regarding the central bank’s decision. Private-

sector expectations are relevant because real output (or unemployment) is

determined by an “expectations-augmented” Phillips curve, such that the

real effect of inflation is at least partly offset when inflation is anticipated. It

follows that monetary policy involves “expectations management”. To quote

Woodford (2003, p. 15):

“. . . successful monetary policy is not so much a matter of effec-

tive control of overnight interest rates as it is of shaping market

expectations of the way in which interest rates, inflation and in-

come are likely to evolve. . . ”

Thus, to the extent that the central bank wishes to maximize expected out-

put, it would like to set inflation systematically above private-sector expec-

tations. And to the extent that the central bank wishes to minimize output

fluctuations, it would like to avoid inflationary surprises.
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In conventional models, the principal’s ability to manage the agent’s ex-

pectations is constrained by the assumption that the agent has “rational

expectations”- i.e., he fully understands the statistical regularities in his en-

vironment, and thus forms unbiased forecasts of any economic variable condi-

tional on his information. In this paper, I relax this assumption. Of course,

one could model non-rational expectations in various ways. My approach

is based on the following simple idea: the agent derives his expectations by

fitting a subjective causal model to objective long-run data.

The idea that people reason about uncertainty via intuitive causal models

has been studied extensively by experimental psychologists (e.g., see Sloman

(2005)). In the more specific context of macroeconomic policy, private-sector

agents hold intuitive, qualitative theories about the interconnection among

macro variables; and such theories can sometimes be viewed as statements

about causal relations. Indeed, Hoover (2001) describes historical controver-

sies in macroeconomics in such terms. Furthermore, key private-sector actors

(banks, financial-market speculators) regularly employ statistical models to

form macroeconomic forecasts. While the exact specification of these mod-

els may be tweaked from time to time in order to get good empirical fit,

their basic underlying causality assumptions are more likely to remain con-

stant during times of relative stability. (For a study of how macroeconomic

forecasters rely on models, see Giacomini et al. (2015).)

To formalize the notion that expectations are based on a subjective causal

model, I employ a recent modeling framework (Spiegler (2015a)), which in

turn builds on the Statistics and Artificial-Intelligence literature on Bayesian

networks (Cowell et al. (1999), Pearl (2009)). The following example illus-

trates the modeling approach and its possible implications. It will serve as a

running example throughout this paper.

An Example: Exploiting a Belief in Monetary Neutrality

Although this paper is a purely theoretical exercise, it will make use of a

“monetary policy”scenario as a running example. Consider an environment

in which the principal is a central bank and the agent is the private sector.

I adapt a simple reformulation of the Barro-Gordon model due to Sargent

(2001), Athey et al. (2005) and others. The central bank chooses an action a.
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Inflation π is a stochastic function of a. The private sector forms its inflation

forecast e after observing the central bank’s move. Real output y is given by

a “New Classical”Phillips curve, y = π − e+ η (where η is an independent,

normally distributed variable with mean zero). Thus, only unanticipated

inflation has real effects. The central bank has a single motive: maximizing

expected output.

If the private sector had rational expectations, e would be equal to the

true expected value of π conditional on a, and therefore ex-ante expected

output would be zero, independently of the central bank’s strategy. But

now suppose that the private sector forms its expectations by reasoning in

terms of a causal model that incorrectly links the relevant macro variables.

Following Pearl (2009), a causal model is represented by a directed acyclic

graph (DAG), where each node represents a variable and a direct link between

two nodes signifies a perceived direct causal link between the variables they

represent.

Specifically, suppose that the private sector’s DAG, denoted R, is

a→ π ← y (1)

This DAG represents a causal model according to which inflation is poten-

tially a consequence of two independent causes: output and the central bank’s

action (the model omits the private sector’s expectations). The causal model

is entirely non-parametric - it does not assume anything regarding the sign

or magnitude of causal relations - it merely postulates their existence and

direction.

The causal model R is false because it perceives output to be exogenous

and thus statistically independent of monetary policy, whereas according

to the true process it is a consequence of the central bank’s action via the

Phillips Curve. Thus, the private sector subscribes to a “classical”worldview

that postulates the absolute neutrality of monetary policy, whereas the true

model allows for non-neutrality. Another way of expressing this disagreement

is that R postulates that output causes inflation, whereas according to the

true model, causation runs in the opposite direction. In other words, the
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private sector’s subjective model exhibits reverse causality.

How does the private sector employ its causal model to forecast inflation?

It simply fits the model to the true steady-state joint distribution p over

a, π, y. If p were indeed consistent with R, p(a, π, y) could be written as

pR(a, π, y) = p(a)p(y)p(π | a, y) (2)

The formula pR(a, π, y) describes the private sector’s subjective belief as

a function of the true steady-state distribution p. It is an example of a

“Bayesian network factorization formula”- it factorizes the steady-state dis-

tribution p into a product of conditional-probability terms, as if p were

consistent with R. This is how I formalize the notion that the DM “fits a

subjective causal model to the steady-state distribution”. Because the causal

model is entirely non-parametric, the private sector is always able to perfectly

fit it to any objective distribution.

The subjective belief pR systematically distorts the true correlation struc-

ture of the steady-state distribution p. The distortion arises because the

private sector perceives statistical regularities through the prism of an in-

correct causal model. Specifically, the private sector’s inflation forecast after

observing the central bank’s action a is

ER(π | a) =
∑
π

pR(π | a)π =
∑
π

(∑
y

p(y)p(π | a, y)

)
π

This is in general different from the “rational”inflation forecast

Ep(π | a) =
∑
π

p(π | a)π =
∑
π

(∑
y

p(y | a)p(π | a, y)

)
π

The discrepancy arises because pR(π | a) involves an implicit expectation

over y without conditioning on a.

The question is how the private sector’s “non-rational”inflation forecast

affects the central bank’s considerations. It turns out that there are specifi-

cations of the exogenous processes (particularly the stochastic mapping from
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a to π), for which the central bank can randomize over a in a way that leads

the private sector to systematically underestimate inflation - i.e.,∑
a

p(a)ER(π | a) <
∑
π

p(π)π

Consequently, the central bank can use monetary policy to enhance expected

output. �

In Section 2, I present a model that generalizes the above example. In the

model, the agent forms forecasts of economic variables, after observing the

realization of one particular variable (interpreted as the principal’s action).

The agent’s forecasts are based on fitting a subjective causal model (which

links nodes that represent variables and the agent’s variable forecasts) to

the joint probability distribution induced by the principal’s strategy. The

main question is: Is it possible for the agent to form a systematically biased

forecast of any of the economic variables?

The main characterization result, given in Section 4, provides a simple

answer to this question: systematically fooling the agent is possible (for a

suitably chosen specification of the exogenous processes) if and only if the

agent’s DAG is perfect. A DAG is perfect if any two direct causes of a given

variable must be directly linked themselves. The private sector’s DAG in

the above example violates perfection, because it perceives a and y as direct

causes of π, and yet it does not postulate a direct causal link between the

two. In contrast, the DAG a → y → π is perfect, and therefore cannot give

rise to systematically biased inflation forecasts.

