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Abstract

We introduce firm and worker heterogeneity into a model of innovation-driven endogenous

growth. Individuals who differ in ability sort into either a research activity or a manufacturing

sector. Research projects generate new varieties of a differentiated product. Projects differ

in quality and the resulting technologies differ in productivity. In both sectors, there is a

complementarity between firm quality and worker ability. We study the co-determination of

growth and income inequality in both the closed and open economy, as well as the spillover

effects of policy in one country to outcomes in others.
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1 Introduction

The relationship between growth and income distribution has been much studied. Researchers

have identified several channels through which inequality might affect growth, such as if rich and

poor households differ in their propensity to save (Kaldor, 1955-56), if poor households face credit

constraints that limit their ability to invest in human capital (Galor and Zeira, 1993), or if greater

inequality generates more redistribution and thus a different incentive structure via the political

process (Alesina and Rodrik, 1994; Persson and Tabellini, 1994). Growth might affect distribution

if the activities that drive growth make more intensive use of skilled labor than do other activities

in the economy (Grossman and Helpman, 1991).

In this paper, we propose a novel mechanism that links distribution to growth, one that has

not previously been considered in the literature. In an environment with heterogeneous workers

and heterogeneous firms, markets provide incentives for certain types of workers to sort to certain

activities and for the workers in a sector to match with certain types of firms. The fundamental

forces that drive growth also determine the composition of worker types in each activity and thereby

influence the matching of workers to firms. In this way of thinking, growth does not cause inequality,

nor does inequality influence growth, but rather the two outcomes are jointly determined. We

examine several potential determinants of growth and inequality, such as the productivity of an

economy’s manufacturing operations, its capacity for innovation, and its policies to promote R&D.

Since we know from previous work that the form and extent of international integration can have

important influences on growth, we also investigate how the mechanism of sorting and matching of

heterogeneous workers operates in an open economy.

We introduce our mechanism in a simple and stylized setting–although we believe that it would

operate similarly in a wide variety of growth models with heterogeneous workers and heterogeneous

firms. We imagine that the economy undertakes two distinct activities that we refer to abstractly

as idea creation and idea using. Our mechanism rests on two key assumptions. First, among a

group of workers with heterogeneous abilities, greater ability confers a comparative advantage in

creating ideas relative to using ideas. This implies rather directly that the more able types will

sort into the idea-creating activity. Second, when research or production takes place, there exists

a complementarity between the quality of an idea and the ability of the workers that implement

the idea. As a consequence, there is positive assortative matching between heterogeneous firms

and heterogeneous workers in both sectors of the economy. The forces that affect the sizes of the

two sectors also affect the composition of workers in each sector and thereby affect the matching

of workers with firms.

In our model, as in Romer (1990), the accumulation of knowledge serves as the engine of growth.

Knowledge is treated as a by-product of purposive innovation undertaken to develop new products.

Our treatment of trade, international knowledge diffusion, and growth extends the simplest, one-

sector model from Grossman and Helpman (1991).1 The advantage of the framework we develop

1 In Grossman and Helpman (1991), we devote several chapters to models with two or more industrial sectors in

order to address the impact of intersectoral resource allocation on growth and relative factor prices. By considering
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here is that it focuses on the new mechanism and allows us to consider the entire distribution of

earnings that emanates from a given distribution of worker abilities and firm productivity levels,

and not just, say, the skill premium (i.e., the relative wage of “skilled” versus “unskilled” workers),

which has been the focus of much of the existing theoretical literature.

In the next section, we develop our model in the context of a closed economy. A country has a

fixed endowment of research equipment and a fixed supply of labor with an exogenous distribution

of abilities. The economy assembles a single consumption good from differentiated intermediate

inputs. Blueprints for the intermediate goods result from R&D services that are purchased by

firms. The manufacturing firms, which engage in monopolistic competition, have access to different

technologies and can hire workers of any ability. A firm’s total output is the sum of what is produced

by its various employees. The productivity of any employee depends on his ability and on the firm’s

technology. Ability and technology are complementary, so that, in equilibrium, the firms that have

access to the better technologies hire the more able workers.

Innovation drives growth. Entrepreneurs rent research equipment to pursue their research ideas.

Once an entrepreneur has established a research lab, she learns the quality of her project. The lab

produces “R&D services” at a rate that depends on the quality of its project, the ability of the

researchers that it hires, and the stock of knowledge capital available in the economy. Knowledge

accumulates with research experience and is non-proprietary, as in Romer (1990). R&D services can

be converted into designs for new varieties of the differentiated product. Each design comes with

a random draw of a production technology, so that some manufacturing firms ultimately operate

sophisticated technologies and others simpler technologies. There is free entry in both sectors of

the economy. Expected returns are zero, although the lucky research entrepreneurs (those that

draw above average research ideas) and the lucky manufacturers (those that draw above average

production technologies) earn positive profits, while the others do not fully cover their fixed costs.

In equilibrium, all individuals with ability above some endogenous cutoff level sort into the

research sector. They are hired there by the heterogeneous labs according to their ability. Simi-

larly, for those that enter the manufacturing sector, there is endogenous matching between firms

and employees. The complementarity between ability and technology delivers positive assortative

matching in both sectors. These competitive forces of sorting and matching dictate the economy’s

wage distribution. We focus the analysis on the resulting inequality of wages.

After developing the model, we show how the long-run growth rate and wage distribution are

codetermined in a long-run equilibrium. More specifically, we derive a pair of equations that jointly

determine the steady-state growth rate in the number of varieties and the cutoff ability level that

divides manufacturing workers from inventors. Once we know the growth rate of intermediate

varieties, we can calculate the growth rate of final output and the growth rate of wages. Once we

know the cutoff ability level, we can calculate the entire distribution of relative wages.

In Section 3, we compare growth rates and wage inequality across countries that differ in their

here a model with one industrial sector, we neglect this important, additional channel for trade to influence growth

and income distribution.
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technological parameters and policy choices. In this section, we focus on isolated countries that do

not trade and do not capture any knowledge spillovers from abroad. We show that Hicks-neutral

differences in labor productivity in manufacturing that apply across the full range of ability levels

do not generate long-run differences in growth rates or wage inequality, although they do imply

differences in income and consumption levels. In contrast, differences in “innovation capacity”

generate differences in growth and inequality. Innovation capacity is represented by a sufficient

statistic that reflects the size of a country’s labor force, its endowment of research capital, its

ability to convert research experience into knowledge capital, and its inventors’ productivity in

generating new ideas. A country with greater innovation capacity grows faster in autarky but

experiences greater wage inequality. Subsidies to R&D financed by taxes on wage and capital

income also contribute to faster growth but greater inequality.

Section 4 addresses the impacts of globalization. We consider a world economy with an arbitrary

number of countries that trade the differentiated intermediate goods as well as the homogeneous

final good. We follow Grossman and Helpman (1991) by assuming that international integration

might also facilitate the international sharing of knowledge capital. In our baseline specification,

we allow for an arbitrary pattern of complete or partial (but positive) international spillovers. In

particular, the knowledge stock in each country is a weighted sum of accumulated innovation ex-

perience in all countries including itself, with an arbitrary matrix of strictly positive weighting

parameters. We study a balanced-growth equilibrium in which the number of varieties of interme-

diate goods grows at the same constant rate in all countries. Even allowing for a wide range of

differences in technologies and policies, we find that the long-run growth rate is higher in every

country in the trading equilibrium than in autarky, but so too is the resulting wage inequality. We

reach the same conclusion regardless of whether financial capital is internationally mobile, so that

countries can engage in intertemporal trade, or is completely immobile, so that a country’s trade

must be balanced at every moment in time.

To better understand what is driving these results, we also study cases in which knowledge

spillovers do not occur. When only goods are traded, the opening of trade has no effect on the

long-run innovation rate or on wage inequality in any country. However, trade does accelerate wage

and consumption growth in all countries except the one that grows the fastest in autarky. The other

countries can take advantage of the rapid innovation in the fastest growing country by importing

the new varieties of intermediate goods that it develops and produces. When goods and assets are

both traded, then innovation slows in all countries except the fastest innovator. Yet these other

countries all experience a boost in growth of wages and consumption. Moreover, wage inequality

narrows in all of them. We conclude that the adverse distributional consequences of international

integration are driven by knowledge flows and not by trade on international markets per se.

In Section 5, we study further the long-run trading equilibrium with partial or complete interna-

tional knowledge spillovers. There, we are interested in how wage inequality compares in countries

that differ in their productivities and policies and how parameter and policy changes in one coun-

try affect growth and inequality in others. Countries that differ in size, in research productivity,
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in manufacturing productivity and in their ability to create and absorb knowledge spillovers will

converge not only in their growth rates, but also in their wage inequality in the long run. However,

differences in government inducements to R&D generate enduring differences in the shape of their

wage distributions; a country with a greater R&D subsidy will devote a larger fraction of its labor

force to the research activity and will experience greater wage inequality as a result. Parameter and

policy changes that accelerate growth and promote inequality in one country will have qualitatively

similar effects on growth and inequality in all of its trade partners by the mechanism of sorting and

matching that we describe.

In this paper, we do not conduct any empirical tests for the operation of our mechanism, nor do

we attempt to quantify its significance. In general, attempts to substantiate the operation of mech-

anisms linking inequality to growth have been hampered by inadequate data and methodological

pitfalls. Kuznets (1955, 1963), for example, famously advanced the hypothesis that income inequal-

ity first rises then falls over the course of economic development. While the “Kuznets curve”–an

inverted-U shaped relationship between inequality and stage of development–has been established

for the small set of countries that Kuznets considered, subsequent studies using broader data sets

cast doubt on the ubiquity of this relationship.2 More generally, empirical assessment of the links

between distribution and growth has proven elusive due to the fact that a country’s growth rate and

its income inequality are jointly determined and there are few if any exogenous variables to serve as

instruments for identifying causal relationships.3 It might be possible to calibrate a growth model

to get a sense of the relative quantitative significance of various mechanisms that link distribution

with growth, but the model that we have presented here is too simple for calibration purposes. We

have chosen the simple (and familiar) specification in order to present starkly the mechanism that

we have in mind, and leave quantification of the mechanism for future research.

2 The Basic Model

We develop a model of economic growth featuring heterogeneous workers, heterogeneous firms, and

heterogeneous research opportunities. In the model, endogenous innovation drives growth. Workers

that differ in ability engage either in creating ideas or using ideas. In keeping with the literature,

we refer to the creation of ideas as “R&D” and the implementation of ideas as “manufacturing,”

although we prefer not to interpret these terms too narrowly. Research firms (“labs”) generate

both research services and general knowledge as joint outputs, using labor, laboratory equipment

(“equipment”) and knowledge as inputs. To simplify our analysis, we take the stock of equipment

as fixed. Research services are proprietary and are sold by the labs to manufacturing firms that

convert them into blueprints for differentiated intermediate inputs. Knowledge, in contrast, is non-

rival and a freely-available public input. When a manufacturing firm produces an intermediate

input, it operates a randomly-chosen technology that is an identifying characteristic of the firm.

2See Helpman (2004, ch.4) for a survey of this evidence.
3A similar problem has plagued attempts to assess the relationship between trade and growth (see Helpman, 2004,

ch.6).
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Similarly, labs differ in their realized research productivity. There is free entry into both activities

before the uncertainty is resolved. In the equilibrium, the heterogeneous workers sort into one of

the two sectors and firms and labs with different productivities hire different types of workers. The

economy converges to a long-run equilibrium with a constant growth rate of final output and a

fixed and continuous distribution of wage income.

We describe here the economic environment for a closed economy and defer the introduction

of international trade, international knowledge spillovers and international capital mobility until

Section 4 below.

