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Abstract

The growth of the Internet has constrained broadband networks, forcing service
providers to search for solutions. We develop a dynamic model of daily usage
during peak and non-peak periods, and estimate consumers price and congestion
sensitivity using high frequency usage data. Using the model estimates, we calculate
usage changes associated with different economic and technological solutions for
reducing congestion, including peak-use pricing, throttling connectivity speeds, and
local-cache technologies. We find that peak-use pricing combined with local-cache
technology is the most effective way to shift activity from peak to non-peak periods.
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1 Introduction
The use of the Internet and the demand for online content, especially video, continues

to grow rapidly. Internet Service Providers (ISPs) constantly make investments in an

attempt to keep capacity in line with this growth. From 1996 to 2013, these private

investments totaled around $1.3 trillion, or about $75 billion per year.1 Historically,

broadband investment has been financed by private firms, but the importance of Internet

access is leading to public funding and use of additional public policy tools to support

and encourage further investment.2

Investment in higher capacity and faster networks is clearly needed to deal with the

increased demand. However, Nevo et al. (2016) find that there is a wedge between

the social return on investments and firms’ ability to recoup their costs. Furthermore,

network investment does not effectively deal with a key feature of most networks: usage is

significantly higher during peak-use periods. Building enough capacity to meet demand

during these periods leaves the capacity idle during off peak periods. Both these suggest

that an effective approach to dealing with congestion should combine investments with

economic solutions to reduce demand during peak periods. In this paper, we explore the

effectiveness of several such solutions.

We start by estimating demand for online content using data on hourly Internet usage

and network conditions made available by a North American ISP. This provider offers

plans with three-part tariffs – consumers pay a monthly fee, receive a monthly allowance

and pay per gigabyte (GB) if the allowance is exceeded – which makes the usage decision

dynamic within a billing period. This allows us to use variation in the (shadow) price

of usage and in network congestion to estimate the impact of congestion on demand,

as well as consumers’ willingness to pay for a network with no congestion. We then use

these estimates to explore the effect of throttling connection speeds, peak-use pricing, and

local-cache technology on overall demand and congestion during peak-demand periods.

Before estimating the model, we use our rich data to demonstrate several patterns

that inform some of the questions of interest and motivate modeling assumptions. First,

there is a very consistent within-day usage pattern: usage is greatest during evening hours

1See USTelecom’s estimates at http://www.ustelecom.org/broadband-industry-
stats/investment/historical-broadband-provider-capex and the FCC’s 2015 Broadband Progress
Report found at https://www.fcc.gov/reports-research/reports/broadband-progress-reports/2015-
broadband-progress-report.

2For example, broadband investment to modernize and expand the network was a condition for
approval of the Charter/Time Warner Cable merger. (State of New York Public Service Commission’s
Case 15-M–0388 on “Joint Petition of Charter Communications and Time Warner Cable for Approval”,
released on January 8, 2016). In another example, the recent debate over the FCC’s 2015 Open Internet
order, also known as net neutrality, and whether it should be repealed, has focused on whether it slowed
investment in broadband networks.
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and significantly lower the remainder of the day. This pattern is consistent across days

and across consumers with different total monthly usage. Second, measures of network

performance are correlated with network utilization, with performance decreasing during

peak-use periods. This suggests that any policy that shifts demand from peak to non-

peak times will improve network performance. Third, most usage is due to over-the-top

video (OTTV) which, at least in principle, can be downloaded during non-peak times

with the right incentives and technology in place. Finally, there is a large amount of

heterogeneity in usage patterns across consumers, which should be accounted for in the

modeling approach.

Our focus is congestion at the node, which is a network device that connects a group

of subscribers to the rest of the operator’s network. A node is a common place for bottle-

necks to occur and an essential part of the portion of the network commonly referred to as

the “last mile”. Buffering video streams, websites failing to load, and being disconnected

from online gaming are common examples of how congestion might affect a consumer.

ISPs constantly invest in the network by splitting existing nodes and adding new nodes.

This is usually done once average utilization exceeds certain thresholds. When a node

is split, its subscribers are distributed across multiple new nodes, and congestion should

decrease. We observe several node splits and use these events to compare before-and-after

congestion and subscriber usage.3 After a split, packet loss, our measure of congestion,

drops by 27%, average daily usage increases by 7% and the share of off-peak usage, out

of total usage, decreases by 8%. This suggests there is an elasticity of total usage with

respect to congestion, as well as substitution between peak and off-peak usage.

To quantify consumers’ willingness to pay for a less congested network, we develop

and estimate a model of Internet usage that extends the model of Nevo et al. (2016) in

two ways. First, we allow network congestion to impact the effective speed of the network

and therefore alter plan choice and usage. Second, we let consumers make both peak and

off-peak usage decisions (rather than a single daily decision). This allows us to explore

the impact of peak-use pricing, as well as other strategies to reduce usage.

We estimate this finite-horizon dynamic model of usage by extending to panel data

the methods proposed by Ackerberg (2009), Fox et al. (2011), and Fox et al. (2016), and

applied by Nevo et al. (2016). Estimation proceeds in two steps. First, we solve the

dynamic problem once for a large number of types. Next, we use the solution to these

dynamic problems to estimate the distribution of types by computing, for each household

3To measure congestion we primarily rely on packet loss, which is, roughly, the percentage of re-
quests that fail to make it to their destination. See the FCC’s 2015 Measuring Broadband Report
at https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-broadband-
america-2015.
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in the data, the likelihood that their usage was generated by each type. This results in a

distribution across types for each household. Aggregating across the households yields a

distribution of types in the population. The estimated marginal and joint distributions

illustrate the flexibility of our estimation approach.

Our counterfactual exercise relies on the ability to identify the key parameters within

sample and then use the model to simulate the counterfactuals. Price sensitivity, one of

the key parameters, is identified from the variation in the shadow price throughout the

billing cycle. Overage fees are only assessed if a subscriber exceeds the usage allowance,

but a forward-looking subscriber understands today’s consumption marginally increases

the likelihood of exceeding the usage allowance before the end of the billing cycle. Another

key input into the counterfactual exercises, the elasticity of off-peak usage in response to

changes in congestion, is identified by the covariation of usage and the (observed) network

state. For example, in the data we observe that consumers on congested nodes have a

higher fraction of usage off-peak. Similarly, when a node is split consumers immediately

experience a less congested network and we see them increasing peak usage and decreasing

off-peak usage. Both suggest usage is responsive to congestion.

We find most consumers have a low willingness to pay for faster advertised speeds as

well as for increased allowances. On the other hand, consumer surplus is 20% greater per

month, on average, if congestion is eliminated during peak-demand periods. From our

policy counterfactuals, we find throttling speeds has little effect on usage and actually

increases it slightly. The reason usage increases is that some consumers view a slower

connection as less of a deterrent than the possibility of incurring overages, which leads

to higher usage. Next, we explore peak-use pricing and find it also has little effect on

usage. This is likely the case because consumers have limited ability to shift usage from

peak to non-peak periods. Our final counterfactual introduces a way to shift usage by

introducing a local-cache technology that allows consumers to download during non-peak

times and consume at anytime, like a DVR technology for OTTV content. We find that

such technology is effective in shifting usage to non-peak periods.

Our results, both directly from the model estimates and from the counterfactual

simulations, have implications for multiple ongoing policy discussions. First, the low

willingness to pay for greater network speeds, but substantial willingness to pay for

abating congestion, suggests that when public policy tools are leveraged to encourage

investment the focus should be on consistency of service rather than pushing network

capabilities.

Second, the low value subscribers place on larger usage allowances demonstrates that

usage-based pricing, as currently implemented by our ISP, does not impose a substantial
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constraint on the average household. Thus, the zero-rating policies of ISPs4 that have

received substantial regulatory attention are currently having little impact on OTTV

services, consistent with their rapid adoption.

Third, the welfare improvements we find from peak-use pricing and local-cache tech-

nologies are likely to be difficult to realize in practice because of the complex incentives

facing ISPs. In particular, it is not clear that ISPs have the incentive to implement peak-

use pricing in a manner similar to our counterfactual simulation. Permitting caching of

OTTV content during off-peak periods may diminish the relative attractiveness of the

ISP’s own video services. On the other hand, the ISP might have an incentive to make

attractive as possible an activity that currently accounts for two-thirds of traffic and pre-

sumably provides substantial value. Exploring this question in greater depth requires a

model of demand for bundles, pay-TV, and Internet services, and also more detailed data

on the subscribers’ online activities. We view our model as a useful first step towards a

richer exploration of these issues. See Greenstein et al. (2016) for a detailed discussion

of related issues.

Our work is related to several strands of papers in the literature. First, this paper, like

Nevo et al. (2016), Malone et al. (2016), and Malone et al. (2014), uses high-frequency

data to study subscriber behavior on residential broadband networks. However, this

paper differs in several important ways from the earlier work. Malone et al. (2016), and

Malone et al. (2014) are purely descriptive. Nevo et al. (2016) also estimate demand, and

examine the effectiveness of usage-based pricing and the economic viability of building

fiber-to-the-home networks. This paper differs in three important ways. First, as we

detail above, the demand model is different in several dimensions. Most importantly, our

previous work only looked at total daily usage and not the split between peak and off

peak. This is driven by the second major difference, a different set of questions focusing

on the implications of economic solutions to congestion, which we could not address using

our previous model. Finally, in this paper we estimate the model by explicitly using the

individual choices over an eleven month period, while in our previous work the estimation

relied on aggregate moments generated from individual decisions over a single month (and

from a different ISP).