Perfection is a key property in the literature on Bayesian networks, for

various reasons. In the present context, it is important because it is equiva-

lent to the property that the direction of any given causal link is not identified

(because there exists a DAG that induces the same mapping from objective

distributions to subjective beliefs, and reverses the link). Thus, the agent’s

misspecified causal model renders him vulnerable to biased forecasts if and

only if it postulates empirically meaningful direction of causation.

Furthermore, Spiegler (2015b) showed that perfect DAGs can be inter-

preted as a representation of the agent’s attempt to extrapolate a subjective
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belief from limited feedback. According to this interpretation, the agent does

not have an explicit a-priori causal model. Instead, he gets access to partial

observations regarding the objective long-run distribution (in the form of a

large dataset with randomly generated missing values). The agent employs a

procedurally rational rule for extending the data into a fully specified prob-

ability distribution over the economic variables, which distorts the objective

distribution as if the agent tried to fit it to an explicit causal model, repre-

sented by a perfect DAG. The results in this paper imply that this procedure

is sound, in the sense that it does not expose the agent to systematic forecast

errors.

The perfection requirement can be weakened when we restrict the domain

of permissible exogenous processes. For example, in our “monetary policy”

example, if π = a + ε, where ε is an independent, normally distributed

variable, the agent’s inflation forecasts will be unbiased on average, regardless

of the central bank’s strategy.

This collection of results is intriguing, considering the heated historical

debates over the exploitability of the inflation-output relation (see Klamer

(1984)). The key assumption behind classical non-exploitability results (Lu-

cas (1972), Sargent and Wallace (1975)) was allegedly the rationality of

private-sector expectations. However, according to this paper, a considerably

milder assumption - namely that the private sector forms its expectations by

fitting a (potentially misspecified) causal model to long-run data - reproduces

results in a similar vein.

If the agent’s false causal perceptions do not make it easy for the principal

to systematically fool him, this does not mean that they are irrelevant for his

choice of strategy. For example, Section 5 studies an elaborate version of the

above linear-normal specification of the “monetary policy”example, in which

the central bank aims to target an exogenous inflation target. The central

bank trades off the variance of real output and the mean square deviation of

inflation from its target. The central bank’s optimal policy is more rigid than

in the rational-expectations benchmark. This rigidity is exacerbated when

the variance of η becomes smaller relative to the variance of ε - i.e., when the

Phillips relation becomes more reliable in relation to the transmission from
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central-bank actions to inflation.

This paper is related to a few works that examine monetary policy when

the rational-expectations assumption is relaxed. Evans and Honkapohja

(2001) and Woodford (2013) review dynamic models in which agents form

non-rational expectations, and explore implications for monetary policy. See

Garcia-Schmidt and Woodford (2015) for a recent exercise in this tradition.

Sargent (2001), Cho et al. (2002) and Esponda and Pouzo (2015) study

models in which it is the central bank who forms non-rational expectations,

whereas the private sector is modeled conventionally.

More broadly, this paper contributes to the literature (reviewed in Spiegler

(2015a)) that studies strategic interaction among agents who base their deci-

sions on misspecified subjective models. Within this literature, Piccione and

Rubinstein (2003) share the principal-agent “expectations management”as-

pect of the present paper. In their model, the principal is a seller who

commits to a deterministic temporal sequence of prices, taking into account

that consumers can only perceive statistical patterns that allow the price at

any period t to be a function of price realizations at periods t − 1, ..., t − k,
where k is a constant that characterizes the consumer. When the value of

k is negatively correlated with consumers’willingness to pay, the seller may

want to generate a complex price sequence as a price-discrimination device.

Relatedly, Ettinger and Jehiel (2010) study a bargaining model, in which a

sophisticated seller employs deception tactics that lead a buyer who exhibits

coarse reasoning to have a biased estimate of the object’s value.

2 The Model

Let x0, x1, ..., xn be a collection of real-valued economic variables. An agent

observes the realization of x0 and forms a subjective forecast ei of each of the

economic variables xi, i = 1, ..., n. I use p to denote a joint distribution over

all 2n+ 1 variables. In all the applications in this paper, x0 is interpreted as

the action of a principal, possibly taken after having observed the realization

of some of the other economic variables. Therefore, I will often refer to x0 as

an action and denote it by a.
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If the agent’s forecast is based on rational expectations, then p must

satisfy the restriction that for every i = 1, ..., n, p(ei | x0) assigns probability
one to

Ep(xi | a) =
∑
xi

p(xi | a)xi

Other models of belief formation would imply other restrictions on p(ei | a).1

Let us now introduce the idea that the agent forms his beliefs by fitting

a misspecified causal model to long-run data. This will require basic con-

cepts from the literature on Bayesian networks. The following exposition

is standard (see Cowell et al. (1999) and Pearl (2009)), with a few minor

adjustments (introduced in Spiegler (2015a) that serve the current purposes.

To simplify exposition, denote a = x0, and ei = xi+n for every i = 1, ..., n,

such that x = (x0, x1, ..., x2n). Let N∗ = {0, 1, ..., 2n} be the set of variable
indices. For every M ⊆ N∗, denote xM = (xi)i∈M .

Define a directed acyclic graph (DAG) (N,R), where N ⊆ N∗ is the set

of nodes and R is the set of directed links. (A directed graph is acyclic

if it does not contain a directed path from a node to itself.) I use jRi or

j → i interchangeably to denote a directed link from j into i. Observe

that the binary relation R is asymmetric and acyclic. Abusing notation, let

R(i) = {j ∈ N | jRi} be the set of “direct parents”of node i. I will usually
refer to R itself as the DAG.

Let R̃ be the skeleton (or undirected version) of R - i.e., iR̃j if and only

if iRj or jRi. A subset M ⊆ N is a clique in R if iR̃j for every i, j ∈M . A
clique M is ancestral if R(i) ⊂M for every i ∈M . In particular, a node i is
ancestral if R(i) is empty. Given R, we say that a node j is an ancestor of

another node i if R contains a directed path from j into i.

The agent is characterized by a DAG R. For any objective joint proba-

bility distribution p, the agent’s subjective belief over xN is

pR(xN) =
∏
i∈N

p(xi | xR(i)) (3)

1Throughout the paper, I use simple summations rather than integration, for notational
clarity.
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A probability distribution p is consistent with R if pR(xN) ≡ p(xN). Thus,

R encodes a mapping that transforms every objective distribution p into a

subjective belief pR. When the DAG is fully connected, (3) is reduced to

a textbook chain rule, such that pR = p for every p - i.e., the agent has

“rational expectations”. Note that in general, (3) may involve terms that

condition on zero-probability events; when analyzing the model, I will need

to rule out this possibility.

Following Pearl (2009), I interpret R as a causal model. The link j → i

means that the agent regards the variable xj to be an immediate cause of

the variable xi. While the agent presupposes the existence of this causal

effect, he has no preconception regarding its sign or magnitude. In particu-

lar, this effect could be measured to be null. In other words, R is a “non-

parametric model”: even if p is governed by a parametric “true model”, the

agent does not impose any parametric restriction and fits its non-parametric

causal model R to the data generated by the true model. For a concrete

image to match this description, think of an analyst who tries to fit data

with a system of structural equations. The analyst holds the collection of

R.H.S variables in each equation fixed, but tweaks the exact functional form,

until he gets good fit.

