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Abstract

This paper analyzes the case of a principal who wants to give an agent proper

incentives to investigate a hypothesis which can be either true or false. The agent can

shirk, thus never proving the hypothesis, or he can avail himself of a known technology

to produce fake successes. This latter option either makes the provision of incentives

for honesty impossible, or does not distort its costs at all. In the latter case, the

principal will optimally commit to rewarding later successes even though he only cares

about the first one. Indeed, after an honest success, the agent is more optimistic about

his ability to generate further successes. This in turn provides incentives for the agent

to be honest before a first success.
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†University of Bonn, Lennéstr. 37, D-53113 Bonn, Germany; email: kleinnic@yahoo.com.



1 Introduction

Enormous amounts of money are being spent on the financing of scientific research. For

instance, the National Cancer Institute spent $105 billion on the “War on Cancer” from 1971

to 2009. According to some, though, the grant system by which the research is to a large

extent financed could be improved.1 Some scientists bemoan that grant boards seem to favor

low-risk, low-yield projects, at the expense of more promising, yet uncertain, prospects, it is

reported. For instance, $100,000 over two years were spent on a study investigating whether

people who were especially fond of good-tasting food had a harder time staying on a diet,

while more fundamental proposals went unfunded.2

This paper proposes a stylized model of an alternative way of incentivizing innovation.3

It leaves project selection to the scientist himself; the grant board only determines the

length of funding, as well as the prizes a scientist can earn, as a function of the observable

history. To capture the idea that scientists will typically be in a better position to ascertain

the characteristics of a highly specialized research project, it is assumed that the principal

(grant board) can only observe the occurrence of a success, such as e.g. a publication in

a highly regarded peer-reviewed journal; yet, he cannot observe the characteristics of the

project leading to the observed success.

Moreover, it is often the case that the true value of a scientific discovery can only be

ascertained after a considerable amount of time has elapsed, an insight that has apparently

altered the early practices of the Nobel Prize Committee, for instance. Whereas Alfred

Nobel’s will mandated that the prize be awarded for discoveries made “during the preceding

year,” several of the putative achievements recognized by the first Nobel awards were later

discredited. In response, the committee moved toward recognizing discoveries that had

withstood the test of time; Subrahmanyan Chandrasekhar e.g. shared the 1983 physics prize

in recognition of discoveries made in the 1930s.4 In order to capture this aspect of scientific

investigation, I assume that the true quality of a breakthrough will only become obvious in

the distant future, so that it will not be possible to condition the scientist’s incentives on

this future revelation.

1See e.g. the New York Times of June 28, 2009. I am indebted to Jianjun Wu for alerting me to these

problems.
2The idea behind the study was that obesity is related to higher risk of cancer; hence, the discovery

of better weight-management methods could potentially reduce the incidence of cancer; see the New York

Times of June 28, 2009.
3This question has been addressed in the literature from a great variety of angles, see e.g. Holmström

(1989) or Manso (2011).
4See e.g. The Titi Tudorancea Bulletin, http://www.tititudorancea.com/z/nobel prize.htm (as of Octo-

ber, 13, 2011).
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In particular, it is assumed that at any point in time, the scientist has a choice between

two projects. One project’s endeavor is merely to get publications out of old, established,

knowledge; it yields apparent “successes,” which are not socially valuable, according to a

commonly known distribution. The other project, which is socially valuable, involves the

investigation of a hypothesis which is uncertain. It is furthermore assumed that, being con-

cerned with advancing scientific knowledge, the principal’s interest in the matter is in finding

out that the uncertain hypothesis is true; yet, when faced with an observable success such as

a publication, for instance, the principal does not know, or cannot contract upon, whether it

is old knowledge or whether it is a truly new discovery. Moreover, the agent could also shirk

exerting effort, which gives him some private flow benefit, but in which case he will never

achieve an observable success. The agent’s effort choice is also unobservable to the principal.

This paper shows how to implement honest investigation of the uncertain hypothesis, subject

to the afore-mentioned informational restrictions. Specifically, the principal’s objective is to

minimize the wage costs of implementing honesty up to the first success with probability 1

on the equilibrium path. However, the principal only observes the occurrence, and timing,

of successes; he does not observe whether a given success was a cheat or was achieved by

honest means.

As is well known from the principal-agent literature, when his actions cannot easily be

monitored, an agent’s pay must be made contingent on his performance, so as to provide

proper incentives for him to exert effort. Thus, the agent will get paid a substantial bonus

if, and only if, he proves his hypothesis. While this may well provide him with the necessary

incentives to work, unfortunately, it might also tempt him to try and fake a success. That the

mere provision of incentives to exert effort is not sufficient to induce agents to engage in the

pursuit of innovation is shown empirically by Francis, Hasan and Sharma (2009). Using data

from ExecuComp firms for the period 1992–2002, they show that the performance sensitivity

of CEO pay has no impact on a firm’s innovation performance, as measured by the number

of patents taken out, or by the number of citations to patents.

In case even the investigation of a correct hypothesis yields breakthroughs at a lower

frequency than manipulation, honesty is not implementable at all, i.e. it is impossible to get

the scientist to pursue a low-yield high-risk project. In the more interesting case when the

high-risk project is also the high-yield project, I show by what schemes the principal can

make sure that the agent is always honest up to the first breakthrough at least. These optimal

schemes all share the property that cheating is made so unattractive that it is dominated even

by shirking. Hence, the agent only needs to be compensated for his forgone benefit of being

lazy; put differently, the presence of a cheating action creates no distortions in players’ values.

Still, when the principal can additionally choose the end date of the interaction conditional

on no breakthrough having occurred, he stops the project inefficiently early. The reason
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for this is that future rewards adversely impact today’s incentives: If the agent is paid a

lot for achieving his first success tomorrow, he is loath to “risk” having his first success

today, thereby forgoing the possibility of collecting tomorrow’s reward. This distortion,

however, could easily be overcome if the principal could hire different agents sequentially, as

a means of counteracting the dynamic allure of future rewards. If agents could be hired for a

mere instant, then in the limit the principal would end the project at the first-best optimal

stopping time.

While investigating the hypothesis, the agent increasingly grows pessimistic about its

being true as long as no breakthrough arrives. As an honest investigation can never show

a false hypothesis to be true, all uncertainty is resolved at the first breakthrough, and the

agent will know for sure that the proposition is true. Whereas the principal has no learning

motive since he is only interested in the first breakthrough the agent achieves on arm 1,

making information valuable to the agent provides an expedient way of giving incentives.

Whereas there may be many means of achieving this goal, in one optimal scheme I identify,

the principal will reward the agent only for the (m+1)-st breakthrough, with m being chosen

appropriately large, in order to deter him from engaging in manipulation, which otherwise

might seem expedient to him in the short term. Think e.g. of an investor who is wary of

potentially being presented with fake evidence purporting to prove that an asset is good.

Therefore, he will write a contract committing himself only to pay the analyst for the (m+1)-

st piece of evidence presented, even though, in equilibrium, the agent is known to be honest

with probability 1, so that the first piece of evidence presented already constitutes full proof

that the asset is good. This commitment only to reward the (m + 1)-st breakthrough is in

turn what keeps the agent honest in equilibrium.

Now, the threshold number of successes m will be chosen high enough that even for an

off-path agent, who has achieved his first breakthrough via manipulation, m breakthroughs

are so unlikely to be achieved by cheating that he prefers to be honest after his first break-

through. This puts a cheating off-path agent at a distinct disadvantage, as, in contrast to

an honest on-path agent, he has not had a discontinuous jump in his belief. Thus, only an

honest agent has a high level of confidence about his ability to navigate the continuation

scheme devised by the principal; therefore, the agent will want to make sure he only enters

the continuation regime after an honest success. Indeed, an agent who has had an honest

success will be more optimistic about being able to curry favor with the principal by pro-

ducing many additional successes in the future, while a cheating off-path agent, fully aware

of his dishonesty, will be comparatively very pessimistic about his ability to produce a large

number of future successes in the continuation game following the first success. Hence, the

importance of being honest arises endogenously as a tool for the principal to give incentives

in the cheapest possible way, as this difference in beliefs between on-path and off-path agents
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is leveraged by the principal, who enjoys full commitment power.

This finding is consistent with empirical observations emphasizing that commitment to

long-term compensation schemes is crucial in spurring innovation. Thus, Francis, Hasan,

Sharma (2009) show that while performance sensitivity of CEO pay has no impact on inno-

vation output, skewing incentives toward the long term via vested and unvested options does

entail a positive and significant impact on both patents and citations to patents. Examining

the impact of corporate R&D heads’ incentives on innovation output, Lerner & Wulf (2007)

find that long-term incentives lead to more patents, more extensively cited patents, and

patents of greater originality.

In order to provide adequate incentives in the cheapest way possible, it is best for the

principal to give a low value to a dishonest off-path agent after a first breakthrough, given

the promised continuation value to the on-path agent. While paying only for the (m+ 1)-st

breakthrough ensures that off-path agents do not persist in cheating, they will nevertheless

continue to update their beliefs after their first success. Thus, they might be tempted to

switch to shirking once they have grown too pessimistic about the hypothesis, a possibility

that gives them a positive option value. One way for the principal to handle this challenge

is for him to end the game suitably soon after the first breakthrough, thereby curtailing the

time the agent has access to the safe arm, thus correspondingly reducing the option value

associated with it. Then, given this end date, the reward for the (m+ 1)-st breakthrough is

chosen appropriately to give the intended continuation value to the on-path agent.

Alternatively, the model could be interpreted as one of an agent who is hired expressly to

investigate a given hypothesis, yet who has the possibility of producing “fake breakthroughs.”

Think e.g. of a pharmaceutical firm hiring a scientist to produce a certain drug in a commer-

cially viable way. Yet, it is common knowledge that there exists a commercially non-viable

method of producing the drug, of which the scientist could surreptitiously avail himself to

fake a breakthrough.5 Generally speaking, these fake breakthroughs might be thought of as

the pursuit of a research agenda that does not advance the public interest, or as an effort to

massage or manipulate the data, with a view toward creating an erroneous impression that

the hypothesis was proved.6 There are studies suggesting that the problem of such scientific

5I am indebted to blogger “afinetheorem” for this example, cf.

http://afinetheorem.wordpress.com/2010/09/12/the-importance-of-being-honest-n-klein-2010/ (as of

October 13, 2011)
6A case in point, where a scientist’s untoward behavior was eventually discovered, might be provided

by (in)famous South Korean stem cell researcher Hwang Woo-Suk. Mr. Hwang was considered one of the

world’s foremost authorities in the field of stem-cell research, and was even designated his country’s first “top

scientist” by the South Korean Government. He purported to have succeeded in creating patient-matched

stem cells, which would have been a major breakthrough that had raised high hopes for new cures for hitherto
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misconduct is quite widespread indeed. In a survey of appertaining investigations, Fanelli

(2009) concludes that one out of seven scientists admitted to their colleagues’ having falsified

data at least once, whereas only 1.97% admitted to having done so themselves. One third

admitted to having engaged themselves in arguably less serious forms of misconduct, while

72% reported that their colleagues were guilty of such misconduct.7

The rest of the paper is set up as follows: Section 2 reviews some relevant literature;

Section 3 introduces the model; Section 4 analyzes the provision of a certain continuation

value; Section 5 analyzes the optimal mechanisms before a first breakthrough; Section 6

analyzes when the principal will optimally elect to stop the project conditional on no success

having occurred, and Section 7 concludes. Proofs not provided immediately in the text are

given in the Appendix.

2 Related Literature

Holmström & Milgrom (1991) analyze a case where, not unlike in my model, the agent

performs several tasks, some of which may be undesirable from the principal’s point of view.

The principal may be able to monitor certain activities more accurately than others. They

show that in the limiting case with two activities, one of which cannot be monitored at

all, incentives will only be given for the activity which can in fact be monitored; if the

activities are substitutes (complements) in the agent’s private cost function, incentives are

more muted (steeper) than in the single task case. While their model could be extended to

a dynamic model with the agent controlling the drift rate of a Brownian Motion signal,8 the

learning motive I introduce fundamentally changes the basic trade-offs involved. Indeed, in

my model, the optimal mechanisms extensively leverage the fact that only an honest agent

will have had a discontinuous jump in his beliefs.

Bergemann & Hege (1998, 2005), as well as Hörner & Samuelson (2009), examine a

venture capitalist’s provision of funds for an investment project of initially uncertain quality;

hard-to-treat diseases, and that I am told had been the source of considerable pride in South Korea. Yet, a

university panel found that “the laboratory data for 11 stem cell lines that were reported in the 2005 paper

were all data made using two stem cell lines in total,” forcing Mr. Hwang to resign in disgrace, and causing

quite a shock to people in South Korea and throughout the scientific community. I am indebted to Tri-Vi

Dang for alerting me to this story; see e.g. the report by the Associated Press from December, 23, 2005.
7Fanelli (2009) only looks at such forms of misconduct that distort overall scientific knowledge, such as

data manipulation. Other forms of professional misconduct, as e.g. plagiarism, would not be included in the

figures. He argues that his would be rather conservative estimates of the extent of the problem, based as

they are on scientists’ own responses to questionnaires featuring some possibly awkward queries.
8See Holmström & Milgrom (1987).
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the project is managed by an entrepreneur, who might divert the funds to his private ends.

The investor cannot observe the entrepreneur’s allocation of the funds, so that, off-path, the

entrepreneur’s belief about the quality of the project will differ from the public belief. If

the project is good, it yields a success with a probability that is increasing in the amount of

funds invested in it; if it is bad, it never yields a success. While Bergemann & Hege (2005)

and Hörner & Samuelson (2009) analyze the game without commitment, Bergemann & Hege

(1998) investigate the problem under full commitment. These papers differ from my model

chiefly in that there is no way for the entrepreneur to “fake” a success; any success that is

publicly observed will have been achieved by honest means alone.

Gerardi & Maestri (2008) investigate the case of a principal who, in order to find out

about the binary state of the world, has to employ an agent. The agent can decide to

incur private costs to exert effort to acquire an informative binary signal, one realization of

which is only possible in the good state. As for the principal, he can monitor neither the

agent’s effort choice nor the realization of the signal. The game ends as soon as the agent

announces that he has had conclusive evidence in favor of the good state. They show that

the agent needs to be left an information rent because of both the Moral Hazard and the

Adverse Selection problems. In my model, by contrast, the game does not end after the first

breakthrough; much to the contrary, I show that, in order to give optimal incentives in my

model, it is absolutely vital that they be provided via the continuation game that follows

the first breakthrough rather than via an immediate transfer.