The paper also relates to a broader literature studying various issues in the telecom-

munications industry. Varian (2002) and Edell and Varaiya (2002) run experiments where

consumers face different prices, along with varying allowances and speeds. Goolsbee and

4Zero rating policies are policies where content from certain providers does not count towards the
allowance. Some have raised concerns with these policies because they can be used to create a price
differential between third party OTTV services and those of the ISP. Potentially leading to foreclosure
and, according to some, violating the principles on net-neutrality.
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Klenow (2006) estimate the benefit of residential broadband from time-use surveys and

Hitte and Tambe (2007) show Internet usage increases by roughly 22 hours per month

when broadband is introduced. Lambrecht et al. (2007) study how uncertainty with

respect to usage influences choices over plans with three-part tariffs. Other related pa-

pers are Dutz et al. (2009), Rosston et al. (2013), and Greenstein and McDevitt (2011).

More recently, Goetz (2016) studies congestion at network interconnections and Wilson

(2017) examines whether public investment in broadband networks crowds out private

investment.

The question of intra-day variation in demand and the role of peak-use pricing also

comes up in other contexts, real-time pricing of utilities being a prime example. Recent

work in the this area includes Wolak (2007), Wolak (2010), Wolak (2016), Strapp et al.

(2007), Ito (2014) and Anderson et al. (2017). Gowrisankaran et al. (2016) study the

related issue of intermittency in the supply of renewable energy. For a more complete

survey of this literature, see Newsham and Bowker (2010) and Fauqui and Sergici (2010).

The modeling in this paper is related to several literatures that study behavior in

dynamic settings. First is the literature studying whether consumers are forward-looking

and respond to dynamic incentives (Aron-Dine et al. (2015), Chevalier and Goolsbee

(2009), Grubb (2015), Grubb and Osborne (2015), and Hendel and Nevo (2006b)). Sec-

ond, is the literature on estimation of demand in dynamic settings using high-frequency

data on consumer consumption behavior (e.g. Crawford and Shum (2005), Hendel and

Nevo (2006a), Gowrisankaran and Rysman (2012),Yao et al. (2012), and others). Finally,

dynamic incentives like those generated by nonlinear pricing in our application also arise

in other settings. In labor applications, compensation schedules that create an associ-

ation between performance over a fixed period of time and salary make effort decisions

by workers dynamic (e.g. Copeland and Monnet (2009), Chung et al. (2010), Misra and

Nair (2011)). In health care applications, deductibles and limitations on out-of-pocket

expenditures create similar tradeoffs (Einav et al. (2015b) and Einav et al. (2015a)).

2 Preliminary Analysis
In this section, we describe our data sources and sample, and then provide preliminary

analysis that motivates the modeling that follows. We first present descriptive statistics

on plan selection and monthly usage. Second, we show that there are clear intra-day

usage patterns with marked peaks in the evenings, and inter-day usage patterns that

demonstrate consumers respond to (shadow) price variation arising due to the plan’s

three-part tariffs. Next we show network performance is correlated with overall usage

and noticeably declines during peak hours, and then provide direct evidence of the effect

6



of congestion on usage. Finally, we discuss the composition of usage and the external

validity of our sample.

2.1 Data Sources

The main dataset we use comes from a North American ISP. The provider offers sev-

eral plans with features that include a maximum download speed, an access fee, usage

allowance, and overage price per GB for data in excess of the usage allowance.5 Usage

is recorded in GBs for both uploads and downloads, but for billing purposes, and con-

sequently our purposes, the direction of the traffic is ignored. For each subscriber, we

observe usage and details of network conditions each hour for February 1st through De-

cember 31st of 2015. The usage information comes from Internet Protocol Detail Records

(IPDR), a common measurement platform used by ISPs for usage-based billing. These

data report hourly counts of downstream and upstream bytes, packets passed, and pack-

ets dropped/delayed by each cable modem. The IPDR data also record a cable modem’s

node. We combine these data with data on hourly utilization by node and the plan chosen

by the subscriber.

The sample includes 46,667 subscribers, and a total of over 330 million subscriber-

day-hour observations. The metropolitan area where the subscribers are drawn from has

demographic characteristics that are similar to the overall US population. Average income

in the MSA is within 10% of the national average and the demographic composition is

just slightly less diverse. Like many markets for residential broadband, our ISP competes

with another ISP offering substantially slower services, particularly in more rural parts of

the market. Therefore, we expect the insights from our analysis to have external validity

in other North American markets.

In addition to the data we use for our main analysis, we also present statistics from

complementary data from another ISP during the the same period. This data set is

national in scope and includes information from a deep-packet inspection (DPI) plat-

form, which provides insight into the types of traffic (OTTV, gaming, web browsing, etc)

generated by each user. This operator has not implemented UBP and has an overbuilt

network, both substantially limiting our ability to use it to infer demand. However, the

high-level descriptive statistics on the composition of traffic are helpful in explaining the

findings from our model, and demonstrate the external validity of the data used in the

analysis.

5Subscribers are not on long-term contracts, only incurring a disconnection fee if service is canceled.
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Figure 1: Internet Plan Features
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Note: This figure represents the approximate relative relationship between monthly usage and price for

the ISP’s menu of plans. Due to the non-disclosure agreement with the ISP that provided the data we

cannot populate exact numbers in this graph and and can only display the general relationship. Since

this ISP has implemented usage-based pricing, there is a set usage allowance for each plan and usage in

excess of the allowance is billed. The box label that intersects each plan’s line represents the

approximate relative differences in speeds.

2.2 Plan Selection and Monthly Usage

The ISP sells Internet access via a menu of plans with more expensive plans including

both faster access speeds and larger usage allowances. Overages are charged for usage in

excess of the allowance. The approximate relationship between monthly usage (GB) and

monthly price ($) across plans is shown in Figure 1.6 The steep slope of the line after

the allowance is met indicates the fairly high per GB overage fee this ISP charges. The

average subscriber pays $58.89 per month for a 22 Mbps downstream connection with a

267 GB usage allowance. The maximum offered speeds and allowances are consistent with

those offered in North America, but few consumers choose them (as we have observed in

the data of other ISPs with similar offerings).

Consumers on more expensive Internet plans use more data on average. In Table 1,

we present the distribution of daily usage for each of the plans, and the distribution of

consumers across plans. Most notable is that over 90% of subscriber-day observations

are from Tiers 1 and 2, as most subscribers find the larger allowances and speed to not

be worth the cost. The distribution of usage for more expensive plans stochastically

6Due to the non-disclosure agreement with the ISP that provided the data we cannot populate exact
numbers in this graph.
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Table 1: Daily Usage Distributions by Internet Plan Tier

Tier 1 Tier 2 Tier 3 Tier 4 All

Mean 1.4 GB 3.4 GB 5.4 GB 8.2 GB 2.3 GB
Std. Dev. 2.9 5.0 7.3 10.4 4.5
25th %tile 0.0 0.3 0.6 1.3 0.1

Median 0.4 1.5 3.1 5.3 0.6
75th %tile 1.5 4.7 7.6 11.4 2.7
90th %tile 4.1 9.0 13.6 19.4 6.7
95th %tile 6.3 12.5 18.5 26.1 10.2
99th %tile 12.8 22.3 32.0 46.2 20.3

N 8,539,830 2,910,234 1,117,680 320,085 12,887,829

Note: This table reports daily usage statistics for the four Internet service plans and entire sample for

which the unit of observation is the subscriber-day.

dominate lesser tiers. Median (average) usage on the highest tier is over thirteen (six)

times greater than the lowest tier, and the standard deviation is over three times greater.

Thus, consumers with greater and more variable usage select more expensive plans, similar

to the findings of Lambrecht et al. (2007).

2.3 Temporal Patterns in Usage

In this subsection, we display patterns in usage across days and within days. First, we

study the distribution of usage across the billing cycle. We start by looking at the fraction

of observations that exceed the allowance. This gives us insight into the importance of

the dynamics to consumers. We show that a significant fraction of consumers get near the

allowance at some point during the 11-month sample. We then provide direct evidence

that usage responds to the shadow price implied by the dynamic optimization problem.

Second, we show patterns of usage within the day. We observe a very regular pattern of

peak usage during the evening and much lower usage at other times.

Inter-Day Usage

Exceeding the usage allowance is fairly infrequent in our sample, as only about 2.5%

of subscriber-month observations have usage in excess of the allowance. The distribution

of the ratio of usage to the usage allowance at the subscriber-month unit of observation

is presented in Figure 2(a). Most individuals, particularly those on less-expensive plans

use only a small amount of their allowance. However, there is considerable variability

in usage from month to month. Figure 2(b) provides a histogram of the maximum
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Figure 2: Distribution of Proportion of Allowance Used
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Note: This figure presents two graphs related to the distribution of the proportion of the allowance

used by consumer’s each month. In panel (a), we present the distribution of this proportion for all

customer billing cycles resulting in 11 observations for each customer. In panel (b), we present the

distribution of the maximum of this proportion for each consumer across billing cycles, resulting in 1

observation for each customer.

proportion of the monthly usage allowance used by each customer over the eleven-month

sample. Approximately 14% of customers exceed their usage allowance during the panel,

and the average of this maximum usage is over 70%. This probability, together with

the high price that the ISP charges for usage over the allowance, is enough to induce

significant dynamic behavior.

