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Abstract

We develop a two-stage, two-location model to investigate the interrelationship between
policy-making and social conventions. Rational social planners determine the maximum ca-
pacity and mobility constraints. Then, boundedly rational residents play a coordination game
with the possibility to migrate. We show that if both planners are only concerned with ef-
ficiency, the symmetric policy settings in Ely (2002) and Anwar (2002) are not stable. If
they also care about scale, they will completely restrict mobility, and then the risk-dominant
equilibrium prevails globally.
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1 Introduction

In an organized society, social conventions, as a result of the long-run interactions among decision-
makers, both influence the development of policies, regulations, and laws, and are in turn, influ-
enced by these same factors. When designing a policy, policy-makers have to understand the
behavior of policy-takers and the long-run consequences of the interactions among them, for, to
realize the same objective, different behavior may lead to different policy choices. Reciprocally,
an effective policy always determines the set of strategies available to the policy-takers, through
which it forges social conventions consequently.

For instance, walking along one side of the road is a consequence of long-run interactions among
people. However, which side to walk along is regulated by laws that usually, but not universally,
follow the local conventions. As another example, a single computer operating system is usually
used within a firm. However, which one to use is affected by firm policies. When the firm manager
decides not to buy the latest Windows system in order to save on expenditures, the employees
may coordinate by themselves to use some free operating system.

The interrelationship between policies and conventions will become more complex if it involves
multiple societies with interdependent interests. In this situation, policy-makers have to consider
both the effect of the local policy and the policies in other societies. For example, governments of
all major countries in the world have migration policies. A specific policy will not only affect the
interaction pattern of the common public in this country alone but also that in the neighboring
countries. If the interaction patterns are relevant to the interests of the governments, the migration
policies of these related countries will be influenced as well. Similarly, in a market with several
competing firms, the employment policy of one firm may affect the way that employees coordinate
within each firm, and subsequently the profits of the respective firms. Hence, firm managers will
choose an optimal policy to maximize profit, while taking the policies of other firms into account.
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In general, the interaction among policy-makers has strategic elements. They attempt to choose
an optimal policy given their knowledge of the long run consequences of the interactions among
policy-takers. After that, policy-takers interact with each other repeatedly by choosing strategies
allowed by the policies.

In this context, it is reasonable to consider policy-makers as being more sophisticated (“more
rational”) than policy-takers. When it comes to countries, governments can be treated as rational,
since they can collect detailed information and rely on expert advice when making decisions.
Turning to companies, a similar reasoning leads us to consider managers as rational agents. In
contrast, policy-takers are always regarded as boundedly rational, either because they do not have
an access to enough information, or because they are not able to process information correctly (or
simply do not devote enough resources to process it). Usually, they adopt certain rule of thumb to
guide their behavior. Hence, agents with heterogeneous rationality levels interact with each other
within this framework.

The interaction between policies and social conventions has been pointed out e.g. by Young
(1998). There are, however, few studies that explicitly model this interaction. How will policy-
makers use policy instruments to affect social conventions? How will the characteristics of the
interactions among policy-takers influence policy-makers’ choices? What will be the end result
given this mutual influence? Will a convention prevail only locally, or spread globally? This paper
seeks to investigate these questions and provide new insights from an evolutionary game-theoretical
point of view.

To focus on the pure interaction between policy-making and social conventions within a theo-
retical framework, we single out the main features of the interaction described above and isolate
the interaction from other factors that may have an impact on it. To do this, we use the term,
location, as an abstract and symbolic representation of a country, a company, etc. Furthermore,
instead of modeling the real-life policy-making process in institutions (e.g. government or board),
we assume that there is a social planner in each location who can determine policies alone. Mean-
while, the interactions among policy-takers are simplified as a coordination game, which involves
a trade-off between efficiency and risk and has two strict Nash equilibria. The specific features
of this simple game make it possible to explore the effect of policies on the selection of social
conventions. Hence our model builds on the literature studying the equilibrium selection through
learning dynamics (see, for example, Kandori, Mailath, and Rob, 1993; Ellison, 1993; Robson and
Vega-Redondo, 1996; Alós-Ferrer and Weidenholzer, 2007, 2008).

In the model there are two stages and two locations. Stage 1 is a static game among rational
social planners, who set capacity and mobility constraints for the respective locations to optimize
certain objective functions. Stage 2 consists of a learning dynamics, where boundedly rational
players, taking the policies in both locations as given, are randomly matched within each location
to play the coordination game, and relocate if possible. The structure of the model is related
to Alós-Ferrer, Kirchsteiger, and Walzl (2010). They build a two-stage model, in which rational
market platform designers try to maximize the profits of their platforms, and the boundedly
rational traders choose among the platforms by imitating the most successful behavior in the
previous period. As in that model, we will use an approach similar to “backward induction”.
That is, we first identify the long-run equilibria (LRE) in stage 2 for all possible policy profiles,
and then include them into the social planners’ optimization problem in Stage 1.

The dynamics in Stage 2 encompasses the multiple location models1 of Ely (2002) and Anwar
(2002). Ely (2002) suggests that if all players can freely move and there are no capacity constraints
for both locations, myopic best reply would lead all players to coordinate on the Pareto-efficient
equilibrium in the long run. Anwar (2002) considers symmetric restrictions on both the capacity
of locations and the mobility of players, and shows that if the effective capacity of each location
is relatively large, the states presenting co-existence of conventions (i.e. players coordinate on
different equilibria in different locations) are the LRE; however, if the effective capacity is small,
the risk-dominant equilibrium will prevail in both locations. We include the results of both models

1Other location models include Dieckmann (1999), Blume and Temzelides (2003), and Bhaskar and Vega-
Redondo (2004); see Weidenholzer (2010) for a review.
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above as particular cases, and identify the LRE when policies in both location are different.
Roughly speaking, if the effective capacities in both locations are relatively small, the states with
global coordination on the risk-dominant equilibrium are the LRE. If at least one of the locations
has relatively large effective capacity, the co-existence of conventions will resut, where the location
with smaller effective capacity coordinates on the Pareto-efficient equilibrium.

We consider two different social welfare functions in stage 1. In the first one, the social
planners are only concerned with efficiency, i.e. individual average payoffs. We find that there
is a set of Nash equilibria (NE) in the game among social planners, which lead to either the
global coordination on the risk-dominant equilibrium, or the co-existence of conventions. However,
neither the symmetric constraint setting, which leads to the co-existence of conventions in Anwar
(2002), nor the unconstrained setting, which leads to the globally efficient outcome in Ely (2002),
is a NE. In the second social welfare function, the social planners are also concerned with scale,
i.e. total location payoffs. Then, both planners will completely forbid migration. The two isolated
locations will then end up coordinating on the risk-dominant equilibrium.

The paper is organized as follows. Section 2 presents the learning dynamics in Stage 2. Section
3 revisits Anwar (2002). We find some incorrections in that work and show that, contrary to the
main statement there, global coordination on the Pareto-efficient equilibrium can be selected in
the long run. Furthermore, if the payoff of the risk-dominant equilibrium is large enough, the
co-existence of conventions occurs for a smaller set of parameters than claimed in Anwar (2002).
Section 4 analyzes the general model with active policy-making and presents the results for both
social welfare functions. Section 5 concludes. All proofs are relegated to the Appendices.

2 The Learning Model

2.1 Model Setup

This section introduces the learning dynamics in Stage 2. It is closely related to Anwar (2002),
and includes Ely (2002) as a particular case. Suppose that there are a total of 2N individuals
distributed in two locations. Each location k ∈ {1, 2} is characterized by a pair of parameters
(pk, ck) with 0 ≤ pk ≤ 1 and 1 ≤ ck ≤ 2,2 such that ⌈pkN⌉ is the number of immobile individuals
and ⌊ckN⌋ is the capacity of location k.3 Then, the effective maximum capacity in location k is
Mk ≡ ⌊dkN⌋ and the minimum number of players in location k is mk ≡ 2N −Mℓ = 2N − ⌊dℓN⌋,
with dk = min{ck, 2 − pℓ}, for k, ℓ ∈ {1, 2}, k 6= ℓ. That is, a location has the maximum number
of residents either by reaching its capacity constraints, or by having all individuals, apart from
the immobile ones in the other location, accommodated there. Here, (pk, ck) can be regarded
as policies of location k = 1, 2. When we focus on the learning dynamics, they are treated as
exogenous parameters. However, when active policy-making is involved in the general model (in
Section 4), they are the strategies of social planners.

P R
P e, e g, h
R h, g r, r

Table 1: The basic coordination game

Time is discrete, i.e. t = 1, 2, . . .. In each period t, individuals within each location interact
with each other by playing the coordination game in Table 1, where4 e, r, g, h > 0, e > h, r > g,

2Unlike in Anwar (2002), here the boundary values of ck and pk are included in the model, hence incorporating
Ely (2002) as a particular case.

3We denote by ⌈x⌉ the minimum integer that is weakly larger than x, and by ⌊x⌋ the maximum integer that is
weakly smaller than x.

4In Anwar (2002), e, g, h and r are not required to be larger than zero. We add this assumption here, to avoid
negative payoffs in the social planner’s game later. It has no effect on the LRE of the learning dynamics.
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e > r and h+ r > e + g. Hence, (P, P ) is the Pareto-efficient equilibrium and (R,R) is the risk-
dominant equilibrium. Let Π : S×S → R

+ be the payoff function of the game, where S = {P,R}
is the strategy set of each player. Π(si, sj) denotes the payoff of playing si against sj. We denote
by q∗ the probability of playing P in the mixed-strategy NE, i.e. q∗ = r−g

e−g−h+r
. Since (R,R)

is risk-dominant, q∗ is strictly larger than 1/2. To facilitate the discussion later, we also define
q̂ through the equality Π(P, (q̂, 1 − q̂)) = r, which yields q̂ = r−g

e−g
. That is, q̂ is the probability

of playing P in a mixed-strategy such that playing P against it gives the same payoff as in the
risk-dominant equilibrium.

Every period, each individual can adjust his strategy. Further, each mobile individual has
an opportunity to relocate with an independent and identical positive probability. However, even
those who have an opportunity to relocate may not be allowed to reside in another location because
of the capacity constraint. Let ⌊dkN⌋ − nk be the number of vacancies in location k, where nk is
the current population. If the number of players who can move to location k is larger than this
number, then only ⌊dkN⌋ − nk of them will actually be able to move.

Let qtk be the proportion of P -players in location k ∈ {1, 2} at period t. We assume that, in
each period t + 1, each player observes qtk for both k = 1, 2, and computes the payoff of playing
s ∈ {P,R} in location k, Π̄t+1(s, k), based on the strategy distribution of players in location k at
period t; that is,

Π̄t+1(s, k) ≡ Π(s, (qtk, 1− qtk)) = qtkΠ(s, P ) + (1− qtk)Π(s,R). (1)

Then, each player will choose a strategy that maximizes Π̄t+1(s, k), given the capacity and mobility
constraints.

More specifically, an individual who cannot relocate will choose a strategy st+1
i ∈ {P,R} in

period t+ 1 given his current location, such that

st+1
i ∈ argmax

s′i

Π̄t+1(s′i, k
t
i) (2)

where kti denotes individual i’s location in period t. An individual who can relocate will choose a
strategy st+1

i and a location kt+1
i , such that

(st+1
i , kt+1

i ) ∈ arg max
(s′i,k

′
i)
Π̄t+1(s′i, k

′
i). (3)

If several choices give a player maximum payoff, he will play each of them with a positive proba-
bility.

There are two alternative interpretations for the payoff function Π̄t+1. The first is that, as
assumed in Anwar (2002) and Ely (2002), players are randomly matched within each location in
each period to play the coordination game. The behavior updating rule described above corre-
sponds to myopic best reply to the state; that is, players maximize the expected payoff given the
strategy distribution of each location in the last period, subject to capacity and mobility con-
straints. When computing the best response to the state in the other location, this approach is
equivalent to standard myopic best reply; that is, a player will choose a strategy to maximize
the expected payoff, given the strategies played by all the remaining players in the last period.
However, when computing the best response to the state in the current location, this approach
differ from standard myopic best reply, in that the player counts himself in the last period as an
opponent. For large populations, this corresponds to Oechssler’s (1997) best response for large
population. That is, if the population is large enough, it is innocuous for an individual to include
himself in the strategy profile of the opponents when he computes his expected payoff, since the
strategy of one player almost has no effect on the strategy distribution of large population. For
small population, though, this kind of behavior can differ from myopic best reply, as the individual
ignores the fact that changing his strategy also changes the population proportions at his location.

The second interpretation is that players repeatedly interact with all the other players within
the same location (round-robin tournament), as in Kandori, Mailath, and Rob (1993) and Alós-
Ferrer (2008). The behavior updating rule above can be interpreted as maximizing the average
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payoff given the strategy distribution in each location in the last period, while each player includes
himself in the strategy profile of the opponents when computing the average payoff in the current
location.

2.2 Absorbing Sets

Let ω = (v1, v2, n1) represent a state of the dynamics described above, where vk denotes the
number of P -players in location k, for k = 1, 2, and nk denotes the total number of players in
location k. Hence, the state space is

Ω = {(v1, v2, n1)|v1 ∈ {0, 1, . . . , n1}, v2 ∈ {0, 1, . . . , 2N − n1}, n1 ∈ {2N − ⌊d2N⌋, . . . , ⌊d1N⌋}}.

Denote

q1(ω) =

{

v1
n1
, if n1 > 0

0, otherwise
and q2(ω) =

{

v2
2N−n1

, if n1 < 2N

0, otherwise
(4)

We can equivalently rewrite a state as ω = (q1, q2, n1). The stochastic dynamics above gives rise
to a Markov process, whose transition matrix is given by P = [P (ω, ω′)]ω,ω′∈Ω. An absorbing set
is a minimal subset of states such that, once the process reaches it, it never leaves.

Lemma 1. The absorbing sets of the unperturbed process above depend on dk for k = 1, 2 as
follows.

(a) If dk < 2 for both k = 1, 2, there are four absorbing sets: Ω(PR), Ω(RP ), Ω(RR) and
Ω(PP ).

(b) If d1 = 2 and d2 < 2, there are three absorbing sets: Ω(RO), Ω(PO), and Ω(RP ). Similarly,
if d2 = 2 and d1 < 2, the absorbing sets are: Ω(OR), Ω(OP ) and Ω(PR).

(c) If d1 = d2 = 2, there are four absorbing sets: Ω(RO), Ω(OR), Ω(PO) and Ω(OP ).

where Ω(PR) = {(1, 0,M1)}, Ω(RP ) = {(0, 1,m1)}, Ω(RR) = {(0, 0, n1)| n1 ∈ {m1, . . . ,M1}},
Ω(PP ) = {(1, 1, n1)|n1 ∈ {m1, . . . ,M1}}, Ω(RO) = {(0, 0, 2N)}, Ω(PO) = {(1, 0, 2N)}, Ω(OR) =
{(0, 0, 0)}, and Ω(OP ) = {(0, 1, 0)}.