2.1 Demand and Supply for Consumption Goods

The economy is populated by a mass  of individuals indexed by ability level, . The cumulative

distribution of abilities is given by  (), which is twice continuously differentiable and has a

positive density  0 ()  0 on the bounded support, [min max].
Each individual maximizes a logarithmic utility function,

 =

Z ∞



−(−) log  , (1)

where  is consumption at time  and  is the common, subjective discount rate. The consumption

good serves as numeraire; its price at every moment is normalized to one. It follows from the

individual’s intertemporal optimization problem that

̇


=  − , (2)

where  is the interest rate at time  in terms of consumption goods. Inasmuch as  varies across

individuals, so does income and consumption.

Consumption goods are assembled from an evolving set Ω of differentiated intermediate inputs.

Dropping the time subscript for notational convenience, the production function for these goods at

a moment when the set of available inputs is Ω is given by

 =

∙Z
∈Ω

 ()
−1
 

¸ 
−1

,   1, (3)

where  () is the input of variety . The elasticity of substitution between intermediate inputs is

constant and equal to .

The market for consumption goods is competitive. It follows that the equilibrium price of these

goods reflects the minimum unit cost of producing them. Since  is the numeraire, we have

∙Z
∈Ω

 ()1− 
¸ 1
1−

= 1 (4)

where  () is the price of intermediate input .
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2.2 Supply, Demand, Pricing, and Profits of Intermediate Goods

Once a firm has converted research services into the blueprint for an intermediate good, it produces

that good indefinitely using labor as the sole input to production. Each firm that manufactures an

intermediate good is distinguished by its technology, . A firm with a higher  is more productive,

no matter what type(s) of workers it hires. Consider a firm that produces variety  using technology

 and that hires a set  of workers types with densities  (). In such circumstances, the firm’s

output is

 () =

Z
∈

 ( )  ()  (5)

where  ( ) is the productivity of workers of type  when applying technology . Notice that

labor productivity (given ) is independent of .

We suppose that more productive technologies are also more complex and that more able workers

have a comparative advantage in operating the more complex technologies. In other words, we posit

a complementarity between the type of technology  and the type of worker  in determining labor

productivity. Formally, we adopt

Assumption 1 The productivity function  ( ) is twice continuously differentiable, strictly in-

creasing, and strictly log supermodular.

Assumption 1 implies   0 for all  and .

As is known from Costinot (2009), Eeckhout and Kircher (2016), Sampson (2014) and others,

the strict log supermodularity of  (·) implies that, for any upward-sloping wage schedule  (), each
manufacturing firm hires the particular type of labor that is most appropriate given its technology

, and there is positive assortative matching (PAM) between firm types and worker types. We

denote by  () the ability of workers employed by firms that operate a technology ; PAM is

reflected in the fact that 0 ()  0.
Shephard’s lemma gives the demand for any variety  as a function of the prices of all available

intermediate goods, namely

 () = 

∙Z
∈Ω

 ()1− 
¸ 
1−

()−

In view of (4), demand for variety  can be expressed as

 () = ()− for all  ∈ Ω. (6)

Each firm takes aggregate output of final goods  as given and so it perceives a constant elasticity

of demand, −. As is usual in such settings, the profit-maximizing firm applies a fixed percentage

markup to its unit cost.

Considering the optimal hiring decision, a firm that operates a technology  has produc-

tivity  [ ()] and pays a wage  [ ()]. Hence, the firm faces a minimal unit cost of
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 [ ()]  [ ()]. The firm’s profit-maximizing price is given by4

 () =

µ


 − 1
¶

 [ ()]

 [ ()]
. (7)

This yields an operating profit of

 () = − ( − 1)(−1)
½

 [ ()]

 [ ()]

¾1−
. (8)

2.3 Inventing New Varieties

Any research entrepreneur can establish a lab to pursue a research project. When an entrepreneur

contemplates a new project, she does not know its quality, . At this stage, she perceives  as being

drawn from some cumulative distribution function for project types,  (), with 0 ()  0 on a
bounded support [min max]. Each project requires  units of equipment. Once an entrepreneur

has rented the requisite equipment to undertake her project, she discovers the project’s quality.

She then hires some number  () of workers of some ability level  to carry out the research,

paying the equilibrium wage,  ().

All projects generate R&D services. The volume of services that results from a project depends

upon its quality, the number of researchers engaged in the project, their ability, and the state

of knowledge at the time. We follow Romer (1990) in assuming that knowledge accumulates as

a by-product of research experience. The knowledge stock at time  is , where  is the

mass of varieties that have been developed before time  and  is a parameter that reflects how

effectively the economy converts cumulative research experience into applicable knowledge. The

output of a research project of quality  that employs  () workers with ability in the interval

[ + ] when the state of knowledge is  is given by  ( )  ()
  where  ( )

captures a complementarity between project quality and worker ability in determining innovation

productivity. In particular, we adopt the following assumption, analogous to Assumption 1.

Assumption 2 Research productivity  ( ) is twice continuously differentiable, strictly in-

creasing, and strictly log supermodular.

In equilibrium, the workers with type  () work on projects of quality . Assumption 2 ensures

PAM in the research sector, so that 0
 ()  0.

Let  be the economy’s fixed endowment of laboratory equipment and define  ≡  . Then

 gives the measure of active research projects at any point in time. This fixed quantity does not

pin down the innovation rate in the economy, however, because the scale and productivity of the

research labs are determined endogenously in equilibrium.

Manufacturing firms buy R&D services from research labs at the price . One unit of R&D

services generates a design for a differentiated intermediate good along with an independent draw

4We henceforth index intermediate goods by the technology with which they are produced () rather than their

variety name (), since all varieties are symmetric except for their different technologies.
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from a cumulative technology distribution,  (), as in Melitz (2003). The technology parameter

 determines the complexity and productivity of the technology, as described in Section 2.2 above.

2.4 Free Entry

There is free entry into both research and manufacturing. A research entrepreneur must pay 

to rent the equipment needed to carry out a project, where  is the equilibrium rental rate. The

investment yields an expected return of , where

 =

Z max

min

 ()  ()

and

 () = max


£
 ( ) 


 −  () 

¤
is the maximal profit for a lab that implements a project with quality . Since a lab that undertakes

a project of quality  hires researcher workers with ability  (), we have
5

 () = (1− ) 


1−
©
 [ ()] [ ()]

−ª 1
1− . (9)

Free-entry into R&D implies

 = (1− ) 


1− ()
1

1−

Z max

min

 [ ()]
1

1−  [ ()]
− 
1−  () , (10)

which determines .

Similarly, a manufacturing firm pays  to purchase the R&D services needed to introduce a

variety of intermediate good at time . If it draws a manufacturing technology , it will earn a

stream of profits  () for all  ≥ . We have derived the expression for operating profits and

recorded it (with time index suppressed) in (8). On a balanced-growth path, wages of all types of

workers grow at the common rate  and final output grows at a constant rate  . Final output

serves only consumption, so, by (2),  = − . Operating profits also grow at a constant rate ,

independent of , and, by (8),  =  − ( − 1) . Finally, (4) and (7) imply that, in a steady
state, ( − 1)  =  . Combining these long-run relationships, the expected discounted profits

for a new manufacturing firm at time  can be written as

Z ∞



−(−)
Z max

min

 ()  ()  =

R max
min

 ()  ()

+ 
.

5We derive the maximal research profit for a lab with a project of quality  by choosing  ( ) according to the

first-order condition,

 ( ) =


 ( )

 ()

 1
1−

,

and substituting this expression for optimal employment into the expression for operating profits.

8



Equating the cost of R&D services to the expected discounted value of a new product, and again

dropping the time subscript, we have

 =

R max
min

 ()  ()

+ 
. (11)

2.5 Sorting, Matching, and Labor-Market Equilibrium

Individuals choose employment in either research or manufacturing. In so doing, they compare the

wages they can earn (given their ability) in the alternative occupations. Let  () be the wage

paid to employees in the manufacturing sector and let  () be the wage paid to those entering

research. To identify the equilibrium sorting pattern, we make use of two lemmas that characterize

the wage schedules in the two sectors. First, we have

Lemma 1 Consider any closed interval of workers [0 00] that is employed in the manufacturing
sector in equilibrium. In the interior of this interval, wages must satisfy

0 ()
 ()

=


£
−1 ()  

¤
 [−1 ()  ]

for all  ∈ ¡0 00¢  (12)

where −1 (·) is the inverse of  (·).

The lemma reflects the requirement that, in equilibrium, a manufacturing firm with productivity 

must prefer to hire the worker with ability  () than any other worker. The lemma follows from

the first-order condition for the profit-maximizing choice of  =  (); it says that, the shape of the

wage schedule mirrors the rise in productivity as a function of ability, with productivity evaluated

at the equilibrium match. In the event, no firm will have any incentive to upgrade or downgrade

its labor force.

The second lemma applies to the research sector, and has a similar logic.

Lemma 2 Consider any closed interval of workers [0 00] that is employed in the R&D sector in
equilibrium. In the interior of this interval, the wage schedule must satisfy

0 ()
 ()

=


£
−1 ()  

¤


£
−1 ()  

¤ for all  ∈ ¡0 00¢  (13)

This lemma expresses a preference on the part of each lab for the type of researcher that it hires in

equilibrium compared to all alternatives. It comes from the first-order condition for maximizing

research profits in (9). The shape of the wage schedule in R&D is slightly different from that in

manufacturing, because the R&D sector has diminishing returns to employment in a given lab with

its fixed research capital, whereas the manufacturing sector exhibits a constant marginal product

of labor. The entrepreneur’s choice of researcher type reflects not only the direct effect of ability

on the productivity shifter, but also the fact that different types imply different employment levels
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and therefore different diminishing returns; see Grossman et al. (2017) for further discussion of

this point in a related setting.

We assume that high-ability workers enjoy a comparative advantage in R&D; in particular, we

make

Assumption 3
()

()


()

()
for all   and .

Assumption 3, together with Lemmas 1 and 2, dictate the equilibrium sorting pattern. They ensure

that there exists a cutoff ability level  such that all workers with ability above  are employed

in the research sector and all workers with ability below  are employed in manufacturing.
6 In

a steady-state equilibrium with positive growth,   max. In any case, the equilibrium wage

schedule,  () satisfies

 () =

(
 () for  ≤ 

 () for  ≥ 
, (14)

with  () =  ().

We next derive a pair of differential equations that characterize the matching functions in the

two sectors. In the manufacturing sector, the wages paid to all workers with ability less than or

equal to some  =  () matches what the firms with technology indexes less than or equal to

 are willing to pay, considering their labor demands. This equation of labor supply and labor

demand implies



µ


 − 1
¶− Z 

min

½
 [ ()]

 [ ()]

¾1−
 () = 

Z ()

min

 ()  () . (15)

Differentiating this equation with respect to  yields

0 () =




µ


 − 1
¶−

 [ ()]
−

 [ ()]1−
0 ()

 0 [ ()]
for all  ∈ [min max]  (16)

Following Grossman et al. (2017), we show in Appendix A2.5 that this equation, together with the

wage equation (12) and the boundary conditions,

 (min) = min  (max) =  (17)

uniquely determine the matching function  () and the wage function  () for workers in

manufacturing, for a given cutoff value .

The demand for R&D workers by all labs with projects qualities between some  and max is



Z max



½
 [ ()]

 [ ()]

¾ 1
1−

 ()

6The wage schedule must be everywhere continuous, or else those paying the discretely higher wage will prefer to

downgrade slightly. The two lemmas ensure that wages rise faster in the research sector just to the right of any cutoff

point, and they rise slower in manufacturing just to the left of any cutoff point. It follows that there can be at most

one such cutoff point.
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and the wage paid to a worker by a lab with a project of quality  is  [ ()]. Wage payments

equal wage earnings. Therefore, labor-market clearing for this set of workers requires



Z max



 [ ()]

½
 [ ()]

 [ ()]

¾ 1
1−

 () = 

Z max

()

 ()  () . (18)

Differentiating this equation with respect to  yields a differential equation for the matching function

in the research sector,

0
 () =





½
 [ ()]

 [ ()]

¾ 1
1− 0 ()

 0 [ ()]
, (19)

with boundary conditions

 (min) =   (max) = max (20)

The differential equation (19) together with (13) and the boundary conditions (20) uniquely deter-

mine the matching function  () and the wage function  () for a given cutoff . The proof

is similar to the proof of uniqueness for the matching and wage functions in the manufacturing

sector.