One paper that is close in spirit to mine is Manso (2011), who analyzes a two-period

model where an agent can either shirk, try to produce in some established manner with a

known success probability, or experiment with a risky alternative. He shows that, in order to

induce experimentation, the principal will optimally not pay for a success in the first period,

and might even pay for early failure. This distortion is an artefact of the discrete structure

of the model and the limited signal space; indeed, in Manso’s (2011) model, early failure

can be a very informative signal that the agent has not exploited the known technology, but

has rather chosen the risky, unknown alternative. By contrast, while confirming Manso’s

(2011) central intuition that it is better to give incentives through later rewards, I show that

as the signal space becomes rich enough, the presence of the alternative production method

does not distort the players’ payoffs. Indeed, in continuous time, arbitrary precision of the

signal can be achieved by choosing a critical number of successes that is high enough, as will

become clear infra. Moreover, the dynamic structure allows me to analyze the principal’s

optimal stopping time.

In Barraquer & Tan (2011), agents tend to congregate in those projects that are most

informative about their underlying ability as market competition increases, making for a
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potential source of inefficiency. In their model, the market observes in which project a

success has been achieved. In my model, this is not observed by the principal; on the

contrary, it is his goal to design incentives in such a way as to induce the agent to use the

informative method of investigation.

Shan (2011) analyzes a contracting problem between a principal and an agent who is

supposed to complete a multi-stage R & D project. The agent can shirk but not produce

any fake successes. In his model, there is no uncertainty about the underlying state of the

world, so that in the optimal contract, payments to the agent decrease continuously over

time in the absence of a success, and jump to a higher level after each success. In my model,

by contrast, we shall see that the evolution of rewards over time depends on the parameters

on account of the countervailing effect of the agent’s evolving belief about the state of the

world.

De Marzo & Sannikov (2008) also incorporate private learning on the agent’s part into

their model, in which current output depends both on the firm’s inherent profitability and

on the agent’s effort, which is unobservable to the principal. Thus, off-path, the agent’s

private belief about the firm’s productivity will differ from the public belief. Specifically, if

the agent withholds effort, this depresses the drift rate of the firm’s Brownian motion cash

flow. They show that the firm optimally accumulates cash as fast as it can until it reaches

some target level, after which it starts paying out dividends; the firm is liquidated as soon

as it runs out of cash. De Marzo & Sannikov (2008) show that one optimal way of providing

incentives is to give the agent an equity stake in the firm, which is rescindable in the case of

liquidation, and that liquidation decisions are efficient, agency problems notwithstanding.

To capture the learning aspect of the agent’s problem, I model it as a bandit problem.9

Bandit problems have been used in economics to study the trade-off between experimentation

and exploitation since Rothschild’s (1974) discrete-time single-agent model. The single-agent

two-armed exponential model, a variant of which I am using, has first been analyzed by Pres-

man (1990). Strategic interaction among several agents has been analyzed in the models by

Bolton & Harris (1999, 2000), Keller, Rady, Cripps (2005), Keller & Rady (2010), who all in-

vestigate the case of perfect positive correlation between players’ two-armed bandit machines,

as well as by Klein & Rady (2011), who investigate the cases of perfect, as well as imperfect,

negative correlation. Klein (2011) analyzes the case where bandits have three arms, with

the two risky ones being perfectly negatively correlated. While the afore-mentioned papers

all assumed that players’ actions, as well as the outcomes of their actions, were perfectly

publicly observable, Rosenberg, Solan, Vieille (2007), as well as Murto & Välimäki (2011),

analyze the case where actions are observable, while outcomes are not. Bonatti & Hörner

9See Bergemann & Välimäki (2008) for an overview of this literature.
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(2011) analyze the case where actions are not observable, while outcomes are. Bergemann

& Välimäki (1996, 2000) consider strategic experimentation in buyer-seller interactions.

Rahman (2009, 2010) deals with the question of implementability in dynamic contexts,

and finds that, under a full support assumption, a necessary and sufficient condition for

implementability is for all non-detectable deviations to be unprofitable under zero transfers.

The issue of implementability turns out to be quite simple in my model, and is dealt with

in Proposition 3.1.

3 The Model

There is one principal and one agent, who are both risk neutral. The agent operates a bandit

machine with three arms, i.e. one safe arm yielding him a private benefit flow of s, one that is

known to yield breakthroughs according to a Poisson process with intensity λ0 > 0 (arm 0),

and arm 1, which either yields breakthroughs according to a Poisson process with intensity

λ1 > 0 (if the time-invariant state of the world θ = 1, which is the case with initial probability

p0 ∈ (0, 1)) or never yields a breakthrough (if the state is θ = 0). The principal observes

all breakthroughs and the time at which they occur; he does not observe, though, on which

arms the breakthroughs have been achieved. In addition to what the principal can observe,

the agent also sees on which arms the breakthroughs have occurred. The principal and the

agent share a common discount rate r. The decision problem (in particular, all parameter

values) is common knowledge.

The principal’s objective is to ensure at minimal cost that it is a best response for the

agent to use arm 1 up to the first breakthrough with probability 1. He chooses an end date

Ť (t) ∈ [t, T ) (where T ∈ (T,∞) is arbitrary), in case the first breakthrough occurs at time t.

Conditional on there having been no breakthrough, the game ends at time T < ∞. Once the

game ends, utilities are realized. In the first half of the paper, the horizon T is exogenous.

In the second half, when I let the principal choose the end date T , the first breakthrough

achieved on arm 1 at time t gives him a payoff of e−rtΠ.10

Formally, the number of breakthroughs achieved on arm i up to, and including, time

t defines the point processes {N i
t}0≤t≤T (for i ∈ {0, 1}). In addition, let the point process

{Nt}0≤t≤T be defined by Nt := N0
t + N1

t for all t. Moreover, let F := {Ft}0≤t≤T and

FN :=
{
FN
t

}
0≤t≤T

denote the filtrations generated by the processes {(N0
t , N

1
t )}0≤t≤T and

10I am following Grossman & Hart’s (1983) classical approach to principal-agent problems in that I first

solve for the optimal incentive scheme given an arbitrary T (Sections 4 and 5), and then let the principal

optimize over T (Section 6).
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{Nt}0≤t≤T , respectively.

By choosing which arm to pull, the agent affects the probability of breakthroughs on

the different arms. Specifically, if he commits a constant fraction k0 of his unit endowment

flow to arm 0 over a time interval of length ∆ > 0, the probability that he achieves at least

one breakthrough on arm 0 in that interval is given by 1− e−λ0k0∆. If he commits a constant

fraction of k1 of his endowment to arm 1 over a time interval of length ∆ > 0, the probability

of achieving at least one breakthrough on arm 1 in that interval is given by θ
(
1− e−λ1k1∆

)
.

Formally, a strategy for the agent is a process k := {(k0,t, k1,t)}t which satisfies (k0,t, k1,t) ∈
{(a, b) ∈ R+ : a+ b ≤ 1} for all t, and is F-predictable, where ki,t (i ∈ {0, 1}) denotes the

fraction of the agent’s resource that he devotes to arm i at instant t. The agent’s strategy

space, which I denote by U , is given by all the processes k satisfying these requirements.

I denote the set of abridged strategies kT prescribing the agent’s actions before the first

breakthrough by UT .

A wage scheme offered by the principal is a non-negative, non-decreasing process {Wt}0≤t≤T

which is FN -adapted, where Wt denotes the cumulated discounted time-0 values of the pay-

ments the principal has consciously made to the agent up to, and including, time t. I

assume the agent is protected by limited liability; hence {Wt}0≤t≤T is non-negative and non-

decreasing.11 I furthermore assume that the principal has full commitment power, i.e. he

commits to a wage scheme {Wt}0≤t≤T , as well as a schedule of end dates {Ť (t)}t∈[0,T ], at the

outset of the game. In order to ensure that the agent have a best response, I restrict the

principal to choosing a piecewise continuous function t 7→ Ť (t).

Over and above the payments he gets as a function of breakthroughs, the agent can

secure himself a safe payoff flow of s from the principal by pulling the safe arm, which is

unobservable to the principal. The idea is that society cannot observe scientists shirking

in real time, as it were; only after the lab e.g. is shut down, such information might come

to light, and society only finds out ex post that it has been robbed of the payoff flow of s

during the operation of the research lab. Thus, even though there is no explicit cost to the

principal’s provision of the bandit in my model, this assumption ensures that implied flow

costs from doing so are at least s.

The principal’s objective is to minimize his costs, subject to an incentive compatibility

constraint making sure that it is a best response for the agent to use arm 1 with probability 1

up to the first breakthrough. Thus, I shall denote the set of full-experimentation strategies by

K := {k ∈ U : Nt = 0 ⇒ k1,t = 1 for a.a. t ∈ [0, T ]}, and the corresponding set of abridged

strategies by KT . Clearly, as the principal wants to minimize wage payments subject to

11If the game ends at time Ť , we set WŤ+∆ = WŤ for all ∆ > 0.

9



implementing a full-experimentation strategy, it is never a good idea for him to pay the

agent in the absence of a breakthrough; moreover, since the principal is only interested in

the first breakthrough, the notation can be simplified somewhat. Let {Wt}0≤t≤T be the

principal’s wage scheme, and t the time of the first breakthrough: In the rest of the paper, I

shall write ht for the instantaneous lump sum the principal pays the agent as a reward for his

first breakthrough; i.e. if Nt = 1 and limτ↑tNτ = 0, we can write ht := ert (Wt − limτ↑tWτ ).

By wt I denote the expected continuation value of an agent who has achieved his first

breakthrough on arm 1 at time t, given he will behave optimally in the future; formally,

wt := sup
{(k0,τ ,k1,τ )}t<τ≤Ť (t)

E
[
ert
(
WŤ (t) −Wt

)
+s

∫ Ť (t)

t

e−r(τ−t) (1− k0,τ − k1,τ ) dτ |Ft, N
1
t = 1, lim

τ↑t
N1

τ = 0, N0
t = 0, {(k0,τ , k1,τ )}t<τ≤Ť (t)

]
,

i.e. the expectation conditions on the agent’s knowledge that the first breakthrough has been

achieved on arm 1 at time t. Again, I impose piecewise continuity of the mappings t 7→ ht

and t 7→ wt. The corresponding expected continuation payoff of an off-path agent, who

achieves his first breakthrough on arm 0 at time t, I denote by ωt; formally,

ωt := sup
{(k0,τ ,k1,τ )}t<τ≤Ť (t)

E
[
ert
(
WŤ (t) −Wt

)
+s

∫ Ť (t)

t

e−r(τ−t) (1− k0,τ − k1,τ ) dτ |Ft, N
0
t = 1, lim

τ↑t
N0

τ = 0, N1
t = 0, {(k0,τ , k1,τ )}0≤τ≤Ť (t)

]
.

At the top of Section 5, I shall impose assumptions guaranteeing the piecewise continuity of

the mapping t 7→ ωt.

The state of the world is uncertain; clearly, whenever the agent uses arm 1, he gets

new information about its quality; this learning is captured in the evolution of his (private)

belief p̂t that arm 1 is good. Formally, p̂t := E [θ|Ft, {(k0,τ , k1,τ )}0≤τ<t]. On the equilibrium

path, the principal will correctly anticipate p̂t; formally, pt = p̂t, where pt is defined by

pt := E
[
p̂t|FN

t ,k ∈ K
]
.

The evolution of beliefs is easy to describe, since only a good arm 1 can ever yield a

breakthrough. By Bayes’ rule,

p̂t =
p0e

−λ1

∫ t
0 k1,τ dτ

p0e
−λ1

∫ t
0 k1,τ dτ + 1− p0

,

and
˙̂pt = −λ1k1,tp̂t(1− p̂t)

10



prior to the first breakthrough. After the agent has achieved at least one breakthrough on

arm 1, his belief will be p̂t = 1 forever thereafter.

As, in equilibrium, the agent will always operate arm 1 until the first breakthrough, it

is clear that if on the equilibrium path Nt ≥ 1, then pt+∆ = 1 for all ∆ > 0. If Nt = 0,

Bayes’ rule implies that

pt =
p0e

−λ1t

p0e−λ1t + 1− p0
.

Now, before the first breakthrough, given an arbitrary incentive scheme g := (ht, wt)0≤t≤T ,

the agent seeks to choose kT ∈ UT so as to maximize∫ T

0

{
e−rt−λ1

∫ t
0 p̂τk1,τ dτ−λ0

∫ t
0 k0,τ dτ [(1− k0,t − k1,t)s+ k0,tλ0(ht + ωt) + k1,tλ1p̂t(ht + wt)]

}
dt.

subject to ˙̂pt = −λ1k1,tp̂t(1− p̂t).

The following impossibility result is immediate:

Proposition 3.1 If λ0 ≥ λ1, there does not exist a wage scheme {Wt}0≤t≤T implementing

any strategy in K.

Proof: Suppose λ0 ≥ λ1, and suppose there exists a wage scheme {Wt}0≤t≤T implementing

some strategy k ∈ K. Now, consider the alternative strategy k̃ ̸∈ K which is defined as

follows: The agent sets k̃1,t = 0 after all histories, and k̃0,t =
p0e−λ1t

p0e−λ1t+1−p0

λ1

λ0
before the first

breakthrough. After a first breakthrough, he sets k̃0,t = k0,t +
λ1

λ0
k1,t ≤ k0,t + k1,t, history by

history. By construction, k̃ leads to the same distribution over {Nt}0≤t≤T , and hence over

{Wt}0≤t≤T , as k; yet, the agent strictly prefers k̃ as it gives him a strictly higher payoff from

the safe arm, a contradiction to {Wt}0≤t≤T implementing k.