Following a standard approach, we introduce mutations in this Markov dynamics. We as-
sume that, in each period, with an independent and identical probability ε, each agent randomly
chooses a strategy and a location if possible. The perturbed Markov dynamics is ergodic, i.e.
there is a unique invariant distribution µ(ε). We want to consider small perturbations. It is a
well-established result that µ∗ = limε→0 µ(ε) exists and is an invariant distribution of the unper-
turbed process P . It describes the time average spent in each state when the original dynamics is
slightly perturbed and time goes to infinity. The states in its support, {ω|µ∗(ω) > 0}, are called
stochastically stable states or long-run equilibria (LRE).

The standard approach to finding the LRE in the literature of learning in games relies on the
graph-theoretical techniques developed by Freidlin and Wentzell (1988) and applied by Foster and
Young (1990), Kandori, Mailath, and Rob (1993), Vega-Redondo (1997), etc. Here we briefly
summarize the approach in order to clarify the notation and results we rely on.

Denote by AbsΩ the collection of absorbing sets. An Ω̃-tree, h, for any absorbing set Ω̃ ∈ AbsΩ
defines a set of ordered pairs (Ω′ → Ω′′),Ω′,Ω′′ ∈ AbsΩ, such that: (1) each absorbing set
Ω′ ∈ AbsΩ/{Ω̃} is the first element of only one pair; (2) for each Ω′ ∈ AbsΩ/{Ω̃}, there exists a
path connecting Ω′ with Ω̃. The set of all Ω̃-trees is denoted as HΩ̃.

Let Ω′,Ω′′ ∈ AbsΩ. Denote by c(Ω′,Ω′′) the minimum number of mutations required for the
transition from Ω′ to Ω′′. The minimum cost of an Ω̃-tree, h, is denoted as

C(h) =
∑

(Ω′→Ω′′)∈h

c(Ω′,Ω′′). (5)
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Further, denote by C(Ω̃) the cost of absorbing set Ω̃; that is, the minimum cost among all the
trees with root Ω̃:

C(Ω̃) = min
h∈HΩ̃

C(h). (6)

It is a well-established result (see Kandori and Rob, 1995, for details) that the stochastically stable
states ω∗ are the elements in Ω∗ such that

Ω∗ ∈ arg min
Ω̃∈AbsΩ

C(Ω̃) (7)

That is, the elements in the absorbing set whose cost is the lowest among all the absorbing sets
are the LRE.

The reason for considering absorbing sets only is simple. The states which are excluded from
all absorbing sets are called transient. They represent the states that, with positive probability,
the dynamics will never move back to. Hence, by definition, for every transient state there exists
a mutation-free transition to some absorbing set. However, every transition from an absorbing set
to any transient state requires at least one mutation.

For small population size, the analysis of LRE runs into integer problems, which arise because
both the number of players in each location and the number of mutants involved in any considered
transition need to be integers. For this reason, the boundaries of the sets in the (d1, d2)-space
in which different LRE are selected are highly irregular. In the limit, these boundaries become
clear-cut, but, for a fixed population size, there is always a small area where long-run outcomes
are not clear. However, for large population size these boundary areas effectively vanish. In order
to tackle this difficulty, we introduce the following definition.

Definition 1. Ω̃ ⊆ Abs Ω is the LRE set for large N uniformly for the set of conditions {Jz(d1, d2)
> 0}Zz=1 if, for any η > 0, there exists an integer Nη such that for all N > Nη, Ω̃ is the set of
LRE for all (d1, d2) ∈ [0, 1]2 such that {Jz(d1, d2) > η}Zz=1.

In words, an LRE set for large population size is such that, given “ideal” boundaries described
by certain inequalities (which will be specified in each of our results below), for every point arbitrar-
ily close to the boundaries, there exists a minimal population size such that the LRE corresponds
to the given set. Further, the definition incorporates a uniform convergence requirement, in the
sense that the minimal population size depends only on the distance to the ideal boundaries, and
not on the individual point. This uniform convergence property is important in order to be able
to analyze the game among social planners in stage 1.

3 The symmetric case with exogenous policies: Anwar (2002)
revisited

Before identifying the LRE of the learning dynamics described in Section 2, this section revisits
Anwar’s (2002) model to solve two problems involved in the analysis there. The first one refers to
the integer problem mentioned above. The second problem is more conceptual. For the transition
between two specific absorbing sets, it is possible to find another transition procedure which
requires less mutants than the one considered in Anwar (2002). We solve these problems and
provide the complete result.

3.1 The Corrected Results

The model in Anwar (2002) is a particular case of the model described in Section 2, where d1 =
d2 = d, 0 < pk < 1 and 1 < ck < 2 for k = 1, 2. Hence, the effective maximum capacity
in each location is M ≡ ⌊dN⌋ and the minimum number of players in each location is m ≡
2N −M = 2N − ⌊dN⌋, with d = min{c, 2 − p}. Additionally, mutations occur in such a way
that with probability ε each player randomly chooses a strategy within the current location. That
is, mutants only randomize strategies, not locations. However, according to Remark 1, in this
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specific case, both forms of mutations will lead to the same result, since the most efficient means
of mutations is always to change strategies only.

Lemma 2. The unperturbed dynamics has four absorbing sets. They are: Ω(PR) = {(1, 0, M)},
Ω(RP ) = {(0, 1,m)}, Ω(RR) = {(0, 0, n1)|n1 ∈ {m, . . . ,M}} and Ω(PP ) = {(1, 1, n1)|n1 ∈
{m, . . . ,M}}.

To identify the LRE, we use the approach introduced in Section 2. Anwar (2002, Lemma 1)
shows that, because the location model is symmetric, when constructing minimum-cost transition
trees, it is enough to consider only three absorbing sets, ignoring either Ω(PR) or Ω(RP ). If
Ω(PR) is the LRE, so is Ω(RP ). Without loss of generality, we ignore Ω(RP ) from now on. We
first consider the case where M = 2N − 1, and hence m = 1. To achieve the transition from
Ω(PR) to Ω(PP ), only one mutant is required, which is the same as that required for the reverse
transition. Hence, if Ω(PR) is selected in the lung run, so is Ω(PP ).

Proposition 1. If M = 2N − 1, the LRE are the elements in Ω(PP ), Ω(PR) and Ω(RP ).

Proposition 1 says that, if the capacity of each location is large enough, so that all residents
but one can be accommodated, then, efficient coordination will prevail globally in the long run,
which contradicts the prediction in Anwar (2002).

Then, we consider the case where M < 2N − 1. Appendix II shows the minimum-cost tran-
sitions. A remarkable finding is that there are two possible minimum-cost transition procedures
from Ω(PR) to Ω(RR). The first transition procedure (TP1) is to have

c1 = ⌈M(1− q∗)⌉ (8)

simultaneous mutants in location 1, so that the best reply for players in location 1 is to play
R. The basic idea of the second transition procedure (TP2) is to first move as many as possible
P -players from location 1 to location 2 and let them play R, and then change the strategy of the
remaining P -players in location 1, if any. We find that, if q∗ ≥ q̂, TP2 cannot give rise to less
mutants than TP1. However, if q∗ < q̂, the transition cost through TP2,

c2 = ⌈M(1− q̂)⌉+ ⌈m(1− q∗)⌉, (9)

may be less than that of TP1.
Hence, we discuss two cases. We first consider the case where h ≥ r. Because q∗ ≥ q̂,

Ω(PR) → Ω(RR) must have the minimum cost through TP1. Then we consider the case where
h < r. Since q∗ < q̂, the minimum-cost transition of Ω(PR)→ Ω(RR) depends on the relationship
between c1 and c2. We are going to show that, the elements in Ω(PP ) are the LRE within certain
parameter configurations in both cases. When N is large enough, our result for case 1 is consistent
with Anwar (2002). In case 2, we obtain a different prediction. If the payoff of the risk-dominant
equilibrium is large enough, even for a large enough N , Ω(RR) is the LRE in a larger parameter
region than that claimed in Anwar (2002).

3.1.1 Case 1: h ≥ r

Based on the analysis in Appendix II, if h ≥ r and M < 2N − 1, the minimum-cost transition
tree of each absorbing set is the same as that in Anwar (2002). Particularly, TP1 leads to the
minimum-cost transition from Ω(PR) to Ω(RR), simply because q∗ > q̂. However, the costs may
be different from those in Anwar (2002), because the number of the players in each location and the
number of mutants required for each transition have to be integers. For this reason, the minimum
cost of the Ω(PR)-tree may be the same as that of the Ω(PP )-tree, which is ignored in Anwar
(2002). Table 2 shows the minimum-cost transition tree for each absorbing set.

Using the table above, one can easily derive the conditions supporting the selection of different
LRE. In particular, one can immediately see that C(Ω(PP )) is weakly larger than C(Ω(PR)).
When the two costs are equal, it is possible to select the elements in Ω(PP ) as the LRE.
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Ω(RR) Ω(PR) Ω(PP )

minimum-cost tree Ω(RR) ← Ω(PR)← Ω(PP ) Ω(RR)→ Ω(PR)← Ω(PP ) Ω(RR) → Ω(PR)→ Ω(PP )

C(Ω̃) ⌈M(1 − q∗)⌉ + ⌈m(1 − q∗)⌉ ⌈mq∗⌉+ ⌈m(1 − q∗)⌉ 2⌈mq∗⌉

Table 2: The minimum-cost transitions for each class

Proposition 2. Let c1 be given in (8). For h ≥ r and M < 2N − 1, the elements in Ω(PP ) are
LRE if and only if

⌈m(1− q∗)⌉ = ⌈mq∗⌉ ≤ c1.

Example 1. Consider the following coordination game.

P R
P 17, 17 0, 10
R 10, 0 8, 8

The global population is 2N = 40. The probability of playing P in the mixed-strategy Nash
equilibrium is q∗ = 8

15 . Let d = 1.75, then the effective capacity in one location is dN = 35.
Since d > 2q∗, Anwar (2002) predicts that only the elements in Ω(PR) and Ω(RP ) will be
selected in the long run. However, a straightforward computation shows that C(Ω(RR)) = 20 and
C(Ω(PR)) = C(Ω(PP )) = 6. Hence, the elements in Ω(PP ) will also be selected in the long run.

The integer problem above will be smoothed as N becomes large enough. The reason is that
when N goes to infinity, C(Ω(PR)) = C(Ω(PP )) if and only if d = 2. Hence, for a large enough
N , it is very unlikely that the elements in Ω(PP ) will be selected for d < 2. We use Definition 1
and provide the following proposition.

Proposition 3. Let h ≥ r.

(a) Ω(RR) is the LRE set for large N uniformly for d < 2q∗; and

(b) Ω(PR) ∪ Ω(RP ) is the LRE set for large N uniformly for d > 2q∗.

3.1.2 Case 2: h < r

If h < r, then q∗ < q̂. The minimum-cost transition from Ω(PR) to Ω(RR) depends on whether
or not c1 > (≤)c2. If c1 ≤ c2, we have the same transition cost as in Case 1. If c1 > c2,
C(Ω(RR)) = c2 + ⌈m(1 − q∗)⌉. The minimum transition costs for the other absorbing sets are
still the same. The integer problem is independent of the relationship between h and r. As long
as C(Ω(PR)) = C(Ω(PP )) < C(Ω(RR)), the elements in Ω(PP ) will be the LRE.

Proposition 4. Let c1 and c2 be given in (8) and (9) respectively. For h < r and M < 2N − 1,
the elements in Ω(PP ) are LRE if and only if

⌈m(1− q∗)⌉ = ⌈mq∗⌉ ≤ min(c1, c2).

However, the prediction about the long-run equilibria may change even if we disentangle the
integer problem by assuming a large enough N . Since it is possible to have a smaller cost for
Ω(RR)-tree, the intuition would suggest that, when c2 < c1, the elements in Ω(RR) is more likely
to be the LRE.

Proposition 5. Let h < r. Denote q̄ = 1/q∗ − 2 + 2q∗ and d̃ = 2(2q∗−1)
2q∗−q̂

. For q̂ > q̄,

(a) Ω(RR) is the LRE set for large N uniformly for d < d̃; and

(b) Ω(PR) ∪ Ω(RP ) is the LRE set for large N uniformly for d > d̃.
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For q̂ ≤ q̄, the result is the same as in Proposition 3.

Note that, if q̂ > q̄, then d̃ > 2q∗. That is, if q̂ is relatively large, indicating a high payoff of
the risk-dominant equilibrium, coordination on the risk-dominant equilibrium will spread globally
in the long run even if d > 2q∗, which is in contrast with the prediction in Anwar (2002). We
illustrate it with the following example.

Example 2. Consider the following 2× 2 coordination game.

P R
P 10, 10 0, 4
R 4, 0 9, 9

The global population is assumed to be 2N = 200 and the maximum population in one location
is dN = 125, i.e. d = 1.25 > 2q∗ = 1.2. Since d > 2q∗, Anwar (2002) predicts that the elements
in Ω(PR) and Ω(RP ) are the LRE. It is easy to see that q̂ = 9/10 > q∗ = 0.6. Because
c1 = 50 > c2 = 43, TP2 leads to the minimum cost for the transition from Ω(PR) to Ω(RR). A
straightforward computation shows that C(Ω(RR)) = 73 < C(Ω(PR)) = 75, so the elements in
Ω(RR) will be selected in the long run even though d > 2q∗.

3.2 When is the result in Anwar(2002) true?

The analysis above shows that the result in Anwar (2002) is incomplete. First, globally efficient
coordination can be selected in the long run, in contrast to the main result of Anwar (2002).
Second, if the payoff of the risk-dominant equilibrium is close to that of the Pareto-efficient equi-
librium (i.e. q̂ is large enough), the elements in Ω(RR) will be selected in a larger parameter region
than that given in Anwar (2002). Based on Propositions 3 and 5, it is straightforward to provide
a condition under which the result is consistent with Anwar (2002).

Corollary 1. Let h > r or q̂ ≤ q̄.

(a) Ω(RR) is the LRE set for large N uniformly for d < d∗; and

(b) Ω(PR) ∪ Ω(RP ) is the LRE set for large N uniformly for d > d∗.

Figure 1: The selection of LRE depends on d̃ in the shadowed area, and d∗ in the remaining area.

Let u = h−g
e−g

and v = r−g
e−g

. The coordination game in Table 1 can be normalized as following.
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P R
P 1, 1 0, u
R u, 0 v, v

Figure 1 shows the areas in the (u, v)-space, where different cut-off values of d are used to select
the LRE. In the shadowed area, the selection of the LRE depends on d̃, hence the predictions of
the model do not correspond to the claim in Anwar (2002). In the remaining area, the cut-off
value corresponds to d∗. The value of v in the shadowed area is close to 1, implying that the payoff
of the risk-dominant equilibrium is close to that of the Pareto-efficient equilibrium, which makes
the former one to be the LRE in a larger parameter region than that claimed in Anwar (2002).

4 The general model with endogenous policy-making

This section introduces the general two-stage model, where the social planners set capacity and
mobility constraints in stage 1, and the players repeatedly interact with each other within each
location in stage 2. We solve the model by backward induction. We first identify the LRE of
the learning dynamics in stage 2. The analysis in Section 3 shows that we should pay special
attention to the rounding problems and the multiplicity of transition procedures. We assume a
large enough N to overcome the first problem (more formally, we rely on the concept introduced
in Definition 1, and distinguish cases as before to solve the second one. After that, we investigate
the optimal choices of social planners, who can perfectly anticipate the LRE, by considering two
different objective functions. We identify the NE in both cases, and show that a slight difference
in the objective functions may change the NE of the social planner’s game dramatically.