The solution to these differential equations give us matching functions for the two sectors that

are parameterized by the cutoff point,  which enters through the boundary conditions (17) and

(20). To emphasize this dependence on , we write the solutions as  (; ) and  (; ).

Note that the matching functions do not depend directly on  , , ,  ,  or  . As shown

in Grossman et al. (2017), the wage ratios in manufacturing–that is, the ratio of wages paid to

any pair of workers employed in that sector–are also uniquely determined by , independently

of  ,  or  . Similarly, the relative wages of R&D workers are uniquely determined by ,

independently of  , ,  ,  or  . We define relative wage functions  (; ) and  (; )

that describe inequality among workers in each sector as

 (; ) =
 ()

 (min)
for  ∈ [min ]

 (; ) =
()

()
for  ∈ [ max]

)
. (21)

We note that the levels of the wages–for example, of  (min) and  ()–do depend on

parameters and variables like  , , ,  ,  and that determine the momentary equilibrium.

2.6 The Steady-State Equilibrium

In this section, we derive a pair of equations that jointly determine the growth rate in the number

of varieties and the cutoff ability level that separates researchers from production workers in a

steady-state equilibrium. The first curve can be understood as a kind of resource constraint; the

more workers that sort to R&D in equilibrium, the more new varieties are invented. The second

relationship combines the free-entry condition for manufacturing with the labor-market-clearing

condition for that sector. Once we have the steady-state values of  and , we can calculate the

11
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Figure 1: Equilibrum growth rate and ability cutoff

other variables of interest, such as the growth rates of output and consumption and the distribution

of income.

The growth in varieties reflects the aggregate output of R&D services by the research sector.

In steady state,

 = 

Z max

min

 [ ()]  [ ()]
  () ,

where  [ ()] is steady-state employment by projects of quality . In the appendix, we derive

what we call the  curve by substituting the labor-market-clearing condition for the research

sector (18) into the expression for  . The  curve is given by

 = 
1−Φ ()

Z max



 (; )  () , (22)

where

Φ () ≡
⎧⎨⎩
R max
min

 [ (; )]
1

1−  [ (; ) ; ]
− 
1−  ()R max


 (; )  ()

⎫⎬⎭
1−



Notice that the right-hand side of (22) depends only on the cutoff value  and on exogenous

parameters, inasmuch as the cutoff fully determines matching in the research sector and relative

wages there. In the appendix, we show that the  curve slopes downward, as depicted in Figure

1, despite the fact that Φ0 ()  0. The  curve is a resource constraint, indicating that faster

growth in the number of varieties requires that more resources be devoted to R&D and hence a

lower cutoff ability level for the marginal research worker. Given the cutoff , (22) indicates that

the growth rate will be higher the more productive is experience in generating knowledge capital,

the larger is the population of workers, and the larger is the stock of laboratory equipment, which

allows that more research projects can be undertaken.

12



Next we substitute the expression for profits of an intermediate good producer in (8) into

the free-entry condition (11) and combine the result with the labor-market clearing condition for

manufacturing (15), evaluated with ̃ = max. The result can be written as

+  =
1

 − 1




Z 

min

 ()  () .

Again we can use (18), the labor-market-clearing condition for the research sector, together with

the definition of the relative wages (; ) and  (; ) to eliminate  , so that we can write

a second steady-state relationship involving only  and . This is the  curve depicted in

Figure 1, and it is given by

+  =


 − 1
1−Φ ()

R 
min

 (; )  ()

 (; )
. (23)

In the appendix, we prove that the  curve must slope upward, as drawn.

The figure shows a unique balanced-growth equilibrium at point .7 Once we know the steady-

state cutoff level of ability , we can compute the long-run distribution of relative wages using

the wage structures dictated by Lemmas 1 and 2. From the long-run rate of growth in the number

of intermediate goods,  , we can calculate the long-run growth rates for consumption and wages.

We have noted already that  =  ( − 1). Equality between savings and investment requires

̇ = 

Z max

min

 (; )  () + +

Z max

min

 ()  ()−  , (24)

where  is aggregate consumption and, therefore the right-side is the difference between aggregate

income (the sum of wages, rents and profits) and aggregate consumption. Equation (33) in the

appendix implies that ̇ =  = 


R max


 ()  (), so aggregate investment grows in

the long run at the same rate as wages, . On the right-side, aggregate wage income grows at rate

, while the free-entry condition for R&D (10) implies that rental income grows at this same rate.

Also, we have noted from (8) that  =  − ( − 1)  while the labor-market clearing condition
(15) implies  =  +  . Together, this gives  +  = ; i.e., aggregate profits also grow

at the rate . it follows from (24) that aggregate consumption must grow in the long run at the

same rate as wages;  = . We conclude, therefore, that  =  =  =  ( − 1).

3 Growth and Inequality in Autarky Equilibrium

In this section, we compare growth rates and wage inequality in a pair of closed economies. We

consider countries  and  that are basically similar but differ in some technological or policy

parameters. We focus on balanced-growth equilibria, such as those described in Section 2. In the

7 If the  curve falls below the horizontal axis for all  ≤ max, then no workers are employed in the research

sector in the steady state. In such circumstances, growth rates of varieties, final output, consumption and wages are

all zero.
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following sections, we will perform similar cross-country comparisons for a set of open economies and

examine how the opening of trade affects growth and wage inequality with and without international

knowledge spillovers and with and without international borrowing and lending.

3.1 Productivity in Manufacturing

We begin by supposing that the countries differ only in their productivity in manufacturing, as

captured by a Hicks-neutral technology parameter . In country , a unit of labor of type 

applied in a firm with technology  can produce  ( ) =  ( ) units of a differentiated

intermediate good. For the time being, the other characteristics of the countries are the same,

including their sizes, their distributions of ability, their distributions of firm productivity, their

discount rates and the efficiency of their knowledge accumulation.

In these circumstances, the matching function  (; ) in the manufacturing sector is com-

mon to both countries; i.e., a difference between  and  does not affect matching in the

manufacturing sector for a given .
8 Therefore, the relative-wage function  (; ) also will be

the same in both countries if they have the same cutoff point. But then the solution to (22) and

(23) is the same for any values of  and  . In other words, countries that differ only in the

(Hicks-neutral) productivity of their manufacturing sectors share the same long-run growth rate

and the same marginal worker in manufacturing. It follows that relative wages for any pair of

ability levels are also the same. We summarize in

Proposition 1 Suppose that countries  and  differ only in manufacturing labor productivity  (·)
and that these differences are Hicks-neutral; i.e.,  (·) =  (·) for  =  . Then in autarky,

both countries grow at the same rate in a balanced-growth equilibrium and both share the same

structure of relative wages and the same degree of wage inequality.

3.2 Capacity to Innovate

In our model, a country’s capacity for innovation is described by four parameters: population size,

which determines the potential scale of the research sector; the productivity of research workers;

the efficiency with which research experience is converted into knowledge; and the endowment of

laboratory equipment or, equivalently, the measure of research projects that can be undertaken si-

multaneously. In this section, we compare autarky growth rates and wage distributions in countries

that differ in labor force, , in efficiency of knowledge accumulation, , in research capital 

and thus in the measure of active research projects,  ≡  , and in the productivity of research

workers, as captured by a Hicks-neutral shift parameter , where  ( ) =  ( ).

8To see this, differentiate the labor-market clearing condition (16) with respect to , to derive the second-order

differential equation,

00 ()
0 ()

= ( − 1)  [ ()]
 [ ()]

− 
 [ ()]

 [ ()]
+

00 ()
0 ()

− 00 [ ()]0 ()
0 [ ()]

.

The productivity parameter  appears in the numerator and the denominator of  and of , and so it does

not affect matching for a given .
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The  curve in Figure 1 is defined by equation (22). In this equation, the right-hand side

is proportional to 

 

1−
 , for a given . The same expression also appears in equation

(23) for the  curve. We observe that 

 

1−
  is a sufficient statistic for the innovation

capacity in country ; variation in this term explains cross-country variation in (autarky) long-run

growth rates and wage distributions, all else the same.9

Consider two countries  and  that differ only in their innovation capacities, such that



 

1−
   


 

1−
  . Under these circumstances, the  and  curves for country

 lie above those for country . But relative to the equilibrium cutoff point  in country , the

 curve in country  passes above the  curve in that country.10 It follows that the equilibrium

point for country  lies above and to the left of that for country ; i.e., country  devotes more

resources to R&D and it grows at a faster rate in the long run.

To compare wage inequality in the two countries, we first need to compare the matching of

workers with firms and research projects that takes place in each. In Figure 2, the left panel

depicts matching of firms and workers in the manufacturing sector. The solid curve represents

the matching function  () ≡  (; ) in country . The firms with the simplest technologies,

namely, those with indexes min, hire the least-able workers, namely, those with indexes min. The

firms with the most sophisticated technologies, namely, those with indexes max, hire the most-able

workers employed in the manufacturing sector, namely, those with indexes  . There is positive

assortative matching in the sector and thus the matching function slopes upward. Now compare the

matching function for country , represented by the broken curve. Recall that    . In this

country, too, the firms with technology min hire the workers with ability min. And the firms with

technology max hire the best workers in that country’s manufacturing sector, who have index, .

Since we show in Appendix A2.5 that a pair of solutions to (12) and (16) that apply for different

boundary conditions can intersect at most once, and since the curves for the two countries intersect

at their common lower boundary, they cannot intersect elsewhere. It follows that the broken curve

lies everywhere above the solid curve, except at the leftmost endpoint. This implies that a worker

in country  with some ability level      matches with a more productive firm than does

his counterpart with similar ability in country .

The right panel of Figure 2 depicts the matching between researchers and research projects in

the two countries. In both countries, the best projects, namely, those with indexes max, hire the

most-able researchers, namely, those with indexes max. The solid curve again represents matching

in country . Here, entrepreneurs that find themselves with the least productive research projects

hire the researchers with ability  , who are the least able among those employed in the R&D

9The reader may have noticed that the relative-wage function for R&D,  (; ), appears under an integral

in both equations, and the relative wage function for manufacturing,  (; ), appears under an integral in (23).

However, none of the four parameters under consideration affects the solution for the matching function in research

or in manufacturing, given the cutoff ability  that appears in the boundary conditions. Given that the matching

functions are not affected by these parameters except through , the same is true of the relative-wage functions.
10An increase in 

1− of some proportion shifts every point on the  curve vertically upward by that

same proportionate amount, but it shfits the  curve up more than in proportion. Therefore, the new  curve

must pass above the new  curve at the initial equilibrium value of , and the new steady-state equilibrium must

fall to the left and above point  in Figure 1.
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Figure 2: Matching in manufacturing and research

sector. The broken curve represents the matching in country , where the least-able researchers have

ability    . By a similar argument as before, the solid and dashed curves cannot intersect

except at their common extreme point. It follows that a researcher in country  with some ability

     pursues a higher quality research project than his counterpart in country  with the

same ability.

The different matching in the two countries translates into differences in wage inequality. Con-

sider first inequality in the manufacturing sectors. We have seen in Figure 2 that manufacturing

workers of any ability level in country  are paired with firms that have access to better technologies

than the firms that hire their similarly-talented counterparts in country . The better technology

pairings boost the productivity of workers in  relative to those in  at all ability levels. But the

complementarity between technology and ability implies that the productivity gain is relatively

greatest for those who have more ability. This translates into a relative wage advantage for the

more able of a pair of manufacturing workers in the country with the greater capacity for innovation.

We have11

Lemma 3 Suppose min      max. Then

 (00; )
 (00; )


 (0; )
 (0; )

for all 00  0 and 0 00 ∈ [min ] 

11Given the ability cutoff  and the matching function  (; ) the wage equation for manufacturing implies

ln (; ) =

 

min



−1 (; )  


 [−1 (; )  ]

 for  ∈ [min ] .