The agent’s subjective distribution over any variable xi, i = 1, ..., n, con-

ditional on his observation of a is

pR(xi | a) =
pR(a, xi)

pR(xi)

where pR(xi) =
∑

x−i
pR(xi, x−i), as usual.

From now on, I impose one restriction on p and one restriction on R.

Condition 1 The domain of permissible objective distributions is restricted
as follows. For every a and i = 1, ..., n, p(ei | a) assigns probability one to

ER(xi | a) =
∑
xi

pR(xi | a)xi (4)

10



Condition 2 The domain of permissible DAGs is restricted as follows. First,
0 ∈ N . Second, if i ∈ N for some i ∈ {n + 1, ..., 2n}, then i − n ∈ N and

R(i) = {0}.

Condition 1 is consistent with the interpretation of ei as the agent’s sub-

jective forecast of xi conditional on a. Condition 2 means that the agent’s

DAG perceives a to be the only immediate cause of his own forecasts (note

that I use the notational convention a = x0 and ei = xi+n). The justification

for the latter restriction is that the agent actively conditions his forecasts on

the principal’s action and on no other variable, and it therefore makes sense

to assume that his subjective causal model reflects this state of affairs. The

condition also makes the self-evident requirement that the agent’s DAG in-

cludes the observed signal as a variable, and that if the agent’s DAG includes

his forecast of some variable, it must also include the variable itself.

These two domain restrictions imply the following useful result.

Lemma 1 Suppose that the domain of possible objective distributions sat-
isfies Condition 1 and that R satisfies Condition 2. Then, there is a DAG

R′ that omits the nodes n+ 1, ..., 2n altogether, such that pR′(a, x1, ..., xn) ≡
pR(a, x1, ..., xn) for every p in the restricted domain. In particular, if jRi for

some i ∈ {1, ..., n} and j ∈ {n+ 1, ..., 2n}, then 0R′i.

Proof. Suppose that i + n ∈ N for some i = 1, ..., n. Then, by Condition

2, the factorization formula (3) contains the term p(ei | a). Also, i ∈ N .

By assumption, p(ER(xi | a) | a) = 1. Therefore, we can remove the term

p(ei | a) from (3) altogether, and plug ei = ER(xi | a) in any other term in (3)

that conditions on ei - which effectively means that such a term conditions

on a. We have thus obtained a DAG representation in which the node e is

omitted, and any link from e to some node in R is replaced with a link from

a into the same node.

This result means that we can assume w.l.o.g that the agent’s DAG R

is defined over N ⊆ {0, 1, ..., n} - i.e., he omits his own forecasts from his

causal model. I will follow this practice from now on. In addition, I will
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make minor assumptions (e.g., that p has full support on (x0, x1, ..., xn))

that ensure that the factorization formula (3) does not involve terms that

condition on zero-probability events.

The conditional expected value ER(xi | a) is the agent’s forecast of xi
after observing a. If the agent could - or felt the need to - test his causal

model against historical data, he would discover the discrepancy between

ER(π | a) and E(π | a), thus refuting the model. I assume that no such

“test for model misspecification”occurs. See Spiegler (2015a) for a detailed

justification for this assumption.

3 “Monetary Policy”Example Revisited

The general problem in this paper will be: When is it possible for an agent

with a misspecified DAG to form systematically biased economic forecasts?

In applications, this question will be relevant because it is implied by the

principal’s objective function. To illustrate the problem, let us return to

the “monetary policy”example of the Introduction, and show how a central

bank may be able to exploit the private sector’s misspecified causal model

to generate systematic underestimation of inflation, thus enhancing expected

real output.

In this example, there are only two economic variables: inflation π and

real output y. Denote the private sector’s inflation forecast by e. Both

π and the central bank’s action a take values in {0, 1}, where π = 0 (1)

represents low (high) inflation. Assume that p satisfies p(π = 1 | a) = βa,

where β ∈ (0, 1). Thus, the action a = 0 induces low inflation with certainty,

whereas the action a = 1 induces high inflation with probability β. For any

given realization of π, e, y = π − e+ η, where η ∼ N(0, σ2η) is independently

distributed. That is, expected output is equal to the deviation of actual

inflation from the private sector’s forecast.
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Note that p is consistent with the following “true DAG”R∗:

a → π

↓ ↓
e → y

In contrast, the private sector’s DAG R is

a→ π ← y

Thus, as observed in the Introduction, the private sector’s causal model pos-

tulates that output fluctuations are exogenous, whereas inflation fluctuations

are the consequence of output fluctuations as well as monetary policy. In re-

lation to the true DAG R∗, R reverses the causal link between inflation and

output, and it neglects the effect of inflationary expectations on output. The

private sector’s conditional inflation forecast under R is

ER(π | a) =
∑
π

∑
y

p(y)p(π | a, y)π

The central bank commits ex-ante to a probability distribution over a.

Its strategy can be described by a single number, α = p(a = 1). Assume that

the central bank has a sole objective: maximizing expected output. Plugging

the “Phillips Curve”y = π − e, we obtain the following objective function:∑
a

p(a) [Ep(π | a)− ER(π | a)]

= Ep(π)−
∑
a

p(a)ER(π | a)

If the central bank could not systematically fool the private sector, the value

of this objective function would be zero for any strategy that it might employ.

However, we will now see that the central bank is able to cause the private

sector to systematically underestimate inflation.

Proposition 1 As σ2η → 0, the maximal expected output converges to 1
4
β.
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The level is attained by playing α = 1
2
.

Proof. Denote ER(π | a) = e(a). Because π ∈ {0, 1},

e(a) =
∑
y

p(y)p(π = 1 | a, y)

Because η is normally distributed, p(a, y) has full support, such that e(a)

never involves conditioning on zero-probability events.

Let us first calculate e(0). Because p(π = 1 | a = 0) = 0, it follows that

p(π = 1 | a = 0, y) = 0 for all y. Therefore, e(0) = 0. This in turn means

that E(y | a = 0) = 0. It follows that if α = 1, the central bank will not

be able to induce strictly positive expected output. From now on, assume

α > 0.