In the rest of the paper, I shall therefore assume that λ1 > λ0. When we denote the

set of solutions to the agent’s problem that are implemented by an incentive scheme g as

K∗(g), the principal’s problem is to choose g = (ht, wt)0≤t≤T so as to minimize his wage bill∫ T

0

e−rt−λ1

∫ t
0 pτ dτptλ1(ht + wt) dt

subject to pt = p0e−λ1t

p0e−λ1t+1−p0
and K∗(g) ∩ KT ̸= ∅. It turns out that the solution to this

problem coincides with the solution to the problem in which K∗(g) = KT is additionally

imposed; i.e. it is no costlier to the principal to implement full experimentation in any Nash

equilibrium than to ensure that there exist a Nash equilibrium in which the agent employs

a full-experimentation strategy (see Section 5).
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In the next two sections, the end date T is given. In Section 6, the principal will

optimally choose this end date T . Thus far, we have been silent on how the continuation

value of wt is delivered to the agent after his first breakthrough. It will turn out, though,

that the manner by which the principal gives the agent his continuation value will matter

greatly, as we will see in the next section.

4 Incentives After A First Breakthrough

4.1 Introduction

The purpose of this section is to analyze how the principal will deliver a promised contin-

uation value of wt > 0 given a first breakthrough has occurred at time t. His goal will

be to find a scheme which maximally discriminates between an agent who has achieved his

breakthrough on arm 1, as he was supposed to, and an agent who has been “cheating,”

i.e. who has achieved the breakthrough on arm 0. Put differently, for any given promise

wt to the on-path agent, it is the principal’s goal to push the off-path agent’s continuation

value ωt down, as this will give him a bigger bang for his buck in terms of incentives. As

an off-path agent always has the option of imitating the on-path agent’s strategy, we know

that ωt ≥ p̂twt, with p̂t ∈ [pt, p0] denoting his (off-path) belief at time t. The following

proposition summarizes the main result of this section; it shows that, as a function of p̂t, ωt

can be pushed arbitrarily close to this lower bound.

Proposition 4.1 For every ϵ > 0, wt > 0, there exists a continuation scheme such that

ωt(p̂t) ≤ p̂twt +
s
r
(1− e−rϵ) for all p̂t ∈ [pt, p0].

Proof: Proof is by construction, see Subsection 4.2.

The construction of this wage scheme relies on the assumption that λ1 > λ0, implying

the variance in the number of successes with a good risky arm 1 is higher than with arm 0.

Therefore, the principal will structure his wage scheme in such a way as to reward realizations

in the number of later breakthroughs that are “extreme enough” that they are very unlikely

to have been achieved on arm 0 as opposed to arm 1. Thus, even the most pessimistic of

off-path agents would prefer to bet on his arm 1 being good rather than pull arm 0. Yet, now,

in contrast to the off-path agents, an on-path agent will know for sure that his arm 1 is good,

and therefore has a distinct advantage in expectation when facing the principal’s payment

scheme after a first breakthrough. The agent’s anticipation of this advantage in turn gives

him the right incentives to use arm 1 rather than arm 0 before the first breakthrough occurs.

12



4.2 Construction of An Optimal Continuation Scheme

Since ωt would coincide with its lower bound p̂twt if an on-path agent always played arm

1 after a first breakthrough, and off-path agents had no better option than to imitate the

former’s behavior, the purpose of the construction is to approximate such a situation. Since

λ1 > λ0, on-path agents, who know that their arm 1 is good, will never use arm 0. The

purpose of the first step of my construction is to make sure that the same hold true for

all off-path agents also. To this effect, the principal will only pay the agent for the m-th

breakthrough after time t, wherem is chosen large enough that any, even the most pessimistic

of off-path agents will deem m breakthroughs more likely to occur on arm 1 than on arm 0.

Then, in a second step, the end date Ť (t) > t is chosen so that Ť (t) − t ≤ ϵ. This ensures

that the agent’s option value from being able to switch to the safe arm is bounded above by
s
r
(1− e−rϵ). Then, given the end date Ť (t), the reward is chosen appropriately so that the

on-path agent exactly receive his promised continuation value of wt in expectation.

Specifically, the agent is only paid a constant lump sum of V 0 after his m-th break-

through after time t, where m is chosen sufficiently high that even for the most pessimistic

of all possible off-path agents, arm 1 dominate arm 0. As λ1 > λ0, such an m exists, as the

following lemma shows:

Lemma 4.2 There exists an integer m such that if the agent is only paid a lump sum reward

V 0 > 0 for the m-th breakthrough, arm 1 dominates arm 0 for any type of off-path agent

whenever he still has m breakthroughs to go before collecting the lump sum reward.

Proof: See Appendix.

Intuitively, the likelihood ratio of m breakthroughs being achieved on arm 1 vs. arm 0

in the time interval (t, Ť (t)], p̂t

(
λ1

λ0

)m
e−(λ1−λ0)(Ť (t)−t), is unbounded in m. The proof now

shows, by virtue of a first-order stochastic dominance argument, that whenm exceeds certain

thresholds, it indeed never pays for the agent to use arm 0.

Thus, Lemma 4.2 shows that we can ensure that off-path agents will never continue to

use arm 0 after time t. Ending the game suitably soon after a first breakthrough, namely

at some time Ť (t) ∈ (t, t + ϵ], bounds off-path agents’ option values from having access to

the safe arm by s
r
(1 − e−rϵ). Hence, an off-path agent of type p̂t can indeed at most get

p̂twt +
s
r
(1− e−rϵ).

The purpose of the rest of this subsection is to show that, given Ť (t) and m, V 0 can be

chosen in a way that ensures that the on-path agent exactly get what he is supposed to get,

13



namely wt. In order to do so, given m, Ť (t), and V 0, I now recursively define the auxiliary

functions Vi(·;V 0) : [t, Ť (t)] −→ R for i = 1, · · · ,m according to

Vi(t̃;V 0) := max
{ki,τ}∈M(t̃)

∫ Ť (t)

t̃

e−r(τ−t̃)−λ1

∫ τ
t̃ k1,χ dχ

[
s+ ki,τ

(
λ1Vi−1(τ ;V 0)− s

)]
dτ,

whereM(t̃) denotes the set of measurable functions ki : [t̃, Ť (t)] → [0, 1], and I set V0(τ ;V 0) :=

V 0 +
s
r

(
1− e−r(Ť (t)−τ)

)
. Thus, Vi(t̃;V 0) denotes the agent’s continuation value at time t̃

given the agent knows that θ = 1 and that he has i breakthroughs to go before being able to

collect the lump sum V 0. I summarize the upshot of the rest of this section in the following

proposition:

Proposition 4.3 (1.) If wt > limV 0↓ s
λ1

Vm(t;V 0), there exists a lump sum V 0 > s
λ1

such

that wt = Vm(t;V 0).

(2.) If wt ≤ limV 0↓ s
λ1

Vm(t;V 0), there exist a lump sum V 0 > s
λ1

and an end date

ˇ̌T (t) ∈ (t, Ť (t)) such that wt = Vm(t;V 0) given the end date is ˇ̌T (t).

Proof: The proof of statement (1.) relies on certain properties of the Vi functions, which

are exhibited in Lemma 4.4 below. The proof of statement (2.) additionally uses another

auxiliary function f , which is also introduced infra, and some properties of which are stated

in Lemma 4.5 below. The proof is therefore provided in the appendix after the proofs of

Lemmas 4.4 and 4.5.

As already mentioned, the following lemma is central to the proof of Proposition 4.3.

It assumes a fixed end date Ť (t) ≤ t+ ϵ, and notes that, once the agent knows that θ = 1, a

best response for him is given by a cutoff time t∗i at which he switches to the safe arm given

he has i breakthroughs to go. It also takes note of some useful properties of the functions

Vi:

Lemma 4.4 Let V 0 > s
λ1
. A best response for the agent is given by a sequence of cutoff

times t∗m ≥ · · · ≥ t∗2 > t∗1 = Ť (t) (with all inequalities strict if t∗m−1 > t), such that he uses

arm 1 at all times t̃ ≤ t∗i , and the safe arm at times t̃ > t∗i , when he still has i breakthroughs to

go before collecting the lump sum V 0. The cutoff time t∗i (i = 1, · · · ,m) is increasing in V 0;

moreover, for i = 2, · · · ,m, there exists a constant Ci such that for V 0 > Ci, the cutoff time

t∗i is strictly increasing in V 0. The functions Vi(·;V 0) are of class C1 and strictly decreasing;

Vi(t̃; ·) is continuous and (strictly) increasing (on (V 0,∞) for t̃ < t∗i (V 0)).
12 Moreover,

12I write t∗i (V 0) for the cutoff t∗i given the lump-sum reward is V 0.
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limV 0→∞ t∗i = Ť (t), and limV 0→∞ Vi(t̃;V 0) = ∞ for any t̃ ∈ [t, Ť (t)). The functions Vi

satisfy

Vi(t̃;V 0) = max
t̂∈[t̃,Ť (t)]

∫ t̂

t̃

e−(r+λ1)(τ−t̃)λ1Vi−1(τ ;V 0) dτ +
s

r
e−(r+λ1)(t̂−t̃)

(
1− e−r(Ť (t)−t̂)

)
,

and Vi(t̃;V 0) ≤ Vi−1(t̃;V 0), with the inequality strict for t̃ < t∗i .

Proof: See Appendix.

The lemma thus immediately implies that if wt > limV 0↓ s
λ1

Vm(t;V 0) for the given end

date Ť (t), we can find an appropriate V 0 >
s
λ1

ensuring that wt = Vm(t;V 0), as we note in

statement (1.) of Proposition 4.3.

If wt ≤ Vm(t;
s
λ1
), we need to lower the end date Ť (t) further, as statement (2.) in

Proposition 4.3 implies. For this purpose, it turns out to be useful to define another auxiliary

function f : [t, T )× ( s
λ1
,∞) −→ R by f(Ť (t), V 0) = Vm(t;V 0; Ť (t)), where, in a slight abuse

of notation, for any i = 1, · · · ,m, I write Vi(t;V 0; Ť (t)) for Vi(t;V 0) given the end date is

Ť (t). Thus, f(Ť (t), V 0) maps the choice of the stopping time Ť (t) into the on-path agent’s

time-t expected payoff, given the reward V 0 >
s
λ1
. The following lemma takes note of some

properties of f :

Lemma 4.5 f(·, V 0) is continuous and strictly increasing with f(t;V 0) = 0.

Proof: See Appendix.

As we note in the proof of Proposition 4.3, it immediately follows from Lemma 4.5 that we

can choose a lump sum V̂ 0 > s
λ1

and an end date ˇ̌T (t) < t + ϵ, so that wt = f( ˇ̌T (t), V̂ 0).

As one and the same m can be used for all Ť (t) and V̂ 0, and wt is piecewise continuous

and f(·, V 0) is continuous, it immediately follows that there exists a piecewise continuous

t 7→ Ť (t) such that wt = f(Ť (t); V̂ 0).

In summary, the mechanism I have constructed delivers a certain given continuation

value of wt to the on-path agent; it must take care of two distinct concerns in order to

harness maximal incentive power at a given cost. On the one hand, it must make sure

off-path agents never continue to play arm 0; this is achieved by only rewarding the m-th

breakthrough after time t, with m being chosen appropriately high. On the other hand, the

mechanism must preclude the more pessimistic off-path agents from collecting an excessive

option value from being able to switch between the safe arm and arm 1. This is achieved by

ending the game soon enough after a first breakthrough.
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5 Incentive Provision Before A Breakthrough

Whereas in the previous section, I have investigated how the principal would optimally deliver

a given continuation value wt, the purpose of this section is to understand how optimally to

provide incentives before a first breakthrough. I shall show that thanks to the continuation

scheme we have constructed in the previous section (see Proposition 4.1), arm 0 can be made

so unattractive that in any optimal scheme it is dominated by the safe arm. Thus, in order

to induce the agent to use arm 1, he only needs to be compensated for his outside option of

playing safe, which pins down the principal’s wage costs (Proposition 5.3).

In order formally to analyze the optimal incentive schemes before a first breakthrough,

we first have to consider the agent’s best responses to a given incentive scheme (ht, wt)0≤t≤T ,

in order to derive conditions for the agent to best respond by always using arm 1 until

the first breakthrough. In a second step, we will then use these conditions as constraints

in the principal’s problem as he seeks to minimize his wage bill. While the literature on

experimentation with bandits would typically use dynamic programming techniques, this

would not be expedient here, as an agent’s optimal strategy will depend not only on his

current belief and the current incentives he is facing but also on the entire path of future

incentives. To the extent it would be inappropriate to impose any ex ante monotonicity

constraints on the incentive scheme, today’s scheme need not be a perfect predictor for the

future path of incentives; therefore, even a three-dimensional state variable (p̂t, ht, wt) would

be inadequate. Thus, I shall be using Pontryagin’s Optimal Control approach.

The Agent’s Problem

Given an incentive scheme (ht, wt)0≤t≤T , the agent chooses (k0,t, k1,t)0≤t≤T so as to maximize∫ T

0

{
e−rt−λ1

∫ t
0 p̂τk1,τ dτ−λ0

∫ t
0 k0,τ dτ [(1− k0,t − k1,t)s+ k0,tλ0(ht + ωt(p̂t)) + k1,tλ1p̂t(ht + wt)]

}
dt,

subject to ˙̂pt = −λ1k1,tp̂t(1− p̂t).

It will turn out to be useful to work with the log-likelihood ratio xt := ln
(

1−p̂t
p̂t

)
,

and the probability of no success on arm 0, yt := e−λ0

∫ t
0 k0,τ dτ , as the state variables in

our variational problem. These evolve according to ẋt = λ1k1,t (to which law of motion

I assign the co-state µt), and ẏt = −λ0k0,tyt (co-state γt), respectively. The initial values

x0 = ln
(

1−p0
p0

)
and y0 = 1 are given, and xT and yT are free . The agent’s controls are

(k0,t, k1,t) ∈ {(a, b) ∈ R+ : a+ b ≤ 1}.
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Neglecting a constant factor, the Hamiltonian Ht is now given by13

Ht = e−rtyt[(1− k0,t − k1,t)s+ k0,tλ0(ht + ωt(xt))]

+ yte
−rt−xt [(1− k0,t − k1,t)s+ k0,tλ0(ht + ωt(xt)) + k1,tλ1(ht + wt)]

+ µtλ1k1,t − γtλ0k0,tyt.