By Assumption 1, a deterioration in the match for the worker with ability  reduces the expression under the integral.

It therefore reduces the relative wage of the worker with greater ability among any pair of workers employed in the

manufacturing sector.
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Now consider inequality in the research sector. Research workers also achieve better matches

in country  than in country , as illustrated in the right panel Figure 2. The relative research

productivity of the more able in any pair of researchers is greater in country  than in country , due

to the complementarity between project quality and worker ability that we posited in Assumption

2. Akin to Lemma 3, we have

Lemma 4 Suppose min      max. Then

 (
00; )

 (00; )


 (
0; )

 (0; )
for all 00  0 and 0 00 ∈ [  max] 

Finally, consider an individual who has an ability level 00 ∈ [  ]. Such a worker sorts
to the research sector in country , but to the manufacturing sector in country . If 00 were to
work in manufacturing in country , he would already earn a relatively higher wage in that country

compared to some 0 ∈ [min ], thanks to the better technologies that all manufacturing workers
access there. The fact that this individual instead chooses employment in the research sector implies

that the wage offer there is even better than what he could earn in manufacturing. It follows that

00 earns relatively more compared to 0 in country  than in country . By the same token, if we

compare the relative wages of 00 ∈ [  ] to 000 ∈ [ max] in the two countries, 000 would
earn relatively more in  than in  even if 00 were to work in the research sector in country . The
fact that this worker prefers to work in manufacturing in country  only strengthens the relative

advantage for these lower-ability workers from residing in the country with the relatively smaller

research sector.

Putting all the pieces together, we can compare the relative wages paid to any pair of workers

of similar ability levels in the two countries. We have established

Proposition 2 Suppose countries  and  differ only in their capacities for innovation,

with 

 

1−
   


 

1−
 . In autarky, country  grows faster than country  in a

balanced-growth equilibrium and it has greater inequality throughout its wage distribution. That is,

  , and for any pair of workers 
0 00 ∈ [min max] such that 00  0,

 (
00)

 (0)


 (
00)

 (0)


where  () is the equilibrium wage schedule in country .

The proposition implies that, when countries differ only in their capacity for innovation, fast

growth and wage inequality go hand in hand. A greater innovation capacity generates a relatively

larger research sector and therefore a lower cutoff ability level for the marginal worker who is indif-

ferent between employment in the two sectors. The fact that    means that manufacturing

workers access better production technologies in country  than in country  and that research

workers work on better projects there. In both cases, the better matches favor the relatively more
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able among any pair of ability levels, due to the complementarity between ability and technology

on the one hand, and between ability and project quality on the other. Finally, the fact that ability

confers a comparative advantage in R&D reinforces the tendency for the more able (and better

paid) workers to earn relatively higher wages in the country that conducts more research.

3.3 Support for R&D

Next we examine the role that research policy plays in shaping growth and inequality, focusing

specifically on cross-country differences in R&D subsidies. We consider symmetric countries  and

 that differ only in their subsidy rates,  and  . The subsidy applies to the purchase of R&D

services by manufacturing firms, so that the private cost of a product design and its associated

technology draw becomes (1− )  in country . The subsidy is financed by a proportional tax

on wages or on research capital.

With a subsidy in place, the equation for the  curve in Figure 1 is replaced by

(1− ) (+ ) =


 − 1
1−Φ ()

R 
min

 (; )  ()

 (; )
.

Since the relationship between the resources invested in R&D and the growth rate is not affected

by the subsidy, neither is the  curve that depicts this relationship..

It follows immediately that, if    , the  curve for country  lies above and to the left of

that for country . Not surprisingly, the subsidy draws labor into the research sector and, thereby,

stimulates growth. The link to the income distribution should also be clear. With    , the

technology matches are better for manufacturing workers of a given ability in country  than in

country , and the project matches are better for the researchers there as well. The larger size of

the research sector in country  also contributes to its greater inequality, because ability is more

amply rewarded in R&D than in manufacturing. Together, these forces generate a more unequal

distribution of wages in both sectors of country  compared to country , and in the economy as a

whole.

Proposition 3 Suppose that countries  and  differ only in their R&D subsidies and that   .

Then, in autarky, country  grows faster than country  in a balanced-growth equilibrium and it has

more inequality throughout its wage distribution. That is,   , and for any pair of workers

0 00 ∈ [min max] such that 00  0,

 (
00)

 (0)


 (
00)

 (0)
.

In Section 5.3, we will revisit the effects of R&D subsidies for an open economy and will address

the spillover effects of such subsidies on growth and inequality in a country’s trading partners. We

will see that, with partial or complete international knowledge spillovers, R&D subsidies increase

wage inequality not only in the economy that applies them, but also around the globe.
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4 The Effects of Trade on Growth and Inequality

In this section, we introduce international trade among a set of countries that differ in size, in

research productivity, in manufacturing technologies, and in their capacity to create and absorb

international knowledge spillovers. We focus here on how international integration affects growth

and income inequality in the various countries. Our baseline case, discussed in Section 4.1, allows

for partial or complete international spillovers of knowledge capital between all pairs of country. In

Section 4.2, we examine the long-run effects of goods trade on growth and inequality when neither

knowledge capital nor financial capital flows between countries, as well as in a world without

knowledge spillovers but with free mobility of financial capital.

Our trading environment has  countries indexed by  = 1     . In country , there are 

workers with a distribution of abilities,  (). A worker with ability  who applies a technology 

in country  can produce  ( ) units of any intermediate good, where  ( ) again has the

complementarity properties described by Assumption 1. We assume that manufacturing firms in

all countries draw production technologies from a common distribution  ().

All varieties of intermediate goods can be freely traded at zero cost.12 Therefore, the cost of

producing final goods is the same in all countries and since these goods are competitively priced,

so too are the prices of these goods (irrespective of whether final goods are tradable or not). Once

again, we can choose the price of a final good (anywhere) as numeraire, and then we have

(
X
=1

∙Z
∈Ω

 ()
1− 

¸) 1
1−

= 1  (25)

where  () is the price of variety  of an intermediate good produced in country  and Ω is the

set of intermediate goods produced there. We denote by  the output of final goods in country 

and by ̄ =
P

 the aggregate world output of final goods.

In the research sector in country , a team of researchers of size  and with ability  who work

on a project of quality  produces  ( )

 units of research services, where  reflects

the overall research productivity in country  and  is the national stock of knowledge capital.

Assumption 2 again describes a complementarity between the researchers’ abilities and quality of

the project. An entrepreneur in country  must hire  units of local equipment at the rental rate

 in order to operate a research lab. This enables her to draw a research project from the common

distribution of project qualities,  (). Once the project quality is known, the lab hires local

researchers to produce the R&D services. R&D services are not internationally tradable, so the

price  of these services may vary across countries.

The national knowledge stock in country  reflects the country’s cumulative experience in R&D,

12 In our working paper, Grossman and Helpman (2014), we allow for both ad valorem tariffs and iceberg trading

costs. We show that, in a world with partial or complete knowledge spillovers, the long-run effects of opening trade

on a country’s growth rate and wage inequality are qualitatively the same for any level of physical or policy-generated

trade costs. Moreover, changes in the trade costs do not affect the long-run growth rate or relative wages in any

country. We assume away all trading frictions here in order to simplify the exposition.
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its ability to learn from that experience, and the extent of any knowledge spillovers from abroad.

We assume that

 =

X
=1

  (26)

where  is a parameter that measures the extent to which cumulative research experience in coun-

try  contributes to inventors’ productivity in country . Note that  captures the effectiveness

with which country  converts its own research experience into usable knowledge; this parameter is

the same as what we denoted by  in Section 2.3 above. Any positive spillovers between country

 and country  imply   0. The special case of complete international spillovers into country 

can be represented by setting  =  for all . An absence of international knowledge spillovers

corresponds to  = 0 for all  6= .

Besides goods trade and any knowledge flows, international integration might enable cross-

border borrowing and lending. With perfect capital mobility, interest rates are equalized worldwide,

i.e.,  =  for all . With no capital mobility, trade in goods must be balanced in each country at

every moment in time. Then, R&D investment must be financed by local savings, or

̇ = 

Z max

min

 (; )  () +  +

Z max

min

 ()  ()−  , (27)

where  is aggregate consumption in country .

4.1 Partial or Complete International Knowledge Spillovers

The available evidence points to the existence of significant but incomplete international R&D

spillovers. Coe et al. (2009), for example, find that a country’s researchers benefit differentially

from domestic and foreign R&D experience and that the capacity to absorb domestic and foreign

knowledge depends on a country’s institutions and in particular on its regime for protection of

intellectual property rights and the quality of its tertiary education.13 To capture this reality, our

baseline case posits   0 for all  and , so that every country reaps some spillover benefits

from research that takes place anywhere in the world. Our qualitative findings do not depend

on whether international knowledge spillovers are partial or complete, so we simply assume that

 ≤  for all  6= .

We begin with the case of balanced trade (no capital mobility) and describe a balance-growth

path along which each country’s share of the total number of intermediate goods remains strictly

positive and constant; i.e., there is convergence in national rates of innovation, and therefore  =

 for all .14 The output of final goods, , in the closed-economy expression for the profits of

13For a review of additional evdience, see the survey by Helpman (2004, ch.5).
14Such an equilibrium always exists. We show in Section 5.2 that in the equilibrium described below, the solution

to the share of country  in the number of inermediates available in the world economy,  ≡


  , satisfies

 =


=1

 for  = 1 2  ,
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a typical intermediate good (8) and in the labor-market clearing condition (15), is replaced in the

open economy by aggregate world output, ̄ =
X


 .
15 Since this variable enters multiplicatively

on the left-hand side of (15), the form of the matching function in the manufacturing sector, as

described by the differential equation (16), remains the same for the open economy as for the closed

economy.

We can solve for the growth rate of varieties in country  and the cutoff point for labor allocation

 using two equations analogous to (22) and (23). In place of the former, we have

 = 

 

1−
 Φ ()

Z max



 (; )  ()  (28)

where  ≡  is the ratio of the knowledge stock in country  to the country’s own cumulative

experience in research and

Φ () ≡
⎧⎨⎩
R max
min

 [ (; )]
1

1−  [ (; ) ; ]
− 
1−  ()R max


 (; )  ()

⎫⎬⎭
1−

,

as before (except that now we add a country-specific index, ). In place of the latter, we have16

+  =


 − 1

 

1−
 Φ ()

R 
min

 (; )  ()

 (; )
 (29)

Notice the similarity between (28) and (29) and the equations that jointly determine the steady-

state equilibrium in the closed economy; the new equations incorporate the parameter  that

represents Hicks-neutral differences in researcher productivity and they include  in place of 

(or what we now denote by ). Similar arguments as before imply that the  curve for the

open economy slopes downward and the  curve slopes upward. Using (28) and (29), we can

solve for the long-run values of  and  as a function of . Then, we can use  and the

where  ≡ 

 

1−
  takes a common value across all countries, i.e.,  =  for all , and  ≡ 


 

1−
 .

It follows that  is a characteristic root of the matrix Γ = {}, with the associated characteristic vector  = {}.
Moreover, by the assumption that   0 for all  and , all elements of Γ are strictly positive. Then the Perron-

Frobenius Theorem implies that all elements of  are positive only if  is the largest characteristic root of Γ. It

follows that the balanced growth path with   0 for all  is uniquely determined by the matrix Γ.
15We show in our working paper, Grossman and Helpman (2016) that, in the presence of trade costs, the output

 is replaced instead by the market access ̄ facing a typical producer of intermediates in country , where

̄ =




1−
 




and  is the price index of intermediate goods in country . This variable, as defined by Redding and Venables

(2004), scales the aggregate demand facing an intermediate good producer in country  (given its price), considering

the production of final goods in each market, the cost of overcoming the trade barrier specific to the market, and

the competition the firm faces from other intermediate goods sold in that market (as reflected in the price index for

intermediate goods). The following arguments about the effects of trade on growth and inequality remain the same

when we use ̄ in place of ̄.
16See Section A4.1 in the appendix for details.
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differential equations for wages in each sector to solve for the distribution of relative wages in

country . Separately, we can use a set of trade balance conditions and labor-market clearing

conditions to solve for the relative prices of final goods and the wage levels in each country.