4.1 Model setup

A total of 2N individuals are distributed in two different locations k ∈ {1, 2}, initially with N
players in each location. We assume that each location k has a rational social planner, and refer
to the planner in location k as planner k.

There are two stages in the model. Stage 1 is a static game between the two social planners.
The planners can neither relocate nor interact with the residents. Instead, to optimize certain
objective functions, they will choose a capacity constraint ck ∈ [1, 2] and a mobility constraint
pk ∈ [0, 1] for the location that they are staying in, such that ⌊ckN⌋ determines the maximum
capacity and ⌈pkN⌉ determines the number of immobile players in location k. Stage 2 of the
model consists of a discrete-time dynamics described in Section 2, given the policies determined
by the social planners in both locations.

4.2 Long-run Equilibria

To identify LRE, we still distinguish two cases, h ≥ r and h < r, because the minimum-cost
transition procedures may differ and that will lead to different predictions.

4.2.1 Case 1. h ≥ r

We construct minimum-cost transition tree for each absorbing set given in Lemma 1. Note that
we cannot ignore either Ω(PR) or Ω(RP ) as in Section 3. The reason is that social planners can
choose different constraints, so that Ω(PR) and Ω(RP ) are not symmetric.

As an example, we illustrate how to construct the minimum-cost transition trees for the case
where dk < 2 for both k = 1, 2. There are eight basic transition procedures, which are the
transitions between Ω(RR) and Ω(PR) (Ω(RP )), and the transitions between Ω(PP ) and Ω(PR)
(Ω(RP )). All these share the common property that the state has to be changed by mutations
in only one location. One can immediately see that no minimum-cost transition trees involves
a direct transition between Ω(PP ) and Ω(RR), or between Ω(PR) and Ω(RP ). These direct
transitions require mutations in both locations simultaneously. However, an indirect transition,
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for example, from Ω(PP ) through Ω(PR) (or Ω(RP )) to Ω(RR), only requires mutations in the
location with minimum population in each step, hence having a lower cost.

Ω(RR) → Ω(PR) Ω(RR) → Ω(RP ) Ω(PR)→ Ω(PP ) Ω(RP )→ Ω(PP )

⌈m1q
∗⌉ ⌈m2q

∗⌉ ⌈m2q
∗⌉ ⌈m1q

∗⌉

Ω(PP )→ Ω(PR) Ω(PP )→ Ω(RP ) Ω(PR)→ Ω(RR) Ω(RP )→ Ω(RR)

⌈m2(1− q∗)⌉ ⌈m1(1− q∗)⌉ ⌈M1(1 − q∗)⌉ ⌈M2(1 − q∗)⌉

Table 3: The minimum costs for the basic transitions in Case 1a

Appendix II shows that each of these basic transitions has a unique pattern of minimum-cost
transition procedure. We summarize them in Table 3. The minimum-cost basic transitions can
then be used to construct transition trees for each absorbing set, and compute the minimum cost
for each transition tree. The results are shown respectively in Tables 4 and 5 in Appendix III.
Then, we compare the minimum costs of different absorbing sets and identify the ones which have
the lowest cost.

The analyses for the other cases are similar and provided in Appendix III. We combine all the
cases and consider the situation where N is large enough. The condition of a large N smooths
the integer problems, and provides clear-cut predictions for the LRE in the main part of the
(d1, d2)-space.

Theorem 1. Let h ≥ r. Denote Ψ(dk) = 2− 1−q∗

q∗
dk for k = 1, 2.

(a) Ω(RR) is the LRE set for large N uniformly for d1 < Ψ(d2) and d2 < Ψ(d1);

(b) Ω(RP ) is the LRE set for large N uniformly for d1 > Ψ(d2) and d1 > d2; and

(c) Ω(PR) is the LRE set for large N uniformly for d2 > Ψ(d1) and d1 < d2.

Theorem 1 says that, for N large enough, in the main part of the (d1, d2)-space, only the
elements in three absorbing sets can be selected as stochastically stable. If the effective maximum
capacities of both locations are relatively small, the risk-dominant equilibrium will prevail globally.
However, if the effective capacity of one location is larger than that of the other, the players in the
larger location will coordinate on the risk-dominant equilibrium, while those in the smaller location
will coordinate on the Pareto-efficient equilibrium. Figure 2 provides a graphical illustration
of Theorem 1. Recalling Definition 1, the theorem says that for any point not on the interior
boundaries, there exists a minimal population size such that, for all larger population sizes, the
LRE correspond to the given set. For a fixed N , the LRE in the boundary area (illustrated by
the area within the dashed lines in Figure 2) may not be clear-cut. In Appendix IV, we show
the minimum set of absorbing sets that involves all the possible LRE in different subareas of the
boundary area.

4.2.2 Case 2. h < r

As analyzed in Appendix II, if h < r, the minimum-cost transitions from the absorbing sets with
co-existence of conventions to the the absorbing set with global coordination on the risk-dominant
equilibrium may be different from those when h ≥ r.

There are two candidates for minimum-cost transition procedures for each of the transitions
mentioned above. We have discussed them in the symmetric case in Section 3. Suppose k is the
location where individuals play P . The first candidate is to have a proportion of at least 1 − q∗

R-mutants in location k, which immediately moves the dynamics to global coordination on R. We
refer to this type of transition procedures as TP1. The cost of this transition procedure is

ck1 = ⌈Mk(1− q∗)⌉.
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d1

d2(1, 1)

2

2

Ω(RR)

Ω(PR)

Ω(RP )

Figure 2: A graphical illustration of the LRE for h ≥ r.

If k = 1, it refers to the cost for the transition Ω(PR)→ Ω(RR) through TP1. If k = 2, it refers
to the cost for Ω(RP )→ Ω(RR) through TP1.

Another candidate is to have at least a proportion of 1 − q̂ players in location k mutate to
R, so that myopic best response would suggest that all individuals who have an opportunity to
relocate would move to location ℓ 6= k and play R, and all the individuals who cannot relocate
would remain in location k and play P . Hence, another ⌈mk(1 − q∗)⌉ R-mutants are required in
location k to complete the transition. The cost of this transition procedure, denoted as TP2, is

ck2 = ⌈Mk(1− q̂)⌉+ ⌈mk(1 − q∗)⌉

Compare the two costs above for k = 1, 2, we have four conditions which divide the (d1, d2)-
space into four areas. These are the area where ck1 > ck2 for both k = 1, 2, the areas where c11 > c12
and c21 < c22 or vice versa, and the area where ck1 ≤ ck2 for both k = 1, 2. Clearly, in the last area,
all the results in the case h ≥ r hold. In the other three areas, one has to replace ck1 by ck2 in all
the minimum-cost transition trees whenever ck1 > ck2 , compare the minimum transition costs for
different absorbing sets, and then identify the LRE. We find that the prediction of LRE depends
on the value of q̂.

Theorem 2. Let h < r. Denote Υ(dk) = 2− 1−q̂
2q∗−1dk, for k = 1, 2. If q̂ > q̄,

(a) Ω(RR) is the LRE set for large N uniformly for d1 < Υ(d2) and d2 < Υ(d1);

(b) Ω(RP ) is the LRE set for large N uniformly for d1 > Υ(d2) and d1 > d2; and

(c) Ω(PR) is the LRE set for large N uniformly for d2 > Υ(d1) and d1 < d2.

If q̂ ≤ q̄, the result is the same as stated in Theorem 1.

Theorem 2 says that in the case where h < r, if q̂ is small, implying that the payoff of the
risk-dominant equilibrium is low, the prediction is the same as the case where h ≥ r. However,
if q̂ is large, i.e. the payoff of the risk-dominant equilibrium is close to that of the Pareto-efficient
equilibrium, then the transition towards Ω(RR) requires less mutants than in the case where h ≥ r.
Therefore, Ω(RR) is the LRE in a larger parameter region than in the case h > r. The latter
result is reflected by the fact that if q̂ > q̄, then Υ(dk) > Ψ(dk) for both k = 1, 2, dk ∈ [1, 2].
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4.3 Nash Equilibria in Stage 1

This subsection identifies the optimal policy chosen by the social planners. The social planners in
both locations are rational. They have perfect information about the learning dynamics, and can
accurately anticipate the long-run consequences affected by the capacity and mobility constraints
of both locations. Hence, given the knowledge of how these constraints will influence the long-run
consequences, each planner makes a one-shot decision on these constraints (ck, pk) ∈ [1, 2]× [0, 1]
of his own location to achieve the particular objective that he is pursuing.

It is often the case that governments or firm managers set policies to achieve specific long-term
goals. A government may implement a policy to stimulate the economy in order to, say, achieve
a GDP target within a given, fixed time frame. A firm manager may adopt a certain strategy to
achieve the goal of, for instance, becoming one of the top three firms in the industry over the course
of the next few years. Hence, as in Alós-Ferrer, Kirchsteiger, and Walzl (2010), it is reasonable
to focus on the planners’ payoffs associated with the limit invariant distribution of the learning
dynamics.

We consider two scenarios here. In the first one, the social planners are only concerned with
the expected payoff per person in their locations. We show that there is a set of Nash equilibria,
corresponding to either global coordination on the risk-dominant equilibria or the co-existence of
conventions in the long run. In the second scenario, we consider the possibility that the planners
also care about scale. In this case, the result is that the planners may completely restrict the
mobility of the residents, hence leading the dynamics to a profile where each location has the
identical number of players who coordinate on the risk-dominant equilibrium.

4.3.1 Planners only care about efficiency

We first consider the case that the social planners only care about efficiency in the long run. That
is, the social planners will maximize the average expected payoff in their respective locations in the
LRE. Let nk(ω) be the number of individuals in location k in state ω, and vk(ω) be the number
of P -players in location k in state ω. For any state ω = (v1, v2, n1), denote the expected/average
payoff5 of P -players and R-players in location k respectively as

πk(P, vk(ω), nk(ω)) =
vk(ω)− 1

nk(ω)− 1
Π(P, P ) +

nk(ω)− vk(ω)

nk(ω)− 1
Π(P,R)

πk(R, vk(ω), nk(ω)) =
vk(ω)

nk(ω)− 1
Π(R,P ) +

nk(ω)− vk(ω)− 1

nk(ω)
Π(R,R)

for nk(ω) > 1. Note that πk(P, 0, nk) and πk(R, nk, nk) are not defined for any nk. If there is only
one player in a location, then the player cannot find a partner to play the game, and we assume
that the payoff of this player is zero; that is, πk(P, 1, 1) = πk(R, 0, 1) = 0.6

Then, the average of the expected/average payoff for location k in state ω is

πk(ω) =
vk(ω)

nk(ω)
πk(P, vk(ω), nk(ω)) +

nk(ω)− vk(ω)

nk(ω)
πk(R, vk(ω), nk(ω)) (10)

for k = 1, 2, if nk(ω) > 0. It is natural to assume that, if a location k is empty, then its social
welfare is zero; that is, if nk(ω) = 0, then πk(ω) = 0.

The limit invariant distribution µ∗ is a function of the capacity and mobility constraints.
Hence, we have µ∗((c1, p1), (c2, p2)) ∈ Σ(Ω), where Σ(Ω) is the set of probability distributions
over Ω. Then, we can define the long-run social welfare function of location k = 1, 2 as

WE
k ((c1, p1), (c2, p2)) =

∑

ω∈Ω

µ∗((c1, p1), (c2, p2))(ω)πk(ω), (11)

5If players are randomly matched, it refers to the expected payoff. If players have round-robin tournament, it
refers to the average payoff.

6Alternatively, as in Ely (2002), we can assume that the loner will obtain some positive payoff that is smaller
than the payoff the risk-dominant equilibrium. We can also assume that if the loner plays P , his payoff is Π(P,P ),
and if he plays R, his payoff is Π(R,R). None of these assumptions will change the results in the following two
theorems.
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where µ∗((c1, p1), (c2, p2))(ω) is the probability of ω in the limit invariant distribution given (c1, p1)
and (c2, p2).

Theorem 3. Let the long-run social welfare function be given by (11). Denote d̃ = 2(2q∗−1)
2q∗−q̂

. Let

Ψ(dk) and Υ(dk) be as in Theorems 1 and 2. If h ≥ r or q̂ ≤ q̄,

(a-i) for any (d1, d2) such that d1 < 2q∗ or d2 < 2q∗ there exists an integer N̄ such that for all
N > N̄ , (d1, d2) corresponds to at least one NE, provided that d1 6= Ψ(d2) and d2 6= Ψ(d1);

(a-ii) for any (d1, d2) such that d1 > 2q∗ and d2 > 2q∗ there exists an integer N̄ such that for all
N > N̄ , there is no NE corresponding to (d1, d2).

If h < r and q̂ > q̄,

(b-i) for any (d1, d2) such that d1 < d̃ or d2 < d̃, there exists an integer N̄ such that for all
N > N̄ , (d1, d2) corresponds to at least one NE, provided that d1 6= Υ(d2) and d2 6= Υ(d1).

(b-ii) for any (d1, d2) such that d1 > d̃ and d2 > d̃, there exists an integer N̄ such that for all
N > N̄ , there is no NE corresponding to (d1, d2).

To maximize the average expected payoff in the respective locations, the optimal policies
chosen by the social planners, (ck, pk), k = 1, 2, will project on (d1, d2) stated in (a-i) or (b-i) in
the theorem so that either the states with the co-existence of conventions or those with global
coordination on the risk-dominant equilibrium will be the LRE. In these areas, for each location k,
decreasing dk can never increase the long-run social welfare; however, increasing dk may increase
the social welfare. The reason that the policy profiles projected on these areas are NE is that the
planner in location k cannot increase dk as he wishes, simply because dk = min{ck, 2 − pℓ}. As
long as ck > 2 − pℓ, the attempt to increase dk by increasing ck becomes ineffective. Hence, one
can always find a policy profile so that increasing ck cannot improve the long-run social welfare.

As to the LRE shaped by the policies, if the effective capacities (dk) for both locations in a
NE of the social planners’ game is small, individuals in both locations would coordinate on the
risk-dominant equilibrium in the long run. If the effective capacity of one location is small and
that of the other location is large, the individuals in the location with a small effective capacity
will coordinate on the Pareto-efficient equilibrium, while those in the location with a large effective
capacity will coordinate on the risk-dominant equilibrium. The latter result is interesting, since it
shows how two social planners with the same objective function in two initially identical locations
may choose different strategies and end up with different profiles in each location in the long run.
It also provides a novel explanation for a commonly observed phenomenon in everyday life: it is
easier to achieve efficient coordination in a small group than in a large one.