Let us now calculate e(1). First, note that conditional on a = 1, y is a

normally distributed variable with a random mean: y ∼ N(1−e(1), σ2η) with

probability β, and y ∼ N(−e(1), σ2η) with probability 1 − β. Therefore, the
event in which π = 1 and y > 1 − e(1) occurs with a probability greater

than αβ/2. Likewise, the event in which π = 0 and y < −e(1) occurs with a

probability greater than α(1 − β)/2. These two bounds imply that for any

σ2η and any fixed α > 0, e(1) is strictly between 0 and 1 and bounded away

from both. In the σ2η → 0 limit, the ex-ante distribution of y has atoms at

three points, −e(1), 0 and 1 − e(1), such that p(π = 1 | a = 1, y) → 1 in

the neighborhood of y = 1 − e(1), whereas p(π = 1 | a = 1, y) → 0 in the

neighborhoods of y = 0 and y = −e(1). Thus, in the σ2η → 0 limit,

e(1) =
∑
y

p(y)p(π = 1 | y) = p(π = 1) = αβ (5)

We have thus established that E(π) = αβ and
∑

a p(a)e(a) = α · αβ +

(1− α) · 0 = α2β. The central bank will choose α to maximize

αβ − α2β

which immediately gives the solution.
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Thus, the central bank employs randomization to cause the private sector

to systematically underestimate expected inflation, thus generating positive

expected output. The intuition behind the result is as follows. When the

realization of the central bank’s strategy is a = 0, it induces π = 0 with

certainty. In this case, the private sector’s fallacious conditioning on y does

not lead to a biased inflation forecast: p(π = 0 | a = 0; y) = p(π = 0 |
a = 0) = 1, and therefore pR(π = 0 | a = 0) = 1. In contrast, calculating

the private sector’s inflation forecast conditional on a = 1 involves summing

over all values of y, without conditioning y on a = 1. In the σ2η → 0 limit,

this failure to condition on a = 1 translates to the identity ER(π | a =

1) = ER(π). Thus, when the central bank plays a = 0, the private sector

correctly updates its belief, whereas when the central bank plays a = 1, the

private sector forms its inflation forecast as if it has not observed the central

bank’s move! As a result, the private sector effectively “double counts”the

episodes in which the central bank plays a = 0. This leads to systematic

underestimation of expected inflation. Finally, note that β is completely

irrelevant for the central bank’s strategy, due to the linearity of ER(π | a = 1)

in β.

4 General Analysis

In the previous section, we saw how a misspecified causal model may lead to a

systematically biased forecast of some economic variable. On the other hand,

other DAGs would always generate forecasts that are unbiased on average. A

trivial example is when R is fully connected, such that the agent has rational

expectations. For a somewhat less trivial example, consider an empty DAG

R over N = {0, 1, 2..., n} - i.e., R(i) = ∅ for every i. Then, it is easy to see
from (3) that pR(xi | a) ≡ p(xi), such that

∑
a p(a)ER(xi | a) = Ep(xi).

Definition 1 A DAG R induces unbiased forecasts if∑
a

p(a)ER(xi | a) = Ep(xi)
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for every i ∈ N and every objective distribution p that satisfies Condition 1.

Our problem is to characterize the DAGs that induce unbiased forecasts.

For this purpose, we need to introduce a few basic concepts and results from

the Bayesian-networks literature.

Equivalent DAGs

A DAG encodes a mapping from objective distributions to subjective beliefs,

which is given by (3). Two DAGs can be equivalent in the sense that they

encode the same mapping.

Definition 2 Two DAGs R and Q over N are equivalent if pR(xN) ≡
pQ(xN) for every p ∈ ∆(X).

For instance, the DAGs 1 → 2 and 2 → 1 are equivalent, by the basic

identity p(x1)p(x2 | x1) ≡ p(x2)p(x1 | x2). Moreover, a DAG that involves

intuitive causal relations can be equivalent to a DAG that makes little sense

as a causal model (e.g., it postulates a causal link between two variables in

a direction that contradicts the temporal sequence of their realizations).

The following characterization of equivalent DAGs will be useful in the

sequel. A v-collider in R is an ordered triple of nodes (i, j, k) such that iRk,

jRk, i /Rj and j /Ri (that is, R contains links from i and j into k, yet i and j

are not linked to each other). We will say in this case that there is a v-collider

into k.

Proposition 2 (Verma and Pearl (1991)) Two DAGs R and Q are equiv-
alent if and only if they have the same skeleton and the same set of v-colliders.

To illustrate this result, all fully connected DAGs have the same skeleton

(every pair of nodes is linked) and an empty set of v-colliders, hence they

are all equivalent (indeed, they all induce rational expectations because they

reduce (3) to a textbook chain rule). In contrast, the DAGs 1→ 2→ 3 and

1 → 2 ← 3 are not equivalent: although their skeletons are identical, the
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former DAG has no v-colliders whereas (1, 3, 2) is a v-collider in the latter

DAG.

Perfect DAGs

The following class of DAGs will play an important role in this paper.

Definition 3 A DAG is perfect if it contains no v-colliders.

That is, a perfect DAG has the property that if iRk and jRk, then iR̃j

- i.e., if xi and xj are perceived as direct causes of xk, then there must be a

perceived direct causal link between them. The DAG a → π ← y from our

“monetary policy” example is imperfect, because it consists of a v-collider

into π. In contrast, the DAG a→ y → π is perfect.

The following is an immediate implication of Proposition 2.

Corollary 3 Two perfect DAGs are equivalent if and only if they have the
same skeleton. In particular, if M ⊆ N is a clique in a perfect DAG R, then

M is an ancestral clique in some DAG in the equivalence class of R.

This corollary means that the causal links postulated by a perfect DAG

are not identified, in the sense that if iRj, there exists a DAG R′ that is

equivalent to R, such that jR′i. The direction of a causal link is empirically

meaningful only when it is part of a v-collider.

The following lemma will be useful in the sequel. It establishes that if

C is an ancestral clique in some DAG in the equivalence class of R, then

the objective and subjective marginal distributions over xC always coincide.

Otherwise, we can find a distribution for which the two will diverge.

Lemma 2 (Spiegler (2015b)) Let R be a DAG and let C ⊆ N . Then,

pR(xC) ≡ p(xC) for every p if and only if C is an ancestral clique in some

DAG in the equivalence class of R.

We are now ready to state the main result of the paper. Recall that by

the domain restrictions imposed in Section 2, we can assume w.l.o.g that the

agent’s DAG omits his own forecasts.
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Proposition 3 Suppose that the agent’s DAG R is defined over N ⊆ {0, 1, ..., n},
where 0 ∈ N . Then, R induces unbiased forecasts if and only if it is perfect.

Proof. (If). Assume that R is perfect. Then, by Corollary 3, we can

take 0 or i to be ancestral w.l.o.g. Then, by Lemma 2, pR(x0) ≡ p(x0) and

pR(xi) ≡ p(xi). Therefore, we can write∑
x0

p(x0)pR(xi | x0) =
∑
x0

pR(x0)pR(xi | x0) = pR(xi) = p(xi)

which implies the claim.

(Only if). When R is imperfect, it must contain a v-collider i → j ← k.

Let us consider objective distributions p for which all other variables are

independent, such that

pR(xN) = p(xi)p(xk)p(xj | xi, xk) ·
∏

i′∈N−{i,j,k}

p(xi′)

This allows us to ignore all variables i′ ∈ N − {i, j, k} when calculating
marginal or conditional distributions over xj that are derived from pR. In

addition, suppose that the support of the marginal of p over any variable is

of size two. W.l.o.g, we can assume for convenience that these two values

are 0 and 1, such that the expected value of a variable w.r.t any probability

distribution is equal to the probability that the variable takes the value 1.