A key observation is that    for all . That is, in an integrated world with international

knowledge spillovers, researchers anywhere can draw not only on their own country’s accumulated

research experience when inventing new products, but also to some extent on the research experience

that has accumulated outside their borders. No matter what the extent of international knowledge

spillovers, so long as they are positive, a research team in any country can be more productive

in the open economy than in autarky. This greater productivity translates a given labor input

into greater innovation by (28) and it reduces the cost of R&D that is embedded in the zero-profit

condition in (29).

Now we are ready to compare (28) and (29) to their analogs that describe the closed-economy

equilibrium. Note that the bigger  appears in place of the smaller  (i.e., ) in each equation.

Thus, the  curve for the open economy lies proportionately above that for the closed economy,

whereas the  curve for the open economy lies more than proportionately above that for the

closed economy. The two curves that determine the open-economy equilibrium in country  cross

above and to the left of the intersection depicted in Figure 1. Thus, in a trade equilibrium, every

country devotes more labor to research than in autarky and invents new varieties at a faster rate.

What about consumption growth and wage inequality? Concerning the former, the trade-

balance condition (27) implies that consumption in country  grows in the long run at the same

rate as wages do, by arguments analogous to those used in Section 2.6; aggregate investment grows

at rate  as do all components of aggregate income, so aggregate consumption must grow at

this rate in order that savings match investment.17 Using the labor-market clearing condition

analogous to (15) and the convergence in innovation rates such that  =  for all , we have

 =  + ̄ for all  and thus  =  for all . Then, from the pricing equation analogous to

(7) and the competitive pricing of final goods (25), we have  =  =  ( − 1); wages and
consumption in every country grow in proportion to the aggregate rate of innovation, just as in the

closed economy. The opening of trade accelerates the latter and therefore it accelerates wage and

consumption growth in every country. Meanwhile, the expansion of the research sector (fall in )

exacerbates wage inequality, both as a reflection of the re-matching that takes place in both sectors

(i.e., workers match with better firms and projects) and of the reallocation of labor to R&D, where

ability is more amply rewarded. Meanwhile, the acceleration of innovation generates faster growth

of wages and final output. We have established

Proposition 4 Suppose that goods are freely tradable and each country’s trade is balanced at every

moment in time. Countries may differ in their research productivities, their manufacturing produc-

tivities, their capacities to generate and absorb international knowledge spillovers, and in their labor

supplies. In a balanced-growth equilibrium, consumption and wages in every country grow faster

17See Section A4.1 of the appendix for more details of this argument.
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with trade than in autarky and every country has a more unequal wage distribution with trade than

in autarky.

Now suppose that financial capital is perfectly mobile. At every point in time, capital flows

from countries with (incipient) low interest rates to countries with (incipient) high interest rates,

until interest rates are equalized worldwide. Note, however, that interest rates anyway are equalized

along a balanced growth path in an equilibrium without capital flows; from the optimal consumption

path,  =  + , and we have just seen that  =  ( − 1) for all  in the absence of capital
mobility. It follows that the long-run rates of wage and consumption growth and the long-run wage

distribution are the same in a trade equilibrium whether or not capital is internationally mobile.

We summarize in

Proposition 5 Suppose that intermediate goods are freely tradable and capital is perfectly mobile.

Countries may differ in their research productivities, their manufacturing productivities, their ca-

pacities to generate and absorb international knowledge spillovers, and in their labor supplies. In a

balanced-growth equilibrium, consumption and wages in every country grow faster with trade than

in autarky and every country has a more unequal wage distribution with trade than in autarky.

In our working paper, Grossman and Helpman (2016), we show that the equilibrium rate of

innovation and wage inequality do not depend on the level of ad valorem tariffs or on the size of

iceberg trading costs. Taking this argument to the limit, it follows that long-run innovation rates

and measures of wage inequality would converge to the same levels in a global equilibrium with

international knowledge spillovers even if intermediate and final goods were not traded at all.

4.2 No International Knowledge Spillovers

In Section 4.1, we studied global integration that combines goods trade and partial or complete

international knowledge spillovers. In order to better understand the distinct role played by each

of these components of globalization, we compare now the autarky equilibrium to one with free

trade in goods but no knowledge spillovers. Here, each country has a national stock of knowledge

that reflects only its own experience in R&D. As before, capital immobility might require balanced

goods trade at every moment in time or integration may allow imbalanced trade subject to an

intertemporal budget constraint. We consider each possibility in turn.

With no knowledge spillovers, the knowledge stock in country  is proportional to the country’s

own experience in R&D, so the relationship between the inputs into research and the production

of R&D services is the same as in autarky. We can follow the same steps as in Sections 2.4 and 2.6

to derive the  curve that relates the steady-state growth rate of intermediate inputs in country

 to the ability  of its marginal worker in the R&D sector. This curve, represented by equation

(22), is the same for each country  as in autarky.18 Moreover, when trade must be balanced for

18With our new notatoin,  replaces  in this equation, as well as in that for the  curve.
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each country at every moment in time, the  curve also is the same as autarky.19 It follows that

the steady-state growth rate of intermediates  and the steady-state marginal worker,  are

the same as in autarky. Goods trade in the absence of knowledge spillovers and capital flows has

no affect on the long-run resource allocation and therefore no affect on any relative wages.

How does trade affect the growth of output and consumption in this case? In the appendix we

show that the labor-market clearing condition in manufacturing implies

 + ̄ = . (30)

We also show that the growth of aggregate output is a weighted average of the growth rates of

wages in every country, where the weights vary with the share of country  in the total number of

varieties of intermediate goods in the world economy. In the long run, the weight approaches one

for the country  that has the fastest rate of innovation in the global economy and approaches zero

for all others. Therefore, in the steady state,

̄ =
̃

 − 1 ,

where ̃ ≡ max{}. It follows from (30) that wages grow faster with trade than in autarky in

every country except the one with the fastest rate of autarky growth. Moreover, the trade-balance

condition (27) ensures that output and consumption grow in every country at the same rate as

wages do, in the long run. Therefore, we have

Proposition 6 Suppose that there are no international knowledge spillovers, that intermediate

goods are freely tradable, and that each country’s trade is balanced at every moment in time. Coun-

tries may differ in their research productivities, their manufacturing productivities, their capacities

to absorb local knowledge spillovers, and in their labor supplies. In the long run, consumption, out-

put and wages grow faster with trade than in autarky in every country except that with the fastest

rate of autarky growth. The innovation rate and wage inequality are the same in every country as

in autarky.

Now, we allow for international capital mobility, while maintaining the assumption that there

are no international knowledge spillovers. The resulting economy is like the one studied by Feenstra

(1996) and Grossman and Helpman (1991, ch. 9.3), except that we have introduced firm and worker

heterogeneity. We find effects of trade on growth that are similar to the ones he described, but

with additional implications for wage inequality.

First, note that the resource constraint that determines the relationship between the marginal

worker  in R&D and the growth rate of intermediates is the same as in autarky; the  curve

again is given by (22). As for the  curve, we show in the appendix that the right-hand is the

same as in (23), but the left-hand side is replaced by (̃ − )+ + , where ̃ ≡ max{}.
In the country with the fastest growth of wages in the trade equilibrium, the left-hand side is the

19See Section A4.2 of the appendix for the proof of this statement.

24



same as in autarky, which means that its marginal worker and its innovation rate are the same

as in autarky. For all other countries, the  curve with trade and capital mobility lies below

that for autarky, which means that these countries devote less labor to R&D than in autarky

(  

 ) and they invent new intermediates at a slower rate (  


 ). The fact that

  

 means that wage inequality narrows in each of these countries upon the opening of

goods and asset trade.

Also, comparing the  curve for the trade equilibrium and autarky, and noting that  



 , it follows that (̃ − )+  


 . But, (30) continues to describe the relationship

between the growth of wages in country , the growth of intermediates there, and the growth of

aggregate output. We conclude from this that   

 for all  except the fastest-growing

country, which experiences the same long-run growth of wages as in autarky.20 Inasmuch as final

output grows in the long run at the same rate as wages, each of these countries also experiences faster

output growth than in autarky. Finally, consumption grows at the same rate in every country by

(2), since capital flows equalize interest rates. That rate is equal to the growth rate of output in the

fastest growing country and thus faster than the growth of consumption in autarky in all countries

besides that one. In short, the opportunity to import intermediates from countries that innovate

rapidly allows all other countries to share a high rate of consumption, wage and output growth

even as they devote fewer resources themselves to R&D and so realize a more equal distribution of

wages. We summarize these findings in

Proposition 7 Suppose that there are no international knowledge spillovers, that goods are freely

tradable, and that interest rates are equalized worldwide by perfect capital mobility. Countries may

differ in their research productivities, their manufacturing productivities, their capacities to absorb

local knowledge spillovers, and in their labor supplies. In the long run, consumption, output and

wages grow faster with trade than in autarky in every country except that with the fastest rate of

autarky growth. The rate of innovation and wage inequality decline in every country except that

with the fastest rate of autarky growth.

We can also say how the addition of capital mobility affects long-run growth and wage inequality

in an open economy with no knowledge spillovers. Starting from a steady-state equilibrium with

free trade in goods but no capital mobility, the opening of global asset markets speeds the growth

of consumption in all countries other than that which enjoys the fastest growth, while slowing their

growth of wages and output. Meanwhile, the capital flows narrow the wage distribution in all

countries besides the fastest growing one.21

20First note that aggregate output grows in the long run at the growth rate of output in the fastest growing

country, which in turn is equal to the growth rate of wages in that country; i.e., ̄ = ̃. Therefore, we have

(̃̄ − ) +   (̃ − ) +   

 . But (30) implies ̄ =  − , so ( − 1)   (̃ − ) +

  

 = ( − 1)  , or    .

21The fact that innovation is the same as in autarky when there is no capital mobility but slower than in autarky

with capital mobility implies that opening capital markets shifts labor out of R&D in all of these countries. The

rematching of workers and firms generates a tighter distribution of wages. The decline in the innovation rate implies

a decline in the growth of wages and output, per (30). Meanwhile, the equalization of world interest rates allows

consumption in all countries to grow at the faster rate experience by the fastest-growing country.
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5 Cross-Country Comparisons and Comparative Statics

In the last section, we examined how the opening of trade affects the long-run growth of wages,

output and consumption and long-run wage inequality in the various countries of a multi-nation

world. We studied the effects of trade on growth and inequality with and without international

spillovers of knowledge and with and without international capital mobility. In this section, we

explore how growth rates and wage inequality compare across countries in a trading equilibrium,

as well as how parameter or policy changes in one country affect growth and inequality in its

trading partners. We focus only on our baseline case, with partial or complete knowledge spillovers,

because this case seems the most empirically relevant. As we noted in Section 4.1, product market

integration equalizes long-run interest rates when there are knowledge spillovers, even if financial

capital is completely immobile. Therefore, the same analysis applies when comparing steady states

no matter whether financial claims are internationally tradable or not.

5.1 Differences in Manufacturing Productivity

Suppose now that countries differ only in their manufacturing productivities, as parameterized

by . For the moment, assume they are equal in size ( =  for all ), equal in research

productivity ( =  for all ), and benefit symmetrically from complete international knowledge

spillovers ( =  for all  and ). In these circumstances, a balanced-growth path with  =

 requires  =  and  =  for all , per equations (28) and (29). It follows that not only do

the long-run growth rates converge internationally, but so too do the sizes and compositions of the

research sectors. Then, matching between technologies and production workers in manufacturing

and between research projects and researchers in R&D is the same in all countries. Consequently

the structure of relative wages is the same in all countries. The differences in manufacturing

productivity and import tariff rates generate cross-country heterogeneity only in wage levels. We

summarize in

Proposition 8 Suppose that goods are tradable and countries differ only in manufacturing produc-

tivities. Then all countries grow at the same rate in a balanced-growth equilibrium and all have the

same wage inequality in the long run.