Another remarkable finding is that, having large effective capacities in both locations simulta-
neously is not stable. If such a situation were to occur, the LRE would be either the co-existence
of conventions or global coordination on the Pareto-efficient equilibrium. However, the planner
in the location with weakly lower social welfare would always have an incentive to decrease the
effective capacity of his location in order to have all the players in his location coordinating on
the Pareto-efficient equilibrium. The set of (d1, d2) profiles which does not correspond to any
Nash equilibrium covers two situations: the case there are no capacity and mobility constraints as
in Ely (2002); and the case where both locations have large and identical capacity and mobility
constraints as in Anwar (2002). The latter case leads to the co-existence of conventions in the long
run. Hence, with endogenous capacity and mobility constraints, it is not possible to select global
coordination on the Pareto-efficient equilibrium. Additionally, for N large enough, a symmetric
setting of capacity and mobility constraints is unstable if it leads to the co-existence of conventions
in the long run. Figure 3 illustrates the results in Theorem 3.

4.3.2 The planners care about scale

Now we assume that the planners are concerned with the total expected payoffs of the individuals
in their locations. In some situations, scale is an important concern. For example, a country with
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Figure 3: A graphical illustration of Theorem 3 for h ≥ r or q̂ ≤ q̄.

a large total GDP attracts more attention and plays a more important role in global economic
activities, even if the GDP per capita of this country is still low. A firm with a large scale has
more influence on its respective industry, although its performance may be less efficient. To reflect
this concern, we consider the following alternative long-run social welfare function for location
k = 1, 2:

WS
k ((c1, p1), (c2, p2)) =

∑

ω∈Ω

µ∗((c1, p1), (c2, p2))(ω)[αnk(ω)πk(ω) + (1− λ)πk(ω)], (12)

where λ ∈ (0, 1] models the intensity of planner k’s concern with the scale. If λ = 1, the social
planners will only care about the sum of the expected/average payoff of the players in the respective
locations. For any λ 6= 1, the social planners will care about both the sum and the average of the
expected/average payoffs for the players in the respective locations.

Theorem 4. Let the long-run social welfare function be given by (12), and d̃ be as in Theorem 3.
Then,

(a) d1 = d2 = 1 corresponds to at least one NE.

(b) For any (d1, d2) ∈ [1, 2]2 \ ({(1, 1)} ∪ {(2q∗, 2q∗)}), there exists an integer N̄ such that for
all N > N̄ , there is no NE corresponding to (d1, d2), if h ≥ r or q̂ ≤ q̄.

(c) For any (d1, d2) ∈ [1, 2]2 \ ({(1, 1)} ∪ {(d̃, d̃)}), there exists an integer N̄ such that for all
N > N̄ , there is no NE corresponding to (d1, d2), if h < r and q̂ > q̄.

This theorem says that, as long as N is large enough, the only point which will correspond to
a NE is (1, 1). The only possible exception may be the point (2q∗, 2q∗) for h ≥ r or q̂ ≤ q̄, or (d̃, d̃)
for h < r and q̂ > q̄. This point might correspond to a NE as well. However, whether or not it
corresponds to a NE crucially depends on the parameters of the model, and we cannot provide a
general result here.

The intuition for this result is in fact straightforward. For (d1, d2) which corresponds to the co-
existence of conventions in the long run, the planner in the location with less efficient coordination
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always has an incentive to decrease the effective capacity of his location to change the LRE to the
global coordination on the Pareto-efficient equilibrium. In such a way, the expected population
in this location will increase, hence, improving the social welfare. For (d1, d2) which leads to the
selection of the elements in Ω(RR) in the long run, being afraid of losing players, the planner in
location k = 1, 2 always has an incentive to increase the mobility constraint pk to restrict out-
migration. In the end, it reaches a state where no individuals can move out of his current location,
and they will coordinate on the risk-dominant equilibrium in both locations in the long run.

Note that the long-run social welfare function given by (11) is a particular case of that given
by (12) where λ = 0. The two theorems above show that for any λ 6= 0, the NE of the social
planners’ game is independent of λ. However, when λ = 0, the result changes dramatically.
Hence, the structure of the NE in the social planners’ game presents a property of discontinuity
as λ converges from one to zero. Put it differently, even if the planners are only slightly concerned
with the scale of the locations, this will destabilize the strategy profiles projected on the (d1, d2)-
space that are proven to be NE in the case where both social planners are only concerned with
efficiency, except for those projected on (1,1). Then, the NE will never change no matter how
much more weight is put on the sum of the expected/average payoffs.

5 Conclusion

Real-life examples and the literature of learning in games suggest that, in a socio-economic en-
vironment, policies interact with social conventions. The behavior of an individual is not only
regulated by personal behavioral rules, but also restricted by public policies; in turn, the aggre-
gate behavior of individuals in a society is a foremost concern when social planners design policies
to achieve certain objectives. However, the exact mechanism and effect of this interaction has yet
to be thoroughly investigated in a formal way. The intention of this paper is to explicitly model
rational policy-making in the context of learning in games.

Within a theoretical framework, this task involves endogenizing parameters reflecting policy
concerns. Hence, we introduce social planners into a dynamic model of location choice and let
them set these parameters. In reality, policy-makers, compared with common individuals, are usu-
ally much more far-sighted, have more access to information, and can use information efficiently
to achieve their objectives. To capture this fact, we assume that the policy-makers are rational,
while the common individuals are boundedly rational, which gives rise to a model of “asymmet-
ric rationality”. The policy-makers make decisions first, with perfect knowledge of the effect of
different policies on the future of the whole society, and the common individuals take the policy
as given and establish social conventions through a learning dynamics. To our knowledge, this
is one of the few works that explores the sequential interaction among individuals with different
rationality levels involving sequential play within the framework of stochastic learning in games.

Clearly, the objective of social planners has a significant effect on shaping social conventions.
In the context of our location model, we investigate two different objective functions. In the first
one, the efficiency of coordination in respective locations is the only concern of policy makers. In
this case, multiple NE exist, however, a set of symmetric policy arrangements exogenously given
in Ely (2002) and Anwar (2002) are not stable. The second objective function is concerned with
both scale and efficiency. An interesting finding is that, as long as the policy makers care about
scale, even if only a little, this will have the effect that most of the profiles of policy parameters
will be unstable. The planners may completely restrict the mobility of the residents and this
will lead to the coordination on the less efficient equilibrium in the long run. Hence, our work
puts to test the validity of the assumptions of policy constraints that have been considered in the
related literature, and also demonstrates how slight policy adjustments may dramatically change
the long-run outcomes.

There are many situations in social and economic activities where individuals with different
rationality levels interact with each other. Hence, in our opinion, further research should focus
on developing more realistic models to analyze such interactions in different contexts. A deeper
understanding of these issues will allow us to obtain better insights into the consequences of the
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interactions among heterogenous individuals. This paper takes a step forward by illustrating that
policies interact with social conventions in a nontrivial way, hence, it is necessary to explicitly
treat policy parameters and their optimality as important factors for the establishment of social
conventions in an organized society.

Appendix I. The absorbing sets of the unperturbed dynamics

Proof of Lemma 1. We show that all the sets listed in lemma 1 are absorbing, i.e. once they are
there, the dynamics will remain there forever, and all the other states are transient, i.e. there is
a positive probability that the dynamics will never move back to them. Suppose, in period t, the
dynamics reaches an arbitrary state ω. Let (k∗, s∗) be a myopic best reply to ω for the individuals
who can relocate. Hence, a myopic best reply for the individuals who are currently located in k∗

and cannot relocate is s∗. Denote s′ a myopic best reply to ω for those who are not in location
k∗ and cannot relocate. Then, with a positive probability, the individuals in location ℓ∗ 6= k∗ who
can relocate will move to location k∗ and play s∗, while those residing in location ℓ∗ who cannot
relocate will play s′. The players in location k∗ will remain there and play s∗. Hence, in t + 1,
individuals in location k∗ will coordinate on s∗, while those in location ℓ∗ will coordinate on s′.

Case I.1: dk < 2 for all k ∈ {1, 2}. If s∗ = s′, in t+2, all the players will play the same strategy
and randomly choose their locations if such an opportunity arises. This corresponds to the set
Ω(RR) or Ω(PP ). They are absorbing, because (R,R) and (P, P ) are strict Nash equilibria. Once
the dynamics reaches any one of the states in the set Ω(RR)(Ω(PP )), myopic best reply to the
previous state will always lead players to play R (P ), and randomize their location choices given
the capacity and mobility constraints.

If s∗ 6= s′, players in one location k ∈ {1, 2} must coordinate on P . Then, all the players in the
other location who have an opportunity to relocate will move to location k and play P until the
population in location k reaches Mk. This corresponds to Ω(PR) or Ω(RP ). Once there, myopic
best reply will lead all the P -players to stay in the current location and play P . The R-players
would have an incentive to move to the other location and play P , but are not allowed because of
the constraints. Hence, they will play R in their current location.

Case I.2: dk = 2 and dℓ < 2. If s∗ = s′, with positive probability, all the players will move to
location k and play s∗. Once there, the dynamics will remain there forever. This corresponds to
Ω(PO) or Ω(RO) for d1 = 2, or Ω(OP ) or Ω(OR) for d2 = 2. If s∗ 6= s′, individuals will coordinate
on P in one location, and R in the other location. If the individuals in location k coordinate on P ,
while those in location ℓ coordinate on R, all the players in location ℓ will move to k and play P .
If the individuals in location k coordinate on R, while those in location ℓ coordinate on P , all the
mobile players will move to location ℓ until it reaches its effective maximum capacity. Therefore,
the absorbing sets in this case are Ω(PO), Ω(RO) and Ω(RP ) for k = 1, and Ω(OP ), Ω(OR) and
Ω(PR) for k = 2.

Case I.3: d1 = d2 = 2. Similarly to Case I.2, if s∗ = s′, all the players will move to one
location and coordinate on s∗. If s∗ 6= s′, all the players will move to the location with P -players
and play P . Once there, the dynamics will stay there forever. Hence, the absorbing sets in this
case are Ω(RO), Ω(PO), Ω(OR) and Ω(OP ).

Proof of Lemma 2. If both locations have identical capacity and mobility constraints, we have
d1 = d2 = d. Clearly, all the corresponding arguments and results in the proof of Lemma 1 hold
for this particular case. Since d < 2 in Anwar (2002), the conclusion follows.

Appendix II. The basic minimum-cost transitions among the
absorbing sets

In Appendix II, we are going to systematically identify the minimum-cost transitions among all
the absorbing sets, and compute the corresponding costs.
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Case II.1: dk < 2 for both k = 1, 2. There are four absorbing sets Ω(PR), Ω(RP ), Ω(PP )
and Ω(RR).

Ω(PR)(Ω(RP )) → Ω(PP ). Consider Ω(PR) → Ω(PP ). In the set Ω(PR), the R-players
in location 2 would have an incentive to move to location 1 and play P , but are not allowed to
because of the capacity and mobility constraints. Hence, the only way to reach Ω(PP ) is to have
enough P -players in location 2 for the share of the P -players to be weakly larger than q∗. Then
it is not possible to complete the transition with less than ⌈m2q

∗⌉ mutants, because m2 is the
minimum population in location 2. Note that in state Ω(PR) the population in location 2 is
exactly m2. Hence, the minimum cost for this transition is ⌈m2q

∗⌉. Similarly, the minimum cost
for the transition from Ω(RP ) to Ω(PP ) is ⌈m1q

∗⌉.
Ω(PP ) → Ω(PR)(Ω(RP )). The argument is analogous to that for the transitions above.

Consider the transition from Ω(PP ) to Ω(PR). The only possibility to complete the transition is
to have enough R-players in location 2 for the share of the R-players to be weakly larger than 1−q∗.
No transition with less than ⌈m2(1 − q∗)⌉ R-mutants can be successful, because the minimum
population in location 2 is m2. In any state in the absorbing set Ω(PP ), n2 ∈ {m2, . . . ,M2}.
Hence, one can pick the state in Ω(PP ) such that the population in location 2 is exactly m2, and
then having ⌈m2(1 − q∗)⌉ R-mutants in location 2 leads to a successful transition. Similarly, for
the transition from Ω(PP ) to Ω(RP ), the minimum cost for the transition is ⌈m1(1− q∗)⌉.

Ω(RR) → Ω(PR)(Ω(RP )). A similar argument holds here. Consider the transition from
Ω(RR) to Ω(PR). The only possibility to complete the transition is to have enough P -players in
location 1 for the share of the P -players to be weakly larger than q∗. We claim that no transition
with less than ⌈m1q

∗⌉ mutants can be successful, since the minimum population in location 1 is
m1. In any state in the absorbing set Ω(RR), n1 ∈ {m1, . . . ,M1}. Hence, one can pick the state
in Ω(RR) such that the population in location 1 is exactly m1, then ⌈m1q

∗⌉ mutants can complete
the transition. Similarly, the minimum cost for the transition from Ω(RR) to Ω(RP ) is ⌈m2q

∗⌉
mutants.

Note that, if M1 = 2N − 1, then

c(Ω(PP ),Ω(PR)) = c(Ω(PR),Ω(PP )) = c(Ω(RR),Ω(RP )) = 1.

Analogously, if M2 = 2N − 1, then

c(Ω(PP ),Ω(RP )) = c(Ω(RP ),Ω(PP )) = c(Ω(RR),Ω(PR)) = 1.

Ω(PR)(Ω(RP )) → Ω(RR). Consider the transition from Ω(PR) to Ω(RR). The analysis is
similar for the transition from Ω(RP ) to Ω(RR). For a successful transition, the population share
of the R-players in location 1 has to be weakly larger than 1− q∗. Hence, no transition with less
than ⌈m1(1− q∗)⌉ mutants can be successful.

There are two ways to complete the transition. The first transition procedure (TP1) is to
have nP players directly moving from location 1 to 2 and play R, and then have R-mutants
in location 1, so that the population share of R-players in this location is weakly larger than
1 − q∗. This requires in total nP + ⌈(M1 − nP )(1 − q∗)⌉ mutants, which is minimized when
nP = 0. Hence, the minimum cost for the transition from Ω(PR) to Ω(RR) through TP1 is
c(Ω(PR),Ω(RR)|TP1) ≡ c11 = ⌈M1(1− q∗)⌉.

The second transition procedure (TP2) is to first move as many players as possible from location
1 to location 2 and let them play R, and then change the strategy of the remaining players in
location 1 to R. To achieve the first step, let nP players moving from location 1 to 2 and play R.
Meanwhile, let ⌈(M1−np)(1− q̂)⌉ mutations occur in location 1, so that the payoff of the P -players
in this location is weakly lower than that of R-players in location 2. As a result, all the mobile
players in location 1 will move to location 2 and play R. The number of mutations required for this
step is nP + ⌈(M1−nP )(1− q̂)⌉, which is minimized when nP = 0. That is, the minimum number
of mutations is ⌈M1(1 − q̂)⌉. Note that, if h ≥ r, then q∗ ≥ q̂ and ⌈M1(1 − q∗)⌉ ≤ ⌈M1(1 − q̂)⌉.
Hence, this transition cannot give rise to the minimum cost. Consider h < r. After step 1, the
population in location 1 is m1, and all the players play P . Hence, to complete the transition,
⌈m1(1 − q∗)⌉ further R-mutants are required. As a result, the total number of mutants required
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for the transition following TP2 is c(Ω(PR),Ω(RR)|TP2) ≡ c12 = ⌈M1(1 − q̂)⌉ + ⌈m1(1 − q∗)⌉.
Since q∗ < q̂, this cost may be the minimum. To summarize, c(Ω(PR),Ω(RR)) = c11, if h ≥ r,
and c(Ω(PR),Ω(RR)) = min{c11, c

1
2}, if h < r.