A natural question to ask is whether consumers respond to the shadow price variation

implied by the dynamic problem we pose below. Nevo et al. (2016) explore this question

using both within-month and cross-month variation. Here we repeat their cross-month

analysis. Specifically, subscribers encounter a change in the shadow price when their

usage allowance is refreshed at the beginning of a new billing cycle. A forward-looking

subscriber near the allowance at the end of a billing cycle knows that the shadow price

decreases at the beginning of the next billing cycle. Conversely, a subscriber well below

the allowance likely experiences an increase in the shadow price as the new billing cycle

begins. Finally, a consumer well above the allowance, who likely also expects to be over

the allowance next month, sees no price change.

Figure 3 summarizes responses to this end-of-billing-cycle price variation. Specifically,

for each subscriber, we calculate the percentage change in usage from the three days before

the last day of the billing cycle to the first three day of the next billing cycle. Then we
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Figure 3: Across-Month Dynamics
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Note: This figure presents how the percentage change in usage from the last three days of a billing

cycle to the first three days of the next billing cycle varies with the proportion of the allowance

consumed by a subscriber at the end of the billing cycle.

calculate the mean percentage change for groups of subscribers that used various fractions

of the allowance by the end of the billing cycle. Like Nevo et al. (2016), we find subscribers

facing a price increase at the beginning of the next month consume relatively more at

the end of the current month, while those expecting a price decrease consume relatively

less. We observe little change in usage for those well above the allowance in the current

month. This provides support for the hypothesis that subscribers are forward looking.

Intra-day Patterns in Usage

Temporal patterns in usage play an important role for understanding the potential

for more efficient use of broadband networks. Figure 4 presents average daily usage

for each hour for both upstream (e.g. uploading a file to Dropbox) and downstream

(e.g. streaming movie from Netflix) usage. The proportion of downstream traffic is

approximately 90% at every hour of the day. This directional disparity is due to OTTV

and web browsing being heavily asymmetric and constituting the majority of traffic at

all hours. Usage follows a cyclical pattern of maximum usage around 9PM (0.2 GBs)

and minimum usage around 4AM (0.03 GBs). This pattern is nearly identical to what is

found in Malone et al. (2014) with IPDR data from 2012.

Throughout this analysis, we will refer to 12PM–12AM as peak hours, i.e. the 12

hours when the network is most highly utilized, and the rest of the day as off-peak

hours. Approximately 70% of usage occurs during peak hours with the 9PM hour alone

accounting for over 8% of daily usage. As we show in the Appendix, these average

11



Figure 4: Average Temporal Usage Patterns
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Note: This figure presents statistics on how usage is distributed throughout the day, on average, and

the breakdown of usage by direction.

temporal patterns do not differ substantially by the day of the week.

We find the pattern in daily usage does not consistently relate to the level of a con-

sumer’s overall usage, despite substantial heterogeneity in temporal patterns across con-

sumers. To see this, we calculate the proportion of total usage for each consumer during

each hour of the day over the entire panel. Figure 5(a) presents the mean proportions

for different deciles of consumers, where consumers are assigned to deciles based on their

total usage. The heaviest-usage consumers (10th decile) have only a slightly flatter pro-

file throughout the day, revealing a weak correlation between the volume and timing of

usage. Yet, the absence of a strong relationship between the volume and timing of usage

hides substantial heterogeneity in the timing of usage across consumers within any given

decile.

For each hour of the day, Figure 5(b) presents the distribution across consumers of

the proportion of usage during that hour. For example, during the 9PM hour 50% (95%)

of people have average usage that is less than 6.5% (13.7%) of their average daily usage

over our panel (line within the box represents median). The box and whiskers capture

the interquartile range (25th and 75th) and the 5th and 95th quantiles, respectively. The

dispersion at every hour is indicative of substantially different temporal usage patterns

across consumers, albeit not correlated with the consumer’s overall usage. In Section 3

we discuss how we account for this important source of heterogeneity in our model.

Together, Figures 4 and 5 demonstrate a clear pattern in usage across times in the

day. This usage pattern implies either that during peak-demand times the network is
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Figure 5: Statistics of Usage as a Percentage of Daily Total
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(b) Heterogeneity in Daily Usage %

Note: This figure presents variation in temporal patterns in usage across consumers. Panel (a) reports

hourly percentages for deciles 3, 5, 7, and 10, where the deciles are calculated using each consumer’s

total usage during the panel. For example, the 10th decile includes consumers in the top 10% of all

consumers in terms of average monthly usage. In panel (b), we report variation in the temporal profile

across consumers. Specifically, for each consumer we calculate the proportion of their overall traffic

during each hour of the day, and then plot the distribution of these proportions at each hour.
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extremely congested, or there is a large amount of excess capacity that sits idle for the

remainder of the day.

2.4 Network Congestion

In this subsection we demonstrate the extent of congestion in the network and how

congestion impacts usage. We first show the link between congestion and packet loss, a

measure of network performance. We also present the sources of variation in congestion

in the ISP’s network. Second, we provide direct evidence of the effect of congestion on

usage, relying on variation in congestion due to network upgrades.

Congestion and Packet Loss

Figure 6: Industry Statistics on Packet Loss from FCC’s 2015 Report
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Note: This figure is a reproduction from the FCC’s 2015 Measuring Broadband America Fixed Report,

We calculate the the average of hourly packet loss percentages in our sample, which we believe is the

most comparable to the FCC statistics, and include it in the figure.

Network congestion occurs when subscriber demand exceeds some capacity constraint

on the network. During congested periods, subscribers may find that websites fail to load

or online video buffers repeatedly. There are two ways to measure congestion in our data.

One is through hourly average node utilization. The node being the primary bottleneck

in the “last mile” of an ISP’s network. The second is the the hourly proportion of packets

dropped/delayed, which we, and others, refer to as packet loss. We use hourly packet

loss to measure congestion because it is an individual measure of quality, instead of an

aggregate one, and thus better reflects the performance each subscriber faces.
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The network of the ISP in our data is congested relative to typical US networks.

Figure 6 presents statistics on average hourly packet loss from our data and from FCC

data for other ISPs.7 This particular measure of network performance would rate our

ISP as the third-worst across all types of networks in the FCC data (DSL, cable, fiber,

and satellite).

Figure 7: Average Hourly Subscriber Packet Loss
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Note: These figures report statistics of average packet loss by hour. For each subscriber in the sample,

we calculate hourly packet loss across the panel to generate these figures. In panel (a), we report

average hourly packet loss for all subscribers. Panel (b) reports the percentage of packet loss that is

over various thresholds. For each subscriber in the sample, we average hourly packet loss across the

panel. The percentage of hourly observations over 0.2%, 0.4%, 0.6%, 0.8%, and 1% are shown in the

figure.

The distribution of hourly packet loss is highly skewed. For example, in panel (a) of

Figure 7, which plots average packet loss during each hour, average packet loss is around

1% at 9PM. However, from panel (b), we find over 90% experience less than 1% packet

loss. Panel (b) of Figure 7 better captures the right-tail of the packet loss distribution

by reporting the percentage of subscribers over various packet loss thresholds by hour.

Notice in the early morning, when packet loss is lowest, about 3% of subscribers still

experience about 1% packet loss on average, compared to the day’s maximum of 10%

during peak hours. Interestingly, after 8AM the percentage of subscribers exceeding each

threshold remain fairly constant over the remainder of the day.

7 From the FCC report, it is not clear exactly how their statistics are calculated. We believe that the
statistics are the average of hourly packet loss percentages from a specific test conducted by the modem.
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Figure 8: Weekly Node Utilization Statistics
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Note: This figure presents the weekly variation in peak utilization of network nodes. The box

represents the inter-quantile range in each week, the dashed line is the median, and the vertical dashed

lines extend to the 5th and 95th percentiles.

Therefore, the majority of people experience little packet loss over the day, but in

some cases, packet loss is severe. The effects of packet loss on customer experience can

be variable, too. For example, when watching a streaming video, 0.5% of packet loss

may be acceptable for viewing. However, if someone is browsing a website, dropping a

single particular packet could be the difference in the website loading correctly. This is

important from a modeling standpoint, as we provide a flexible framework to estimate a

rich distribution of tastes, which accounts for heterogeneity in the types of content the

individual prefers to consume.

Congestion and Usage

In Figure 8, we plot the distribution of node utilization for each week in our panel. We

see an overall trend of increased utilization with distinct drops in May, September, and

December, when the ISP improved network capacity. These changes are also noticeable

in how median peak utilization varies. The dashed whiskers represent the 5th and 95th

percentiles of peak usage, where even during these network events the variation within a

week is unaffected.

One way an ISP can alleviate congestion on a node is to perform a node split, for

example, by splitting its subscribers across two new nodes.8 When such a change is made,

8This is just one option available to an ISP – an ISP can use other hardware, software, and licensing
methods to change the capacity of, and bandwidth made available to, a node.