It is also clear that, in these circumstances, the long-run value of  is independent of any ,

in which case (28) and (29) imply that changes in manufacturing productivities do not affect the

long-run growth rate or relative wages in any country.22 Moreover,  would be independent of

 (albeit not necessarily common across countries) if countries were of different sizes, had had

different research productivities, or had different capacities to generate or absorb international

R&D spillovers. The parameters  do, of course, affect income levels and consumer welfare.
23

22With  =  for all  and , (26) yields  = 


=1 for all , and thus  = 



=1


 for

all . Then (29) and the fact established above that  =  for all  imply that  =  = . Clearly,  is

independent of any .
23 In our working paper, Grossman and Helpman (2016), where we allow for trade frictions either in the form

of iceberg trading costs or ad valorem tariffs, we find convergenece in growth rates in wage inequality even with
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5.2 Differences in Innovation Capacity and in Ability to Create and Absorb

Knowledge Spillovers

Now suppose that countries differ in size (), in their research productivity (), and in their

numbers of active research projects ( = ). Moreover, there may be differences in their

abilities to absorb R&D spillovers from abroad and in their abilities to convert research experience

(their own and foreign) into usable knowledge that facilitates subsequent innovation. Such differ-

ences are reflected in the matrix Θ = {} of spillover parameters that determines knowledge
capital in country , according to (26). Finally, as in Section 5.1, they may operate with different

manufacturing productivities, . In all of these cases, (28) and (29) imply



+ 
=

 − 1


R max


(;)

(;)
 ()R 

min

(;)

(;)
 ()

for all  (31)

with the right-hand side a decreasing function of  (as we show in Appendix A5.3)..

It is clear from (31) that, since all countries converge on the same long-run growth rate of

varieties, they must also have the same ability cutoff level  = . Then, all share a common

long-run relative wage profile. It is interesting to note that international integration generates a

convergence in income inequality around the globe, whereas differences in innovation capacity give

rise to different degrees of inequality in autarky.

Although relative wages are the same in all countries, wage levels are not equalized internation-

ally. We show in Appendix A5.2, for example, that if knowledge spillovers are complete ( = 

for all ), the relative wages of workers of any common ability level in countries  and  hinges on a

comparison of innovation capacities per capita in these countries; i.e., on  ()
1− versus

 ()
1− . The greater is a country’s ability to convert cumulative experience in R&D

into usable knowledge, , or the greater is the productivity of its workers in R&D, , or the

larger is its endowment of research capital relative to its labor force,  , the greater is its wage

level.

Next observe that with  =  for all , (28) implies that  ≡ 

 

1−
  takes a common

value across all countries, i.e.,  =  for all . Substituting  into (26), we have

 =

X
=1

 ,

where  ≡ 
P

  is the share of country  in the total number of varieties of intermediate

goods in the world economy and  ≡ 

 

1−
  is a measure of innovation capacity in a

setting in which knowledge spillovers are not complete . We recognize  as being a characteristic

root of the matrix Γ = {}, with associated characteristic vector μ = {}. Moreover, by the
assumption that   0 for all  and , all elements of Γ are strictly positive. Then the Perron-

differences in trade frictions, and that changes in the size of any trade barrier do not affect growth or inequality in

any country in the long run.
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Frobenius Theorem implies that all elements of μ can be positive (as they must be) only if  is the

largest characteristic root of Γ. Finally, the envelope theorem implies that  must be increasing in

every element  of Γ.
24

We have thus established that an increase in any spillover parameter , in any country size

, in any R&D productivity parameter , or in any country’s measure of projects , shifts

upward the  curve and the  curve for every country, and the former by more (at the initial

) than the latter. The result is an increase in the common rate of long-run growth and an increase

in wage inequality in every country.25

We record our findings in

Proposition 9 Suppose that goods are freely tradable. Then all countries grow at the same rate in

a balanced-growth equilibrium and all have the same wage inequality in the long run. An increase

in any spillover parameter , in any country size , in any R&D productivity parameter , or

in any country’s measure of research projects  leads to faster growth and greater wage inequality

in every country.

5.3 Differences in R&D Subsidies

Now we reintroduce R&D subsidies. As in Section 3.3 the subsidy applies to the purchase of R&D

services by manufacturing firms, so that the private cost of a product design and its associated

technology draw becomes (1− )  in country . The subsidies are financed by a proportional

tax on wages or on research equipment.

Suppose that international knowledge spillovers are complete and that countries are similar in

all ways except in their R&D subsidies and in the proportional wage taxes used to finance these

subsidies.26 When  =  ,  =  and  =  for all  and when long-run growth rates

converge to  , (28) and (29) imply

(1− )
+ 


=



 − 1
1

 (; )

R 
min

 (; )  ()R max


 (; )  ()
.

We show in the appendix that the right-hand side of this equation is increasing in . Therefore,

if    ,    ; i.e., the country with the larger R&D subsidy devotes more of its labor force

24Multiplying the characteristic equation by  and summing over all  yields

 =



=1



=1


=1 ()
2



The largest characteristic root is found by maximizing the right hand side with respect to {}. By the envelope
theorem, the largest  is an increasing function of every .
25Again, the same results apply with (possibly heterogeneous) trade frictions of any sizes; see Grossman and

Helpman (2014).
26 It is relatively easy to verify that the implications of differences in research support would be the same as we

describe here, even if we allowed for cross-country differences in innovation capacity. However, we assume that these

features are common in order to simplify the exposition.
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to research activities. This does not generate faster long-run growth in  than in , but it does spell

a more unequal long-run wage distribution there.

Although wage profiles do not converge in the presence of (differential) R&D subsidies, such

policies do affect growth and inequality throughout the world. To examine these spillover effects

of innovation policy, we treat (28) and (29) as a system of  + 1 equations that determines the 

cutoff ability levels and the common growth rate,  . We prove in Appendix A5.3 that an increase

in an arbitrary subsidy rate  leads to an expansion of the research sectors in all countries. In other

words,   0 for all   ∈ {1     }. It follows that an increase in a single subsidy rate
contributes not only to faster innovation throughout the world economy, but also to a spreading of

the long-run wage distribution everywhere. We summarize in

Proposition 10 Suppose that goods are tradable, that international knowledge spillovers are com-

plete, and that countries differ only in their R&D subsidy rates. Comparing any two countries, the

long-run wage distribution is more unequal in the one with the greater subsidy rate. An increase in

any subsidy rate raises the common long-run growth rate and generates a spread in the distribution

of wages in every country.

The main lessons from this section are twofold. First, national conditions that create differential

incentives for research versus manufacturing generate long-run differences in wage distributions,

whereas conditions that affect a country’s ability to contribute to or draw on the world’s stock of

knowledge capital lead to a convergence in wage distributions but with cross-country differences

in wage levels. Second, technological conditions or government policies that cause an expansion of

the research sector in one country typically have spillover effects abroad. In particular, when the

incentives for R&D rise somewhere, the induced expansion in knowledge capital generates a positive

growth spillover for other countries but also a tendency for wage inequality to rise worldwide.

6 Concluding Remarks

In this paper, we have focused on one mechanism that links income distribution to long-run growth.

The mechanism operates via sorting and matching in the labor market. We posit that the most able

individuals in any economy specialize in creating ideas and that innovation is the engine of growth.

Among those that conduct research, the most able are relatively more proficient at performing

the most promising research projects. Among those that use ideas rather than create them, the

most able are relatively more proficient at using the most sophisticated technologies. In each case,

the complementarity between worker ability and firm productivity dictates positive assortative

matching. In the long run, the size of what we call the research sector determines not only the pace

of innovation, but also the composition of the two sectors and the matches that take place.

Our model highlights an important mechanism in a simple economic environment. We have

abstracted from diversity in manufacturing industries, from team production activities that involve
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multiple individuals in both research and manufacturing, from capital inputs that may be comple-

mentary to certain worker or inventor types, and from a host of market frictions that can impede

job placement and financing for innovation. In this setting, faster growth often goes hand in hand

with greater wage inequality. In response to events that encourage faster growth, the research

sector expands by drawing the most able workers from the manufacturing sector, who then become

the least able researchers. The expansion of the research sector at the extensive margin generates

a re-matching between researchers and research projects that brings the relatively greatest benefit

to those with greatest ability. Meanwhile, the contraction of the manufacturing sector generates

re-matching between production workers and technologies that also favors relatively most those in

this sector with greatest ability. The complementarity between ability and technologies implies an

increase in wage inequality. This effect is strengthened by the fact that those with most ability

have comparative advantage in the activity that underlies growth.

By allowing for international trade and international knowledge spillovers, we introduced links

between inequality measures in different countries. We find that within-country income inequality

is exacerbated by the knowledge sharing, because the knowledge spillovers make innovation more

productive and so create incentives for expansion of the idea-generating portion of economies world-

wide. As the research sector expands in every country so too does the relative pay for the most able

individuals (who engage in innovation) as well as for the more able individuals among those that

sort to each sector. The more able researchers benefit relatively more from the improved matching

with research projects while the most able workers in manufacturing benefit relatively more from

the improved matching with technologies.

To better understand how international integration affects growth and inequality, we also study

economies without international knowledge spillovers in which R&D productivity in every country

reflects only prior local experience. With trade in intermediate goods but no international borrowing

or lending, the long-run allocation of resources is the same in every country as in autarky, and

so too are the innovation rate and all relative wages. However, all but the country with the

greatest capacity for innovation enjoy faster growth in output, income, and wages with trade than

without, thanks to the productivity gains that come from importing foreign varieties. When we

allow for capital mobility in a world with goods trade but no knowledge spillovers, competition

with innovators in the faster-growing country displaces investment in R&D in the others. This

movement of resources from R&D to manufacturing generates a more equal distribution of wages

in all countries except the one with the fastest innovation rate. Meanwhile, long-run growth of

consumption accelerates in all of these countries thanks to the equalization of world interest rates.

Our treatment of the open economy also allows us to study the links between conditions and

policies in one country and growth and distributional outcomes in its trade partners. For example,

in the presence of partial or complete international knowledge spillovers, we find that an R&D

subsidy in one country accelerates growth in all countries and increases within-country income

inequality throughout the globe. While previous work on endogenous growth emphasized cross-

country dependence in growth rates (e.g., Grossman and Helpman 1991), our model also features
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cross-country dependence in wage inequality. Moreover, while long-run growth rates converge,

cross-country differences in wage distributions can persist even along a balanced-growth path.

Numerous possible extensions of our model come to mind. Additional elements of interde-

pendence would arise if production functions involved multiple factors of production (or teams

of individuals) and if sectors differed in their relative factor intensities. We also suspect that in-

vestment in ideas has more dimensions of uncertainty than just the productivity of the resulting

technology, and that the prospects for success in innovation and the range of reachable technologies

depend on the abilities of the individuals who generate the new ideas. Imperfect information about

worker characteristics and frictions in labor markets undoubtedly impede the smooth, assortative

matching that features in our model. Similarly, asymmetric information about research ideas and

financing constraints impede investment in innovation and bias technological outcomes. All of these

extensions would be interesting.

We view our contribution in this paper not as a final word on the link between growth and

inequality, but as an exploration of a core mechanism that will play a role in richer economic

environments. The empirical importance of this mechanism remains to be settled, although at this

stage it is not obvious how to do so in light of the limited availability of historical data and the

endogeneity of the variables of interest. Yet we are convinced that a better understanding of the

relationship between growth and inequality can be obtained by studying economies in which both

are endogenously determined.
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Appendix

A2.5 Uniqueness and Single Crossing of the Matching Function

In Section 2.5 we stated that the solution to the pair of differential equations (12) and (16)

that satisfies the boundary conditions (17) is unique, and later that the matching functions of two

solutions to (12) and (16) that apply for different boundary conditions can intersect at most once.