By the Maximum Principle,14 the existence of absolutely continuous functions µt and γt

respectively satisfying the equations (1) and (2) a.e., as well as (3), which has to be satisfied

for a.a. t, together with the transversality conditions γT = µT = 0, are necessary for the

agent’s behaving optimally by setting k1,t = 1 at any time t:15

µ̇t = e−rtyt
{
e−xt [(1− k0,t − k1,t)s+ k0,tλ0(ht + ωt(xt)) + k1,tλ1(ht + wt)]

−k0,tλ0(1 + e−xt)ω′
t(xt)

}
, (1)

γ̇t = −e−rt{[(1− k0,t − k1,t)s+ k0,tλ0(ht + ωt(xt))]

+ e−xt [(1− k0,t − k1,t)s+ k0,tλ0(ht + ωt(xt)) + k1,tλ1(ht + wt)]}+ γtλ0k0,t , (2)

e−rtyt
[
e−xtλ1(ht + wt)− (1 + e−xt)s

]
+ µtλ1

≥ max
{
0, e−rtyt(1 + e−xt)[λ0(ht + ωt(xt))− s]− γtλ0yt

}
. (3)

In order to ensure the piecewise continuity of ωt(xt) in t (for a given xt), I shall henceforth

assume that in the continuation scheme following a first success, the principal will apply a

threshold number of successes m that is constant over time. (The proof of Lemma 4.2 shows

that m can be chosen in this way.) Moreover, to the same end, I will be assuming that V 0,

the lump sum reward for the (m + 1)-st breakthrough overall, is piecewise continuous as a

function of t, the time of the first breakthrough.16 In the following lemma, I now show that

13In a slight abuse of notation, I now write ωt as a function of xt.
14See Theorem 2 in Seierstad & Sydsæter, 1987, p. 85. One verifies that the relaxed regularity conditions

in footnote 9, p. 132, are satisfied by observing that ωt(p̂) is convex in p̂, hence continuous for p̂ ∈ (0, 1).

As x = ln
(

1−p̂
p̂

)
is a continuous one-to-one transformation of p̂, the relevant continuity requirements in

Seierstad & Sydsæter, 1987, footnote 9, p. 132, are satisfied.
15By standard arguments, the value function ωt(p̂) is convex given any t; hence, it admits left and right

derivatives with respect to p̂ anywhere, and is differentiable a.e. Since x is a differentiable transformation of

p̂, ω′
t(x) exists as a proper derivative for a.a. x. If xt is one of those (countably many) points x at which it

does not, ω′
t(xt) is to be understood as the right derivative (since xt can only ever increase over time).

16Note that wt = Vm(t;V 0; Ť (t)), and that Vm(t; ·; Ť (t)) is continuous, and strictly increasing if t∗m > t,

and constant if t = t∗m, while t∗m is continuous and increasing in V 0, and Vm(t;V 0; ·) is continuous and

strictly increasing. Thus, a jump in V 0 is either innocuous (which may be the case either because t∗m = t

both before and after the jump, or because it is exactly counterbalanced by a jump in Ť (t)), or it leads to a

jump in wt. Since wt is piecewise continuous, it follows that there exists a piecewise continuous time path

of lump sums V 0(t) (as a function of the date of the first breakthrough t) delivering wt.
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the agent indeed has a best response:

Lemma 5.1 The agent has a best response to any given incentive scheme (ht, wt)0≤t≤T .

Proof: See Appendix.

To state the following proposition, I define ϵt := Ť (t)−t. I shall say that a wage scheme is

continuous if ht, wt and ϵt are continuous functions of time t. The following proposition shows

that if a wage scheme is continuous, then Pontryagin’s conditions are not only necessary,

but also sufficient, for the agent’s best-responding by being honest throughout. Moreover,

the proposition implies that if the wage scheme is continuous the conditions will ensure

that compliance with the principal’s desire for honesty is the agent’s essentially unique best

response (i.e. but possibly for deviations on a null set, which are innocuous to the principal).

Proposition 5.2 Suppose that k1,t = 1 for all t satisfies Pontryagin’s necessary conditions

as stated above, even for the upper bound on ωt given by Proposition 4.1. Suppose furthermore

that ht, wt, and ϵt are continuous functions of time t. Then, if (k0,t, k1,t)0≤t≤T is a best

response, it is the case that k1,t = 1 for a.a. t.

Proof: See Appendix.

Our strategy for the rest of this section is to find the cheapest possible schemes such

that the agent’s necessary conditions for his best responding by being honest be satisfied.

In a second step, we shall then verify if that scheme is in fact continuous. If it is, it must be

optimal, since any cheaper scheme would violate even the necessary conditions for honesty

by our first step.

We note that setting k1,t = 1 at a.a. times t implies xt = x0 + λ1t, and yt = 1 for all t.

Thus, we can rewrite (1) and (2) as

µ̇t = e−rt−xtλ1(ht + wt), (4)

γ̇t = −µ̇t. (5)

Furthermore we can rewrite (3) as the following two joint conditions:

e−rt
[
e−xtλ1(ht + wt)− (1 + e−xt)s

]
≥ −µtλ1, (6)

and

e−rt
[
e−xtλ1(ht + wt)− (1 + e−xt)λ0(ht + ωt(xt))

]
≥ −µt(λ1 − λ0). (7)
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The Principal’s Problem

Now we turn to the principal’s problem, who will take the agent’s incentive constraints into

account when designing his incentive scheme with a view toward implementing k1,t = 1

for almost all t ∈ [0, T ]. Thus, the principal’s objective is to choose (ht, wt)0≤t≤T (with

(ht, wt) ∈ [0, L]2 at all t, for some L > 0 which is chosen large enough ) so as to minimize∫ T

0

e−rt−λ1

∫ t
0 pτ dτptλ1(ht + wt) dt

subject to the constraints xt = x0+λ1t, yt = 1, (3), (4), (5), and the transversality conditions

µT = γT = 0, which, as we have discussed, are necessary for the agent to best respond by

being honest.

Neglecting constant factors, one can re-write the principal’s objective in terms of the

log-likelihood ratio as ∫ T

0

e−(r+λ1)t(ht + wt) dt.

By (4) and (5), we have that

µt = −γt = −λ1e
−rt−xt

∫ T

t

e−(r+λ1)(τ−t)(hτ+wτ ) dτ = − λ1pt
1− pt

e−rt

∫ T

t

e−(r+λ1)(τ−t)(hτ+wτ ) dτ.

(8)

Thus, −µt measures the agent’s opportunity costs from possibly forgone future rewards.

They adversely impact today’s incentives, as by pulling arm 1 today the agent “risks” having

his first breakthrough today, thereby forfeiting his chance of collecting the rewards offered

for a first breakthrough tomorrow. Hence, generous rewards are doubly expensive for the

principal: On the one hand, he has to pay out more in case of a breakthrough today; yet,

on the other hand, by paying a lot today, he might make it attractive for the agent to

procrastinate at previous points in time in the hope of winning today’s reward. In order to

counteract this effect, the principal has to offer higher rewards at previous times in order

to maintain incentives intact, which is the effect captured by µt. The strength of this effect

is proportional to the instantaneous probability of achieving a breakthrough today, ptλ1dt;

future rewards are discounted by the rate r+λ1, as a higher λ1 implies a correspondingly lower

probability of players’ reaching any given future period τ without a breakthrough having

previously occurred. This dynamic effect becomes small as players become impatient. Since

µt = −γt for all t ∈ [0, T ], we shall henceforth only keep track of µt.

Our following proposition will give a superset of all optimal schemes, as well as exhibit an

optimal scheme. It will furthermore show that optimality uniquely pins down the principal’s

wage costs. In the class of schemes with ht = 0 for all t, the optimal scheme is essentially
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unique. The characterization relies on the fact that it never pays for the principal to give

strict rather than weak incentives for the agent to do the right thing, because if he did,

he could lower his expected wage bill while still providing adequate incentives. This means

that, given he will do the right thing come tomorrow, at any given instant t, the agent

is indifferent between doing the right thing and using arm 1, on the one hand, and his

next best outside option on the other hand. Yet, the wage scheme we have constructed

in Section 4 makes sure that the agent’s best outside option can never be arm 0. Indeed,

playing arm 0 yields the agent approximately ptwt after a breakthrough, which occurs with

an instantaneous probability of λ0dt if arm 0 is pulled over a time interval of infinitesimal

length dt. Arm 1, by contrast, yields wt in case of a breakthrough, which occurs with an

instantaneous probability of ptλ1dt; thus, as λ1 > λ0, arm 1 dominates arm 0. Hence, wt is

pinned down by the binding incentive constraint for the safe arm.

To facilitate the exposition of the following proposition, we define the function w̃ ac-

cording to

w̃(t) :=

{
s

λ1pt
+ s

r
(1− e−r(T−t)) + 1−pt

pt
s

r−λ1

(
1− e−(r−λ1)(T−t)

)
if r ̸= λ1

s
λ1pt

+ s
r
(1− e−r(T−t)) + 1−pt

pt
s(T − t) if r = λ1.

As is readily verified by plugging µt = −λ1

∫ T

t
e−rτ−xτ (hτ + wτ ) dτ into the incentive con-

straint for the safe arm, w̃(t) is the reward that an agent with the belief pt has to be offered

at time t to make him exactly indifferent between using arm 1 and the safe arm, given that

he will continue to use arm 1 in the future until time T . The first term s
λ1pt

signifies the

compensation the agent must receive for forgoing the immediate flow of sdt; yet, with an

instantaneous probability of ptλ1dt, the agent has a breakthrough, and play moves into the

continuation phase, which we have analyzed in Section 4. This continuation phase has to

compensate the agent for the forgone access to the safe arm he would have enjoyed in the

absence of a breakthrough; this function is performed by the second term, s
r
(1 − e−r(T−t)).

The third term counteracts the allure of future incentives, which might induce the agent to

procrastinate, as we have discussed supra. It is increasing in the remainder of time, T−t, and

arbitrarily small for very impatient agents. We are now ready to characterize the principal’s

optimal wage schemes:

Proposition 5.3 If a scheme is optimal, it is in the set E, with

E :=

{
(ht, wt)0≤t≤T : 0 ≤ (1− pt)ht < s

(
1

λ0

− 1

λ1

)
and ht + wt = w̃(t) t-a.s.

}
.

If a scheme is in E and continuous, it is optimal. One optimal wage scheme is given by

ht = 0 and wt = w̃(t) for all t ∈ [0, T ].
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Proof: By construction of w̃, (6) binds at a.a. t for all schemes in E . Algebra shows that

(7) holds given that (6) binds if, and only if,

ext

1 + ext
ht + ωt(xt) ≤

wt

1 + ext
+ s

(
1

λ0

− 1

λ1

)
. (9)

As by Proposition 4.1, ωt(pt) > ptwt, yet arbitrarily close to ptwt, condition (9) is equiv-

alent to the inequality in the definition of E .17 Clearly, (9) is satisfied for ht = 0 and
s
r
(1− e−rϵt) ≤ s

(
1
λ0

− 1
λ1

)
. As wt = w̃(t) is continuous, there exists a continuous ϵt satisfy-

ing this constraint, and delivering wt = w̃(t) in the continuation scheme we have constructed

in Section 4.

By the construction of w̃, any scheme that is not in E yet satisfies the constraints (4),

(5), (6) and (7) a.s., as well as the transversality condition, is more expensive to the principal

than any scheme in E . Proposition 5.2 thus immediately implies that if a scheme is in E
and is continuous, it is optimal . As we have discussed, the scheme given by ht = 0 and

wt = w̃(t) for all t can be made continuous through a judicious choice of ϵt. This implies

that any scheme outside of E is dominated by ht = 0 and wt = w̃(t) for all t, and hence

cannot be optimal.

Note that this result implies that it is without loss for the principal to restrict himself to

schemes that never reward the agent for his first breakthrough, even though the first break-

through is all the principal is interested in. The intuition for this is that when paying an

immediate lump sum for the first breakthrough, the principal cannot discriminate between

an agent who has achieved his first breakthrough on arm 0 on the one hand, and an on-path

agent on the other; the latter, though, will enjoy an informational advantage in the contin-

uation game. Indeed, by Proposition 4.1, the principal can make sure that an increase in wt

translates into less of an increase in ωt, whereas ht is paid out indiscriminately to on-path

and off-path agents alike. Hence, incentive provision can only be helped when incentives are

given through the continuation game rather than through immediate lump-sum payments.

The fundamental reason for this is that the information released by arm 0 is a Blackwell-

garbling of the information released by arm 1; hence, having had a breakthrough on arm 1 is

(weakly) better, no matter what the ensuing decision problem may be. If, by contrast, the

principal wanted to implement an action yielding Blackwell-garbled information, the best he

could do would be to give myopic incentives; in my model, if the goal was the implementation

of arm 0, the principal could without loss restrict himself to schemes with wt = ωt = 0 for

all t.

17If λ0 is so low that the proof of Proposition 4.1 goes through for m = 1, the inequality (1 − pt)ht ≤
s
(

1
λ0

− 1
λ1

)
is weak, rather than strict. The same holds true if wt = 0.
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A further immediate implication of the preceding proposition is that the optimal in-

centive scheme is essentially unique in that the wage payments ht + wt are a.s. uniquely

pinned down. Clearly, optimal wage costs w̃ are decreasing in r, implying that incentives

are the cheaper to provide the more impatient the agent is. As the agent becomes myopic

(r → ∞), wage costs tend to s
λ1pt

, since in the limit he now only has to be compensated for

the immediate flow cost of forgoing the safe arm. As the agent becomes infinitely patient

(r ↓ 0), wage costs tend to s
λ1pT

+ s(T − t). Concerning the evolution of rewards over time,

there are two countervailing effects as in Bonatti & Hörner (2011): On the one hand, the

agent becomes more pessimistic over time, so that rewards will have to increase to make him

willing to use arm 1 nonetheless; on the other hand, as the end date approaches, the idea

of waiting for a future success progressively loses its allure, which should allow the principal

to reduce wages somewhat in the here and now. Which effect ultimately dominates depends

on the parameters; if players have very high discount rates r, the dynamic effect favoring

decreasing rewards becomes very small, and rewards will be increasing. For very small r, by

contrast, the dynamic effect dominates, and rewards will decrease over time.