16



Table 2: Changes in Node Utilization, Packet Loss and Usage After Node Split

Before After Diff % Change

Hourly Utilization 49% 34% -15% -31%
Max Hourly Utilization 87% 62% -25% -29%

Hourly Packet Loss 0.11% 0.08% -0.03% -27%
Max Hourly Packet Loss 1.0% 0.61% -0.39% -39%

% Usage During Off-Peak 29.4% 27.1% -2.3 -7.8%
Total Daily Usage 2.55 GB 2.73 GB 0.18 GB 7.1%

Note: This table reports how the averages of node utilization and packet loss compare before and after

the node split. Seven days of data are taken from before and after the node split date to calculate

means. These averages are at the node level and are weighted by the number of people on the node.

the network state for the affected subscribers should be improved because there are half as

many subscribers sharing the same capacity. If subscriber behavior is responsive to such

changes in network quality, we would expect an increase in usage overall, particularly at

peak hours.

There are several distinct node splits of this nature in the data, whereby a group of

subscribers is clearly split over two new nodes. We summarize the changes after these

splits in node utilization, packet loss, and usage in Table 2. We do see improvements in

the average network state, with decreases in both utilization and packet loss. Maximum

hourly node utilization falls by 29% and maximum hourly packet loss falls by 39%. Over

this same period, we find a 7.1% increase in daily usage. Peak usage increases by 10.5%,

while off-peak usage decreases 1.3%. Together these imply a 7.8% decrease in the percent

of usage that is off-peak. This suggests that there is some degree of unmet demand prior

to the node split that is now able to be realized, and provides some evidence of intra-day

substitution to avoid congestion during peak hours.9

The co-variation of congestion and the share of consumption during off peak is what

ultimately identifies the intra-day elasticity of substitution. The analysis of node splits

suggests this elasticity is non trivial. A similar conclusion is reached when we regress

the ratio of off-peak to total usage on measures of node congestion. We find that more

congested nodes have a higher share of off-peak usage and the magnitude in the cross-

9Note that the increase in usage could come from a change in subscriber behavior, or bandwidth-
adaptive applications becoming more responsive. In further decomposing the usage response, we find
that nearly 90% of the 7-day response occurs after 48 hours when consumers are aware of the upgrade,
as where an adaptive response would be immediate. Additionally, the moderate drop in usage during
off-peak hours is inconsistent with an adaptive response.
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Table 3: Percent Usage by Application

Groups Description (Examples)
% of
All Usage

Administration System administrative tasks (STUN, ICMP) 1.19
Backup Online storage (Dropbox, SkyDrive) 0.58
Browsing General web browsing (HTTP, Facebook) 26.70
CDN Content delivery networks (Akamai, Level3) 2.95
Gaming Online gaming (Xbox Live, Clash of Clans) 3.06
Music Streaming music services (Spotify, Pandora) 3.40
Sharing File sharing protocols (BitTorrent, FTP) 0.20
Streaming Generic media streams (RTMP, Plex) 6.26
Tunneling Security and remote access (SSH, ESP) 0.07
Video Video streaming services (Netflix, YouTube) 55.47
Other Anything not included in above groups 0.13

Note: This table reports the composition of aggregate traffic for different types of applications.

section is comparable to what we see from the node splits.

2.5 Composition of Usage and External Validity

Our main data source, discussed above and used for our analysis, does not provide

information on the types of online activities subscribers engage in, only the volume and

timing. We do, however, have data on the composition of usage from another ISP’s

network. The data are from over 500,000 customers, national in scope, and from the

same period, February – December 2015. We do not use these data to estimate the

model, only to demonstrate the patterns in the data used for the analysis, particularly

temporal ones, are representative, and to provide further insight into usage patterns and

rationalize some of the predictions from the model estimates.

Table 3 presents the percentage of usage for each of several categories. We find

that video and music streaming collectively account for over 65% of overall traffic, while

browsing represents nearly 27%. Perhaps, surprisingly, since they previously represented

important sources of growth in Internet traffic, combined gaming and file-sharing repre-

sent less than 4% of traffic, while all other sources represent a negligible share. Thus, for

the remaining descriptive statistics below we use only four categories: browsing, video,

music/streaming, and other.

Figure 9 presents the composition of total usage for each quantile of user, where the

quantiles are defined based on average monthly usage over the sample. For example,

the user with the median average-monthly usage has traffic that is approximately 42%

video, 28% browsing, 10% music/streaming, and the remaining 10% of traffic from all

other sources. Interestingly, there is a nearly monotonically increasing pattern between
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the proportion of video and a consumer’s overall usage. For high-usage consumers, the

greater proportion of video is associated with a lesser proportion of browsing, other

proportions remain largely unchanged.

Figure 9: Data: Monthly Usage by Quantile and Traffic Type
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Note: The average proportion by hour for certain deciles of users where the deciles are based on total

usage (e.g., the tenth decile is the top 10% of consumers).

Figure 10(a) and 10(b) present average usage by hour and traffic type, and the propor-

tion that each traffic type accounts for at each hour, respectively. The overall temporal

pattern in average usage is nearly identical to the pattern from the data above that is

used for our analysis. Video is the most peak-intensive activity, which is not surprising

given that most OTTV services require the user to download the movie at the same time

as viewing it.

These statistics provide external validity of the data we use for the analysis, in terms of

its representativeness of US broadband usage patterns. Peak usage is only slightly higher

in the DPI data, which is consistent with unlimited usage allowances and a less-congested

network.

3 Model
To quantify consumers’ willingness to pay for a less congested network, we develop

and estimate a model of online content consumption. We build on the the model of Nevo

et al. (2016) and extend it in two ways. Like Nevo et al. (2016), the consumer makes a

series of usage decisions on an optimally chosen plan over a finite horizon. In contrast, we

explicitly incorporate network congestion into the model, and we disaggregate the daily

19



Figure 10: Data: Hourly Usage by Group
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(a) Deciles of Daily Usage %s by Hour
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(b) Distribution of Daily Usage %s by Hour

Note: This figure presents two figures related to how daily usage is proportionally distributed across

the day. In panel (a), we report the average proportion by hour for certain deciles of users where the

deciles are based on total usage (e.g., the tenth decile is the top 10% of consumers). In panel (b), we

report the distribution across all consumers of these proportions at each hour.

usage decision into peak and off-peak usage decisions. These additions to the model

permit a more flexible framework and allow us to study richer counterfactual scenarios.

3.1 Subscriber Utility From Content

Subscribers derive utility from consumption of content and a numeraire good. Each

day of a billing cycle, t = 1, ..., T , a subscriber chooses the amount of content to consume

during off-peak hours and then peak hours on their chosen service plan, k = 1, ..., K.

Plans are characterized by a provisioned speed at which content is delivered in the absence

of congestion (sk), a usage allowance (Ck), a fixed fee that pays for all usage up to the

allowance (Fk), and an overage price per GB of usage in excess of the allowance (pk).

The menu of plans, and the characteristics of each, are fixed.10 The provisioned speed

is impacted by the state of the network, ψ, which changes daily due to variation in

congestion and periodic network upgrades. We assume this evolution follows a first-order

Markov process, dGψ, which we will estimate from the data and present in the Appendix.

Utility from content is additively separable over all days in the billing cycle, and across

10Plans were changed months prior to our sample, but unchanged during our sample, and the ISP had
no plans to change them in the months after our sample ended.
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billing cycles.11 Let consumption of content during peak and off-peak hours be denoted

by cp and cop, respectively. Consumption of the numeraire good is given by y. The utility

for a subscriber of type h on plan k is given by

uhk(c
p, cop, ψ, υ) = υ1

(
(cop + cp)1−αh

1− αh

)
− (cop)2

(
υ2κh
ln(sk)

)
− (cp)2

(
κh

ln(ψsk)

)
+ y.

The first term captures the subscriber’s utility from consuming the content. Marginal

utility is declining, as we expect the first unit of any activity (email, web browsing, video,

etc.) to bring higher marginal utility than subsequent usage. The convexity of the utility

function is quite flexible, nesting everything between log (αh → 1) and linear (αh = 0).

This leads to a straightforward link between αh and the price elasticity of demand, such

that αh is the elasticity with respect to the entire cost associated with consuming content.

Uncertainty in utility from consumption of content is introduced by a time-varying shock,

υ1, which is realized at the beginning of each day before either consumption decision is

made.

The second and third terms of the utility function capture the consumer’s cost of

consuming content during off-peak and peak hours, respectively, for a consumer of type

h. During peak hours the marginal cost of usage is given by cp
(

2κh
ln(ψsk)

)
such that in-

creasing Internet usage comes at the cost of alternative activities with greater value. The

consumer-type specific parameter, κh > 0, interacts with the plan’s provisioned speed, sk

and the state of the network, ψ, to determine the marginal cost of consuming the content,

capturing the consumer’s preference for speed and the opportunity cost of consumption.

Importantly, for any finite speed, this specification implies that each subscriber type has

a satiation point even in the absence of overage charges. The multiplicative specification

with the network state, ψ, and provisioned speed, sk, captures the proportional rationing

of bandwidth used by the ISP when the network is congested. During off-peak hours, the

marginal cost of consuming content is cop
(

2υ2κh
ln(sk)

)
. Congestion is a lesser concern so ψ

is omitted and provisioned speeds are realized, but consumers may experience different

costs due to their opportunity cost of consuming content during off-peak hours relative to

peak hours. To capture this, we scale κh by a shock υ2, which is realized before making

either daily-usage decision.