Here, we prove these statements by adapting Lemma 2 in the appendix of Grossman et al. (2015)

to the present circumstances.

We begin with the latter claim. As in Grossman et al. (2017), let [κ ()  κ ()] and

[ ()   ()] be solutions to the differential equations (12) and (16), each for different boundary

conditions,

 (min) = min and  (max) = max ,  = κ . (32)

Let the solutions intersect for some  = 0 and  = 0. Without loss of generality, suppose that

0
 (0)  0

κ (0). We will now show that  ()  κ () for all   0 and  ()  κ ()

for all   0 in the overlapping set of ( ).

To see this, suppose to the contrary there exists a 1  0 such that  (1) ≤ κ (1).

Then differentiability of  (·),  = κ , implies that there exists a 2 with 2  0 such that

 (2) = κ (2),  ()  κ () for all  ∈ (0 2) and 0
 (2)  0

κ (2). This also implies

that −1 ()  −1κ () for all  ∈ ( (0)  (2)), where 
−1
 (·) is the inverse of  (·). But

then (16) implies that  [ (0)]  κ [ (0)] and  [ (2)]  κ [ (2)], and therefore

lnκ [ (2)]− lnκ [ (0)]  ln [ (2)]− ln [ (0)] 

On the other hand, (12) implies that

ln [ (2)]− ln [ (0)] =

Z (2)

(0)



£
−1 ()  

¤

£
−1 ()  

¤   = κ 

Together with the previous inequality, this givesZ (2)

(0)



£
−1κ ()  

¤

£
−1κ ()  

¤   Z (2)

(0)



£
−1 ()  

¤

£
−1 ()  

¤ 
Note, however, that the strict log supermodularity of  (·) and −1 ()  −1κ () for all

 ∈ ( (0)  (2)) imply the reverse inequality, which establishes a contradiction. It fol-

lows that  ()  κ () for all   0. A similar argument shows that  ()  κ () for all

  0.

The fact that the matching functions for different boundary conditions can cross at most once

immediately implies the uniqueness of the solution to (12) and (16) for a given set of boundary

conditions,  (min) = min and  (max) = . If there were two different solutions for these
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boundary conditions, the resulting matching functions would have to intersect at least twice, which

is not possible.

A2.6 The  Curve and the  Curve

We derive now the equation for the  curve and establish that it is downward sloping. In

steady state,

 = 

Z max

min

 [ ()]  [ ()]
  () 

where  [ ()] is employment for a project of quality . From footnote 7 we have

 [ ()] =

∙
 [ ()]

 ()

¸ 1
1−



and therefore

 = 
1

1−
 ()


1− 

Z max

min

 [ ()]
1

1−  [ ()]
− 
1−  () 

Next, substituting (18) with ̃ = min into this equation yields

 =




Z max



 ()  ()  (33)

This is a version of the  curve.

From (16) and (21), we obtain:

 =
1



⎧⎨⎩ 
R max


 ()  ()


R max
min

 [ ()]
1

1−  [ ()]
− 
1−  ()

⎫⎬⎭
1−

=
 (; )



⎧⎨⎩ 
R max


 (; )  ()


R max
min

 [ ()]
1

1−  [ (; ) ; ]
− 
1−  ()

⎫⎬⎭
1−



and therefore

 =
 (; )



µ




¶1−
1

Φ ()
 (34)

where

Φ () ≡
⎧⎨⎩
R max
min

 [ (; )]
1

1−  [ (; ) ; ]
− 
1−  ()R max


 (; )  ()

⎫⎬⎭
1−

 (35)

Substituting this expression into (33) yields the modified  curve,

 = 
1−Φ ()

Z max



 (; )  ()  (36)

We now prove
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Lemma 5 The function Φ () is increasing while the product Φ ()
R max


 (; )  () is

decreasing in . Therefore the  curve slopes downward.

First, note that, in view of (13),

log (; ) =

Z 





£
−1 (; )  

¤


£
−1 (; )  

¤ for   

and therefore

− (; )
 (; )

=
 (min )

 (min )
−
Z 







(


£
−1 (; )  

¤


£
−1 (; )  

¤) 

The derivative under the integral on the right-hand side of this equation is negative, because an

increase in  worsens each worker’s match (see Figure 2), i.e., −1 (; ) is declining in 

and  ( )  ( ) is increasing in  due to Assumption 2. Together with equation (13) and

Assumption 3, this implies:

− (; )
 (; )


 (min )

 (min )


 ( )

 ( )
 0 for all  and all   

From (12) we obtain:

log (; ) =

Z 

min



£
−1 (; )  

¤
 [−1 (; )  ]

 for   

and therefore
 (; )

 (; )
=



£
−1 (; )  

¤
 [−1 (; )  ]

 0 for all   

Thus, we have

Lemma 6

− (; )
 (; )


 (; )

 (; )
=

 (max )

 (max )
for all   

Next, consider the definition of Φ () in (35); it can be expressed as

logΦ () = (1− ) log

½Z max

min

 [ (; )]
1

1−  [ (; ) ; ]
− 
1−  ()

¾
− (1− ) log

½Z max



 (; )  ()

¾


Differentiating this equation yields

Φ0 ()
Φ ()

= −
Z max

min

 ( )
 [ (; ) ; ]

 [ (; ) ; ]
 − (1− )

Z max



 ( )
 (; )

 (; )


+
(1− ) (; )

0 ()R max


 (; )  ()
 (37)
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where

 ( ) =
 [ (; )]

1
1−  [ (; ) ; ]

− 
1− 0 ()R max

min
 [ (; )]

1
1−  [ (; ) ; ]

− 
1−  ()

and

 ( ) =
 (; )

0 ()R max


 (; )  ()

are weights that satisfy Z max

min

 ( )  =

Z max



 ( )  = 1

Lemma 6 implies

− [ (; ) ; ]

 [ (; ) ; ]


 (; )

 (; )
for all 

− (; )
 (; )


 (; )

 (; )
for all   

and since the last term in (37) is positive, we have

Lemma 7
Φ0 ()
Φ ()


 (; )

 (; )
 0

The lemma establishes that Φ () is an increasing function.

Although, as shown above, Φ () is an increasing function and
R max


 (; )  () is a

decreasing function of , we now show that their product is decreasing in , and therefore the

 curve slopes downward.27 To see this, first note that  = 0
 ()  together with (19) implies,

via a change of variables, thatZ max

min

 ( )
 [ (; ) ; ]

 [ (; ) ; ]
 =

Z max



 ( )
 (; )

 (; )


and therefore (37) can be rewritten as:

Φ0 ()
Φ ()

= −
Z max



 ( )
 (; )

 (; )
+

(1− ) (; )
0 ()R max


 (; )  ()



Using this expression we obtain:




log

∙
Φ ()

Z max



 (; )  ()

¸
= −  (; )

0 ()R max


 (; )  ()
 0

That is, we have

Lemma 8 Φ ()
R max


 (; )  () is declining in .

27We are indebted to Elisa Rubbo for this argument.
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Next, we derive the equation for the  curve and establish that the curve is upward sloping.

Equations (8) and (11) yield

 = − ( − 1)(−1)
R max
min

n
 [()]

[()]

o1−
 ()

+ 
. (38)

while (15) yields



µ


 − 1
¶− Z max

min

½
 [ ()]

 [ ()]

¾1−
 () = 

Z 

min

 ()  () . (39)

Therefore:

+  =
1

 − 1




Z 

min

 ()  ()

This is a version of the  curve. Using (21) and (34), this can be expressed as:

+  =


 − 1
1−Φ ()

Z 

min

 (; )

 (; )
 () 

which is the  curve in the text (see (23)). We now show that Φ ()
R 
min

(;)

(;)
 () is an

increasing function of both  and , for → , and therefore the  curve slopes upwards.

From (12) we obtain

log

∙
 (; )

 (; )

¸
= −

Z 





£
−1 (; )  

¤
 [−1 (; )  ]

 for   

Due to Assumption 2 the right-hand side of this equation is rising in , because an increase in 

reduces the quality of matches for manufacturing workers (see Figure 2), i.e., −1 (; ) is declin-
ing in . Therefore Φ ()

R 
min

(;)

(;)
 () is rising in . In addition, Lemma 7 implies that

Φ ()
R 
min

(;)

(;)
 () is rising in  for  → , which establishes that the  curve slopes

upward.

A4.1 International Knowledge Spillovers

In this section, we derive equilibrium relationships that hold in open economies with interna-

tional knowledge spillovers. From equation (25), which equates the minimum unit cost of production

of final output in country  to  = 1, we obtain:

 () =  ()
− ̄ (40)

where ̄ =
P

  . The profit maximizing price of a firm with productivity  in country  is

therefore

 () =

µ


 − 1
¶

 [ ()]

 [ ()]
. (41)
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This price generates an operating profit of

 () = − ( − 1)(−1) ̄
½

 [ ()]

 [ ()]

¾1−
, (42)

where  () is the matching function in manufacturing in country .

Following the analysis of the innovation sector, with international knowledge spillovers the profit

function of a project of quality  in country  is (where  replaces  in (9)):

 () = (1− ) 


1−
©
 [ ()] [ ()]

−ª 1
1− .

Free-entry by entrepreneurs implies

 = (1− ) 


1− ()
1

1−

Z max

min

 [ ()]
1

1−  [ ()]
− 
1−  () , (43)

which determines .

A manufacturing firm pays  at time  to purchase the R&D services needed to introduce a

variety of the intermediate good at time . If it draws a manufacturing technology , it will earn

a stream of profits  () for all  ≥ . We have derived the expression for operating profits and

recorded it in (42). Assuming free entry of manufacturing firms, this profit function implies:

 =

Z ∞



−
 



Z max

min

 ()  () 

which yields the familiar no arbitrage condition:

̇


= −

R max
min

 ()  () 


+ 

Using the profit function (42) and the consumption growth equation (2), and dropping the time

index , we obtain

̇


= −

− ( − 1)(−1) ̄


Z max

min

½
 [ ()]

 [ ()]

¾1−
 ()  +

̇


+  (44)

where  =  is aggregate consumption in country .

The differential equations for wages in manufacturing and R&D, (12) and (13), do not change.

The labor market clearing condition (15) implies

̄

µ


 − 1
¶− Z 

min

½
 [ ()]

 [ ()]

¾1−
 () = 

Z ()

min

 ()  () , (45)
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which, when differentiated, yields

0
 () =

̄



µ


 − 1
¶−

 [ ()]
−

{ [ ()]}1−
0 ()

 0 [ ()]
for all  ∈ [min max] 

This differential equation together with the differential equation for manufacturing wages and the

boundary conditions uniquely determine the matching function in manufacturing, which depends

on  but not on ̄ nor . In other words,  () =  (; ). Similarly, (18) becomes



Z max



 [ ()]

½
 [ ()]

 [ ()]

¾ 1
1−

 () = 

Z max

()

 ()  () ,

(46)

and differentiating yields

0
 () =





½
 [ ()]

 [ ()]

¾ 1
1− 0 ()

 0 [ ()]
for all  ∈ [min max] 

This differential equation together with the differential equation of wages in the innovation sector

and the boundary conditions uniquely determine the matching function in the innovation sector,

which depends on  but not on  nor . That is,  () =  (; ).