There are three cases to consider. First, suppose that 0 /∈ {i, j, k} - i.e., 0

is not part of the v-collider. Then, pR(xj | x0) ≡ pR(xj). By Proposition 2, j

is not an ancestral node in any DAG in the equivalence class of R. Therefore,

by Lemma 2, we can find p for which pR 6= p. (Our restrictions on p are

w.l.o.g in this regard, because we can ignore any variable i′ 6= i, j, k and set

R : i → j ← k. The only restriction that pertains to the variables xi, xj, xk
is that each takes two values, and that is innocuous for the application of

Lemma 2.)

Second, suppose that i = 0. Then,

pR(xj = 1 | x0) =
∑
xk

p(xk)p(xj = 1 | x0, xk)
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Let p have full support on (x0, xj, xk), and impose the following additional

structure. First, p(x0 = 1) = 1
2
. Second, xk = xj = x0 with arbitrarily high

probability. Third, p(xj = 1 | x0 6= xk) is arbitrarily small. Then,∑
x0

p(x0)pR(xj = 1 | x0) =

1

2

{∑
xk

p(xk) [p(xj = 1 | x0 = 0;xk) + p(xj = 1 | x0 = 1;xk)]

}

is arbitrarily close to 1
4
, whereas p(xj = 1) = 1

2
.

Finally, suppose that j = 0. Then,

pR(xi = 1 | x0) =

∑
xk
p(xk)p(xi = 1)p(x0 | xi = 1;xk)∑
xk
p(xk)

∑
xi
p(xi)p(x0 | xi;xk)

Under the same p as in the previous case, pR(xi = 1 | x0 = 1) is arbitrarily

close to 1, and pR(xi = 1 | x0 = 0) is arbitrarily close to 1
3
, such that∑

x0

p(x0)pR(xi = 1 | x0)

is arbitrarily close to 2
3
, whereas p(xi = 1) = 1

2
.

Thus, as long as the agent’s causal model is given by a perfect DAG (over

some collection of variables, excluding the agent’s own forecasts), he cannot

be systematically fooled. Even if his conditional forecasts are incorrect, on

average they are unbiased. For instance, in our running “monetary policy”

example, if the private sector’s DAG were a → y → π or π ← a → y, its

output and inflation forecasts would be unbiased on average, even though

the causal models these DAGs represent are misspecified. Conversely, if the

agent’s DAG is imperfect, there are objective distributions for which the

agent’s forecast of at least one of the economic variables is systematically

biased.

As mentioned earlier in this section, perfect DAGs have the property that

the causal links they postulate are unidentified, and in this sense completely

spurious. Thus, the significance of Proposition 3 is that it demonstrates that
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the agent’s misspecified causal model exposes him to systematic fooling if

and only if the causal assumptions he makes are non-trivial.

Selective forecasts

The definition of unbiased forecasts that I utilized in this section is very

demanding, because it requires the forecast of any variable to be unbiased.

However, not all forecasts are necessarily economically relevant. For exam-

ple, in the “monetary policy”example of Section 3, I assumed that the true

process follows Sargent (2001). In particular, this meant that while the pri-

vate sector’s inflation forecast has implications for the realization of economic

variables, its output forecast was irrelevant. In other conventional models of

monetary policy - specifically, the so-called New Keynesian model - both

inflation and output forecasts matter for the realization of macroeconomic

variables (see Woodford (2003)). Thus, the forecasts that matter economi-

cally depend on the true model that underlies the objective distribution.

The following result is a suffi cient condition for the agent’s forecast of a

given xi to be unbiased. Fix a DAG (N,R) and consider a node i ∈ N . Let
R̄ be the transitive closure of R - i.e., iR̄j if there is a directed path in R from

i to j. Define the following binary relation P . For every distinct i, j ∈ N ,
iP j if the following conditions hold: (i) it is not the case that jR̄i; and (ii)

kR̄j for some node k, such that k = i or kR̄i. Thus, iP j if xi is a possibly

indirect cause of xj, or if the two variables have a common indirect cause

without being indirectly caused by one another. I refer to N−{j ∈ N | iP j}
as the weak-upper-contour set of i induced by R, and denote it by UR(i).

Note that i ∈ UR(i).

Proposition 4 Let i ∈ N − {0}. Suppose further that the subgraph induced
by R over UR(i) is perfect and contains 0. Then,∑

x0

p(x0)ER(xi | x0) = Ep(x0)

Proof. It is immediate from the factorization formula (3) that all the vari-

ables xj for which iP j are irrelevant for the calculation of pR(xUR(i)). There-

fore, we can ignore them. But by assumption, the subgraph over UR(i)
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induced by R is perfect. Because 0, i ∈ UR(i), Proposition 3 implies the

result.

Thus, as long as the violations of perfection occur “below”0 and i in the

causal hierarchy, they do not cause biased forecasts of xi.

4.1 Unbiased Forecasts under Restricted Domains

Proposition 3 means that an imperfect DAG exposes the agent to being sys-

tematically fooled for some specification of the exogenous processes. How-

ever, in applications we typically impose additional structure on the exoge-

nous processes, which restricts the domain of permissible objective distrib-

utions. Such domain restrictions extend the impossibility of systematically

fooling an agent with causal misperceptions.

Throughout this sub-section, when I say that the agent’s forecasts are

unbiased, I mean that ∑
x0

p(x0)ER(xi | x0) = Ep(xi)

for every i = 1, ..., n and every p in the restricted domain (which, as usual,

satisfies Condition 1).

The following pair of examples extend the “monetary policy” example

of Section 3, by adding an economic variable θ that represents a state of

Nature. The central bank privately observes θ before taking its action. For

instance, θ may capture an inflation target that the central bank would like

to implement. The other two economic variables, π and y, are assumed to

be independent of θ conditional on a. That is, p(π, y | θ, a) ≡ p(π, y | a) for

every objective distribution p in the restricted domain. Thus, p is consistent

with the true DAG R∗ given by

θ → a → π

↓ ↓
e → y

(6)

Example 4.1 shows that when we restrict attention to distributions that
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are consistent with this DAG, an agent whose subjective DAG is imperfect

will still have unbiased forecasts of inflation and output. Example 4.2 shows

that when we further impose a conventional parametric specification of the

domain of objective distributions, the imperfect DAG that led to unbiased

forecasts in Section 3 will no longer do.

Example 4.1: An extended “monetary policy”example

Suppose that the private sector’s DAG R is

θ → a

↓ ↓
y → π

(7)

The economic interpretation of this causal model is exactly as in Section 3,

except that now the private sector postulates that both the central bank’s ac-

tion and output are potentially influenced by the common exogenous variable

θ.

Proposition 5 Suppose that the private sector’s DAG is (7). Then, the

private sector’s forecasts are unbiased.

Proof. First, observe that π is irrelevant for calculating pR(θ | a) or pR(y |
a), and therefore for these purposes the node π can be removed, and the

remaining DAG is perfect, such that the private sector’s forecasts of θ and

y are unbiased. Turning to the private sector’s inflation forecast, observe

that R is equivalent to a DAG that inverts the causal link between a and θ.