This specification of the benefit from consuming content assumes that the value de-

rived from content is similar across the day, i.e., enters the utility function additively,

and that differences in the utility derived from content arises on the cost side. For ex-

11Nevo et al. (2016) provide evidence that content is likely not substitutable across days and billing
cycles.
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ample, the value from watching a movie on Netflix, cost considerations aside, is the same

during peak and off-peak hours. This assumption is reasonable for the vast majority of

content, particularly OTTV, which currently constitutes two-thirds of usage and con-

tinues to grow. There are activities like email or conference calls for which satisfaction

from participating in the activity is time dependent, but these represent a very small

fraction of overall usage. To flexibly model variation in usage across days, and within

days, we assume that υ1 and υ2 are independent normal random variables with means

equal to µ1h and µ2h, respectively, and a common coefficient of variation, ρh. The vector

of parameters, (αh, κh, µ1h, µ2h, ρh), describes the preferences of a subscriber of type h.

3.2 Optimal Usage

A consumer solves a finite-horizon dynamic programming problem within each billing

cycle.12 There are a total of T days in each cycle, and the consumer must make two

decisions each day (t), usage during off-peak and peak hours, copt and cpt , respectively. We

assume the consumer observes realizations of υ1t and υ2t, and knows the distribution of

potential network states during peak hours, dGψ, before choosing copt on day t. Further,

we assume ψt is known (or is costless to discover) when cpt is chosen later in the day.

Therefore, conditional on choosing plan k, this subscriber’s problem is

max
{cpt ,c

op
t }t=1,...,T

T∑
t=1

E(ψ,υ) [uhk(c
p
t , c

op
t , ψ, υ)]

s.t. Fk + pkMax{CT − Ck, 0}+ YT ≤ I, CT =
T∑
j=1

(copt + cpt ), YT =
T∑
j=1

yt.

We do not discount future utility since we model daily decisions, over a finite and short

horizon. Uncertainty involves the realizations of υ and ψ. We assume that wealth, I, is

large enough so that it does not constrain consumption of content.

We solve the consumer’s problem recursively. This requires solving a series of intra-day

optimization problems nested within a larger non-stationary (due to the finite horizon)

inter-day optimization problem. During peak hours on the last day of the billing cycle

(T ), the consumer solves a static optimization problem, conditional on usage during off-

peak hours (copT ), the state of the network (ψT ), and preference shocks (υT ). Depending

on the values of copT , ψT , and υ1T , the consumer will either consume a satiation level of

utility such that
∂uhk(c

op
T ,cp,ψT ,υT )

∂cp
= 0, the remaining portion of their allowance such that

12The observability of the network state and our focus on the approximately 95% of consumers enrolled
on a single plan the entire sample period simplifies the characterization of optimal usage by eliminating
inter-billing cycle dependency.
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Ck = CT , or incur overages such that
∂uhk(c

op
T ,cp,ψT ,υT )

∂cp
= pk. Denote this optimal level of

consumption, or the policy function on day T during peak hours, as cp∗hkT (copT , CT−1, ψT , υT )

or more compactly, cp∗hkT .

Given the optimal policy during peak hours on day T , the optimal policy for off-peak

usage, cop∗hkT (CT−1, ψT−1, υT ) or cop∗hkT , satisfies

cop∗hkT = argmax
cop

∫
ψ

[
υ1T

(cop + cp∗hkT )

1− αh

1−αh

− (cop)2
(
υ2Tκh
ln(sk)

)

− (cp∗hkT )2
(

κh
ln(ψsk)

)
− pkOtk(cop + cp∗hkT )

]
dGψ(ψ|ψT−1),

where Otk(c) = Max{c− Ckt, 0}, i.e., usage in excess of the remaining allowance (Ckt =

Max{Ck − Ct−1, 0}). The expectation is only over ψ (which impacts the optimal peak-

usage policy) because υ1T and υ2T are known when cop∗hkT is chosen. The expected value

from following the optimal policies during off-peak and peak hours on day T conditional

on entering that day at state, (CT−1, ψT−1), equals

E(ψ,υ) [VhkT (CT−1, ψT−1)] =

∫
ψ

∫
υ

VhkT (CT−1, ψT−1ψ, υ)dGh
υ(υ)

 dGψ(ψ|ψT−1),

where VhkT (CT−1, ψT−1, ψ, υ) is the value associated with following the optimal policies

for a particular realization of the network state (ψ) and preference shocks (υ).

Optimal policies are defined similarly for any day t < T . The optimal peak-usage

policy on day t, cp∗hkt(c
op, Ct−1, ψt, υt) or cp∗hkt, satisfies

cp∗hkt = argmax
cp

[
υ1t

(cop + cp)

1− αh

1−αh

− (cp)2
(

κh
ln(ψtsk)

)

+ βE(ψ,υ) [Vhkt(Ct−1 + cop + cp, ψt−1)]

]
.

Similarly, the optimal policy for off-peak hours on day t < T is
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cop∗hkt = argmax
cop

∫
ψ

[
υ1t

(cop + cp∗hkt)

1− αh

1−αh

− (cop)2
(
υ2tκh
ln(sk)

)
− (cp∗hkt)

2

(
κh

ln(ψsk)

)

+ β

∫
υ

Vhk(t+1)(Ct−1 + cop + cp∗hkt, ψ, υ)dGh
υ(υ)

]
dGψ(ψ|ψt−1).

These state-dependent policy functions are stored along with the value functions when

the model is solved for each type, h, on every plan, k. This permits a comparison of usage

and utility for each type to identify that type’s optimal plan. Our econometric approach

discussed in Section 4 only requires solving the model once for each type.

3.3 Plan Choice

We assume consumers select plans to maximize expected utility, before observing any

utility shocks, and remain on that plan during our sample. More precisely, we assume

the subscriber selects one of the offered plans (k ∈ {1, ..., K}) or no plan (k = 0) such

that

k∗h = argmax
k∈{0,1,...,K}


∫
ψ1

(
E(ψ,υ) [Vhk1(C1 = 0, ψ1)]

)
πψ1 − Fk

 .

The optimal plan, k∗h, maximizes expected utility for the subscriber, net of the plan’s

fixed fee (Fk), where the expectation is taken over initial states (ψ1), and the probability

weights (πψ1) are equal to the stationary distribution of the Markov process for the

network state (dGψ). The outside option is normalized to have a utility of zero. Note, that

we assume that there is no error, so consumers choose the plan that is optimal. Previous

work has studied whether consumers make what look like suboptimal choices expost in

a variety of settings.13 In our data, it is not obvious that subscribers systemically make

mistakes. Similar to Nevo et al. (2016), (potentially weak) tests of optimal plan choice

reveal that it is extremely rare to observe a subscriber whose usage decisions are such

that switching to an alternative plan would yield lower total costs at no slower speeds.

The weakness of this optimality test is due to the positive correlation between speed and

usage allowances of the offered plans (see Figure 1). Our assumptions on plan choice are

easily relaxed in theory, but introduce a substantial additional computational burden.

13In particular, some research has highlighted what seem like suboptimal choices made by by consumers
facing non-linear pricing, similar to ours, in cell phone usage (Grubb and Osborne (2015)) and health
care (Abaluck and Gruber (2012); Handel (2013)). In contrast, several papers (e.g., Miravete (2003);
Economides et al. (2008); Goettler and Clay (2011); Ketcham et al. (2012)) highlight circumstances
where individuals make choices that are rational ex post.
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Given the infrequency of both clear ex-post mistakes in choosing a plan and switching of

plans in our sample, there is little evidence to infer the assumption is incorrect.

This optimality assumption results in a one-to-one correspondence between plans (k)

and consumer types (h). The usage policy functions for a consumer type (h) on the

optimal plan, cop∗hk∗ht
and cp∗hk∗ht

, serve as the basis for our fixed-grid maximum-likelihood

estimation procedure.

4 Estimation
The goal of the estimation is to recover the distribution of types. There are two ways

to view this distribution. The first is to assume each household belongs to exactly one

type and that with enough data this type will be revealed. Then the distribution of

types is calculated by aggregating households. Alternatively, we could assume that each

household is itself a mixture of types, either because the household consists of several

members or because a given individual’s behavior is best described as a mixture of types.

In this case, even with unlimited data, the distribution of types for each household will

not be degenerate. Since ultimately the aggregate distribution of types is of interest, we

do not try to distinguish between these two views.

Our estimation approach is a panel-data modification of Ackerberg (2009), Fox et al.

(2011), Fox et al. (2016), and Nevo et al. (2016). Like the previous literature, we solve

the problem (once) for a large number of types, where a type is defined by a vector of

the parameters. We then estimate the distribution of types by matching patterns from

the data to those predicted by the behavior of the types.

Specifically, we proceed in two steps. First, we solve the model (i.e., the dynamic

programming problem) for a large number of candidate consumer types (h), each char-

acterized by a vector of parameters, (αh, κh, µ1h, µ2h, ρh). From the solution, we store

the policy functions on each candidate type’s optimal plan, which give peak and off-peak

usage at each state. Second, for each consumer on a particular plan (k) in our data,

we calculate the likelihood that the observed sequence of peak and off-peak usage deci-

sions is generated by each of the Hk candidate types that optimally choose that plan.

The derivation of the likelihood comes from the density of usage decisions conditional on

the observed states, (t, C, ψ), that arises due to variation in the (stochastic) unobserved

states, (υ1, υ2). The relative likelihood values over the Hk candidate types for each con-

sumer are then taken as a posterior refinement of the consumer’s type, from a uniform

prior over the candidate types that optimally chose the same plan as the consumer. We

then calculate an estimate of the density of consumer types in the population by aggre-

gating candidate type weights across consumers on each plan, and then across plans while
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accounting for each plan’s market share. We discuss the details of the approach below.