Dynamics

The growth in varieties reflects the aggregate output of the research sector and therefore

̇ = 

Z max

min

 [ (; )]  [ (; )]
  ()

= 

Z max

min

 [ (; )]  [ (; )]
  () 

where  = . However,

 [ (; )] =

∙
 [ (; )]

 (; )

¸ 1
1−



where  (; ) is the wage function in the innovation sector in country , and therefore

 =  ()
1

1− ()


1− 

Z max

min

 [ (; )]
1

1−  [ (; ) ; ]
− 
1−  () 

Next, substituting (46) with  = min into this equation yields

 =




Z max



 (; )  ()  (47)
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From (46) and (21), we obtain

 =
1



⎧⎨⎩ 

R max


 ()  ()



R max
min

 [ (; )]
1

1−  [ (; ) ; ]
− 
1−  ()

⎫⎬⎭
1−

=
 (; )



⎧⎨⎩ 

R max


 (; )  ()



R max
min

 [ (; )]
1

1−  [ (; ) ; ]
− 
1−  ()

⎫⎬⎭
1−



and therefore

 =
 (; )



µ




¶1−
1

Φ ()
 (48)

where

Φ () ≡
⎧⎨⎩
R max
min

 [ (; )]
1

1−  [ (; ) ; ]
− 
1−  ()R max


 (; )  ()

⎫⎬⎭
1−



Note that the function Φ () is common to all countries and that it is the same function we

defined for the closed economy. Now, however, it must be evaluated at the cutoff  in country ,

which trades with the other countries. Substituting this expression into (47) yields

 = 

 

1−
 Φ ()

Z max



 (; )  ()  (49)

Equation (28), which must hold at every moment in time, traces out a temporary trade-off

between  and . While Φ () is an increasing function, the right-hand side of (49) is

decreasing in  (see Section A2.6 above). It follows that  uniquely determines  through

(49), and since  is a state variable, it also uniquely determines  (; ) given  via

(48).

The labor market clearing condition in manufacturing (45) implies

̄

 (min; )
 1−

µ


 − 1
¶− Z max

min

½
 [ (; ) ; ]

 [ (; )]

¾1−
 ()

= 

Z 

min

 (; )  ()  (50)

and the no-arbitrage condition (44) can be expressed as

̇


= −

− ( − 1)(−1) (min; )
1− ̄

R max
min

n
[(;);]

[(;)]

o1−
 ()


1−


+
̇


+  (51)
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Substituting (48) and (50) into (51) then yields

̇


− ̇


+  =



 

1−
 Φ ()

R 
min

 (; )  ()

( − 1) (; )  (52)

This equation must be satisfied at every moment in time.

The equilibrium conditions for open economies that we have derived so far must be satisfied

independently of whether capital flows internationally or not. We next examine a world economy

with no international capital flows.

No International Capital Flows

In the absence of international capital flows there is trade balance at every moment in time,

which means that (27) is satisfied at each point in time. On a balanced growth path the rate of

growth of  is the same in every country and equal to  . Therefore  also grows at the rate

 and  is constant. From (48),  grows at the same rate as wages, and therefore ̇

also grows at the rate . In other words, on a balanced growth path the left-hand side of (27)

grows at the rate  and
̇


=  −  for all  (53)

The first term on the right-hand side of (27) also grows at the rate  and so does the second

term. The latter follows from (43) and the fact that  grows at the rate . Using the profit

equation (42), the rate of growth of the third terms is  + ̄ − ( − 1) . However, the labor
market clearing condition (??) implies that  + ̄ = . Therefore, the growth rate of the

third term also is . Evidently, balanced trade implies that the rate of growth of consumption

equals the rate of growth of wages

̇


=  for all 

Substituting this result together with (53) into (52) then yields

+  =


 − 1 
 

1−
 Φ ()

R 
min

 (; )  ()

 (; )
 (54)

which is the open economy  curve.

A4.2 No International Knowledge Spillovers

The analysis in Section A4.1 up to and including equation (52) does not change when knowledge

stocks are fully national, except that in this case  =  and therefore  = , where

 =  is the efficiency with which country  converts its own R&D experience into usable

knowledge. Under these circumstances the  curve, described by equation (49), becomes:

 = 

 

1−
 Φ ()

Z max



 (; )  ()  (55)
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which is the same as in autarky. The no-arbitrage condition (52) now becomes

̇


− ̇


+  =



 

1−
 Φ ()

R 
min

 (; )  ()

( − 1) (; )  (56)

No International Capital Flows

As in Section A4.1, trade must be balanced (27) in the absence of international capital flows.

Following a similar analysis as there, (27) implies that

̇


=  −  for all 

and
̇


=  for all 

Note that, in this case, the innovation rates on a balanced growth path, , are not necessarily

the same in every country. Substituting these equations into (56) yields the  curve,

 +  =



 

1−
 Φ ()

R 
min

 (; )  ()

( − 1) (; )  (57)

which is the same as in autarky.

Free International Capital Flows

With international borrowing and lending, trade need not be balanced at every moment in time.

But capital mobility equalizes the interest rate worldwide; i.e.,  =  for all . This implies, via (2),

that consumption grows at the same rate in every country, i.e.,  =  . Moreover, (48) implies

̇


=  − 

on a balanced growth path. Substituting these results into (56) yields

 −  +  +  =


 − 1 
 

1−
 Φ ()

R 
min

 (; )  ()

 (; )
 (58)

Next note from (25) and (41) that

1− = 1 =

µ


 − 1
¶1−X





h
 (min; ) ()

−1
i1− Z max

min

½
 [ (; ) ; ]

 [ (; )]

¾1−
 () 

(59)
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Substituting (??) into (59) yields

̄ =


 − 1
X


 (min; )

Z 

min

 (; )  ()  (60)

Since, in equilibrium, ̄ =
P

  =
P

  and every  grows at the same rate  , it follows that

̄ grows at the rate  . Therefore, (60) implies that  is a weighted average of the  ’s,

 = ̄ = ̄ ≡
X


  (61)

where  =  (min; )
R 
min

 (; )  () 
P

  (min; )
R 
min

 (; )  ().

Substituting this result into (58) then yields

(̄ − ) +  +  =


 − 1 
 

1−
 Φ ()

R 
min

 (; )  ()

 (; )
 (62)

In addition, the labor market clearing condition (??) implies

 + ̄ =  (63)

which is equation (30) in the main text. It follows from this equation that the growth rate of wages

is higher in countries with faster rates of innovation.

If there were no differences in the growth rates of wages, then (62) would be the same as the 

curve in the closed economy, in which case the growth rate  would be the same as in autarky

in every country. Inasmuch as  (and therefore ) does vary across countries, (61) implies

 = ̄ = ̄ = max


 ≡ ̃ (64)

because the weight  converges to one for the fastest growing country. In this case, (62) has +

on the left-hand side for for the country with the fastest rate of innovation, so this country retains

its autarky rate of innovation. For every other country, we have (̃ − ) +  +    + ,

implying that its  curve is lower than in autarky and therefore these countries have slower

innovation rates  than in autarky and higher cutoff ability levels, . Moreover,    if

and only if    .

It follows that in country  with 

 

1−
  max

n



 

1−


o
the innovation rate

is slower and wage inequality is less than in autarky. In other words, the country with the highest

innovation capacity has the fastest innovation rate and the fastest growth rate of wages in the

long run, equal to its autarky rates of innovation and wage growth. In all other countries the rate

of innovation is slower than in autarky. Nevertheless, in these countries, income and consumption

grow faster than in autarky. Consumption grows faster, because it grows at the rate of consumption

growth in the country with the fastest growth of wages.
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Note that   

 for any  that is not the fastest growing country. Therefore, using

 = ̄ from (64), (62) implies³
 − 

´
+   


 

or, using (63),

( − 1)   

 

However, 

 = ( − 1)  and therefore   


 . In other words, despite the

slower rate of innovation in these countries their wages and income grow faster than in autarky.

Also note that we have described a case in which the opening of trade reduces wage inequality while

accelerating the growth of income and consumption.

A5.2 Cross-Country Wage Levels with Differences in Innovation Capacity

Here we consider the cross-country differences in wage levels that result from asymmetries in

innovation capacity. We assume equal R&D subsidy rates and complete international knowledge

spillovers; i.e.,  =  and  =  for all . Note that this allows for international differences in

capacities to convert knowledge capital into new varieties, as captured by . We also allow for

differences in country size, , in active research projects  (which is proportional to the country’s

research capital) and for differences in research productivity, .

We have seen in Section 5.2 that, under these circumstances, the cutoff ability levels  are

the same in all countries, and therefore so are relative wages of workers with different ability levels.

We represent the wage schedule in country  by  () =  () and refer to  as the wage level

in country . Moreover, (28) implies that, in this case, 

 

1−
 =  for all countries and

therefore  = 

 

1−
 

P
  . It follows that




=



 

1−
 



 

1−
 



Using this result together with (39), which holds in every open economy with  replaced by ̄, we

have µ




¶

=



=

³



 

1−
 

´
³



 

1−
 

´




It follows that wages are higher in country  than country  if and only if
³



 

1−
 

´
 ³



 

1−
 

´
 , i.e., if and only if country  has a higher innovation capacity per capita.

A5.3 Spillover Effects of National R&D Subsidies

In this section, we examine the effects of changing an R&D subsidy in one country on growth

and inequality in that country and in all trading partners. We suppose that international knowledge

spillovers are complete and that countries are similar in all ways except in their R&D subsidies and
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in the proportional wage taxes used to finance these subsidies. That is, we assume  =  and

 =  for all  and , and  =  and  =  for all . These assumptions focus attention on

variations in R&D subsidies.

The equations for the  and  curves, (28) and (29), can be expressed in this case as

 = 
1−Φ ()

Z max



 (; )  ()  (65)

(1− ) (+ ) =


 − 1
1−Φ ()

R 
min

 (; )  ()

 (; )
 (66)

where  is the same in all countries in the steady state. Dividing (66) by (65) yields

(1− )
+ 


Ω () = Λ ()  (67)

where

Ω () ≡ Φ ()
Z max



 (; )  ()

is a decreasing function, as shown above (recall that  slopes downward), and

Λ () ≡ 

 − 1

R 
min

 (; )  ()

 (; )
Φ ()

is an increasing function, as shown above (recall that  slopes upwards). It follows from this

equation that countries with higher R&D subsidies have lower cutoffs  and employ more workers

in R&D. Moreover, multiplying (65) by , recalling that  = 

³P
=1

´
, and summing

up, we obtain

 = 
1−

X
=1

Ω () 

Substituting this equation into (67) then yields

(1− )
+ 

1−
P

=1Ω ()

1−
P

=1Ω ()
Ω () = Λ () . (68)

There are  equations like (68), one for each country, and together they allow us to solve the ability

cutoffs, .

Now, proportionately differentiate this system of equations and write the (matrix) equation for

the proportional changes as

Aa = b
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where

a =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

̂1

̂2

·
·
·

̂

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
 b =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

\(1− 1)

\(1− 2)

·
·
·

\(1− )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


and a “hat” over a variable represents a proportional rate of change; i.e., ̂ =  and

\(1− ) =  (1− )  (1− ).

We note that the matrix A has positive diagonal elements and negative off-diagonal elements.

In particular, in row , the diagonal element is Λ +
¡
1− 

¢
Ω , where Λ  0 is the elasticity of

Λ (·) evaluated at  , Ω  0 is minus the elasticity of Ω (·) evaluated at  , and

 =

"


+ 1−
P

=1Ω ()

#
Ω ()P
=1Ω ()

 1.

For  6= , the off-diagonal element in column  is −Ω  0.
Inasmuch as A has only negative off-diagonal elements, we recognize that it is a -matrix.

Moreover, there exists a diagonal matrix D such that AD is diagonally dominant in its rows.

To see this, consider the diagonal matrix D that has a diagonal entry in row  given by 1Ω .

Then the diagonal element in row  and column  of AD is given by ΛΩ + (1− ) and the

off-diagonal element in row  and column  is given by − . Summing the entries in any row 

gives ΛΩ + 1−
P

=1   0, where the inequality follows from the fact that
P

=1   1.

Having established that A is a -matrix and there exists a diagonal matrixD such thatAD

is diagonally dominant in its rows, it follows that A is an  -matrix (see Johnson, 1982). Then its

inverse, A−1 , has only positive elements. We conclude that an increase in any subsidy rate (i.e., a
reduction in any 1 − ) reduces every cutoff point  ,  = 1     . Since more individuals are

hired as researchers in every country, every country grows faster and experiences greater income

inequality as a consequence of an increase in any subsidy rate.

47