Therefore, we can write∑
a

p(a)pR(π | a) =
∑
a

p(a)
∑
θ

∑
y

p(θ | a)p(y | a)p(π | θ, y)

According to the true process, y ⊥ θ | a. Therefore, p(θ | a)p(y | a) = p(θ, y |
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a). It follows that∑
a

p(a)pR(π | a) =
∑
a

p(a)
∑
θ

∑
y

p(θ, y | a)p(π | θ, y)

=
∑
a

p(a)
∑
θ

∑
y

p(θ, y)p(a | θ, y)

p(a)
p(π | θ, y)

=
∑
θ

∑
y

p(θ, y)p(π | θ, y)
∑
a

p(a | θ, y)

= p(π)

This completes the proof.

The argument behind the unbiased inflation forecast in this case relies

on the particular conditional-independence property (y ⊥ θ | a) that the
objective distribution is assumed to satisfy.

Example 4.2: A linear-normal “monetary policy”example

In this example, I impose a conventional linear-normal structure on the map-

ping from the central bank’s policy to inflation and output. Let e denote the

private sector’s inflation forecast. Then, π and y are given by

π = a+ ε (8)

y = γπ − e+ η

where γ ≥ 1 is a constant, and ε ∼ N(0, σ2ε) and η ∼ N(0, σ2ε) are inde-

pendent. Note that this example goes beyond the example of Section 3 by

introducing the parameter γ. When γ > 1, fully anticipated inflation has

real effects. I do not impose any structure on the distribution of θ.

Assume that the private sector’s DAG R is

θ → a→ π ← y (9)

When γ = 1 and θ is constant, we are back with the example of Section 3.

Throughout this example, I use µz to denote the true expected value of

any variable z.
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Proposition 6 Assume that the objective distribution satisfies (8). Then,
the private sector’s forecasts are unbiased.

Proof. By the definition of R,

eR(a) =
∑
π

pR(π | a)π =
∑
π

∑
y

p(y)p(π | a, y)π

=
∑
y

p(y)E(π | a, y)

Because e is pinned down by a (i.e., it is independent of any other variable

once we fix a), from now on we can replace any appearance of e in a term

that holds a fixed with the notation e(a). Since π = a+ ε,

E(π | a, y) = a+ E(ε | a, y)

Because y = γπ − e+ η, we have

γε+ η = y − γa+ e(a)

For given a and y, the R.H.S is a constant, whereas the L.H.S is a sum of

two independent variables that are normally distributed with mean zero (and

recall that the variance of γε is γ2σ2ε). Therefore, to calculate E(ε | a, y),

we can apply the standard formula for E(X | X + Y ) when X and Y are

independent normal variables, and obtain

E(ε | a, y) =
β

γ
(y − γa+ e(a))

where

β =
γ2σ2ε

γ2σ2ε + σ2η
(10)

We can now write

e(a) =
∑
y

p(y)

[
a+

β

γ
y − βa+

β

γ
e(a)

]
= a(1− β) +

β

γ
e(a) +

β

γ
µy
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Plugging the Phillips curve, we obtain

e(a) = (1− β)a+
β

γ
e(a) +

β

γ
[γµa − E(e(a))]

This functional equation defines e(a). Taking expectations, we obtain

E(e(a)) = (1− β)µa +
β

γ
E(e(a)) + βµa −

β

γ
E(e(a))

such that

E(e(a)) =
∑
a

p(a)e(a) = µa = µπ

The latter identity follows from the assumption that π = a + ε and ε is

independent with mean zero.

This completes the proof. Nevertheless, it also enables us to get the

following explicit solution for e(a):

e(a) =
γ − γβ
γ − β a+

γβ − β
γ − β µa

Plugging the expression for β, we obtain

e(a) =
σ2η

γ(γ − 1)σ2ε + σ2η
a+

γ(γ − 1)σ2ε
γ(γ − 1)σ2ε + σ2η

µa (11)

This expression will be useful in the sequel.

Equation (11) implies that when γ = 1, e(a) ≡ a ≡ Ep(π | a). Thus,

under the linear-normal specification with γ = 1, the private sector always

makes optimal conditional inflation forecasts. When γ > 1, its conditional

forecasts are incorrect because they assign positive weight to the ex-ante

expected action. Nevertheless, the forecasts are correct on average.

4.2 More on Linear-Normal Models

Example 4.2 suggested that linear-normal specifications may give rise to un-

biased forecasts, even when the agent’s subjective DAG is imperfect and thus
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violates the condition for unbiased forecasts in unrestricted domains. In this

sub-section I elaborate on this observation.

Let us return to a general environment with n+ 1 variables x0, x1, ..., xn.

Suppose that p is consistent with some true DAG R∗. Moreover, for every

i = 0, 1, ..., n,

xi =
∑

j∈R∗(i)

αijxj + εi

where αij 6= 0 for every j ∈ R∗(i), and εi ∼ N(µi, σ
2
i ) is independently

distributed. Thus, p is given by a recursive system of linear equations with

independent normal error terms. We will say in this case that p is consistent

with a linear-normal model. This is a conventional specification in economic

applications. The following result shows that in this restricted domain, a

very weak restriction on R is suffi cient for unbiased forecasts.

Proposition 7 Suppose that 0 is an ancestral node in some DAG in the

equivalence class of R. Then, for every i = 1, ..., n,∑
x0

p(x0)ER(xi | x0) = Ep(xi)

for every p that is consistent with a linear-normal model.

Proof. When p is consistent with a linear-normal model, we can rewrite the
system of equations such that for every i,

xi =
∑

j∈R∗∗(i)

γijεj

where R∗∗ is an extension of R∗ into a linear ordering (i.e., jR∗∗i whenever R∗

contains a directed path from j into i), and γij is some constant (potentially

zero). Thus, every xi can be expressed as a sum of independent normal

variables.

From now on, I will assume that µi = 0 for every i. To see why this is

w.l.o.g, note that this assumption means that

yi = xi + ci
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for every i, where ci is a constant that involves µ and γ coeffi cients. It is

therefore clear that ER(yi | y0) ≡ ER(xi | x0) + ci and Ep(yi) ≡ Ep(xi) + ci,

such that we can restate our result for yi instead of xi. This simplification

means that Ep(xi) = 0 for every i = 0, ..., n.