4.1 Likelihood Function

For each individual on plan k, i = 1....Ik, we have a series, m = 1.....M , which

captures usage at a daily frequency on the chosen plan. This includes both off-peak

usage, (copi1 , ...., c
op
iM), and peak usage, (cpi1, ...., c

p
iM). In addition, for date m, we observe

the consumer’s state: days into the current billing cycle (tm), cumulative usage up until

day tm of the billing cycle (Ctm−1), and the network state entering the day (ψtm−1) and

during peak hours during that day (ψtm).

We solve the model for 7,776 (65) candidate types of consumers, corresponding to a

fixed grid with six points of support for each of the five parameters, (αh, κh, µ1h, µ2h, ρh).

The solution to the model yields state-dependent policy functions for peak and off-peak

usage on each type’s optimal plan, cop∗hkt(Ct−1, ψt−1, υt) and cp∗hkt(c
op
t , Ct−1, ψt, υt), respec-

tively. Additionally, the parametric structure of the model (distribution of υ), yields prob-

abilities associated with any realization of the policy functions, P [cop∗hkt(Ct−1, ψt−1, υt) = c]

and P [cp∗hkt(c
op
t , Ct−1, ψt, υt) = c], conditional on the observed states. These probabilities,

together with the Markov process for ψ (dGψ) that is recovered directly from the data

(and presented in the Appendix), are the foundation for constructing the likelihood that

each candidate type (h) generates a particular sequence of usage observed in the data.

Specifically, consider all candidate types that optimally choose plan k, h = 1, ..., Hk.

Further, consider one consumer’s sequence of usage on plan k, (copi1 , ...., c
op
iM), and (cpi1, ...., c

p
iM),

and the values of the associated observed states {tm, ψm, Ctm}m=1,...,M . The likelihood

that candidate type h generated this sequence of data, conditional on the observed states,

equals

Lih =
M∏
m=1

P
[
cop∗hkt(Cm−1, ψm−1, υm) = copikm

]
×P
[
cp∗hkt(c

op
m , Cm−1, ψm, υm) = cpikm

]
×dGψ(ψm|ψm−1).

The likelihood for individual i is calculated for all candidate types that optimally choose

plan k, the individual’s optimal plan, yielding Li1, ...,LiHk
.

Using Baye’s rule, the posterior probability that individual i is of type h is then

straightforward to calculate. Specifically, the selection of plan k by individual i reveals

only that it belongs to the set of Hk candidate types that optimally choose plan k. For this

reason, we assume a uniform prior over the Hk candidate types, which yields a posterior

probability proportional to the likelihood,
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Pih =
Lih

Hk∑
j=1

Lij

.

To form estimates of the posterior probabilities, P̂ih, we calculate probabilities from the

solution to the model via simulation over υ, i.e., P̃
[
cop∗hkt(Cm−1, ψm−1, υm) = copikm

]
and

P̃
[
cp∗hkt(c

op
m , Cm−1, ψm, υm) = cpikm

]
, respectively, and use the same estimate of the Markov

process for the network state, d̂Gψ, that is used to solve the model.

The estimate of the density for any candidate type h among the population of con-

sumers then equals

P̂h = Sk ×
(

1

Ik

Ik∑
i=1

P̂ih

)
.

where Sk is the proportion of individuals selecting plan k. The summation is only over

i = 1, .., Ik because each candidate type receives positive density on (at most) its opti-

mal plan. Standard errors on the distribution of types in the population are calculated

via a block-resampling procedure. Specifically, a block of dependent data in our appli-

cation is characterized by the entirety of each individual’s usage series. We repeatedly

(r = 1, ..., R) perform the estimation using samples created through sampling with re-

placement, calculating the standard errors directly from the distribution of estimates.

4.2 Identification

Our estimation approach uses two choices: the consumer’s plan choice and subsequent

usage on these plans. We rely on both, along with the structure of the model, to identify

the distribution of tastes in the population. However, in contrast to Nevo et al. (2016),

we rely on the richness of our panel to exploit within-consumer variation to identify this

distribution, and not just aggregate moments.

Recall, that our objective is to estimate the distribution of types. Our choice of the

grid is equivalent to placing a uniform distribution over types on this grid and zero mass

elsewhere. An individual’s choice of plan, along with the assumption that this choice is

optimal, refines this distribution since it reveals the subset of candidate types to which

this consumer belongs. That is, among the support we consider for the vector describ-

ing a type, (αh, κh, µ1h, µ2h, ρh), plan choice assigns each type to a subset of this space

corresponding to its optimal plan (or the outside option of no plan). However, as Nevo

et al. (2016) demonstrate, this source of variation is relatively weak without temporal or

cross-sectional variation in the offered plans that would identify the distribution of tastes
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in the population. Yet, the segmentation of the types by plans is not entirely uninforma-

tive and does reveal some information about taste parameters. For example, types with

a preference for large allowances and/or high speeds, and an accompanying willingness

to pay for these features, self select into more expensive tiers.

A more informative source of variation is a consumer’s usage conditional on plan

choice, and in particular the responsiveness of usage to congestion and the possibility of

overage fees. For a given consumer, the plan choice places a uniform distribution over the

subset of candidate types that would optimally select his/her chosen plan. To refine this

distribution, we rely on high-frequency variation in usage, and the covariation between

usage and the observable states of the model, (t, Ct, ψt), which determine the tradeoffs

faced by the consumer.

Optimal usage decisions are revealing about the individual’s preferences. Fixing the

shadow price of usage at zero, the responsiveness of cpt to variation in the the network

state identifies the slope of the marginal cost of usage, κh. Similarly, variation in the

shadow price due to cumulative usage (Ct) reveals the curvature of the marginal benefit

function determined by αh. Note a positive shadow price of usage shifts upward the total

marginal cost of usage, and if Ct is below the Ck, it will also increases its slope (like

congestion). For a fixed network state (ψ), the mean and variance of cp and cop identify

the parameters of the υ1 distribution. Finally, the distribution of υ2 that determines

the relative marginal cost of usage during off-peak and peak periods is identified by the

co-variation between the the share of usage which is off-peak and congestion.

5 Results
We present our estimation results in three parts. First, we summarize our estimates

of the type distribution. Next, we discuss the implications of our estimates. Finally,

we discuss counterfactual exercises that explore the value of economic and technological

solutions to reducing congestion.

5.1 Type-Distribution Estimates

We estimate a weight greater than 0.01% for 732 types. That is, 732 different types

(h) were chosen from the 7,776 candidate types considered. On each plan, the mass is

quite concentrated with the most common type representing over 22% of the plan’s total

mass, and the top two types over 30%. Most of the types with positive weight, 298, come

from the most-expensive plan, despite it only representing about 2.5% of the sample.

This is intuitive since that plan has the most heterogeneity, types selecting the plan for

its high speed and its usage allowance, or both.
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Figure 11: Marginal Distribution of µ2 and α
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Note: The figures are the estimated marginal distributions for µ2 and α, respectively.

In Figure 11, we present the marginal distributions for two of the parameters to

demonstrate the flexibility of the econometric approach. Figure 11 (a) and (b) give the

marginal distribution for µ2 and α, respectively. The vast majority of the mass for both

distributions (and the other three parameters) is not on the boundary of the chosen

support for the parameters, and we find that increasing the range of the support results

in virtually no redistribution of mass outside the chosen support.14 Thus, the range of

the support chosen for the discrete distribution of candidate types does not constrain

optimization over the type weights. The µ2 parameter that determines the intra-day

allocation of usage, along with the network state, has an intuitive shape and distribution.

In our data, most consumers have similar patterns in how usage is distributed between

peak and off-peak periods, but there is still substantial heterogeneity around that mode.

Consistent with this observation from our data, we observe a pronounced modal value

for µ2, while the heterogeneity in temporal usage patterns is also captured with some

types with µ2 ≈ 1 (flat profile on average) receiving positive weight. The marginal

distribution of α is perhaps the most interesting with a clearly bimodal shape. The two

modes represent consumer types with substantially different elasticities for content, which

has important implications for each of the policy issues and counterfactual scenarios we

discuss below.

As would be expected given the quite different marginal distributions, the joint distri-

14For some of the parameters, e.g., µ2, the support is naturally bounded so it is only necessary to
enrich the support in one direction.
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Figure 12: Joint distribution of µ2h and αh
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Note: Joint histogram of µ2h and αh given by frequency counts.

butions are quite irregular. Figure 12 gives the joint distribution of µ2 and α. The multi-

peaked nature of the α distribution is still clearly visible, but there are non-negligible

correlations between the two parameters. This demonstrates the importance of the flexi-

bility of our estimation approach, which allows for free correlations between each pair of

parameters rather than the normality and lack of covariance often assumed in structural

econometric applications.

5.2 Policy Implications

Directly from the estimates, we calculate the distribution of willingness to pay for

connectivity speed and usage allowances, both of which have direct policy implications.

For connectivity speed, we calculate the value associated with increasing the provi-

sioned speed of each type’s optimal plan by 1 Mb/s, conditional on subscribers realizing

those speeds (i.e., ψ = 1). We simply resolve the model for each type, in the absence of

congestion, after increasing the speed of their optimal plan by a fixed amount and com-

pare it to the currently-offered plans. This approximates the change in expected utility

at the beginning of a billing cycle with respect to speed (sk),

∂E(ψ,υ) [Vhk1(C1 = 0, ψ = 1)]

∂shk∗
.

on each type’s optimal plan, hk∗ . We find that a 1 Mb/s increase in speed on each type’s

optimal plan is valued at and average of $0.64. Yet, this value drops off fairly quickly, as
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a 10 Mb/s increase is valued at less than $3.50.