We now show that direct transitions from Ω(RR) to Ω(PP ) cost at least as much as indirect
transitions through Ω(PR) or Ω(RP ). A direct transition requires ⌈n1q

∗⌉ + ⌈n2q
∗⌉ ≥ ⌈2Nq∗⌉

mutants. The cost for the transition through, say, Ω(PR) is ⌈m1q
∗⌉ + ⌈m2q

∗⌉ ≤ ⌈2Nq∗⌉,
which is smaller than the direct transition. Hence, in any Ω(PP )-tree , c(Ω(RR),Ω(PP )) >
c(Ω(RR),Ω(PR))+c(Ω(PR),Ω(PP )). In any Ω(PR) or Ω(RP )-tree, c(Ω(RR),Ω(PP ))+ c(Ω(PP ),
Ω(PR) (Ω(RP ))) > c(Ω(RR), Ω(PR) (Ω(RP ))) +c(Ω(PP ), Ω(PR) (Ω(RP ))). Therefore, no
minimum-cost transition tree would involve a direct transition from Ω(PP ) to Ω(PR). A similar
argument holds for the reverse transition and the transition between Ω(PR) and Ω(RP ).

Remark 1. An important finding is that, in case II.1, the minimum-cost transitions share the
common characteristic that mutants change only their strategies, not their locations. Hence, in
Anwar (2002)’s model where dk < 2 for both k = 1, 2, the minimum-cost transitions, under the
assumption that mutants randomize their strategies in their current locations, are the same as
those under the assumption that mutants randomly choose their strategies and locations.

Case II.2: dk = 2 and dℓ < 2, k, ℓ ∈ {1, 2}, k 6= ℓ. Consider the case where k = 1 (the case for
k = 2 is symmetric). There are three absorbing sets in this case, Ω(RO), Ω(PO) and Ω(RP ).

Ω(RO) → Ω(RP ). One mutant is enough for the transition. Let one player move to location
2 and play P , then all the players in location 1 will move to location 2 and play P . Those who
cannot relocate will keep playing R in location 1.

Ω(RP ) → Ω(RO). To complete the transition, all the players in location 2 have to play R.
Hence, this case is the same as the transition from Ω(RP ) to Ω(RR) in Case II.1. The transition
costs are as computed there.

Ω(RP ) → Ω(PO). A successful transition requires all the players in location 1 to play P .
Hence, analogously to transition Ω(RP )→ Ω(PP ) in Case II.1, c(Ω(RP ),Ω(PO)) = ⌈m1q

∗⌉.
Ω(PO) → Ω(RP ). Note that no transition with less than ⌈m1(1 − q∗)⌉ mutants can be

successful. To complete the transition with ⌈m1(1 − q∗)⌉ mutants, the population in location 1
has to be at the minimum. However, without additional mutants, the population in location 1
cannot decrease. Hence, ⌈m1(1−q

∗)⌉ mutants are not enough to complete the transition. To reach
the minimum population size in location 1, only one mutant is needed. Let one mutant move to
location 2 and play P . With positive probability, the dynamics will move to a state in Ω(PP )
where the population in location 1 is m1. Then, let ⌈m1(1 − q∗)⌉ mutants play R in location 1;
the dynamics will move to Ω(RP ). Hence, c(Ω(PO),Ω(RP )) = 1 + ⌈m1(1− q∗)⌉.

Ω(PO)→ Ω(RO). For a successful transition, the population share of R players in location 1
has to be weakly larger than 1− q∗. Let nP be the number of P -players who move to location 2.
Then, the transition requires nP +⌈(2N−nP )(1−q∗)⌉ mutants, which is minimized when nP = 0.
Hence, c(Ω(PO),Ω(RO)) = ⌈2N(1− q∗)⌉.

Ω(RO)→ Ω(PO). A direct transition requires at least ⌈2Nq∗⌉ mutants. However, an indirect
transition through Ω(RP ) costs less. As argued above, c(Ω(RO),Ω(RP )) + c(Ω(RP ),Ω(PO)) =
1+⌈m1q

∗⌉. It is the minimum, because at least ⌈m1q
∗⌉ mutants are required for players in location

1 to coordinate on P . Furthermore, at least one mutant is required to decrease the number of
players in location 1 to m1.

Case II.3: dk = 2 for all k = 1, 2. There are four absorbing sets, Ω(RO), Ω(PO), Ω(OR) and
Ω(OP ).

Ω(RO)→ Ω(OP )(Ω(OR)→ Ω(PO)). One mutant is enough for this transition. Let one player
move to location 2 and play P . In the next period, this player will stay in location 2 and play P ,
and all the players in location 1 will move to location 2 and play P .

Ω(RO) ↔ Ω(OR)(Ω(PO) ↔ Ω(OP )). One mutant is enough to complete the transition.
Consider Ω(RO) → Ω(OR) first. Let one player move to location 2 and play R. In the next
period, with positive probability, all the players in location 1 will move to location 2 and play R,
and the single player in location 2 will stay there and play R, hence the dynamics reaches the
absorbing set Ω(OR). The same argument holds for the transition in the reverse direction and
the transition between Ω(PO) and Ω(OP ).
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Ω(PO) → Ω(RO)(Ω(OP ) → Ω(OR)). As explained in Case II.3, the minimum cost for this
transition is ⌈2N(1− q∗)⌉.

Ω(RO) → Ω(PO) (Ω(OR) → Ω(OP )). For a successful transition, the proportion of the P -
players in location 1 has to be at least q∗. Hence, a direct transition requires ⌈2Nq∗⌉ mutants.
Consider an indirect transition through Ω(OP ). As shown above, the transitions Ω(RO)→ Ω(OP )
and Ω(OP )→ Ω(PO) require one mutant respectively. Hence, the total cost is two. As long as N
is larger than 2, ⌈2Nq∗⌉ > 2. The same arguments hold for the transition from Ω(OR) to Ω(OP ).

Ω(OP )→ Ω(RO) (Ω(PO)→ Ω(OR)). A direct transition requires 2N mutants. Since as long
as there is at least one P -player in location 2, all the R-players will be attracted to location 2 and
play P . Consider an indirect transition through Ω(PO). Then the transition Ω(OP ) → Ω(PO)
requires one mutant, and the transition Ω(PO) → Ω(RO) entails ⌈2N(1 − q∗)⌉ mutants. Hence,
the cost for an indirect transition is smaller than that of a direct one.

Appendix III. Proofs for Section 3

We first prove the following technical lemmata to facilitate the remaining proofs. Let h, h′ be
transition trees rooted on some absorbing sets. Recalling the computations in Appendix II, in our
model, for any h, h′, the inequality C(h′) ≥ C(h) can be rewritten as

∑

{α′→β′}∈h

⌈fα′β′(⌊d1N⌋, ⌊d2N⌋)⌉ −
∑

{α→β}∈h

⌈fαβ(⌊d1N⌋, ⌊d2N⌋)⌉ ≥ 0, (13)

where fαβ : R2
+ → R+ takes the form fαβ(x1, x2) = aαβ1 x1 + aαβ2 x2 + bαβ1 N + bαβ2 for certain

aαβ1 , aαβ2 , bαβ1 and bαβ2 ∈ R for all α, β ∈ AbsΩ. Further, let

Fhh′(d1N, d2N) ≡
∑

{α′→β′}

fα′β′(d1N, d2N)−
∑

{α→β}

fαβ(d1N, d2N) = Ghh′(d1, d2)N + bhh
′

2 . (14)

Note that Ghh′(d1, d2) does not depend on N , and Fhh′(d1N, d2N) would be the same as the left
hand side of (13) if all rounding operators could be ignored.

Lemma 3. Let h, h′ be transition trees. If Ghh′(d1, d2) > 0, then there exists an integer N̄ such
that for all N > N̄ , C(h′) ≥ C(h).

Proof. The inequality (13) is equivalent to

Ghh′(d1, d2)N + bhh
′

2 +∆hh′ ≥ 0, (15)

where
∆hh′ =

∑

{α′→β′}∈h′

δα
′β′ −

∑

{α→β}∈h

δαβ , (16)

with

δαβ = ⌈fαβ(⌊d1N⌋, ⌊d2N⌋)⌉ − fαβ(⌊d1N⌋, ⌊d2N⌋)−
2

∑

k=1

aαβk (dkN − ⌊dkN⌋) (17)

for all α, β ∈ AbsΩ. Note that in (17), ⌈fαβ(⌊d1N⌋, ⌊d2N⌋)⌉− fαβ(⌊d1N⌋, ⌊d2N⌋) ∈ [0, 1[, dkN −

⌊dkN⌋ ∈ [0, 1[ and aαβk is fixed for all α, β ∈ AbsΩ and k = 1, 2. Hence δαβ is a bounded function

for all α, β ∈ AbsΩ. Therefore, according to (16), ∆hh′ is a bounded function, since AbsΩ is finite.
Further, note that (15) is equivalent to

Ghh′(d1, d2) +
bhh

′

2

N
+

∆hh′

N
≥ 0. (18)

Since ∆hh′ is a bounded function, and bhh
′

is a fixed parameter, whenN goes to infinity,
bhh′

2

N
+∆hh′

N

will converge to 0. Hence, if Ghh′ > 0 there exists an integer N̄ such that for all N > N̄ (18)
holds, which is equivalent to C(h′) ≥ C(h).
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Lemma 4. For any η > 0, there exists an integer Nη such that Ghh′(d1, d2) > η implies C(h′) >
C(h) for all N > Nη.

Proof. The statement follows from (18) and the fact that
bhh′

2

N
+ ∆hh′

N
→ 0 as N goes to infinity.

Proof of Proposition 1. According to the analysis in Case II.1, if M = 2N − 1, c(Ω(PP ),
Ω(PR)) = c(Ω(PR), Ω(PP )) = c(Ω(RR), Ω(PR)) = 1. Further, according to Lemma 1 in Anwar
(2002), when constructing transition trees in this symmetric case, one can ignore either Ω(PR) or
Ω(RP ). Without loss of generality, we ignore Ω(RP ) here. Consider the following Ω(PR)-tree:
Ω(RR)→ Ω(PR)← Ω(PP ). The cost of this transition tree is 2, which is the lowest possible for
a transition tree with three absorbing sets. By changing the direction of the arrow from Ω(PP )
to Ω(PR) we have a Ω(PP ) tree with the lowest possible cost 2. By the analysis in Appendix II,
no minimum-cost transition trees involve the transition between Ω(PP ) and Ω(RR). Hence, the
minimum-cost Ω(RR)-tree must be of the form Ω(PP ) → Ω(PR) → Ω(RR). Again, according
to the analysis in Appendix II, the transition from Ω(PP ) to Ω(PR) cannot be achieved with 1
mutant only, hence any Ω(RR)-tree has a cost strictly larger than 2. Therefore, the elements in
Ω(PP ), Ω(PR) and Ω(RP ) will be selected in the long run.

Proof of Proposition 2. The elements in Ω(PP ) will be selected in the long run if and only if
C(Ω(PP )) has the minimum cost among all the absorbing sets. The condition follows from Table
2.

Proof of Proposition 3. As in the proof of Proposition 1, we ignore Ω(RP ). Table 2 shows that
C(Ω(PP )) ≥ C(Ω(PR)) always holds, because q∗ > 1/2. Hence, Ω(RR) is the unique LRE if and
only if C(Ω(RR)) < C(Ω(PR)). Let h be a minimum-cost Ω(RR)-tree, and h′ be a minimum-cost
Ω(PR)-tree. Using Table 2, we obtain Fhh′(dN, dN) = 2Nq∗ − dN , hence Ghh′(d, d) reduces to
2q∗ − d (Note that in the symmetric case, d1 = d2 = d). By Lemma 4, for any η > 0, there
exists an integer Nη such that for all N > Nη, 2q

∗ − d > η implies C(Ω(PR)) > C(Ω(RR)). By
Definition 1, Ω(RR) is the LRE for large N uniformly for d < 2q∗.

Similarly, Ω(PR) is the unique LRE if (i) C(Ω(RR)) > C(Ω(PR) and (ii) C(Ω(PP )) >
C(Ω(PR). For condition (i), let h be a minimum-cost Ω(PR)-tree, and h′ be a minimum-cost
Ω(RR)-tree (h and h′ is reversed in this condition). Then Fhh′(dN, dN) = dN − 2Nq∗ and
Ghh′(d, d) = d − 2q∗. By Lemma 4, for any η > 0, there exists an integer Nη such that for all
N > Nη, d− 2q∗ > η implies C(Ω(RR) > C(Ω(PR)). For condition (ii), let h be a minimum-cost

Ω(PR)-tree, and h′ be a minimum-cost Ω(PP )-tree. Then Fhh′(dN, dN) = (2−d)(2q∗−1)N and
Ghh′(d, d) = (2 − d)(2q∗ − 1). By Lemma 4, for any η > 0, there exists an integer Nη such that
for all N > Nη, (2 − d)(2q∗ − 1) > η implies C(Ω(PP )) > C(Ω(PR)). By Definition 1, Ω(PR)
and Ω(RP ) is the LRE for large N uniformly for d − 2q∗ > 0 and (2 − d)(2q∗ − 1) > 0. Since
2q∗ − 1 > 0, the latter inequality is equivalent to d < 2.

Proof of Proposition 4. If c1 ≤ c2, TP1 has the minimum cost for the transition from Ω(PR) to
Ω(RR). Hence, the elements in Ω(PP ) will be selected if and only if C(Ω(PP )) ≤ C(Ω(PP )) and
C(Ω(PP )) ≤ C(Ω(RR)), which implies ⌈(2N−⌊dN⌋)(1−q∗)⌉ = ⌈(2N−⌊dN⌋)q∗⌉ ≤ c1. If c1 > c2,
TP2 has the minimum cost for the transition. The same argument indicates ⌈(2N − ⌊dN⌋)(1 −
q∗)⌉ = ⌈(2N − ⌊dN⌋)q∗⌉ ≤ c2. Combining the two cases gives the result in the statement.

Proof of Proposition 5. Let C(Ω(RR)|TP1) be the cost of Ω(RR) through TP1, and C(Ω(RR)
|TP2) be that of Ω(RR) through TP2.

Ω(RR) will be selected if either (i) C(Ω(RR)|TP1) ≤ C(Ω(PR)) or (ii) C(Ω(RR)|TP2) ≤
C(Ω(PR)). For condition (i), as analyzed in Proof of Proposition 3, Ghh′(d, d) = 2q∗ − d. By
Lemma 4, for any η > 0, there exists an integer Nη such that for all N > Nη, 2q

∗ − d > η implies
C(Ω(RR)|TP1) > C(Ω(PR)). For condition (ii), let h be a Ω(RR)-tree with cost C(Ω(RR)|TP2),
and h′ be a minimum-cost Ω(PR)-tree. C(Ω(PR)) is given in table 2, and C(Ω(PP )|TP2) =
⌈⌊dN⌋(1 − q̂)⌉ + ⌈(2N − ⌊dN⌋)(1 − q∗)⌉. Then, Ghh′(d, d) = 2(2q∗ − 1) − d(2q∗ − q̂). Hence, for
any η > 0, there exists an integer Nη such that for all N > Nη, C(Ω(RR)|TP2) < C(Ω(PR) if
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2(2q∗ − 1)− d(2q∗ − q̂) > η. Denote d̃ ≡ 2(2q∗−1)
2q∗−q̂

. 2q∗ ≥ d̃ if and only if q̂ ≤ 1/q∗ − 2 + 2q∗ ≡ q̄.