By assumption, we can regard 0 as an ancestral node in R. Also, it will

simplify exposition if we align R with the natural order over 0, ..., n, such

that jRi implies j < /i. That is, for every i = 1, ..., n, R(i) ⊆ {0, ..., i − 1}.
Therefore, we can write

pR(xi | x0) =
∏

j=1,...,i

p(xj | xR(j))

such that

ER(xi | x0) =
∑
x1

· · ·
∑
xi−1

(
i−1∏
k=1

p(xk | xR(k))
)∑

xi

p(xi | xR(i))xi

The vector of random variables xR(i) can be expressed as a matrix times the

vector (ε0, ..., εn). Because all the εi’s are independent normal variables, xR(i)
is jointly normal. Therefore, the expression∑

xi

p(xi | xR(i))xi = E(xi | xR(i))

is the expectation of a zero-mean normal variable conditional on the realiza-

tion of a zero-mean multi-variate normal distribution. Hence,

E(xi | xR(i)) =
∑
j∈R(i)

γijxj

where γij is some constant. We have thus reduced ER(xi | x0) to

∑
j∈R(i)

γij
∑
x1

· · ·
∑
xi−1

(
i−1∏
k=1

p(xk | xR(k))
)
xj

Consider the term that corresponds to some j ∈ R(i). We can ignore the
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summation over all variables k > j, such that the term is reduced to

∑
x1

· · ·
∑
xj−1

(
j−1∏
k=1

p(xk | xR(k))
)∑

xj

p(xj | xR(j))xj

We can now repeatedly carry out this simplification in the same manner for

each of these terms, until we eventually obtain

E(xi | x0) = bx0

where b is some constant (potentially zero). Because E(x0) = 0, it then

immediately follows that∑
x0

p(x0)ER(xi | x0) = 0 = Ep(xi)

which completes the proof.

The condition that 0 is an ancestral node in some DAG in the equivalence

class of R is a significant weakening of perfection (recall that in a perfect

DAG, every node can be regarded as ancestral). The subjective DAGs in

Section 3 and Example 4.2 satisfy this weaker property, and nevertheless

gives rise to biased forecasts for a suitably specified p. However, as long as

we restrict attention to objective distributions that are generated by linear-

normal models, the agent’s forecasts are always unbiased.

Note that the result of this sub-section does not imply Proposition 6,

because the latter did not require the central bank’s strategy to be linear-

normal. Suppose that we adopt the interpretation of x0 as an action taken

by a principal, possibly after observing the realizations of some economic

variables. If we force the principal to linear-normal strategies, Proposition

7 implies that the principal cannot generate biased forecasts (as long as R

satisfies the suffi cient condition). In principle, this may no longer hold when

we remove this straitjacket and allow the principal to play any arbitrary

strategy.
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5 Conditional Forecast Errors

So far, the question we addressed was whether the agent’s conditional fore-

casts of economic variables are unbiased on average. And indeed, in our

running “monetary policy” example, this is all that mattered because we

assumed that the central bank’s sole objective was to maximize expected

output. However, for many purposes, it also matters whether the agent’s

conditional forecasts depart from rational expectations for given realizations

of a.

The requirement that the agent’s forecasts are unbiased for every realiza-

tion of a is of course more stringent than the requirement that his forecasts

are unbiased on average. Correspondingly, we must seek more demanding

conditions on R in order for this requirement to be satisfied. The following

is an example of such a strengthening.

Suppose that R satisfies the suffi cient condition of Proposition 4. If, in

addition, 0Ri, then ER(xi | x0) ≡ Ep(xi | x0). The reason is as follows. By
assumption, the subgraph over UR(i) is perfect and contains both 0 and i.

Since 0Ri, {0, i} is a clique in the subgraph. Perfection implies that we can
regard it as an ancestral clique. Therefore, pR(x0), pR(xi) and pR(x0, xi) are

all unbiased, which immediately implies the result.

In the remainder of this section, I present two examples in which the

agent’s misspecified causal model generates conditional forecasts errors, and

I analyze the implications of these errors for the principal’s choice of strategy.

5.1 The Exploitative Nutritionist

This sub-section is a variation on the “Dieter’s Dilemma”example of Spiegler

(2015a), showing how the principal can manipulate and take advantage of

the agent’s conditional forecast errors. The principal is a nutritionist who

chooses whether to prescribe a food supplement to the agent, at a marginal

cost k. The nutritionist’s action a takes values in {0, 1}, where a = 1 means

that he prescribes the supplement. There are two other relevant variables:

the agent’s state of health (denoted h), and the level of some chemical in the

agent’s blood (denoted c). Both c and h take values in {0, 1}, where h = 1
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means that the agent is in good health, and c = 1 means that the chemical’s

level is abnormal. According to the true process, h is independent of a, and

p(h = 1) = 1
2
; whereas c is a deterministic consequence of a and h given by

c = (1− a)(1− h).

Suppose that the agent’s DAG is

R : a→ c→ h

That is, the agent’s causal model reverses the direction of causation between

h and c relative to the true process, which is consistent with the DAG a →
c← h. Because the agent’s DAG is perfect, it leads to health forecasts that

are unbiased on average. However, as we shall see, the conditional health

forecasts are typically incorrect.

Suppose that the nutritionist is able to exert monopoly power, such that

the agent pays to the nutritionist an amount that is equal to his perceived

value of the food supplement. The nutritionist’s objective is to maximize its

expected profit, which is thus given by

p(a = 1) · [pR(h = 1 | a = 1)− pR(h = 1 | a = 0)− k]

If the agent had rational expectations, he would realize that p(h = 1 | a =

1) = p(h = 1 | a = 0) = 1
2
, because in reality h is independent of a.

Denote p(a = 1) = α. Spiegler (2015a) shows that

pR(h = 1 | a = 0) =
1

2(1 + α)

pR(h = 1 | a = 1) =
1

1 + α

such that the agent’s willingness to pay for the supplement is

pR(h = 1 | a = 1)− pR(h = 1 | a = 0) =
1

2(1 + α)
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The nutritionist’s problem is thus reduced to choosing α to maximize

α ·
(

1

2(1 + α)
− k
)

It follows that when k ≥ 1
2
, the nutritionist is unable to profit from the

agent’s causal misperception. For k < 1
2
, the optimal solution is given by

α∗ = min

{
1,

√
1

2k
− 1

}

such that the agent’s effective willingness to pay for the supplement is 1
4
for

k ≤ 1
8
, and √

2k(1−
√

2k)

2

for k ∈ (1
8
, 1
2
).

5.2 Rigid Monetary Policy

For the last time in this paper, let us revisit the “monetary policy”, adopting

the linear-normal specification of Example 4.2. Unlike previous examples,

here the central bank does not wish to exploit the private sector’s conditional

inflation-forecast errors. Rather, these errors are an impediment to achieving

the central bank’s objectives, and they constrain its ability to adapt monetary

policy to changing circumstances.

Suppose that the exogenous variable θ represents an ideal inflation target.

Let µz denote the true expected value of any variable z. The central bank’s

objective is to minimize

V ar(y) + k · E(π − θ)2

where k > 0 is a constant that captures the central bank’s trade-off between

its two motives (minimizing output variance and minimizing the mean square

deviation of inflation from the target).

As a benchmark, suppose that the private sector has rational expecta-
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tions. Then, its inflation forecast conditional on a is Ep(π | a) = a. There-

fore,

y = (γ − 1)a+ γε+ η

and since ε and η are independent variables with mean zero, we can ignore

them in the calculation of the objective function, which is reduced to

(γ − 1)2E[(a− µa]2 + k · E[a− µθ]2

Solving this problem is standard. The strategy that minimizes this objective

function is

a∗(θ) =
k

(γ − 1)2 + k
θ +

(γ − 1)2

(γ − 1)2 + k
µθ

for every θ. This solution does not rely on the normality assumption - it only

requires ε and η to be independent zero-mean random variables.