Another immediate implication is the importance of delivering rewards via an “off-line”

mechanism, i.e. by means of the continuation game. Indeed, whenever ptλ1 ≤ λ0 at a time

t < T , it is impossible to implement the use of arm 1 on the mere strength of immediate

lump-sum rewards. This is easily seen to follow from condition (7), the incentive constraint

for arm 0, since ht ≥ 0 by limited liability:

e−rt(ptλ1 − λ0)ht ≥ −µt(1− pt)(λ1 − λ0) > 0. (10)

Conversely, whenever ptλ1 > λ0, it is always possible to blow up ht in a way to make the

incentive constraints hold. However, even in this case, it may well be suboptimal for the

principal to restrict himself to immediate rewards. As is directly implied by Proposition 5.3,

a necessary condition for immediate rewards to be consistent with optimality at a generic

time t is that w̃(t) < s
1−pt

(
1
λ0

− 1
λ1

)
. To show that this is a more stringent condition than

ptλ1 > λ0, we note that optimality implies that the incentive constraint for the safe arm (6)

will bind given the reward offered is w̃(t), and hence that

−µt = e−rt

{
s

r

pt
1− pt

(
1− e−r(T−t)

)
+

s

r − λ1

(
1− e−(r−λ1)(T−t)

)}
if r ̸= λ1. For immediate incentives to be consistent with optimality, it is necessary that

ht =
s

1−pt

(
1
λ0

− 1
λ1

)
satisfy the incentive constraint (10) given this µt with slackness, which

is equivalent to

ptλ1 − λ0 > (1− pt)λ0λ1

[
pt
1− e−r(T−t)

r
+ (1− pt)

1− e−(r−λ1)(T−t)

r − λ1

]
> 0.
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Thus, in summary, while the implementation of arm 1 by mere immediate lump-sum incen-

tives is feasible if, and only if, ptλ1−λ0 > 0, restricting himself to these immediate incentives

will come at a cost to the principal whenever ptλ1 − λ0 violates a strictly more stringent

condition.18

6 The Optimal Stopping Time

In this section, we let the principal additionally choose to what end date T ∈ [0, T ) to

commit at the outset of the game (with T < ∞ chosen suitably large). As the first-best

benchmark, I use the solution given by the hypothetical situation in which the principal

operates the bandit himself, and he decides when to stop using arm 1, which he pulls at a

flow cost of s, conditional on not having obtained a success thus far. Thus, he chooses T so

as to maximize ∫ T

0

{
e−rt−λ1

∫ t
0 pτ dτ (ptλ1Π− s)

}
dt (11)

subject to ṗt = −λ1pt(1 − pt) for all t ∈ (0, T ). Clearly, the integrand is positive if, and

only if, ptλ1Π ≥ s, i.e. as long as pt ≥ s
λ1Π

=: pm. As the principal is only interested in the

first breakthrough, information has no value for him, meaning that, very much in contrast

to the classical bandit literature, he is not willing to forgo current payoffs in order to learn

something about the state of the world. In other words, he will behave myopically, i.e. as

though the future was of no consequence to him, and stops playing risky at his myopic cutoff

belief pm, which is reached at time T FB = 1
λ1

ln
(

p0
1−p0

1−pm

pm

)
.

Regarding the second-best situation where the principal delegates the investigation to

an agent, I shall compute the optimal end date T , assuming that the principal is restricted

to implementing arm 1 a.s. before time T ; i.e. his goal is to commit to an end date T so as

to maximize ∫ T

0

{
e−rt−λ1

∫ t
0 pτ dτptλ1 (Π− w̃(t))

}
dt (12)

subject to ṗt = −λ1pt(1− pt) for all t ∈ (0, T ).

Thus, all that changes with respect to the first best problem (11) is that the opportunity

cost flow s is now replaced by the optimal wage costs w̃(t) (see Proposition 5.3). These of

course only have to be paid out in case of a success, which happens with an instantaneous

18The corresponding necessary condition for the case r = λ1 is given by

ptλ1 − λ0 > (1− pt)λ0λ1

[
pt
1− e−r(T−t)

r
+ (1− pt)(T − t)

]
> 0.
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probability of ptλ1dt. After plugging in for w̃(t), one finds that the first-order derivative of

the objective with respect to T is given by

e−(r+λ1)T

(
λ1Π− s

pT

)
︸ ︷︷ ︸

Marginal effect

−e−rT s

pT

(
1− e−λ1T

)
︸ ︷︷ ︸
Intra-marginal effect

. (13)

The marginal effect captures the benefit the principal could collect by extending experimen-

tation for an additional instant at time T . Yet, as we have discussed in Section 5, the choice

of an end date T also entails an intra-marginal effect at times t < T . Indeed, we have seen

that for him to use arm 1 at time t, the agent has to be compensated for the opportunity

cost of the potentially forgone rewards for having his first breakthrough at some future date,

an effect that is the stronger “the more future there is,” i.e. the more distant the end date T

is. Hence, by marginally increasing T , the principal also marginally raises his wage liabilities

at times t < T . This creates a distortion, so that the following proposition comes as no

surprise:

Proposition 6.1 Let p0 > pm. The principal stops the game at the time T ∗ ∈ (0, T FB)

when pT ∗ = pmeλ1T ∗
, i.e.

T ∗ =
1

λ1

ln

(
−pmp0 +

√
(pmp0)2 + 4pmp0(1− p0)

2pm(1− p0)

)
.

Proof: The formula for pT ∗ is gotten by setting the expression (13) to 0, and verifying that

the second-order condition holds. Now, T ∗ is the unique root of p0e−λ1T
∗

p0e−λ1T
∗
+1−p0

= pmeλ1T ∗
.

The stopping times T FB and T ∗ are both increasing in the players’ optimism p0 as well

as in the stakes at play as measured by the ratio 1
pm

= λ1Π
s
. The size of the distortion can be

measured by the ratio pT∗−pm

pm
, which is also increasing in the stakes at play. This is because

of the intra-marginal effect we have discussed supra; as stakes increase, and the principal

consequently extends the deadline T ∗, the agent’s incentives for procrastination are exacer-

bated at intra-marginal points in time. This in turn increases the agent’s wages w̃(t) at these

intra-marginal points in time, so that the principal can only appropriate part of any increase

in the overall pie. Yet the wedge pT∗−pm

pm
is also increasing in players’ optimism, as measured

by p0. Since pm is independent of p0, this implies that the threshold belief pT ∗ is increasing

in p0. Whereas at any time t, wage costs w̃(t) are decreasing in p0, and hence T ∗ is increasing

in p0, there is a countervailing second-order effect in the principal-agent game that is absent

from the first-best problem: On the one hand, the agent’s propensity to procrastinate |µt| is
increasing in p0; on the other hand, similarly to the case of rising stakes, any increase in the
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end date additionally compounds the agent’s proclivity for procrastination. The following

proposition summarizes these comparative statics:

Proposition 6.2 The stopping time T ∗ as well as the wedge pT∗−pm

pm
are increasing in the

stakes at play λ1Π
s

and in players’ optimism p0.

Proof: See Appendix.

Yet, also recall from the preceding sections that given the optimal incentive scheme

we have computed there, the principal only needs to compensate the agent for his outside

option of using the safe arm. Put differently, the presence of a cheating action, arm 0,

does not give rise to any distortions; the only distortions that arise are due to the fact that

high future rewards to some extent cannibalize today’s rewards. Yet, in many applications,

the principal’s access may not be restricted to a single agent; rather, he might be able to

hire several agents sequentially if he so chooses. Now, in the limit, if the principal can

hire agents for a mere infinitesimal instant dt, he can completely shut down the intra-

marginal effect we have discussed above.19 Indeed, if we assume that subsequent agents

observe preceding agents’ efforts (so that the agent hired at instant t will have a belief of

pt rather than p0), we can see from the formula for w̃ that the reward an agent who is only

hired for an instant of length dt would have to be promised for a breakthrough is given by
s

λ1pt
(1 + λ1dt) + o(dt). Hence, it pays for the principal to go on with the project as long

as ptλ1

(
Π− s

ptλ1
(1 + λ1dt)

)
dt+ o(dt) = ptλ1

(
Π− s

ptλ1

)
dt+ o(dt) > 0, i.e. he stops at the

first-best efficient stopping time, a result I summarize in the following proposition:

Proposition 6.3 If the principal has access to a sequence of different agents, he stops the

delegated project at the time T FB when pTFB = pm.

Thus, while delegating the project to an agent forces the principal to devise quite a

complicated incentive scheme, it only induces him to stop the exploration inefficiently early

because of the agent’s propensity to procrastinate, rather than his temptation to cheat. This

19Intuitively, one might think that hiring one particularly myopic agent might remedy the problem as well.

However, while it is true that the impact future rewards have on today’s incentives, and hence the intra-

marginal effect of an extended end time T , becomes arbitrarily small as the players become very impatient,

the same holds true for the marginal benefit of extending play for an instant after a given time T > 0, so

that in sum the distortion is independent of the players’ discount rate. If one were to relax the assumption

that the players share the same discount rate, the problem could conceivably be addressed by the principal’s

hiring an agent who is much more impatient than himself. I leave the analysis of players with differing

discount factors outside the scope of this paper.
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problem can be overcome, though, if the principal has access to a sequence of many agents.

To sum, if λ0 ≥ λ1, the option to cheat makes it impossible to make the agent use arm

1; if λ0 < λ1, by contrast, incentives are optimally structured in such a way as to obviate

any impact of the cheating option on players’ payoffs. When he has access to a sequence of

many agents, the principal can completely shut down the procrastination effect, rendering

him willing even to implement the efficient amount of experimentation.

7 Conclusion

The present paper introduces the question of optimal incentive design into a dynamic single-

agent model of experimentation on bandits. I have shown that even though the principal

only cares about the first breakthrough, it is without loss for him only to reward later

ones. Thus, even though the agent will be honest for sure in equilibrium, and hence the

first observed breakthrough reveals everything the principal wants to know, committing to

rewarding only the (m + 1)-st breakthrough can be a potent means of keeping the agent

honest in the first place. This is because an agent who has not cheated on his first success

is more optimistic about his ability to generate a large number of later ones. Structuring

incentives appropriately in this fashion precludes any distortions arising from the agent’s

option to cheat whenever the cheating option does not render the provision of incentives

completely impossible. Thus, my analysis would suggest that skewing incentives more toward

rewarding longer-term performance might constitute an avenue to explore in addressing

agents’ propensity “to play it too safe.”

In my model, the principal only employs one single agent at any given moment in time.

It would be interesting to explore how the structure of the optimal incentive scheme would

change if several agents were simultaneously investigating the same hypothesis. Intuition

would suggest that the rationale for only rewarding later breakthroughs should carry over

to that case. I leave a full exploration of these questions for future work.
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Appendix

Proof of Lemma 4.2

Fix an arbitrary Ť (t) ∈ (t, T ), t̃ ∈ (t, Ť (t)], p̂t̃ ∈ [pt̃, p0], and V 0 > 0. Consider the restricted

problem in which the agent can only choose between arms 0 and 1. Then, the agent’s time-t̃

expected reward is given by∫ Ť (t)

t̃
e−r(τm−t̃)

(
V 0 +

s

r

(
1− e−r(Ť (t)−τm)

))
dF,

where F is the distribution over τm, the time of the m-th breakthrough after time t̃. As the

integrand is decreasing in τm, all that remains to be shown is that F ∗(·; p̂t̃), where F ∗(τ ; p̂t̃) denotes

the probability of m breakthroughs up to time τ ∈ (t̃, Ť (t)] when the agent always pulls arm 1, is

first-order stochastically dominated by the distribution of them-th breakthrough for any alternative

strategy, which I shall denote by F̃ (·; p̂t̃). Fix an arbitrary τ ∈ (t̃, Ť (t)]. Now,

F ∗(τ ; p̂t̃) = p̂t̃
λm
1

m!
(τ − t̃)me−λ1(τ−t̃).

Whatever the alternative strategy under consideration may be, F̃ can be written as

F̃ (τ ; p̂t̃) =

∫ 1

0
Fα(τ ; p̂t̃)µ(dα),

with

Fα(τ ; p̂t̃) = p̂t̃
[αλ1 + (1− α)λ0]

m

m!

(
τ − t̃

)m
e−(αλ1+(1−α)λ0)(τ−t̃)

+ (1− p̂t̃)
[(1− α)λ0]

m

m!

(
τ − t̃

)m
e−(1−α)λ0(τ−t̃)

for some probability measure µ on α ∈ [0, 1]. The weight α can be interpreted as the fraction of the

time interval [t̃, τ ] devoted to arm 1; of course, since the agent’s strategy allows him to condition

his action on the entire previous history, α will generally be stochastic. Therefore, the strategy of

the proof is to find an m such that for any t̃ ∈ (t, T ), τ ∈ (t̃, T ) and p̂t̃ ∈ [pT , p0], it is the case that

F ∗(τ ; p̂t̃) > Fα(τ ; p̂t̃) (A.1)

uniformly for all α ∈ [0, 1).

Computations show that

∂Fα

∂α
=

(τ − t̃)m

m!

{
p̂t̃e

−(αλ1+(1−α)λ0)(τ−t̃)(λ1 − λ0) (αλ1 + (1− α)λ0)
m−1 [m− (αλ1 + (1− α)λ0)(τ − t̃)]

−(1− p̂t̃)e
−(1−α)λ0(τ−t̃)λ0 ((1− α)λ0)

m−1 [m− (1− α)λ0(τ − t̃)]
}
.

Further computations show that ∂Fα
∂α > 0 if and only if

ξ(α) > 1− λ0
τ − t̃

m
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with

ξ(α) :=
p̂t̃

1− p̂t̃
e−αλ1(τ−t̃)

(
λ1

λ0
− 1

)(
αλ1 + (1− α)λ0

(1− α)λ0

)m−1 [
1− (αλ1 + (1− α)λ0)

τ − t̃

m

]
−αλ0

τ − t̃

m

for all α ∈ [0, 1).