Hence, by Definition 1, for q̂ ≤ q̄, Ω(RR) is the LRE for large N uniformly for d < 2q∗; for q̂ > q̄,
Ω(RR) is the LRE for large N uniformly for d < d̃.

Similarly, Ω(PR) will be the unique LRE if (i) C(Ω(PR)) < C(Ω(RR)|TP1), (ii) C(Ω(PR)) <
C(Ω(RR) |TP2), and (iii) C(Ω(PR)) < C(Ω(PP )). We use the same approach as above to derive
Ghh′ for each condition. For condition (i), Ghh′(d, d) = d−2q∗. Hence, by Lemma 4, for any η > 0,
there exists an integer Nη such that for all N > Nη, C(Ω(PR)) < C(Ω(RR)|TP1) if d− 2q∗ > η.

For condition (ii), Ghh′(d, d) = d(2q∗ − q̂)− 2(2q∗ − 1). By Lemma 4, for any η > 0, there exists
an integer Nη such that for all N > Nη, C(Ω(PR)) < C(Ω(RR)|TP2) if d− d̃ > η. For condition
(iii), as computed in Proof of Proposition 3, for any η > 0, there exists an integer Nη such that for

all N > Nη, C(Ω(PR)) < C(Ω(PP )) if 2− d > η. Again, 2q∗ ≥ d̃ if and only if q̂ ≤ q̄. Hence, by
Definition 1, for q̂ < q̄, Ω(PR) is the LRE for large N uniformly for d > 2q∗ and d < 2; for q̂ ≥ q̄,
Ω(PR) is the LRE for large N uniformly for d > d̃ and d < 2. Since Ω(RP )-tree is symmetric
with Ω(PR)-tree, Ω(RP ) will be selected if the same condition is fulfilled.

Appendix IV. Proofs for Section 4

Proof of Theorem 1. We apply the same approach in the proof of Proposition 3. Ignoring the
rounding operators, we compare C(h) with C(h′) to derive Ghh′(d1, d2) for each pair of h, h′. Then
we use Lemma 4 to obtain a sufficient condition for C(h′) > C(h).

d1

d2(1, 1)

2

2

Va(η)

Vb(η)

Vc(η)

Vd(η)

Ve(η)

A1(η)

A2(η)

A3(η)

Figure 4: An illustration of the vanishing areas for h ≥ r

For any η > 0, denote

A1(η) = {(d1, d2)|Ψ(d2)− d1 > η,Ψ(d1)− d2 > η}; (19)

A2(η) = {(d1, d2)|d1 −Ψ(d2) > η, d1 − d2 > η}; (20)

A3(η) = {(d1, d2)|d2 −Ψ(d1) > η, d2 − d1 > η}; (21)

V (η) = [1, 2]2 \ (A1(η) ∪ A2(η) ∪A3(η)). (22)

Note that V (η) is vanishing as η decreases: V (η) will shrink to the measure-zero set {(d1, d2)|d1 =
Ψ(d2) for d2 ∈ [1, 2q∗]}∪{(d1, d2)|d2 = Ψ(d1) for d1 ∈ [1, 2q∗]}∪{(d1, d2)|d1 = d2 for d2 ∈ [2q∗, 2]}
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as η → 0. Further, denote

Va(η) = V (η) ∩ {(d1, d2)|d1 − d2 > η,Ψ(d1)− d2 > η};

Vb(η) = V (η) ∩ {(d1, d2)|d2 − d1 > η,Ψ(d2)− d1 > η};

Vc(η) = {(d1, d2)|2 − d1 ≥ η, 2− d2 ≥ η};

Vd(η) = V (η) ∩ {(d1, d2)|d1 −Ψ(d2) > η, d2 −Ψ(d1) > η} \ Vc(η);

Ve(η) = V (η) \ (Va(η) ∪ Vb(η) ∪ Vc ∪ Vd(η)).

Figure 4 illustrates these subareas.
Case III.1: dk < 2, for both k = 1, 2. In this case, there are two singleton absorbing sets

and two non-singleton absorbing sets, and, for each of them, there are four candidates for the
minimum-cost transition trees. We show the transition trees and their costs in Tables 4 and 5.

Ω(RR)-tree Ω(PR)-tree

1 Ω(PR)→ Ω(PP )→ Ω(RP) → Ω(RR) Ω(RR)→ Ω(RP) → Ω(PP )→ Ω(PR)

2 Ω(PP) → Ω(PR)→ Ω(RR)← Ω(RP) Ω(PP) → Ω(PR)← Ω(RR)← Ω(RP)

3 Ω(PP) → Ω(RP )→ Ω(RR)← Ω(PR) Ω(PP) → Ω(RP )→ Ω(RR)← Ω(PR)

4 Ω(RP) → Ω(PP )→ Ω(PR) → Ω(RR) Ω(RP) → Ω(PP )→ Ω(PR)← Ω(RR)

Ω(RP )-tree Ω(PP )-tree

1 Ω(PR)→ Ω(PP )→ Ω(RP) ← Ω(RR) Ω(RR)→ Ω(RP) → Ω(PP )← Ω(PR)

2 Ω(PP) → Ω(PR)→ Ω(RR)→ Ω(RP) Ω(RP) → Ω(RR) → Ω(PR)→ Ω(PP)

3 Ω(PR)→ Ω(RR) → Ω(RP )← Ω(PP) Ω(PR)→ Ω(RR) → Ω(RP )→ Ω(PP)

4 Ω(RR)→ Ω(PR) → Ω(PP )→ Ω(RP) Ω(RR)→ Ω(PR) → Ω(PP )← Ω(RP)

Table 4: The minimum-cost transition trees in Case III.1.

Ω(RR) Ω(PR) Ω(RP ) Ω(PP )

1

⌈m1(1 − q∗)⌉

+⌈m2q∗⌉

+⌈M2(1 − q∗)⌉

⌈m2q∗⌉

+⌈m1q
∗⌉

+⌈m2(1 − q∗)⌉

2⌈m2q∗⌉

+⌈m1(1 − q∗)⌉

2⌈m2q∗⌉

+⌈m1q∗⌉

2

⌈m2(1 − q∗)⌋

+⌈M1(1 − q∗)⌉

+⌈M2(1 − q∗)⌉

⌈m2(1 − q∗)⌉

+⌈M2(1 − q∗)⌉

+⌈m1q
∗⌉

⌈m2q∗⌉

+⌈M1(1 − q∗)⌉

+⌈m2(1 − q∗)⌉

⌈M2(1 − q∗)⌉

+⌈m1q∗⌉

+⌈m2q∗⌉

3

⌈m1(1 − q∗)⌉

+⌈M1(1 − q∗)⌉

+⌈M2(1 − q∗)⌉

⌈m1(1 − q∗)⌉

+⌈M2(1 − q∗)⌉

+⌈m1q
∗⌉

⌈M1(1 − q∗)⌉

+⌈m2q
∗⌉

+⌈m1(1 − q∗)⌉

⌈M1(1 − q∗)⌉

+⌈m2q∗⌉

+⌈m1q∗⌉

4

⌈m2(1 − q∗)⌉

+⌈M1(1 − q∗)⌉

+⌈m1q∗⌉

2⌈m1q∗⌉

+⌈m2(1 − q∗)⌉

⌈m1q∗⌉

+⌈m2q
∗⌉

+⌈m1(1 − q∗)⌉

2⌈m1q∗⌉

+⌈m2q∗⌉

Table 5: The costs for the minimum-cost transition trees in Case III.1.

Let hκ(φ) be the trees given in Table 4, κ = 1, 2, 3, 4 and φ ∈ {RR,PR,RP, PP}. For each
class of hκ(φ)-trees, one can conduct pairwise comparison for the costs of all candidates and
derive Ghh′(d1, d2) respectively. Omitting the computation details, we list the sufficient condition
for each candidate to have minimum cost. For each φ ∈ Φ, for any η > 0, there exists an integer
Nη such that for all N > Nη, (i) h1(φ)-tree has minimum cost if (d1, d2) ∈ A2(η) ∩ [1, 2[2; (ii)
h2(φ)-tree has minimum cost if (d1, d2) ∈ A1(η) ∩ {(d1, d2)|d1 ≥ d2 + η}; (iii) h3(φ)-tree has
minimum cost if (d1, d2) ∈ A1(η) ∩ {(d1, d2)|d1 ≤ d2 − η}; (iv) h4(φ)-tree has minimum cost if
(d1, d2) ∈ A3(η) ∩ [1, 2[2; (v) either h1(φ) or h2(φ) has the minimum cost if (d1, d2) ∈ Va(η);
further, (vi) either h2(φ) or h3(φ) has the minimum cost if d2 − η < d1 < d2 + η, d1 ≤ Ψ(d2)− η
and d2 ≤ Ψ(d1) − η; (vii) either h3(φ) or h4(φ) has the minimum cost if (d1, d2) ∈ Vb(η); (viii)
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either h1(φ) or h4(φ) has the minimum cost if (d1, d2) ∈ (Vc(η) ∪ Vd(η)), (viiii) hκ(φ) has the
minimum cost for either one of ξ ∈ {1, 2, 3, 4} in Ve(η).

Fix η > 0. For each κ ∈ {1, 2, 3, 4}, we compare the minimum costs among the hκ(φ)-trees for
all φ ∈ Φ. The elements in the absorbing sets which have the lowest cost among the minimum costs
of hκ(φ)-trees will be selected. A straightforward computation shows that, following Definition
1, Ω(RP ) is the LRE for large N uniformly for d1 > Ψ(d2) and d1 > d2; Ω(RR) is the LRE for
large N uniformly for d1 < Ψ(d2) and d1 < Ψ(d1); Ω(PR) is the LRE for large N uniformly for
d2 > Ψ(d1) and d1 < d2.

Furthermore, in the area Va(η), the LRE set forms a subset of Ω(RP ) ∪ Ω(RR); in the area
Vb(η), the LRE set forms a subset of Ω(RR)∪Ω(PR); in the area Vd(η), the LRE set forms a subset
of Ω(RP ) ∪ Ω(PR); and in the area Vc(η), the LRE forms a subset of Ω(RP ) ∪ Ω(PR) ∪ Ω(PP ).

Case III.2: dk = 2 and dℓ < 2, for k, ℓ = 1, 2 and k 6= ℓ. Based on the analysis in Appendix
II, we construct the minimum-cost transition trees for all the absorbing sets and show their costs
in Table 6.

k = 1 Ω(RO) → Ω(RP )→ Ω(PO) Ω(RO) → Ω(RP) ← Ω(PO) Ω(PO) → Ω(RO) ← Ω(RP )

C(·) 1 + ⌈m1q∗⌉ 1 + ⌈m1(1 − q∗)⌉ ⌈2N(1− q∗)⌉ + ⌈M2(1 − q∗)⌉

k = 2 Ω(OR) → Ω(PR)→ Ω(OP ) Ω(OR) → Ω(PR)← Ω(OP ) Ω(OP ) → Ω(OR) ← Ω(PR)

C(·) 1 + ⌈m2q∗⌉ 1 + ⌈m2(1 − q∗)⌉ ⌈2N(1− q∗)⌉ + ⌈M1(1 − q∗)⌉

Table 6: The minimum-cost transition trees and their costs in Case III.2.

Consider the case where k = 1 first. There are three absorbing sets, Ω(PO), Ω(RO) and
Ω(RP ). Using Table 6, a straightforward comparison shows that C(Ω(RO)) > C(Ω(RP )) and
C(Ω(RO)) > C(Ω(PO)) if ⌈2N(1 − q∗)⌉ > 1. Hence, if N is large enough, Ω(RO) can never be
selected. Now consider the condition C(Ω(RP )) < C(Ω(PO)). Let h be the minimum-cost Ω(RP )-
tree, and h′ be the minimum-cost Ω(PO)-tree. Then, Ghh′ = (2 − d2)(2q

∗ − 1). By Corollary 4,
for any η > 0, there exists an integer Nη such that for all N > Nη, C(Ω(RP )) < C(Ω(PO)) if

Ghh′ = (2 − d2)(2q
∗ − 1) ≥ η. This condition can be rearranged as d2 ≤ 2 − η

2q∗−1 . Denoting

η′ = η
2q∗−1 and renaming η′ = η, we have d2 ≤ 2− η. Hence, for any η > 0, there exists an integer

Nη such that for all N > Nη, Ω(RP ) will be selected if d2 ≤ 2− η; the elements in either Ω(RP )
or Ω(PO) will be selected if d2 > 2− η.

The same argument holds for the case where k = 2. Hence, for any η > 0, there exists an
integer Nη, such that for all N > Nη, Ω(PR) is the unique LRE if d1 ≤ 2 − η; the elements in
Ω(PR) or Ω(OP ) will be selected if d1 > 2− η.

Hence, for d1 = 2 and d2 < 2, Ω(RP ) is the LRE for large N uniformly for d2 < 2; for d2 = 2
and d1 < 2, Ω(PR) is the LRE for large N uniformly for d1 < 2. In area Vc(η), the LRE set forms
a subset of Ω(PR) ∪ Ω(OP ) ∪ Ω(PO) ∪ Ω(RP ).

Case III.3: d1 = d2 = 2. There are four absorbing sets, Ω(RO), Ω(PO), Ω(OR) and Ω(OP ).
Appendix II exhibits that the transitions between Ω(PO) and Ω(OP ) (in both directions) only
need one mutant, just as in the transitions between Ω(RO) and Ω(OR). The transition from
Ω(OR)(Ω(RO)) to Ω(PO)(Ω(OP )) only requires one mutant. Consider the following Ω(PO)-tree.

Ω(RO)→ Ω(OR)→ Ω(PO)← Ω(OP )

It is easy to see that the minimum cost of this transition tree is 3. For a transition tree with four
absorbing sets, it must be the minimum cost. Hence, the element in Ω(PO) is a LRE. Since the
transition from Ω(PO) to Ω(OP ) needs only one mutant, one can build an Ω(OP )-tree simply
by reversing the direction of the arrow between Ω(OP ) and Ω(PO) in the Ω(PO)-tree above.
Therefore, the minimum cost of this Ω(OP )-tree is also 3. Hence, the element in Ω(OP ) is a LRE
as well.

Nevertheless, if N is large enough, it is not possible to complete the transition from either
Ω(PO) or Ω(OP ) to either Ω(RO) or Ω(OR) by one mutant. Hence, the minimum cost of any
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Ω(RO)- or Ω(OR)-tree must be larger than 3. Therefore, for N large enough, neither the element
in Ω(RO) nor that in Ω(OR) is a LRE.

Consider all the three cases above together. For any η > 0, there exists an integer N ′
η, which

is the maximum of all the Nη required in all the cases above, such that when N > N ′
η, all the

results above hold simultaneously. By Definition 1, we have the statement in the theorem.