The optimal policy under rational expectations exhibits some rigidity: it

is a weighted average of the realized inflation target θ and the ex-ante average

target µθ. A higher weight on the latter corresponds to a policy that is less

responsive to fluctuations in the exogenous target. As γ approaches 1 - such

that anticipated inflation matters less for output - the central bank’s policy

approaches perfect targeting.

The following result characterizes the central bank’s optimal policy under

the private sector’s erroneous “classical”causal model.

Proposition 8 Assume that the private sector’s DAG is R : θ → a→ π ←
y. Let π = a+ ε, y = γπ − e+ η, where ε ∼ N(0, σ2ε); and η ∼ N(0, σ2η) are

independent. Then, the central bank’s optimal policy is

a∗∗(θ) =
k

λ(γ − 1)2 + k
θ +

λ(γ − 1)2

λ(γ − 1)2 + k
µθ

where

λ =

(
γ2σ2ε + σ2η

γ(γ − 1)σ2ε + σ2η

)2
Proof. The central bank’s problem is to choose a strategy (i.e., a potentially
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stochastic mapping from θ to a) that minimizes

V ar(y) + kE(π − θ)2

subject to the constraints

π = a+ ε

y = γπ − e(a) + η

In Example 4.2, we saw that e(a) = ER(π | a) is given by (11). Therefore,

E(y | a) = (γ − δ)a− (1− δ)µa

such that

µy = (γ − 1)µa

where

δ =
σ2η

γ(γ − 1)σ2ε + σ2η

Because ε and η are independent variables with mean zero, we can ignore

them in the calculation of the objective function, which is reduced to

(γ − δ)2E[(a− µa]2 + kE[a− θ]2 (12)

This is exactly the same as in the rational-expectations case, except that

the coeffi cient (γ − δ)2 replaces (γ − 1)2. The policy that minimizes this

expression is a∗∗(θ), as given in the statement of the proposition. Again, the

derivation is standard and therefore omitted.

This result has a few noteworthy features. First, as observed in Section

4.1, the expression for e(a) given by (11) implies that when γ = 1, the private

sector’s conditional inflation forecasts are always correct - despite having an

incorrect causal model. In this case, the optimal policy under R coincides

with the rational-expectations prediction for γ = 1 - namely, it fully tracks

θ.

Deviations from the rational-expectations prediction occur only when γ >
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1. In this case, the private sector’s inflation forecast is a weighted average of

a and its ex-ante expected value µa. That is, private-sector forecasts are not

fully responsive to fluctuations in the central bank’s actions. The intuition

is the same as in Section 3: the private sector erroneously regards y as an

exogenous variable that affects π, and therefore assigns some weight to the

ex-ante expected value of y when forming its inflation forecast. Because y is

in fact a consequence of a, the private sector ends up assigning weight to µa,

thus failing to fully condition on the actual realization of a.

The extent of this failure depends on the relative magnitudes of σ2ε and σ
2
η.

As the Phillips relation becomes more reliable - or, equivalently, as the effect

of monetary policy on inflation becomes less reliable - the erroneous weight

on µa increases and the deviation from rational expectations is exacerbated.

The private sector’s “expectational rigidity”impels the central bank to-

ward a more rigid policy than in the rational-expectations benchmark. This

can be immediately seen from the effective objective function (12). Since

δ ≤ 1 by definition, the central bank places a larger weight on the considera-

tion of minimizing the variance of a, compared with the rational-expectations

benchmark. Excess rigidity of the optimal policy increases with σ2ε/σ
2
η.

6 Discussion

In this section I briefly discuss a few variations and extensions of the model.

6.1 Ex-ante Forecasts

Throughout this paper, I assume that the agent forms a forecast of each

economic variable after observing the principal’s action. A natural variant

would assume that the agent forms his forecast without observing the princi-

pal’s move. In this case, the question becomes whether the agent’s marginal

subjective distribution over any given economic variable (including the un-

observed action) is unbiased on average.

Formally, we will say that a DAG R induces unbiased ex-ante forecasts

if ER(xi) ≡ Ep(xi). The following result is a simple corollary of Proposition
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2 in Spiegler (2015b). Suppose that the agent’s DAG R is defined over

N ⊆ {0, 1, ..., n}. Then, R induces unbiased ex-ante forecasts if and only if it
is perfect. Thus, perfection turns out to characterize the property of unbiased

forecasts, whether or not we assume that the agent observes the principal’s

move prior to forming his forecast.

6.2 The Principal’s Commitment Problem

In all the versions of the “monetary policy”example that appeared in this

paper, we looked for the central bank’s ex-ante optimal strategy. This implic-

itly assumes that the central bank is able to commit ex-ante to its policy. Of

course, the original Kydland-Prescott and Barro-Gordon models were devel-

oped to highlight the role of commitment when the private sector has rational

expectations. However, note that in this paper, I assumed that the private

sector observes the central bank’s actions. If the private sector had rational

expectations, there would be no role for ex-ante commitment, because the

central bank would never be tempted to deviate from the ex-ante optimal

action: the private sector would be able to monitor any deviation from the

pre-committed action and adapt its rational forecasts accordingly.

In contrast, when the private sector has a misspecified causal model, a

commitment problem does arise even when it perfectly monitors the central

bank’s actions. Suppose that R : θ → a → y ← π. We saw in Section 4

that in this case, the private sector’s inflation forecast is unbiased on average.

Yet, at the same time it is entirely unresponsive to the realization of a. In

other words, the private sector forms its inflation forecast as if it has rational

expectations but cannot monitor the central bank’s action - exactly as in the

original Kydland-Prescott and Barro-Gordon models! To conclude, when

the agent has causal misperceptions, the principal has a time-consistency

problem even if the agent observes his move prior to making his forecasts.

6.3 Relevance to Dynamic Models

The basic model does not make any explicit assumptions regarding the tem-

poral realization of economic variables. Yet all the applications we have seen
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were static. Nevertheless, the formalism can be applied to dynamic models.

Consider a discrete-time environment with an infinite horizon. There is a

collection of exogenous variables, θ = (θ1, ..., θm), and a collection of endoge-

nous variables y = (y1, ..., yr). Let θ
t and yt denote the realizations of θ and

y at period t.

Imagine that the agent believes that the exogenous variables θ evolve

according to some stochastic process with bounded memory, such that the

realization of θt is a stochastic function of θt−1, ..., θt−K , where K is con-

stant. In addition, the agent postulates that the endogenous variables evolve

according to a “Markov equilibrium”, such that yt is a stochastic function of

(θt−K , ..., θt). These assumptions imply a belief that exogenous and endoge-

nous variables jointly evolve according to a Markov process, whose invariant

distribution plays the role of the objective distribution p in our model. The

DAG R - defined over nodes that correspond to lagged variables - represents

structural assumptions regarding this Markov process. I hope to pursue dy-

namic applications of the formalism along these lines in future works.
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