The fairly low preference for increased connectivity speed is interesting for a number

of reasons. The definition of broadband service now requires a speed of at least 25 Mb/s,

which is above the average speed of customers in our data. Thus, the FCC is well ahead

of the average consumer’s preferences with respect to what is needed for most commonly

used applications. Additionally, regulatory authorities have begun to make approval

of mergers and acquisitions conditional on substantial investment in networks. A recent

example is Altice’s acquisition of Cablevision, which was approved by the New York State

Public Service Commission conditional on Altice making $243 million of investment to

increase broadband speeds up to 300 Mb/s by 2017, along with expanding its network at

a cost of $40 million to subsidize access for underserved areas.15

Our results suggest that these required network investments are likely to have quite

mixed returns. In particular, it is important to distinguish between the speed and capacity

of a network, as a network capable of delivering fast speeds but without adequate capacity

is quite undesirable (as our descriptive analysis demonstrates). Therefore, we expect the

subsidies to cover the costs of access to be quite valuable as access at even modest speeds

is highly valuable, but investment to dramatically increase overall speeds would likely not

do much to penetration and have quite low value to existing customers. For example,

an HD movie from most OTTV services requires approximately 5 Mb/s, and recent

encoding and compression technologies continue to reduce requirements, which suggests

that a home with 100 Mb/s could already stream 20 movies simultaneously. Thus, a more

efficient allocation of these resources might be to ensure that consumers are consistently

achieving provisioned speeds by increasing capacity, reducing the frequency of congestion,

rather than pushing the top-end capabilities of the networks.

Similarly to preferences for speed, our model yields an estimate of the value of one

more GB added to the usage allowance on each type’s optimal plan. This value equals

∂E(ψ,υ) [Vhk1(C1 = 0, ψ = 1)]

∂Chk∗

,

which is the change in expected utility at the beginning of the billing cycle from one

more GB of usage allowance, in the absence of congestion. We find the median consumer

values an additional GB at only $0.07, while the average is $0.11 due to the extreme right

tail of users. The relatively low value, particularly as compared to Nevo et al (2016),

15This decision can be found in the Commission Documents section of the Commissions web site at
www.dps.ny.gov and entering Case Number 15-M-0647 in the input box labeled “Search for Case/Matter
Number”.
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Figure 13: PDF of willngness-to-pay ($) for ψ = 1
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Note: This figure presents the pdf of the willingness-to-pay to eliminate congestion from the network

for the entire billing cycle in our population of subscribers.

suggests that current usage allowances are well ahead of most consumers’ preferences.

Additionally, the highly skewed nature of this valuation suggests that usage-based pricing

(as implemented by this ISP) is impacting only the heaviest of broadband users.16

Thus, if the median consumer were to watch an additional typical HD movie each

billing cycle, approximately 2 GBs, the value to the consumer in expectation would be

about $0.14. This is quite small, because even if you substantially decrease the usage

allowances, the marginal value does not increase too rapidly since most users are far

from the allowance in a typical month. Thus, the inframarginal cost of most of the bytes

generated by OTTV services is a tiny fraction of the marginal cost. This estimate is

particularly useful for the recent policy discussion around zero-rating policies by ISPs,

i.e., the policy of not counting usage from the ISP’s streaming service against usage al-

lowances while other OTTV services are. Our estimates suggest that the price differential

introduced by these policies is quite small for almost all users. Or, at the current ratio of

allowances to usage, zero-rating policies by ISPs have very little impact on disadvantaging

competing OTTV services.

Both of the calculations above, willingness-to-pay for greater speed and larger usage

allowances, are done so purposely with congestion absent. That is, it is important to

understand willingness-to-pay for plan features in its absence. However, the volatility

and rate of growth in demand makes investment difficult to target and time, making con-

16The plan features of the usage-based pricing by this ISP are similar to those implemented by other
North American ISPs, and so these estimates are not much different for the industry as a whole.
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gestion an ever-present feature of many networks. Thus, it is also of interest to perform

such similar calculations in the presence of congestion, as the results may more accurately

reflect the plight of some consumers. Figure 13 presents the pdf of the willingness-to-pay

to eliminate congestion from the network for the entire billing cycle. This is the addi-

tional surplus generated by purchasing a “fastlane” that is not subject to congestion (i.e.,

realized speeds always equal maximum advertised speeds), in contrast to the conditions

currently observed on the network. We find the average (median) consumer will pay

approximately $14.77 ($12.94), which is substantially more than increasing advertised

speeds in the absence of congestion.17 This further reinforces our findings that deliver-

ing reliable service, even at modest speeds, delivers substantial value relative to costly

investments to offer speeds that very few consumers value.

5.3 Economic and Technological Solutions to Congestion

Constant investment in broadband networks has been the industry’s primary response

to keep up with Internet usage, which has grown recently by approximately 40% annu-

ally.18 However, as our descriptive analysis in Section 2 demonstrates, networks are built

for peak demand and are vastly under-utilized the majority of the day. This suggests

that economic and technological solutions can serve a complementary role to maximize

the value of these investments. We explore three such potential solutions: throttling of

connectivity speeds, peak-use pricing, and local-cache technologies.

Ideally for the counterfactual computation below we would resolve the dynamic prob-

lem for each consumer faced with the new pricing, throttled speed, or ability to locally

cache. We would then compute the level of congestion and resolve the consumer prob-

lem, which would imply a new congestion, and so forth until usage levels and congestion

were consistent with each other. This involves iterating between a dynamic problem for

a large number of consumer types, and an equilibrium calculation of congestion, which

computationally is not feasible. For the calculations below we focus on the equilibrium

aspect and simplify the dynamics when solving the counterfactuals.19 Specifically, we

17As a sanity check on this number, we can compare it to the cost of providing a less congested network.
If we take 200 consumers and put them on a node, they will be congestion free in the short run. Our
estimates suggest that in aggregate these consumers will be willing to pay roughly $3,000 a month for
this upgrade. The cost of installing a new node varies widely, but $50,000 is a reasonable “average”
number. This cost is equal to roughly a year and a half of what the consumers are willing to pay, Given
current usage growth rates this seems in the ballpark of the time it would take the new node to get
congested.

18The primary economic solution employed by ISPs in recent years has been the implementation of
simple three-part tariffs to discourage low-value usage. However, Malone et al. (2014) show these tariffs
discourage usage at all times, including off-peak hours when usage is nearly costless.

19In an earlier version of this paper we went to the other extreme, where we resolved the new dynamic
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provide a baseline simulation from the model where we simplify the consumer’s problem

to the decision of how to allocate usage within a single day with a proportional reduction

of the monthly usage allowance. This eliminates inter-day dynamics that arise due to

usage-based pricing, much like the decision regarding usage on the last day of the each

billing cycle.

If the daily usage allowance is not binding, each of the subscribers’ peak and off-peak

usage satisfies

υ1 (cop + cp)−α =
2copυ2κh

ln(sk)

υ1 (cop + cp)−α =
2cpκh ln(ψsk)− (cp)2κh

1
ψ
∂ψ
∂cp

ln2(ψsk)
,

where υ is a realization of the preference shocks. If the usage allowance is binding, the

overage price is added to the right-hand side of both equations. Note that each subscriber

accounts for the effect of their usage during the peak period on the network state, ψ. To

calculate average usage and consumer surplus, we simulate different realizations of υ

for all subscribers, resolve the system of equations, and calculate averages from these

solutions. Each of the counterfactuals then involve altering these first-order conditions

to account for the differential tradeoffs introduced by each of the alternatives.

Throttling Speed

One way to deal with congestion is to lower realized speeds during peak hours of

consumers who have exceeded their allowance. This is the way that overages are im-

plemented on some cellular networks. To simulate the effect of such a policy, we slow

consumers down during peak-use periods after exceeding their usage allowance instead

of overage fees. We assume the throttled speed is 7 Mb/s, the upper limit of what is

required to stream from most OTTV services in HD. The results are in Table 4. The

effect is a bit counterintuitive, as total usage during peak and off-peak hours increases.

However, the majority of consumers have a low valuation on speed so they much prefer

the penalty of a low speed than having to pay the per-GB charge. Their additional usage

improves consumer welfare, while there is only a slight decrease in ISP revenue due to the

absence of overage charges. The results when speed is throttled to 3 Mb/s are similar.

Overall, throttling does not seem to achieve the goal of shifting demand to off-peak hours

for residential broadband networks.

problems but held congestion fixed rather than solving for the equilibrium value. The results were
qualitatively similar.
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Table 4: Counterfactual: Throttling

Baseline 7 Mb/s (sk) 3 Mb/s (sk)

Daily Usage (GB) 2.6 2.9 2.8

(0.03) (0.03) (0.03)

Peak Usage (GB) 1.9 2.0 1.9

(0.02) (0.02) (0.02)

Off-Peak Usage (GB) 0.7 0.9 0.9

(0.01) (0.01) (0.01)

Consumer Surplus 68.31 72.40 73.02

(0.07) (0.07) (0.07)

Revenue 59.75 57.09 58.18

(0.06) (0.06) (0.06)

Note: This table reports how subscriber behavior changes under throttling of connection speeds

relative to a baseline simulation with the current usage-based pricing schedules. Standard errors are

calculated using the block-resampling procedure described in Section 4.