Now, we choose m ≥ 2 high enough that

(m− 1)

(
λ1

λ0
− λ2

1

λ0

T

m

)
− λ2

1

λ0
T

(
1 +

1

m

)
>

1− pT
pT

λ2
0

λ1 − λ0
eλ1T T

m
. (A.2)

As the left-hand side of (A.2) is diverging to +∞ for m → +∞ while the right-hand side converges

to 0, such an m ≥ 2 exists. Algebra shows that (A.2) ensures that limα↑1 ξ(α) = ∞ and ξ′(α) > 0

for all α ∈ (0, 1). Now, if p̂t̃λ1 ≥ λ0, it is the case that ξ(0) ≥ 1 − λ0
τ−t̃
m , and hence ∂Fα

∂α > 0 for

all α ∈ (0, 1), so that F ∗(τ ; p̂t̃) > Fα(τ ; p̂t̃) for all α ∈ [0, 1) . In case p̂t̃λ1 < λ0, we have that

ξ(0) < 1 − λ0
τ−t̃
m ; now, there exists a unique α∗ ∈ (0, 1) such that ∂Fα

∂α < 0 for all α ∈ (0, α∗),
∂Fα
∂α > 0 for all α ∈ (α∗, 1), and we can conclude that Fα(τ ; p̂t̃) is maximized either by α = 1 or

α = 0. Choosing m such that

pT

(
λ1

λ0

)m

> e(λ1−λ0)T (A.3)

ensures that the maximum is indeed attained at α = 1.

In summary, there exists an m ∈ N ∩ [2,∞) satisfying both (A.2) and (A.3). Choosing m in

this manner ensures that

F ∗(τ ; p̂t̃) > Fα(τ ; p̂t̃)

for all α ∈ [0, 1). Note that the choice of m is independent of t̃, τ > t̃, and p̂t̃ ∈ [pT , p0]. Hence, for

such an m, it is clearly the case that for any t̃, τ > t̃, and p̂t̃ ∈ [pT , p0], we have that F ∗(τ ; p̂t̃) >

F̃ (τ ; p̂t̃) for any τ > t̃ whenever µ ̸= δ1, where δ1 denotes the Dirac measure associated with the

strategy of always of always pulling arm 1, whatever befall.

It remains to be shown that the preference ordering does not change if the agent also has

access to the safe arm. In this case, his goal is to maximize∫ Ť (t)

t̃

{
(1− kτ )e

−r(τ−t̃)s+

∫ Ť (t)

t̃
e−r(τm−t̃)

(
V 0 +

s

r
(1− e−r(Ť (t)−τm))

)
dF̃ {kτ}(τm; p̂t̃)

}
dν
(
{kτ}t̃≤τ≤Ť (t)

)
over probability measures F̃ {kτ} and ν, with the process {kτ} satisfying 0 ≤ kτ ≤ 1 for all τ ∈
[t̃, Ť (t)].

I now show that for any such process {kτ} and p̂t̃ ∈ [pT , p0], it is the case that if
∫ Ť (t)

t̃
kσ dσ = 0,

then F̃ {kτ}(·; p̂t̃) = 0; if
∫ Ť (t)

t̃
kσ dσ > 0, then (F̃ {kτ})∗, the distribution over the m-th breakthrough

that ensues from the agent’s never using arm 0, is first-order stochastically dominated by all other

distributions F̃ {kτ} ̸= (F̃ {kτ})∗. Arguing as above, we can write

F̃ {kτ}(τ ; p̂t̃) =

∫ 1

0
F {kτ}
α (τ ; p̂t̃)µ(dα)
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for

F {kτ}
α (τ ; p̂t̃) = p̂t̃

[αλ1 + (1− α)λ0]
m

m!

(∫ τ

t̃
kσ dσ

)m

e−(αλ1+(1−α)λ0)
∫ τ
t̃ kσ dσ

+ (1− p̂t̃)
[(1− α)λ0]

m

m!

(∫ τ

t̃
kσ dσ

)m

e−(1−α)λ0

∫ τ
t̃ kσ dσ

and some probability measure µ. Since all that changes with respect to our calculations above is for

τ− t̃ > 0 to be replaced by
∫ τ
t̃ kσ dσ ∈ [0, τ− t̃], and our previous τ was arbitrary, the previous calcu-

lations continue to apply if
∫ τ
t̃ kσ dσ > 0. (Otherwise, F̃ {kτ} = 0 for all measures µ.) In particular,

any m ≥ 2 satisfying conditions (A.2) and (A.3) ensures that if
∫ τ
t̃ kσ dσ > 0, (F̃ {kτ})∗ is first-order

stochastically dominated by any F̃ {kτ} ̸= (F̃ {kτ})∗. As e−r(τm−t̃)
(
V 0 +

s
r (1− e−r(Ť (t)−τm)

)
is de-

creasing in τm, we can conclude that setting α = 1 with probability 1 is (strictly) optimal for all

{kσ}t̃≤σ≤Ť (t) (with
∫ Ť (t)

t̃
kσ dσ > 0).

Proof of Lemma 4.4

To analyze the agent’s best responses, I shall make use of Bellman’s Principle of Optimality. For a

given k1,t̃, the HJB equation is given by

Vi(t̃;V 0) =
[
s+ k1,t̃

(
λ1Vi−1(t̃;V 0)− s

)]
dt+(1−rdt)(1−k1,t̃λ1dt)

(
Vi(t̃;V 0) + V̇i(t̃;V 0)dt

)
+o(dt).

Thus, neglecting terms of order dt2 and higher, and re-arranging gives us

rVi(t̃;V 0) = s+ V̇i(t̃;V 0) + k1,t̃
[
λ1

(
Vi−1(t̃;V 0)− Vi(t̃;V 0)

)
− s
]
. (A.4)

Hence, k1,t̃ = 1 solves the HJB equation if, and only if,

Vi−1(t̃;V 0)− Vi(t̃;V 0) ≥
s

λ1
; (A.5)

it is the unique solution if, and only if, this inequality is strict.

For i = 1, setting k1,τ = 1 for all τ ∈ [t̃, Ť (t)] implies

V1(t̃;V 0) =
λ1

λ1 + r

(
1− e−(r+λ1)(Ť (t)−t̃)

)(
V 0 +

s

r

)
− s

r
e−r(Ť (t)−t̃)

(
1− e−λ1(Ť (t)−t̃)

)
.

Because V 0 >
s
λ1
, the derivative V̇1 satisfies

V̇1(t̃;V 0) = −λ1e
−(r+λ1)(Ť (t)−t̃)V 0 − se−r(Ť (t)−t̃)

(
1− e−λ1(Ť (t)−t̃)

)
≤ −se−r(Ť (t)−t̃) < 0.

By simple algebra, one finds that

V0(t̃;V 0)− V1(t̃;V 0) =

(
r

r + λ1
+

λ1

r + λ1
e−(r+λ1)(Ť (t)−t̃)

)
V 0 +

s

r + λ1

(
1− e−(r+λ1)(Ť (t)−t̃)

)
,

which one shows strictly to exceed s
λ1

for all t̃ ∈ (t, Ť (t)] if V 0 >
s
λ1
. We conclude that V1(·;V 0) is

of class C1 and solves the HJB equation. Hence, V1 is the value function,20 and a cutoff strategy

20This follows from a standard verification argument; one can for instance apply Prop. 2.1 in Bertsekas

(1995, p.93).
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with t∗1 = Ť (t) is optimal. Furthermore, V1(·;V 0) is absolutely continuous, and strictly decreasing

with V̇1(t̃;V 0) ≤ −se−r(Ť (t)−t̃) for all t̃.

Now let i > 1. As my induction hypothesis, I posit that Vi−1 is of the following structure:

Vi−1(t̃;V 0) =

∫ t∗i−1

t̃
e−(r+λ1)(τ−t̃)λ1Vi−2(τ ;V 0) dτ + e−(r+λ1)(t∗i−1−t̃) s

r

(
1− e−r(Ť (t)−t∗i−1)

)
if t̃ ≤ t∗i−1, and

Vi−1(t̃;V 0) =
s

r

(
1− e−r(Ť (t)−t̃)

)
if t̃ > t∗i−1, for some t∗i−1 ≤ Ť (t). It is furthermore assumed that Vi−1(·;V 0) is absolutely continuous

and C1, and that V̇i−1(t̃;V 0) ≤ −se−r(Ť (t)−t̃) for all t̃ ∈ (t, Ť (t)).

Now, if Vi−1(t;V 0) < s
λ1

+ s
r

(
1− e−r(Ť (t)−t)

)
, I set t∗i = t. Otherwise, I define t∗i as the

lowest t∗ satisfying Vi−1(t
∗;V 0) =

s
λ1

+ s
r

(
1− e−r(Ť (t)−t∗)

)
. Since V̇i−1(t̃;V 0) ≤ −se−r(Ť (t)−t̃) for

all t̃ ∈ (t, Ť (t)), Vi−1(·;V 0) is continuous, and Vi−1(Ť (t);V 0) = 0, it is the case that t∗i exists, and

t∗i < Ť (t).

Fix an arbitrary t̃ ∈ (t, Ť (t)). If Vi−1(t̃;V 0) ≤ s
λ1

+ s
r

(
1− e−r(Ť (t)−t̃)

)
, i.e. t̃ ≥ t∗i , k1,τ̂ = 0

for all τ̂ ∈ [t̃, Ť (t)], and its corresponding payoff function Vi(τ̂ ;V 0) =
s
r

(
1− e−r(Ť (t)−τ̂)

)
solve the

HJB equation. Indeed, the payoff function Vi(τ̂ ;V 0) =
s
r

(
1− e−r(Ť (t)−τ̂)

)
is of class C1, and, since

V̇i−1(τ̂ ;V 0) ≤ −se−r(Ť (t)−τ̂), we have that Vi−1(τ̂ ;V 0) − Vi(τ̂ ;V 0) ≤ s
λ1

at all times τ̂ ∈ [t̃, Ť (t)].

This establishes that Vi is indeed the value function, and that k1,t̃ = 0 is a best response for all

t̃ ≥ t∗i .
21

Now, let us assume that Vi−1(t̃;V 0) >
s
λ1

+ s
r

(
1− e−r(Ť (t)−t̃)

)
. I shall now show that k1,τ̂ = 1

for all τ̂ ∈ [t̃, t∗i ], k1,τ̂ = 0 for all τ̂ ∈ (t∗i , Ť (t)], and its appertaining payoff function,

Vi(τ̂ ;V 0) =


∫ t∗i
τ̂ e−(r+λ1)(τ−τ̂)λ1Vi−1(τ ;V 0) dτ + e−(r+λ1)(t∗i−τ̂) s

r

(
1− e−r(Ť (t)−t∗i )

)
if τ̂ ≤ t∗i

s
r

(
1− e−r(Ť (t)−τ̂)

)
if τ̂ > t∗i ,

for τ̂ ∈ [t̃, Ť (t)], solve the HJB equation. In order to do so, it is sufficient to show that Vi is C1,

and that Vi−1(τ̂ ;V 0) − Vi(τ̂ ;V 0) ≥ s
λ1

for all τ̂ ∈ [t̃, t∗i ], while Vi−1(τ̂ ;V 0) − Vi(τ̂ ;V 0) ≤ s
λ1

for all

τ̂ ∈ (t∗i , Ť (t)].

First, let τ̂ ≤ t∗i . Using the fact that, by absolute continuity of Vi−1(·;V 0), we have that for

τ ≥ τ̂

Vi−1(τ ;V 0) = Vi−1(τ̂ ;V 0) +

∫ τ

τ̂
V̇i−1(σ;V 0) dσ ≤ Vi−1(τ̂ ;V 0)−

s

r
e−r(Ť (t)−τ̂)

(
er(τ−τ̂) − 1

)
by our induction hypothesis, one shows that the following condition is sufficient for Vi−1(τ̂ ;V 0)−
Vi(τ̂ ;V 0) ≥ s

λ1
:[

r

r + λ1
+

λ1

r + λ1
e−(r+λ1)(t∗i−τ̂)

] [
Vi−1(τ̂ ;V 0) +

s

r
e−r(Ť (t)−τ̂)

]
− s

r
e−(r+λ1)(t∗i−τ̂) − s

λ1
≥ 0. (A.6)

21If Vi−1(t̃;V 0) = s
λ1

+ s
r

(
1− e−r(Ť (t)−t̃)

)
, we have just argued that the value function is given by

Vi(t̃;V 0) =
s
r

(
1− e−r(Ť (t)−t̃)

)
. In this case, any k1,t̃ ∈ [0, 1] is a best response. Infra, it is shown that this

indifference can only occur at t∗i .
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As τ̂ ≤ t∗i , we have that Vi−1(τ̂ ;V 0) ≥ s
λ1

+ s
r

(
1− e−r(Ť (t)−τ̂)

)
, which implies that (A.6) holds,

since [
r

r + λ1
+

λ1

r + λ1
e−(r+λ1)(t∗i−τ̂)

] [
s

λ1
+

s

r

]
− s

r
e−(r+λ1)(t∗i−τ̂) − s

λ1
= 0.

Moreover, we have that V̇i(τ̂ ;V 0) = −se−r(Ť (t)−τ̂) if τ̂ > t∗i , and

V̇i(τ̂ ;V 0) = −λ1e
−(r+λ1)(t∗i−τ̂)Vi−1(t

∗
i ;V 0) +

r + λ1

r
e−(r+λ1)(t∗i−τ̂)

(
1− e−r(Ť (t)−t∗i )

)
s

+ λ1

∫ t∗i

τ̂
e−(r+λ1)(τ−τ̂)V̇i−1(τ ;V 0) dτ

for τ̂ < t∗i . Hence, using Vi−1(t
∗
i ;V 0) =

s
λ1

+ s
r

(
1− e−r(Ť (t)−t∗i )

)
, one shows that limτ̂↑t∗i V̇i(τ̂ ;V 0) =

−se−r(Ť (t)−t∗i ) = limτ̂↓t∗i V̇i(τ̂ ;V 0), implying that Vi is of class C
1. Thus, I have shown that k1,τ̂ = 1

for all τ̂ ∈ [t̃, t∗i ], k1,τ̂ = 0 for all τ̂ ∈ (t∗i , Ť (t)], and

Vi(t̃;V 0) =


∫ t∗i
t̃

e−(r+λ1)(τ−t̃)λ1Vi−1(τ ;V 0) dτ + e−(r+λ1)(t∗i−t̃) s
r

(
1− e−r(Ť (t)−t∗i )

)
if t̃ ≤ t∗i

s
r

(
1− e−r(Ť (t)−t̃)

)
if t̃ > t∗i

solve the HJB equation. Hence, Vi is indeed the value function. As, by induction hypothesis,

Vi−1(·;V 0) is absolutely continuous, and hence of bounded variation, it immediately follows that

Vi(·;V 0) is also of bounded variation, and hence absolutely continuous.