Corollary 2. Let h ≥ r. For any η > 0, there exists an integer N̄ , such that for all N > N̄ , if
(d1, d2) ∈ V (η), the LRE form a subset of

(a) Ω(RP ) ∪ Ω(RR) if (d1, d2) ∈ Va(η);

(b) Ω(PR) ∪ Ω(RR) if (d1, d2) ∈ Vb(η);

(c) Ω(PR) ∪ Ω(RP ) ∪ Ω(OP ) ∪Ω(PO) ∪ Ω(PP ) if (d1, d2) ∈ Vc(η) \ {(2, 2)};

(d) Ω(PR) ∪ Ω(RP ) if (d1, d2) ∈ Vd(η); and

(e) Ω(PR) ∪ Ω(RP ) ∪ Ω(RR) if (d1, d2) ∈ Ve(η).

(f) Further, the LRE are the elements in Ω(PP ) if d1 = d2 = 2.

Proof of Corollary 2. The results directly follow the proof of Theorem 1.

Proof of Theorem 2. If h < r, the transition Ω(PR)→ Ω(RR)(Ω(RO)) and Ω(RP )→ Ω(RR)
(Ω(OR)) may have lower costs through TP2 than through TP1. That is, ck2 = ⌈Mk(1 − q̂)⌉ +
⌈mk(1 − q∗)⌉ is smaller than ck1 = ⌈Mk(1 − q∗)⌉. We consider the case where N is large enough.
By Corollary 2, for any η > 0, there exists an integer Nη such that for all N > Nη, c

k
1 > ck2 if

dk ≥ Λ(dℓ) + η, (23)

and ck1 < ck2 if
dk ≤ Λ(dℓ)− η, (24)

where Λ(dℓ) = 2− q̂−q∗

1−q∗
dℓ and ℓ 6= k.

These conditions (for k = 1, 2) divide the main area of the (d1, d2)-space into four subareas.
That is, (23) holds for k = 1 and (24) holds for k = 2; (23) holds for k = 2 and (24) holds for
k = 1; (23)holds for both k = 1, 2; and (24) holds for both k = 1, 2. In the last subarea, the
transitions through TP2 are always more costly than those through TP1, hence, all the results in
the case h ≥ r still holds. In the remaining three areas, TP2 leads to the minimum cost for either
Ω(PR) → Ω(RR)(Ω(RO)) or Ω(RP ) → Ω(RR)(Ω(RO)), or both. We analyze these three cases
separately.

We use the same approach as in the proof of Theorem 1. Applying Corollary 4, we first compare
the candidate transition trees with the same root, and then identify the absorbing sets which have
the lowest cost among all the other absorbing sets. Note that Λ(dℓ) ≥ Ψ(dℓ) for all dℓ ∈ [1, 2],
ℓ ∈ {1, 2} if q̂ ≤ q̄ ≡ 2q∗ − 2 + 1

q∗
, and the reverse inequality holds if q̂ > q̄. Hence, we will

distinguish two cases.
Case A. q̂ ≤ q̄. Then Λ(dℓ) ≥ Ψ(dℓ) for all dℓ ∈ [1, 2], ℓ ∈ {1, 2}. First, consider the case where

dk < 2 for both k = 1, 2. In this case, only Ω(PR)→ Ω(RR) and Ω(RP )→ Ω(RR) are involved.
Case A.I. (23) holds for k = 1 and (24) holds for k = 2. In this area, only the transition

Ω(RP ) → Ω(RR) has a lower cost through TP2 than through TP1. For the transition costs,
we can use Table 5 and simply replace c21 by c22. We summarize the results as follows. For any
η > 0, there exists an integer Nη such that for all N > Nη, (i) among Ω(RR)-trees, h1(RR)
has the minimum cost if d1 ≥ 2(1 − q∗) + d2(2q

∗ − q̂) + η; h4(RR) has the minimum cost if
d1 ≤ 2(1− q∗)+d2(2q

∗− q̂)− η. In between, either h1(RR) or h4(RR) has the minimum cost. (ii)
Among Ω(PR)-trees, h1(PR) always has the minimum cost in this area. (iii) Among Ω(RP )-trees,
h1(RP ) always has the minimum cost. (iv) C(hκ(PP )) is always larger than C(hκ(PR)) for each
κ ∈ {1, 2, 3, 4}. Comparing the costs of h1(RR), h4(RR), h1(PR) and h1(RP ) in this area, we
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find that h1(RP ) has the minimum cost, hence the elements in Ω(RP ) are selected in the long
run.

In the area {(d1, d2)|Λ(d2) − η < d1 < Λ(d2) + η, d1 > d2 + η}, either TP1 or TP2 leads to
the minimum-cost transitions. If TP1 leads to the minimum cost, then by the comparisons in the
case h > r, the elements in Ω(RP ) are selected. If TP2 leads to the minimum cost, using the
transition costs in Case A.I, Ω(RP ) is still selected. Hence, combining all the results above, we
have that Ω(RP ) is the LRE if {(d1, d2)|d1 > Λ(d2)− η, d1 > d2 + η}.

Case A.II. (23) holds for k = 2 and (24) holds for k = 1. We replace c11 by c12 in Table 5 and
use the same approach as in case A.I. Symmetrically with Case A.I, we obtain that in the area
{(d1, d2)|d2 > Λ(d1)− η, d2 ≥ d1 + η}, Ω(PR) is the LRE.

Case A.III. (23) holds for both k = 1, 2. We replace both c11 by c12 and c21 by c22 in Table 5 and
use the same approach as in case A.I. We find that, for any η > 0, there exists an integer Nη such
that for all N > Nη, (i) h1(RR) has the minimum cost if d1 > d2 + η; h4(RR) has the minimum
cost if d1 < d2 − η. (ii) h1(PR) has the minimum cost if d1 > d2 + η; h4(PR) has the minimum
cost if d1 < d2 − η. (iii) h1(RP ) has the minimum cost if d1 > d2 + η; h4(RP ) has the minimum
cost if d1 < d2 − η. (iv) C(hκ(PP )) is either larger than C(hκ(RP )) or larger than C(hκ(PR))
for each κ ∈ {1, 2, 3, 4}. Comparing the costs of the transition trees above, we find that h1(RP )
has the minimum cost if d1 > d2 + η; h4(PR) has the minimum cost if d1 < d2 − η.

In the area {(d1, d2)|Λ(d2) − η ≤ d1 ≤ Λ(d2) + η, d1 > d2 + η}, TP2 leads to the minimum
cost either only for Ω(RP )→ Ω(RR) or for both Ω(RP )→ Ω(RR) and Ω(PR)→ Ω(RR). If the
former is true, using the transition costs in Case A.I, we find that Ω(RP ) is selected. If the latter
is true, using the transition costs in case A.III, Ω(RP ) is still selected. Hence, the element in
Ω(RP ) is the LRE in the area {(d1, d2)|d1 ≥ Λ(d2)− η, d1 > d2 + η}. Symmetrically, the element
in Ω(PR) is the LRE in the area {(d1, d2)|d2 ≥ Λ(d1)− η, d1 > d2 − η}.

Case A.IV. (24) holds for both k = 1, 2. In this case, TP2 cannot lead to the minimum cost,
hence, the result is the same as in the case h > r.

Now consider the case where dk = 2 and dℓ < 2 for k, ℓ = 1, 2, k 6= ℓ. Let k = 1 first.
Using Table 6, if TP2 lead to the minimum cost, the cost of Ω(RO)-tree will change to ⌈2N(1−
q∗)⌉ + ⌈M2(1 − q̂)⌉ + ⌈m2(1 − q∗)⌉. As long as N is large enough, this cost is still larger than
C(Ω(RP )) = 1+ ⌈m1(1− q∗)⌉. Hence, the element in Ω(RP ) is still selected. The same argument
holds for k = 2. If N is large enough, the element in Ω(PR) will still be selected for k = 2.

Combining all the results above, we obtain the same conclusion as in the case h > r.
Case B. q̂ > q̄. Then Λ(dℓ) < Ψ(dℓ) for dℓ ∈ [1, 2] and ℓ ∈ {1, 2}. For any η > 0, denote

B1(η) = {(d1, d2)|Υ(d2)− d1 > η,Υ(d1)− d2 > η}

B2(η) = {(d1, d2)|d1 −Υ(d2) > η, d1 − d2 > η}

B3(η) = {(d1, d2)|d2 −Υ(d1) > η, d2 − d1 > η}

U(η) = [1, 2]2 \ (B1(η) ∪B2(η) ∪B3(η))

Similarly to the analysis for the case h ≥ r, this splits the (d1, d2)-space in three main areas. U(η)
is vanishing as η decreases: it will shrink to the measure-zero set {(d1, d2)|d1 = Υ(d2) for d2 ∈
[1, d̃]} ∪ {(d1, d2)|d2 = Υ(d1) for d1 ∈ [1, d̃]} ∪ {(d1, d2)|d1 = d2 for d2 ∈ [d̃, 2]} as η → 0. Further,
denote

Ua(η) = Q(η) ∩ {(d1, d2)|d1 − d2 > η,Υ(d1)− d2 > η};

Ub(η) = Q(η) ∩ {(d1, d2)|d2 − d1 > η,Υ(d2)− d1 > η};

Uc(η) = Vc(η);

Ud(η) = Q(η) ∩ {(d1, d2)|d1 −Υ(d2) > η, d2 −Υ(d1) > η} \ Uc(η);

Ue(η) = Q(η) \ (Qa(η) ∪Qb(η) ∪ Uc(η) ∪ Ud(η)).

Case B.I. (23) holds for k = 1 and (24) holds for k = 2. Using the conditions for each candidate
transition tree to reach the minimum cost in Case A.I, we obtain the following results. For any
η > 0, there exists an integer Nη such that for all N > Nη, (i) h1(RR) has the minimum cost
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if d1 > Ψ(d2) + η, h2(RR) has the minimum cost if d1 < Ψ(d2) − η, in between, either h1(RR)
or h2(RR) has the minimum cost. (ii) h1(PR) has the minimum cost if d1 < Υ(d2) + η; h2(PR)
has the minimum cost if d1 < Υ(d2)− η; in between, either h1(PR) or h2(PR) has the minimum
cost. (iii) h1(RP ) has the minimum cost if d1 > Ψ(d2) + η; h2(RP ) has the minimum cost if
d1 < Ψ(d2)− η; in between, either h1(PR) or h2(PR) has the minimum cost. (iv) C(hκ(PP )) is
always larger than C(hκ(PR)) for each κ ∈ {1, 2, 3, 4}.

Then we compare the minimum cost transition trees in each of the subareas above to identify the
LRE. For any η > 0, there exists an integer Nη, such that for all N > Nη, (a) the element in Ω(RP )
will be selected if d1 > Υ(d2) + η. (b) the elements in Ω(RR) will be selected if d1 < Υ(d2) − η.
(c) the element(s) in either Ω(RP ) or Ω(RR) will be selected if Υ(d2)− η ≤ d1 ≤ Υ(d2) + η.

Case B.II. (23) holds for k = 2 and (24) holds for k = 1. Symmetrically, for any η > 0, there
exists an integer Nη, such that for all N > Nη, Ω(RP ) will be selected if d2 > Υ(d1) + η; the
elements in Ω(RR) will be selected if d2 < Υ(d1) − η; the element(s) in either Ω(PR) or Ω(RR)
will be selected if Υ(d1)− η ≤ d2 ≤ Υ(d1) + η.

Case B.III. (23) holds for both k = 1, 2. We find that, for any η > 0, there exists an integer Nη

such that for all N > Nη, (i) h1(RR) has the minimum cost if d1 > d2+η and d1 > d̃+η. h2(RR)

has the minimum cost if d1 > d2 + η and d1 < d̃ − η. If d̃ − η ≤ d1 ≤ d̃ + η, either h1(RR) or
h2(RR) has the minimum cost. h3(RR) tree has the minimum cost if d1 < d2 − η and d2 < d̃− η.
If d2 − η ≤ d1 ≤ d2 + η, d1 < d̃ − η and d2 ≤ d̃ − η, either h2(RR) or h3(RR) has the minimum
costs. h4(RR) has the minimum cost if d1 < d2 − η and d2 > d̃ + η. If d̃ − η ≤ d2 ≤ d̃ + η and
d1 < d2−η, either h3(RR) or h4(RR) has the minimum cost. (ii) h1(PR) has the minimum cost if
d1 > Υ(d2)+ η and d1 > d2+ η. h2(PR) has the minimum cost if d1 < Υ(d2)− η and d1 > d2+ η.
If Υ(d2)− η ≤ d1 ≤ Υ(d1)− η and d1 > d2 + η, either h1(PR) or h2(PR) has the minimum cost.
h3(PR) has the minimum cost if d1 < d2−η and d2 ≤ d̃−η. If d2−η ≤ d1 ≤ d2+η, d1 < Υ(d2)−η,
and d2 < d̃− η, either h2(PR) or h3(PR) has the minimum cost. h4(PR) has the minimum cost
if d1 < d2− η and d2 > d̃+ η. If d̃− η ≤ d2 ≤ d̃+ η and d1 < d2− η, either h3(PR) or h4(PR) has
the minimum cost. (iii) h4(RP ) has the minimum cost if d2 > Υ(d1)+ η and d2 > d1+ η. h3(RP )
has the minimum cost if d2 < Υ(d1) − η and d2 > d1 + η. If Υ(d1) − η ≤ d2 ≤ Υ(d2) − η and
d2 > d1 + η, either h3(RP ) or h4(RP ) has the minimum cost. h2(PR) has the minimum cost if
d2 < d1−η and d1 < d̃−η. If d2−η ≤ d1 ≤ d2+η, d2 < Υ(d1)−η, and d1 < d̃−η, either h2(RP )
or h3(RP ) has the minimum cost. h1(RP ) has the minimum cost if d1 > d2 + η and d1 > d̃+ η.
If d̃ − η ≤ d1 ≤ d̃ + η and d1 > d2 + η, either h1(RP ) or h2(RP ) has the minimum cost. (iv)
C(hκ(PP )) is either larger than C(hκ(RP )) or larger than C(hκ(PR)) for each κ ∈ {1, 2, 3, 4}.

Using the results above and comparing the costs of the trees rooted with different absorbing
sets, we obtain the LRE in the different areas. For any η > 0, there exists an integer Nη such
that for all N > Nη, Ω(RR) have the minimum cost if d1 < Υ(d2) − η and d2 < Υ(d1) − η;
Ω(RP ) has the minimum cost if d1 > Υ(d2) + η and d1 > d2 + η. Ω(PR) has the minimum cost
if d2 > Υ(d1) + η and d1 < d2 − η.

Case B.IV. (24) holds for both k = 1, 2. In this case, TP2 cannot lead to the minimum cost,
hence, the result is the same as the case h > r.

Then, for the case where dk = 2 and dℓ < 2 for k, ℓ = 1, 2, k 6= ℓ, the result in Case A still
holds, since the analysis is independent of the magnitude of q̂. Hence, for k = 1, for any η > 0,
there exists an integer Nη such that for all N > Nη, Ω(RP ) has the minimum cost if d1 < 2− η;
either Ω(RP ) or Ω(PO) has the minimum cost if d1 > 2−η. For k = 2, for any η > 0, there exists
an integer Nη such that for all N > Nη,Ω(PR) has the minimum cost if d1 ≤ 2− η; either Ω(PR)
or Ω(OP ) has the minimum cost if d1 ≥ 2− η.