Peak-Use Pricing

We consider a simple form of peak-use pricing where off-peak usage is not counted

against the allowance, while peak usage is counted fully. For this to have any effect,

we need to also decrease the allowance. The results are in Table 5. The first column

provides the baseline using the current usage-based pricing schedules. The second and

third columns consider 25% and 50% reduction in the baseline allowance when only peak

usage is counted against that allowance. Consistent with the results from the analysis

of node splits, we find that peak usage responds to a higher price whether it be in the

form of overages or congestion, and off-peak usage decreases relatively less. That is, the

intra-day elasticity of usage is quite small. Thus, simply raising the price of peak usage

is not a particularly attractive alternative. However, we find that the willingness to pay

for an extra GB during peak periods is almost three times higher once the allowance

is reduced by 50%. Even though the low elasticity makes the usage response modest,

the reduction in the allowance and peak-use pricing provides strong incentive to content

providers to make the traffic associated with their applications transferable to off-peak

hours. One way to accomplish that is the introduction of local-caching technologies.

Local-Cache Technology

OTTV services account for a disproportionate share of peak-use traffic. Yet, it is a

passive activity for which arrival of the content and actual consumption or viewing of the
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Table 5: Counterfactual: Peak-Use Pricing

Baseline 25% Reduction (Ck) 50% Reduction (Ck)

Daily Usage (GB) 2.6 2.7 2.4

(0.03) (0.03) (0.03)

Peak Usage (GB) 1.9 1.8 1.7

(0.02) (0.02) (0.02)

Off-Peak Usage (GB) 0.7 0.9 0.7

(0.01) (0.01) (0.01)

Consumer Surplus 68.31 69.06 65.24

(0.07) (0.07) (0.07)

Revenue 59.75 58.11 60.22

(0.06) (0.06) (0.06)

Note: This table reports how subscriber behavior changes under peak-use pricing relative to a baseline

simulation with the current usage-based pricing schedules. Standard errors are calculated using the

block-resampling procedure described in Section 4.

Table 6: Counterfactual: Local-Caching Technology

Baseline 25% Reduction (µ2) 50% Reduction (µ2)

Daily Usage (GB) 2.6 2.8 3.2

(0.03) (0.03) (0.03)

Peak Usage (GB) 1.9 1.8 1.7

(0.02) (0.02) (0.02)

Off-Peak Usage (GB) 0.7 1.0 1.3

(0.01) (0.01) (0.02)

Consumer Surplus ($) 68.31 75.88 81.70

(0.07) (0.08) (0.09)

Revenue ($) 59.75 60.97 63.01

(0.06) (0.06) (0.06)

Note: This table reports how subscriber behavior changes with the introduction of local-caching

technologies relative to a baseline simulation with the current usage-based pricing schedules. Standard

errors are calculated using the block-resampling procedure described in Section 4.
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content need not coincide temporally, unlike web browsing. This presents an opportunity

to potentially shift the timing of the downloads to off-peak hours when the network

is under-utilized, while the viewing still occurs during peak hours. One approach to

detach the two activities is local caching of content. The ASAP feature on Amazon’s

Fire streaming device predictively caches content using machine-learning algorithms that

exploit past-viewing behaviors. The ASAP feature only loads a small portion of each piece

of content to improve quality, faster startup, and higher resolution, but the technology

can be easily adapted to give the user more control over how much of each piece of

content to cache. Envision an application for OTTV services that is analogous to Tivo’s

functionality for traditional pay-TV. Therefore, such solutions can be implemented at

very low cost.

Such a technology would be expected to decrease the effort associated with download-

ing OTTV during off-peak hours (e.g., Netflix’s phone app that allows the user choose

what and when to cache), but not change the utility from consuming it since that can

still be done during peak hours. In our model, this is similar to decreasing the mean

of the shock to the cost of off-peak usage (µ2). In Table 6, we provide estimates of the

effect if local-cache technologies were to reduce the cost of off-peak usage by 25% and

50% for all consumer types, respectively. This of course may substantially understate

its effect, as the heaviest of users consume much more OTTV services and would benefit

disproportionately from such technologies. Despite this potential downward bias, we find

that consumers benefit substantially from such technology, but only increase peak-use

slightly, a cost the ISP could surely recapture through re-optimization of prices or avoid

by complementing the technology with peak-use pricing.

6 Conclusion
We estimate demand for residential broadband using an 11-month panel of hourly

subscriber usage and network conditions. The key feature of our model of demand is

the inclusion of network congestion as a determinant of subscriber’s inter- and intra-day

usage decisions. We estimate the model by extending the methods proposed by Ackerberg

(2009), Fox et al. (2011), and Fox et al. (2016), and applied by Nevo et al. (2016). We

find that the flexibility these methods provide in estimating heterogeneity is important to

explain the data. Our findings show a low willingness-to-pay for larger usage allowances

and faster advertised speeds, indicating diminishing returns to further investment aimed

at delivering gigabit and beyond speeds to consumers. Yet, we find consumers are willing

to pay, on average, just under $15 to eliminate congestion.

Next, we use the model estimates to explore several economic strategies to eliminate
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congestion and more efficiently use network capacity throughout the day. We find that

throttling of speeds when usage exceeds a consumer’s allowance actually increases both

total and peak usage, because many consumers view throttling as less costly than in-

curring overage fees. Our results suggest that peak-use pricing has potential, but (in

isolation) is ineffective at shifting demand towards non-peak periods because consumers

have little ability to shift usage within a day. We then introduce local-cache technology

and find that it will be effective in reducing demand during peak-use periods by allowing

consumers to divert demand to off-peak periods. We envision this diversion being mostly

downloads of video content during off-peak periods that will be viewed during peak peri-

ods. Together, our estimates suggest that the combination of peak-use pricing and local

cache technology may be particularly effective in reducing congestion.

The ability to divert downloads to off-peak periods is likely to make OTTV an even

more attractive option, encouraging further adoption possibly at the expense of tradi-

tional pay-TV services sold by the ISP. This, together with the cost asymmetry between

OTTV services, which place substantial demands on broadband networks, and pay-tv

services, for which the costs on the network are fixed, creates complex incentives for

the ISP. An interesting area for future research is to jointly estimate demand for video

and broadband services, and then use these estimates to explore incentives for ISPs to

foreclose OTTV providers.
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Figure 14: Day-of-Week Variation in Temporal Usage
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Note: This figure presents average daily usage in gigabytes for each day of the week.

Appendix
In this Appendix we present some additional descriptive statistics and results.

Intra-Day Usage by Day of the Week

We find that average temporal patterns do not differ substantially by the day of the

week. Figure 14 presents average usage by hour for each day of the week. There is a

small intuitive difference between average usage on weekdays and weekends during off-

peak hours. From 8am until roughly 3pm, usage is slightly higher during the weekends

when individuals are more likely to be home and using the Internet. In our modeling and

analysis, we ignore this small difference, because for our purposes the difference is small

and occurs during off-peak hours, thereby having a minimal impact on network costs.

Markov Process Governing the Network State

In Table 7 we present the Markov process we use for the network state. Packet loss

is split into seven bins that are used to study how persistent packet loss is day-to-day.

From these transition probabilities, there are a couple of notable takeaways. First, if a

subscriber’s peak packet loss is poor one day, there is a high probability it will be better

the next day. Second, if a subscriber does end up in the worst packet loss state, they are

most likely to be in a poor state the next day. Third, the vast majority of subscribers

experience low packet loss and will experience low packet loss tomorrow.

For the model, we use the transition matrix in Table 7 to estimate the frequencies of

transition between packet loss, or network congestion, states. This matrix is used to solve

the model. For the estimation procedure, all we need are day-hour observations of daily
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Table 7: Transition Matrix of Peak Packet Loss

Next State
Initial State 0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1 1–10 10–100

0–0.2 0.984 0.002 0.001 0.001 0.001 0.006 0.004
0.2–0.4 0.662 0.086 0.044 0.027 0.021 0.124 0.037
0.4–0.6 0.570 0.074 0.055 0.037 0.027 0.186 0.051
0.6–0.8 0.526 0.041 0.031 0.062 0.039 0.235 0.066

0.8–1 0.511 0.032 0.026 0.042 0.059 0.244 0.087
1–10 0.316 0.023 0.020 0.029 0.029 0.364 0.218

10–100 0.122 0.004 0.003 0.005 0.005 0.119 0.741

Note: This table reports probabilities of peak hour -day packet loss transitions at the subscriber level of

observation. Each bin is of the form (x%, y%] and represent a range of packet loss. The first bin

includes 0% packet loss, too.

Table 8: Descriptive Statistics for Types

Mean Median Mode

αh 0.52 0.56 0.68
κh 3.41 4.03 4.03
µ1h 0.93 0.80 0.80
µ2h 5.21 4.60 4.60
ρh 0.37 0.48 0.48

Note: This table reports descriptive statistics of the type distribution: mean, median, and mode.

consumption and the observed peak packet loss state for each account in the sample.

Statistics of the Distribution of Types

The marginal distribution for each of the parameters, calculated from the 732 can-

didate types receiving positive density, is summarized in Table 8. With the exception

of α, each of the parameters has a mode equal to the median. However, for each of

the parameters other than α, the mean is also 10% of more different than the median,

capturing skew in the distributions.
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