It remains to prove that V̇i(t̃;V 0) ≤ −se−r(Ť (t)−t̃) for t̃ < t∗i . Yet, this is easily shown to follow

from the fact that, by induction hypothesis, V̇i−1(t̃;V 0) ≤ −se−r(Ť (t)−t̃), and hence

λ1

∫ t∗i

t̃
e−(r+λ1)(τ−t̃)V̇i−1(τ ;V 0) dτ ≤ −se−r(Ť (t)−t̃)

(
1− e−λ1(t∗i−t̃)

)
,

which completes the induction step.

Now, consider some i ∈ {1, · · · ,m − 1}. Having established that the agent’s best response is

given by a cutoff strategy, I shall now show that t∗i+1 ≤ t∗i . Consider an arbitrary time t̃ ≥ t∗i , and

suppose the agent still has i+1 breakthroughs to go. By stopping at an arbitrary time t∗ ∈ (t̃, Ť (t)],

the agent can collect∫ t∗

t̃
λ1

s

r
e−(r+λ1)(τ−t̃)

(
1− e−r(Ť (t)−τ)

)
dτ +

s

r
e−(r+λ1)(t∗−t̃)

(
1− e−r(Ť (t)−t∗)

)
=

s

r

[
λ1

λ1 + r

(
1− e−(r+λ1)(t∗−t̃)

)
− e−r(Ť (t)−t̃)

(
1− e−λ1(t∗−t̃)

)]
+
s

r
e−(r+λ1)(t∗−t̃)

(
1− e−r(Ť (t)−t∗)

)
.

By stopping immediately at time t̃, he can collect s
r

(
1− e−r(Ť (t)−t̃)

)
. Thus, since

1− e−r(Ť (t)−t̃)

>
λ1

λ1 + r

(
1− e−(r+λ1)(t∗−t̃)

)
− e−r(Ť (t)−t̃)

(
1− e−λ1(t∗−t̃)

)
+ e−(r+λ1)(t∗−t̃)

(
1− e−r(Ť (t)−t∗)

)
⇐⇒ 1 >

λ1

r + λ1
+

r

r + λ1
e−(r+λ1)(t∗−t̃),
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the agent strictly prefers to stop immediately at t̃. For t̃ = t∗i in particular, we can conclude that

t∗i+1 ≤ t∗i ; if t
∗
i > t, we have that t∗i+1 < t∗i .

Clearly, if V̂ 0 > V 0, we have that Vi(t̃; V̂ 0) ≥ Vi(t̃;V 0) for all t̃ ∈ [t, Ť (t)] and all i = 1, · · · ,m,

as the agent can always use the strategy that was optimal given the reward V 0, and be no worse off

when the reward is V̂ 0 instead. Moreover, V1(t̃; ·) is strictly increasing for all t̃ < t∗1 = Ť (t), with

limV 0→∞ V1(t̃;V 0) = ∞. I posit the induction hypothesis that for all V 0 ∈ ( s
λ1
,∞), and all t̃ <

t∗i−1(V 0), we have that Vi−1(t̃; ·) is strictly increasing on (V 0,∞), with lim
V̂ 0→∞

Vi−1(t̃; V̂ 0) = ∞.

As playing a cutoff strategy with the old cutoff t∗i (V 0) is always a feasible strategy for the agent,

we can conclude that for t̃ < t∗i (V 0) < t∗i−1(V 0), and V̂ 0 > V 0,

Vi(t̃; V̂ 0) ≥
∫ t∗i (V 0)

t̃
λ1e

−(r+λ1)(τ−t̃)Vi−1(τ ; V̂ 0) dτ +
s

r
e−(r+λ1)(t∗i (V 0)−t̃)

(
1− e−r(Ť (t)−t∗i (V 0))

)
> Vi(t̃;V 0),

with the last inequality following from the fact that t̃ < t∗i (V 0) < t∗i−1(V 0), implying by our

induction hypothesis that Vi−1(τ ; V̂ 0) > Vi−1(τ ;V 0) for all τ ∈ [t̃, t∗i (V 0)]. By the same token, our

induction hypothesis implies that Vi−1(τ ; V̂ 0) −→ ∞ as V̂ 0 −→ ∞ for all τ ∈ [t̃, t∗i (V 0)], so that

we can conclude that lim
V̂ 0→∞

Vi(t̃; V̂ 0) = ∞. To sum, Vi(t̃; ·) is increasing, and strictly increasing

on (V 0,∞) with limV 0→∞ Vi(t̃;V 0) = ∞, if t̃ < t∗i (V 0), for all i = 1, · · · ,m.

Suppose t∗i+1(V 0) > t. Then, t∗i+1(V 0) is defined as the smallest root to Vi(t
∗
i+1;V 0) =

s
λ1

+

s
r

(
1− e−r(Ť (t)−t∗i+1)

)
. As t∗i (V 0) > t∗i+1(V 0), we furthermore know by our previous step that

Vi(t
∗
i+1(V 0); ·) is strictly increasing on (V 0,∞) at t∗i+1(V 0). Hence, we have that t∗i+1(V̂ 0) >

t∗i+1(V 0) for all V̂ 0 > V 0. We conclude that the cutoff t∗i+1(·) is strictly increasing on (V 0,∞).

Now, suppose that t∗i+1(V 0) = t. Then, Vi(t;V 0) ≤ s
λ1

+ s
r

(
1− e−r(Ť (t)−t)

)
. Let

j := min
{
ι ∈ {1, · · · ,m} : t∗ι (V 0) = t

}
. Since t∗1 = Ť (t) > t, we have that j ≥ 2. Now, Vj−1(t; ·)

is strictly increasing in (V 0,∞) with lim
V̂ 0→∞

Vj−1(t; V̂ 0) = ∞. Hence, there exists a constant

Cj−1 such that for V̂ 0 > Cj−1, we have that Vj−1(t; V̂ 0) > s
λ1

+ s
r

(
1− e−r(Ť (t)−t)

)
, and hence

t∗j (V̂ 0) > t. Iterated application of this argument yields the existence of a constant Ci such that

V 0 > Ci implies that t∗i+1(V 0) > t. Hence, by our previous step, t∗i+1 is strictly increasing in V 0

for V 0 > Ci.

Now, consider arbitrary t̃ ∈ [t, Ť (t)) and i ∈ {1, · · · ,m}. Let σ be defined by

σ := max
{
ι ∈ {1, · · · ,m} : t∗ι (V 0) > t̃

}
. As t̃ < Ť (t) = t∗1, σ ≥ 1. As t̃ < t∗σ(V 0), Vσ(t̃; ·) is strictly

increasing in (V 0,∞), with lim
V̂ 0→∞

Vσ(t̃; V̂ 0) = ∞. Hence, there exists a constant C̃σ such that

V̂ 0 > C̃σ implies Vσ(t̃; V̂ 0) >
s
λ1

+ s
r

(
1− e−r(Ť (t)−t̃)

)
, and hence t∗σ+1(V̂ 0) > t̃. Iterated application

of this argument yields the existence of a constant C̃i−1 (i ∈ {1, · · · ,m}) such that V 0 > C̃i−1

implies t∗i (V 0) > t̃. As t̃ ∈ [t, Ť (t)) was arbitrary, we conclude that limV 0→∞ t∗i (V 0) = Ť (t), and

that limV 0→∞ Vi(t̃;V 0) = ∞ for any t̃ ∈ [t, Ť (t)), i ∈ {1, · · · ,m}.
For t̃ ≥ t∗i , we have that Vi(t̃;V 0) =

s
r

(
1− e−r(Ť (t)−t̃)

)
≤ Vi−1(t̃;V 0). It remains to be shown
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that for t̃ < t∗i , Vi(t̃;V 0) < Vi−1(t̃;V 0). Since Vi−1 is strictly decreasing, we have that

Vi(t̃;V 0) =

∫ t∗i

t̃
e−(r+λ1)(τ−t̃)λ1Vi−1(τ ;V 0) dτ + e−(r+λ1)(t∗i−t̃) s

r

(
1− e−r(Ť (t)−t∗i )

)
≤ λ1

λ1 + r
Vi−1(t̃;V 0)

(
1− e−(r+λ1)(t∗i−t̃)

)
+ e−(r+λ1)(t∗i−t̃) s

r

(
1− e−r(Ť (t)−t∗i )

)
.

Now, suppose that Vi(t̃;V 0) ≥ Vi−1(t̃;V 0). Then, the above inequality implies that(
r

r + λ1
+

λ1

r + λ1
e−(r+λ1)(t∗i−t̃)

)
Vi(t̃;V 0) ≤ e−(r+λ1)(t∗i−t̃) s

r

(
1− e−r(Ť (t)−t∗i )

)
.

Yet, as Vi(t̃;V 0) ≥ s
r

(
1− e−r(Ť (t)−t̃)

)
> s

r

(
1− e−r(Ť (t)−t∗i )

)
, this implies

r

r + λ1
+

λ1

r + λ1
e−(r+λ1)(t∗i−t̃) < e−(r+λ1)(t∗i−t̃),

a contradiction.

It remains to be shown that the functions Vi are continuous functions of V 0. Here, we will

in fact show the slightly stronger statement that the functions Vi are jointly continuous in (t̃, V 0).

For i = 1, this immediately follows from the explicit expression for V1. By our explicit expression

for Vi, all that remains to be shown is that t∗i is a continuous function of V 0. For t∗1 = Ť (t),

this is immediate. Before we are ready to do the appertaining induction step, we first make two

preliminary observations.

Firstly, it is the case that, for all i, V̇i(t̃;V 0) < −se−r(Ť (t)−t̃) for t̃ < t∗i . Indeed, for i = 1,

this is immediate. For i > 1, the induction step follows as supra by noting that if t̃ ∈ [t, t∗i ),

we have that t < t∗i < t∗i−1. Secondly, this immediately implies that if t∗i > t, the equation

Vi−1(t̂;V 0)− s
r

(
1− e−r(Ť (t)−t̂)

)
− s

λ1
= 0 has in fact t̂ = t∗i as its unique root.

Our induction hypothesis is that t∗i−1(V 0) and Vi−1(t̃;V 0) are continuous. Let V̌ 0 ∈ ( s
λ1
,∞)

be arbitrary. I shall now argue that our induction hypothesis implies that t∗i (V 0) (and hence

Vi) is continuous at V̌ 0. To do so, it is convenient to define an auxiliary function h(V 0, t̃) :=

Vi−1(t̃;V 0)− s
r

(
1− e−r(Ť (t)−t̃)

)
− s

λ1
; we note that h is continuous by induction hypothesis.

First, assume that V̌ 0 is such that h(V̌ 0, t) < 0. Since h is continuous, it follows that h(V 0, t) <

0, and hence t∗i (V 0) = t, for all V 0 in some neighborhood of V̌ 0.

Now, let h(V̌ 0, t) = 0. Then, t∗i−1(V̌ 0) > t = t∗i (V̌ 0). We have to show that for every ϵ̃ > 0

there exists a δ̃ > 0 such that for all V 0 satisfying |V̌ 0 − V 0| < δ̃ we have that |t∗i (V 0) − t| < ϵ̃.

Fix an arbitrary ϵ̃ ∈ (0, Ť (t) − t] (if ϵ̃ > Ť (t) − t the statement trivially holds for all δ̃ > 0), and

consider the date t̃ := t + ϵ̃
2 . As t∗i−1(V̌ 0) > t, we have that h(V̌ 0, t̃) < 0. As h(·, t̃) is continuous

(by induction hypothesis), and, as we have shown, increasing in V 0 with limV 0→∞ h(V 0, t̃) = ∞ ,

we know that there exists a Ṽ 0 > V̌ 0 such that h(Ṽ 0, t̃) = 0. Moreover, by monotonicity of h(·, t̃),
we have that h(V 0, t̃) ≤ 0 for all V 0 ≤ Ṽ 0, and hence t∗i (V 0) ≤ t̃ < t+ ϵ̃. Defining δ̃ := Ṽ 0− V̌ 0 > 0

completes the step.

Finally, suppose that h(V̌ 0, t) > 0. In this case, t∗i−1(V̌ 0) > t∗i (V̌ 0) > t. Since t∗i−1 is continuous

in V 0 by our induction hypothesis, there exist ϵ̃, δ̃ > 0 such that t∗i (V̌ 0) + ϵ̃ < t∗i−1(V 0) for all
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V 0 ∈ (V̌ 0 − δ̃, V̌ 0 + δ̃). This implies that for any t̃ ∈ (t∗i (V̌ 0) − ϵ̃, t∗i (V̌ 0) + ϵ̃), and any fixed

V 0 ∈ (V̌ 0 − δ̃, V̌ 0 + δ̃), we have that V̇i−1(t̃;V 0) < −se−r(Ť (t)−t̃), and hence ∂h
∂t̃
(V 0, t̃) < 0. (We

have shown above that Vi−1(·;V 0), and hence h(V 0, ·), is C1.) By the Implicit Function Theorem,22

continuity of t∗i (V 0) at V̌ 0 now follows from the fact that t∗i (V 0) is defined by h(V 0, t
∗
i (V 0)) = 0.

Proof of Lemma 4.5

That f(t;V 0) = 0 immediately follows from the fact that Vm(Ť (t);V 0) = 0 for any Ť (t) ∈ [t, T ).

Strict monotonicity of Vi(t̃;V 0; Ť (t)) (i = 1, · · · ,m) in Ť (t) is immediately implied by the observa-

tion that for any fixed t̃ ≤ Ť1 and V 0 > s
λ1
, and given the end date Ť2 > Ť1, the agent can always

guarantee himself a payoff of Vi(t̃;V 0; Ť1)+
s
re

−r(Ť1−t̃)
(
1− e−r(Ť2−Ť1)

)
> Vi(t̃;V 0; Ť1) by following

the strategy that was optimal for the end date Ť1 in the time interval [t, Ť1] and playing safe for

sure on (Ť1, Ť2]. As f(·, V 0) = Vm(t;V 0; ·), this shows the monotonicity property of f we claimed.