Combining the results in Case B, for any η > 0, there exists an integer Nη, such that for all
N > Nη,(a) Ω(RR) is the LRE if (d1, d2) ∈ B1(η); (b) Ω(RP ) is the LRE if (d1, d2) ∈ B2(η); (c)
Ω(PR) is the LRE if (d1, d2) ∈ B3(η). By Definition 1, we have the statement in the theorem for
q̂ < q̄.

Furthermore, we can identify the LRE in the vanishing area U(η). For any η > 0, there exists
an integer Nη, such that the LRE set forms a subset of Ω(RP ) ∪ Ω(RR) for (d1, d2) ∈ Ua(η);
the LRE set forms a subset of Ω(PR) ∪ Ω(RR) for (d1, d2) ∈ Ub(η); the LRE set forms a subset
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of Ω(PR) ∪ Ω(RP ) has the minimum cost for (d1, d2) ∈ Ud(η); the LRE set forms a subset of
Ω(PR)∪Ω(RP )∪Ω(PP )∪Ω(PO)∪Ω(OP ) for (d1, d2) ∈ Uc(η); and, the LRE set forms a subset
of Ω(RR) ∪ Ω(RP ) ∪ Ω(PR) for (d1, d2) ∈ Ue(η).

Corollary 3. Let h < r. For any η > 0, there exists an integer N̄ , such that for all N > N̄ ,

(a) if q̂ > 1/q∗ − 2 + 2q∗, for (d1, d2) ∈ U(η), the LRE form a subset of

(a-i) Ω(RP ) ∪Ω(RR) if (d1, d2) ∈ Ua(η);

(a-ii) Ω(PR) ∪Ω(RR) if (d1, d2) ∈ Ub(η);

(a-iii) Ω(PR) ∪Ω(RP ) ∪ Ω(OP ) ∪ Ω(PO) ∪ Ω(PP ) if (d1, d2) ∈ Uc(η) \ {(2, 2)};

(a-iv) Ω(PR) ∪Ω(RP ) if (d1, d2) ∈ Ud(η); and

(a-v) Ω(PR) ∪Ω(RP ) ∪ Ω(RR) if (d1, d2) ∈ Ue(η).

(a-vi) Further, the LRE are the elements in Ω(PP ) if d1 = d2 = 2.

(b) if q̂ ≤ 1/q∗ − 2 + 2q∗, for (d1, d2) ∈ V (η), the LRE are the same as in Lemma 2.

Proof of Corollary 3. The results directly follow the proof of Theorem 2.

Proof of Theorem 3. For any η > 0, denote

D1(η) = {(d1, d2)|d1 > Ψ(d2) + η, d2 < d∗ − η}

D2(η) = {(d1, d2)|d2 > Ψ(d1) + η, d1 < d∗ − η}

D3(η) = {(d1, d2)|d1 > d∗ + η, d2 > d∗ + η}

G1(η) = {(d1, d2)|d1 > Υ(d2) + η, d2 < d̃− η}

G2(η) = {(d1, d2)|d2 > Υ(d1) + η, d1 < d̃− η}

G3(η) = {(d1, d2)|d1 > d̃+ η, d2 > d̃+ η}

Here we prove a stronger statement than the one in the theorem. That is, for h ≥ r or q̂ ≤ q̄,
for any η > 0, there exists an integer Nη, such that for all N ≥ Nη,

(a-i) any (d1, d2) ∈ (A1(η) ∪D1(η) ∪D2(η)) corresponds to at least one NE; and

(a-ii) if (d1, d2) ∈ D3(η), there is no NE corresponding to (d1, d2).

For h < r and q̂ > q̄, for any η > 0, there exists an integer Nη, such that for all N ≥ Nη,

(b-i) any (d1, d2) ∈ (B1(η) ∪G1(η) ∪G2(η)) corresponds to at least one NE; and

(b-ii) if (d1, d2) ∈ G3(η), there is no NE corresponding to (d1, d2).

Consider first the case where h ≥ r or q̂ ≤ q̄. The LRE in this case are given in Theorem 1 and
Lemma 2. (d1, d2) ∈ D1(η) leads to the selection of the element in Ω(RP ) in the long run. Planner
2 has no incentive to change d1 or d2 by changing (c2, p2), because the individuals in location 2
are coordinating on the Pareto-efficient equilibrium. Planner 1 has no incentive to change only
d1, because changing d1 can only move the LRE from Ω(RP ) to Ω(RR). In either case, the
individuals in location 1 would coordinate on the risk-dominant equilibrium. However, planner
1 has an incentive to increase d2, because if d2 is large enough, the LRE would become Ω(PR).
Note that planner 1 cannot directly change d2. The only possible way to change d2 is to change
p1, because d2 = min{c2, 2− p1}. Decreasing d2 is always feasible, because planner 1 can increase
p1 and make 2 − p1 = d2. However, increasing d2 is not always feasible. 2 − p1 will increase by
decreasing p1, but, as long as 2−p1 > c2, d2 = c2, and decreasing p1 cannot increase d2 any more.
Hence, let c2 = d2 and 2− p1 ≥ d2. Then planner 1 has no incentive to change d2. Therefore, any
strategy profile ((c1, p1), (c2, p2)) projected on D1(η) such that d1 = min{c1, 2− p2}, d2 = c2 and
2− p1 ≥ d2 is a Nash equilibrium.
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(d1, d2) ∈ D2(η) leads to the selection of Ω(PR) in the long run. The argument is the same as
above. Planner 1 has no incentive to change his strategy. By setting d1 = c1 < 2−p2, planner 2 has
no incentive to deviate either. Hence, for (d1, d2) ∈ D2(η), any strategy profile ((c1, p1), (c2, p2))
projected on D2(η) such that d2 = min{c2, 2− p1}, d1 = c1 and 2− p2 ≥ d1 is a Nash equilibrium.

If (d1, d2) ∈ A1(η), the LRE are the elements in Ω(RR). Each planner k would have an
incentive to increase dℓ (ℓ 6= k) by decreasing pk. However, this effort would be ineffective if
dℓ = cℓ < 2 − pk. Hence, any strategy profile ((c1, p1), (c2, p2)) projected on A1(η) such that
dk = ck and 2− pℓ ≥ dk for both k = 1, 2, ℓ 6= k, is a Nash equilibrium.

Lastly, we consider the area D3(η). If (d1, d2) ∈ D3(η) ∩ A2(η), the LRE is the element in
Ω(RP ). In this case, planner 1 will have an incentive to decrease c1 so that d1 < d2−η. It changes
the LRE to Ω(PR) and increases the social welfare of location 1.

If (d1, d2) ∈ D3(η)∩A3(η), the LRE is the element in Ω(PR). In this case, planner 2 will have
an incentive to decrease c2 in such a way that d2 < d1 − η. This then leads to the selection of
Ω(RP ) in the long run, and increases the social welfare of location 2.

If (d1, d2) ∈ D3(η) ∩ Vd(η), the LRE form a subset of Ω(RP ) ∪ Ω(PR). We have shown that
any strategy profile leading to the element in Ω(RP ) or Ω(PR) is not a NE. Hence, any strategy
profile leading to the selection of the elements in both Ω(RP ) and Ω(PR) in the long run is not
a NE either, because each social planner k will have an incentive to decrease ck for k = 1, 2.

If d1 = d2 = 2, the elements in both Ω(PO) and Ω(OP ) will be selected in the long run. Each
of them will occur with probability 1/2. Hence, each social planner k will have an incentive to
decrease ck so that dk < dℓ − η (k 6= ℓ). Then, the players in location k will coordinate on the
efficient equilibrium with probability one, and the social welfare of location k will increase.

If (d1, d2) ∈ Vc(η) \ {(2, 2)}, the LRE form a subset of Ω(OP ) ∪ Ω(RP ) ∪ Ω(PR)∪ Ω(PO) ∪
Ω(PP ). Note that there are no LRE which only consist of the elements in Ω(PP ). If the elements
in Ω(PP ) are selected, the element in either Ω(RP ) or Ω(PR) (or both) will be selected as well.
Then, in any possible subset of the set above, with positive probability, at least one location will
either have players coordinating on the less efficient equilibrium or have no players at all. Then,
the social planner in this location k can always improve the social welfare by decreasing ck so that
dk < dℓ − η (k 6= ℓ). Therefore, no strategy profile projected on this area is a NE.

An analogous argument holds for the case with h < r and q̂ > q̄. The LRE for this case are
given in Theorem 2 and Lemma 3. We only have to replace D1(η), D2(η), D3(η), A2(η), and
A3(η) by G1(η), G2(η), G3(η), B2(η), and B3(η) respectively in the analysis above. Hence we
obtain the result in the theorem.

Proof of Theorem 4. Again, we prove a stronger statement than the one in the theorem. That
is, for any η > 0, there exists an integer Nη, such that for all N ≥ Nη,

(a) d1 = d2 = 1 corresponds to at least one NE;

(b) there is no NE corresponding to (d1, d2) ∈ [1, 2]2 \ ({(1, 1)} ∪ E(η)), where E(η) = Ve(η) if
h ≥ r or q̂ ≤ q̄, and E(η) = Ue(η) if h < r and q̂ > q̄.

Consider a strategy profile ((c1, p1), (c2, p2)) such that c1 = c2 = 1 and p1 = p2 = 1. Planner
k = 1, 2 has no incentive to deviate from his strategy. Changing ck has no effect, because all the
individuals in location ℓ 6= k are immobile, hence cannot move to location k. Changing p1 has
no effect either, because the maximum capacity of location ℓ is N , hence, the mobile players in
location k cannot move to location ℓ. Hence, this strategy profile is a Nash equilibrium, which
corresponds to d1 = d2 = 1.

For h ≥ r or q̂ ≤ q̄, consider any (d1, d2) ∈ [1, 2]2 \ ({(1, 1)} ∪ Ve(η)). We first claim that any
strategy profile projected on A1(η) \ {(1, 1)} is not a NE. In this area, the LRE are the elements
in Ω(RR). The social planner of location k will always have an incentive to decrease dℓ (ℓ 6= k)
by increasing pk. The reason is that the population in location k fluctuates between mk and Mk.
Decreasing dℓ will increase the lower bound of the population in location k, hence improving the
social welfare.
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For (d1, d2) ∈ A2(η), the LRE is the element in Ω(RP ), and the population in location 1 is
2N − ⌊d2N⌋. The social planner in location 1 will have an incentive to decrease d1 by setting
a lower c1, so that the LRE form a subset of Ω(RR) ∪ Ω(PR). Denote by d′k the parameter of
effective capacity of location k = 1, 2 after a deviation. If such a deviation leads the elements in
Ω(RR) to be selected, the population in location 1 will fluctuate between 2N −⌊d2N⌋ and ⌊d

′
1N⌋,

hence the social welfare will increase. If the deviation leads Ω(PR) to be selected, the players in
location 1 will coordinate on P , and the population will increase to ⌊d′1N⌋, which improves the
social welfare of location 1. Based on the results above, any deviation that results in the selection
of the elements in Ω(RR) and Ω(PR) also increases the social welfare of location 1. Hence, no
strategy profile projected on A2(η) is a NE. Symmetrically, no strategy profile projected on A3(η)
is a NE. The argument is analogous to the case above. Here, the social planner of location 2 will
always have an incentive to decrease d2. Such a deviation can at least increase the population in
location 2, hence improving social welfare.

If (d1, d2) ∈ Va(η), Ψ(d2)−η ≤ d1 ≤ Ψ(d2)+η. The LRE form a subset of Ω(RR)∪Ω(RP ). We
have argued that if the LRE are the elements in Ω(RR) or Ω(RP ), the social planner of location 1
will always have an incentive to deviate. If the LRE are the elements in Ω(RR) and Ω(RP ), with
positive probability the population in location 1 will fluctuate between 2N − ⌊d2N⌋ and ⌊d1N⌋,
and with the remaining probability the population in location 1 is 2N − ⌊d2N⌋. In this case, the
social planner of location 1 will always have an incentive to decrease c1 so that d′1 is smaller than
but arbitrarily close to Ψ(d2)− η. Then, the LRE are the elements in Ω(RR) and the population
in location 1 will fluctuate between 2N−⌊d2N⌋ and ⌊(d1−η)N⌋ with probability one. For η small
enough, this will increase the social welfare of location 1. Symmetrically, for (d1, d2) ∈ Vb(η), the
same argument holds for the social planners of location 2. Hence, he will have an incentive to
decrease d2.

If (d1, d2) ∈ Vd(η), the LRE form a subset of Ω(RP )∪Ω(PR). We have shown above that the
strategy profiles which lead to the selection of the element in either Ω(RP ) or Ω(PR) are not NE.
If the LRE are Ω(RP ) and Ω(PR), the expected population in each location k should fall in the
interval ]2N − ⌊dℓN⌋, ⌊dkN⌋[ where dℓ − η ≤ dk ≤ dℓ + η, and the individuals in location k will
either coordinate on R or P . The social planner of location k will have an incentive to decrease
ck, so that d′k is smaller than but arbitrarily close to dℓ − η. Then, the players in location k will
coordinate on P with probability one, and the population will be arbitrarily close to ⌊(dk − η)N⌋.
For η small enough, this deviation will increase the social welfare of location k.

If d1 = d2 = 2, the elements in both Ω(PO) and Ω(OP ) will be selected in the long run.
Each of them will occur with probability 1/2. Hence, the average expected payoff of location k
is lower than the payoff of the Pareto-efficient equilibrium, and the expected population will fall
in the interval ]0, 2N [. The social planner of location k = 1, 2 will have an incentive to decrease
ck so that d′k is smaller than but arbitrarily close to 2 − η. Then, the players in location k will
coordinate on P with probability one, and the population of location k will be infinitely close to
⌊(2− η)N⌋. For η small enough, this will increase the social welfare of location k.

If (d1, d2) ∈ (Vc(η) \ {(2, 2)}), dk ∈ (2 − η, 2) for both k = 1, 2, and the LRE form a subset of
Ω(OP )∪Ω(RP )∪Ω(PR)∪Ω(PO)∪Ω(PP ). The same argument applies to show that the strategy
profiles leading to the selection of the element in an singleton absorbing set (Ω(RP ),Ω(PR),Ω(OP )
or Ω(PO)) are not NE. We have pointed out in the proof of Theorem 3 that if the elements in
Ω(PP ) are selected, the element(s) in either Ω(RP ) or Ω(PR) (or both) must be selected as well in
the long run. Hence, in any possible subset of the set above, with positive probability, at least one
location k will either have players coordinating on R or have no players at all. In such a case, the
average expected payoff for the players in location k will be less than that of the Pareto-efficient
equilibrium, and the expected population will be in the interval ]0, ⌊dkN⌋[. Hence, the social
planner of location k will have an incentive to decrease ck so that d′k = dk − η. Then, the players
in location k will coordinate on P with probability one, and the population will be arbitrarily
close to ⌊(dk− η)N⌋. For η small enough, this deviation will increase the social welfare of location
k. The analysis is analogous for the case with h < r and q̂ > q̄. Hence we have the result in the
statement.
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