It remains to prove continuity of f(·;V 0). By Lemma 4.4, we have that

f(Ť (t), V 0) =


∫ t∗m
t e−(r+λ1)(τ−t)λ1Vm−1(τ ;V 0; Ť (t)) dτ + e−(r+λ1)(t∗m−t) s

r

(
1− e−r(Ť (t)−t∗m)

)
if t < t∗m

s
r

(
1− e−r(Ť (t)−t)

)
if t = t∗m

,

and that

Vi(t̃;V 0; Ť (t)) =


∫ t∗i
t̃

e−(r+λ1)(τ−t̃)λ1Vi−1(τ ;V 0; Ť (t)) dτ + e−(r+λ1)(t∗i−t̃) s
r

(
1− e−r(Ť (t)−t∗i )

)
if t̃ ≤ t∗i

s
r

(
1− e−r(Ť (t)−t̃)

)
if t̃ > t∗i

for all i = 1, · · · ,m, and t̃ ∈ [t, Ť (t)]. Moreover, we have that

V1(t̃;V 0; Ť (t)) =
λ1

λ1 + r

(
1− e−(r+λ1)(Ť (t)−t̃)

)(
V 0 +

s

r

)
− s

r
e−r(Ť (t)−t̃)

(
1− e−λ1(Ť (t)−t̃)

)
,

i.e. for any given V 0, V1 is jointly continuous in (t̃, Ť (t)); moreover, t∗1(Ť (t)) = Ť (t) is trivially

continuous in Ť (t).

The rest of the proof closely follows our proof of the continuity of Vi(t̃;V 0) in V 0 in Lemma

4.4. In particular, our induction hypothesis is that t∗i−1(Ť (t)) and Vi−1(t̃;V 0; Ť (t)) are contin-

uous (for a given fixed V 0). Let Ť ∗ ∈ [t, T ) be arbitrary. I shall now argue that our induc-

tion hypothesis implies that t∗i (Ť (t)) is continuous at Ť ∗; by our explicit expression for Vi, this

implies that Vi is continuous in (t̃, Ť (t)), for given V 0. Again, we define an auxiliary function

ȟ(Ť , t̃) := Vi−1(t̃;V 0; Ť )− s
r

(
1− e−r(Ť−t̃)

)
− s

λ1
. We recall from our proof of Lemma 4.4 that t∗i (Ť )

is implicitly defined by ȟ(Ť , t∗i (Ť )) = 0 if ȟ(Ť , t) ≥ 0; otherwise, t∗i (Ť ) = t. We note that ȟ is

continuous by induction hypothesis; we furthermore know that ȟ is decreasing in t̃, and strictly

decreasing if t̃ < t∗i−1(Ť ). By our argument at the beginning of this proof, we also know that as we

22Most versions of the Implicit Function Theorem would require Vi−1(t̃;V 0) to be C1 rather than just C0.

However, there are non-differentiable versions of the theorem; here, one can for instance use the version in

Kudryavtsev (2001).
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increase Ť to some arbitrary Ť ′ > Ť , Vi−1 at t̃ ≤ Ť increases by at least s
re

−r(Ť−t̃)
(
1− e−r(Ť ′−Ť )

)
.

Hence, we can conclude that ȟ(·, t̃) is weakly increasing.

First, assume that Ť ∗ is such that ȟ(Ť ∗, t) < 0. Since ȟ is continuous, it follows that ȟ(Ť , t) <

0, and hence t∗i (Ť ) = t, for all Ť in some neighborhood of Ť ∗.

Now, assume that ȟ(Ť ∗, t) = 0. This implies that Ť ∗ ≥ t∗i−1(Ť
∗) > t = t∗i (Ť

∗). We have to

show that for every ϵ > 0 there exists a δ > 0 such that |Ť − Ť ∗| < δ implies |t∗i (Ť ) − t| < ϵ.

Fix an arbitrary ϵ > 0, and consider the date t̃ = t + κϵ, with κ ∈ (0, 1) being chosen so that

t̃ < Ť ∗. As ti−1(Ť
∗) > t, we have that ȟ(Ť ∗, t̃) < 0. Now, suppose there exists a Ť ∗∗ ∈ (Ť ∗, T )

such that ȟ(Ť ∗∗, t̃) = 0. Since ȟ(·, t̃) is increasing, this implies that for all Ť ∈ [t, Ť ∗∗], we have

that t∗i (Ť ) ≤ t̃ < t+ ϵ. In this case, setting δ = Ť ∗∗ − Ť ∗ > 0 does the job. However, it could also

be the case that ȟ(Ť , t̃) < 0 for all Ť ∈ [Ť ∗, T ). In this case, t∗i (Ť ) < t̃ < t + ϵ for all Ť ∈ [t, T ).

Hence, any δ > 0, for instance δ = T−Ť ∗

2 , will do.

Finally, suppose that ȟ(Ť ∗, t) > 0. In this case, t∗i−1(Ť
∗) > t∗i (Ť

∗) > t. Since t∗i−1 is continuous

in Ť by our induction hypothesis, there exist ϵ̃, δ̃ > 0 such that t∗i (Ť
∗) + ϵ̃ < t∗i−1(Ť ) for all Ť ∈

(Ť ∗−δ̃, Ť ∗+δ̃). This implies that for any t̃ ∈ (t∗i (Ť
∗)−ϵ̃, t∗i (Ť

∗)+ϵ̃), and any fixed Ť ∈ (Ť ∗−δ̃, Ť ∗+δ̃),

we have that V̇i−1(t̃;V 0; Ť ) < −se−r(Ť−t̃), and hence ∂ȟ
∂t̃
(Ť , t̃) < 0. As Ť ∗ is an interior point (as

ȟ(t, t) = − s
λ1

< 0), we can again apply the Implicit Function Theorem to conclude that t∗i (Ť ) is

continuous at Ť ∗, since t∗i (Ť ) is defined by ȟ(Ť , t∗i (Ť )) = 0.

Thus, we have shown that, for all i = 1, · · · ,m, t∗i (Ť ) is continuous, and hence Vi(t̃;V 0; Ť ) is

jointly continuous in (t̃, Ť ). In particular, this implies f(Ť (t);V 0) = Vm(t;V 0; Ť (t)) is continuous

in Ť (t).

Proof of Proposition 4.3

By Lemma 4.4, we know that Vm(t; ·) is continuous and (weakly) increasing; moreover, we know

that there exists a constant Cm such that V 0 > Cm implies that Vm(t; ·) is strictly increasing, with

limV 0→∞ Vm(t;V 0) = ∞. Hence, statement (1.) follows.

With respect to statement (2.), we first choose some lump sum V̂ 0 > s
λ1

such that wt <

f(Ť (t); V̂ 0). (The existence of such a V̂ 0 is immediate, by an analogous argument to above.)

Continuity and monotonicity of f (see Lemma 4.5) now immediately imply the existence of some
ˇ̌T (t) ∈ (t, Ť (t)) such that wt = f( ˇ̌T (t); V̂ 0).

Proof of Lemma 5.1

Since m is constant over time, piecewise continuity of Ť (t) and of the lump sum reward V 0(t) (as a

function of the date of the first breakthrough t) imply the piecewise continuity in t of the value ωt(x).

As ωt(x) is furthermore continuous in x, the regularity conditions required for Filippov-Cesari’s

Existence Theorem (Thm. 8 in Seierstad & Sydsæter, 1987, p. 132) are satisfied.23

Clearly, Ǔ := {(a, b) ∈ R2
+ : a + b ≤ 1} is closed, bounded and convex , the set of admissible

23See Note 17, p. 133, in Seierstad & Sydsæter, 1987, for a statement of the regularity conditions.
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policies is non-empty, and the state variables are bounded. Using in addition the linearity of the

objective and the laws of motion in the choice variables, one shows that the conditions of Filippov-

Cesari’s Theorem are satisfied.

Proof of Proposition 5.2

Suppose that besides the path implied by k1,t = 1 for all t, there is an alternative path (k̂0,t, k̂1,t)0≤t≤T ,

with k̂1,t ̸= 1 on a set of positive measure, which satisfies Pontryagin’s conditions. I denote the

associated state and co-state variables by x̌t, y̌t, µ̌t, γ̌t for the former, and x̂t, ŷt, µ̂t, γ̂t for the lat-

ter path. Moreover, I define t̂ := sup
{∪

i(t
†
i , t

‡
i ) : t

†
i < t‡i and k̂1,τ ̸= 1 for a.a. τ ∈ (t†i , t

‡
i )
}
. Since

k̂1,t ̸= 1 on a set of positive measure, we have that t̂ > 0.

By (1) and the transversality condition µ̂T = µ̌T = 0, we have that e
x̂
t̂

ŷt̂
µ̂t̂ = ex̌t̂ µ̌t̂; moreover,

we know that, by Pontryagin’s principle, the mappings t 7→ ex̂t
ŷt

µ̂t and t 7→ ex̌t µ̌t are continuous.

Now, consider an η > 0 such that k̂1,τ ̸= 1 for a.a. τ ∈ (t̂ − η, t̂). (Such an η > 0 exists because

k̂1,t ̸= 1 on a set of positive measure.) Then, we have that

λ1(ht + wt)− (1 + ex̂t)s > λ1(ht + wt)− (1 + ex̌t)s

for all t ∈ [t̂ − η
2 , t̂], since x̂t < x̌t there. Moreover, since k1,t = 1 for all t satisfies Pontryagin’s

conditions, we have that

λ1(ht + wt)− (1 + ex̌t)s ≥ −λ1e
x̌t+rtµ̌t

for a.a. t ∈ [0, T ], and hence, by continuity,

λ1(ht̂ + wt̂)− (1 + ex̂t̂)s > λ1(ht̂ + wt̂)− (1 + ex̌t̂)s ≥ −λ1e
x̌t̂+rt̂µ̌t̂ = −λ1

ex̂t̂+rt̂

ŷt̂
µ̂t̂. (A.7)

Since (k̂0,t, k̂1,t)0≤t≤T satisfies Pontryagin’s necessary conditions, and in particular condition

(3), which implies that k̂0,t + k̂1,t = 1 at a.a. t at which it holds that

λ1(ht + wt)− (1 + ex̂t)s > −λ1
ex̂t+rt

ŷt
µ̂t,

we can conclude that k̂0,τ + k̂1,τ = 1 for a.a. τ in some left-neighborhood of t̂, as both sides of

inequality (A.7) are continuous.

Furthermore, by conditions (1) and (2) and the transversality condition µ̌T = µ̂T = γ̌T =

γ̂T = 0, we have that −λ0e
x̂t̂ γ̂t̂ − λ1

e
x̂
t̂

ŷt̂
µ̂t̂ = −(λ1 − λ0)e

x̌t̂ µ̌t̂. Again, by Pontryagin’s conditions,

the mapping t 7→ −λ0e
x̂t γ̂t − λ1

ex̂t
ŷt

µ̂t is continuous. Moreover, we have that

λ1(ht + wt)− λ0(1 + ex̂t)(ht + ωt(x̂t))

≥ λ1(ht + wt)− λ0

[
wt + (1 + ex̂t)(ht +

s

r
(1− e−rϵt))

]
> λ1(ht + wt)− λ0

[
wt + (1 + ex̌t)(ht +

s

r
(1− e−rϵt))

]
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for all t ∈ [t̂ − η
2 , t̂], with the first inequality being implied by Proposition 4.1. Moreover, by

continuity, and the fact that k1,t = 1 for all t ∈ [0, T ] satisfies Pontryagin’s necessary conditions,

we have that ht + wt ≥ s
λ1

(1 + ex0) > 0, and hence ht +
s
r (1− e−rϵt) > 0 for all t ∈ [0, T ]. Hence,

since x̂t < x̌t, the second inequality also holds for all t ∈ [t̂ − η
2 , t̂]. The fact that k1,t = 1 for all

t ∈ [0, T ] satisfies Pontryagin’s conditions even for the upper bound on ωt given by Proposition 4.1

, furthermore implies that

λ1(ht + wt)− λ0

[
wt + (1 + ex̌t)(ht +

s

r
(1− e−rϵt))

]
≥ −(λ1 − λ0)e

x̌t+rtµ̌t

for a.a. t ∈ [0, T ], and hence, by continuity,

λ1(ht̂ + wt̂)− λ0

[
wt̂ + (1 + ex̌t̂)(ht̂ +

s

r
(1− e−rϵt̂))

]
≥ −(λ1 − λ0)e

x̌t̂+rt̂µ̌t̂.

This implies that

λ1(ht̂ + wt̂)− λ0(1 + ex̂t̂)(ht̂ + ωt̂(x̂t̂))

≥ λ1(ht̂ + wt̂)− λ0

[
wt̂ + (1 + ex̂t̂)(ht̂ +

s

r
(1− e−rϵt̂))

]
> −(λ1 − λ0)e

x̌t̂+rt̂µ̌t̂ = −ert̂
[
λ0e

x̂t̂ γ̂t̂ + λ1
ex̂t̂

ŷt̂
µ̂t̂

]
.

Since (k̂0,t, k̂1,t)0≤t≤T satisfies Pontryagin’s necessary conditions, and in particular condition (3),

we can conclude by continuity that k̂0,τ = 0 for a.a. τ in some left-neighborhood of t̂. Yet, since

by our previous step k̂0,τ + k̂1,τ = 1 for a.a. τ in some left-neighborhood of t̂, we conclude that

there exists some left-neighborhood of t̂ such that k̂1,τ = 1 for a.a. τ in this left-neighborhood, a

contradiction to our definition of t̂. We can thus conclude that there does not exist an alternative

path (k̂0,t, k̂1,t)0≤t≤T , with k̂1,t ̸= 1 on a set of positive measure, which satisfies Pontryagin’s

conditions.

Proof of Proposition 6.2

For 1
pm , the claim immediately follows from the explicit expressions for T ∗,

T ∗ =
1

λ1
ln

−p0 +
√

p20 +
4
pm p0(1− p0)

2(1− p0)

 ,

and for the wedge

pT ∗ − pm

pm
=

p0 − 2 +
√
p20 + 4 p0

pm (1− p0)

2(1− p0)
.

For p0, one shows that the sign of ∂T ∗

∂p0
is equal to the sign of

2(1− p0) + p0p
m −

√
(pmp0)

2 + 4pmp0(1− p0),

which is strictly positive if, and only if,

0 < (2(1− p0))
2 .

This immediately implies that the wedge pT∗−pm

pm = eλ1T ∗ − 1 is increasing in p0.
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