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Introductory example

Take a random ordering of the integers 0, 1, . . . , 7.

Write them in binary representation. We have a random sequence of
24 bits, x1, . . . , x24.

How random is this sequence? How well does it play repeated
matching pennies?

What is the asymptotic value, if we take n2n such bits?

What is the value if we are allowed to take a glimpse at the
realization of x1, . . . , xn2n?

Bounded memory.

Let’s play!
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Entropy

Shannon’s entropy of a discrete random variable X , denoted H(X ),
expresses the expected number of bits of information one might need
in order to communicate the value of X , or equivalently, the number
of bits of information conveyed by X .

The mutual information of a pair of discrete random variables X and
Y , denoted I (X ;Y ), expresses the amount of information conveyed
by X about Y and vice versa (since I (X ;Y ) = I (Y ;X )). As such, it
measured the amount of dependence between X and Y .
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Why entropy?

Consider the n fold repeated version of a finite two-person game
G = 〈A,B, g〉.

Player 1 plays a mixed oblivious strategy X .

Player 2, who has some information about the realization of X , plays
a correlated (nonoblivious) strategy τ .

The pair (X , τ) induces a random play (x1, y1, . . . , xn, yn), where
X = (x1, . . . , xn) and yt = τ(x1, . . . , xt−1).

We want to evaluate the expected average payoffs in the n fold
repeated game. It is sufficient to consider the expected empirical
frequency of the play, i.e. the expected number of times that each
action profile was played divided by n.
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Lemma (Neyman-Okada 2009)

Let X and τ be (correlated) random variables assuming values in

X - An,

τ - the set of pure strategies of player 2 in the n fold repeated version
of G .

The pair (X , τ) induces a random play (x1, y1, . . . , xn, yn), where
X = (x1, . . . , xn) and yt = τ(x1, . . . , xt−1).
Let a and b be random variables whose joint distribution is the expected
empirical frequency of the induced play. We have

I (a; b) ≤ H(a)− 1

n
H(X ) +

1

n
I (X ; τ).
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Neyman-Okada’s lemma, continued

I (a; b)

dependency

≤ H(a)− 1

n
H(X )

randomness

+
1

n
I (X ; τ)

mutual
information

If X was a sequence of i.i.d. random variables and X and τ were
independent, then the payoff of player 1 would be at least the payoff
secured by a in one-stage game.

In general, the payoff of player 1 is at least the payoff secured by a in
the one-stage game where player 2 is allowed to correlate with player
1 up to the amount on the right-hand side of the inequality.
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Uninformed game, revisited

I (a; b) ≤
[

H(a) − 1
n2nH(x1, . . . , xn2n)

]
+ 1

n2n I (x1, . . . , xn2n ; τ)

1

=

log2 2
n!

n2n

=

0

=

1
↓

Player 2 is not informed of the realization of x1, . . . , xn2n .

The entropy of the uniform distribution on m objects is log2m.

The empirical frequency of x1, . . . , xn2n is (12 ,
1
2).

logm!/m logm→ 1

Conclusion:

the value of the uninformed game converges to the value
of the one-stage game.
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Informed strategies and bounded memory

A strategy of an informed player depends on his information. In our
example, the information is the realization of x1, . . . , xn2n .

For every realization ξ = ξ1, . . . , ξn2n , the player must specify a
strategy in the n fold repeated matching pennies game, τ|ξ. The
informed strategy τ : ξ 7→ τ|ξ is a random variable that depends on
x1, . . . , xn2n .

A player who can only memorize M bits of information, can only use
informed strategies that have at most 2M distinct realizations.
Namely,

log2 #
{
τ|ξ : ξ ∈ {0, 1}n2

n
}
≤ M.

We use the above as a definition for M-memory informed strategies
(“0-memory”=“uninformed”).
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Informed game, revisited

I (a; b) ≤
[
H(a)− 1

n2n
H(x1, . . . , xn2n)

]
+

1

n2n
I (x1, . . . , xn2n ; τ)

≤ o(1) +
1

n2n
H(τ) ≤ o(1) +

M

n2n

We have already seen that the first term on the right-hand side
vanishes as n grows.

The amount of information that τ conveys about x1, . . . , xn2n ,
I (x1, . . . , xn2n , τ), is at most the total amount of information that τ
conveys, H(τ).

The entropy if a random variable is bounded by the binary logarithm
of the number of its possible values.

Let M be the memory capacity of player 2.
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Informed game, conclusions

I (a; b) ≤ o(1) +
M

n2n

If M � n2n, then the value of the informed game converges the value
of the one-stage game.

If M ≥ n2n, then the informed plater can memorize and hence “beat”
the random sequence.

What if M ∼ Θn2n, for some constant Θ > 0?

It can be shown that for every joint distribution of a and b such that
a ∼ (12 ,

1
2) and I (a; b) ≤ Θ, there exists an oblivious M-memory

informed strategy that achieves that joint distribution.

Therefore, the value of the informed game converges to the value of
the one-stage game where player 1 plays (12 ,

1
2) and player 2 choose a

correlated strategy whose mutual information is bounded by Θ.
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Repeated Games with Bounded Memory

The information of a player in a repeated game is the history up to
the current stage. Thereby, an M-memory strategy τ is defined by

log2 #
{
τ|h : “h is a finite history”

}
≤ M,

where τ|h is the strategy that τ induces on the sub-game that starts
after the history h has been played.
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Correlation through bounded memory strategies

Suppose two M-memory players correlate in order to produce an
n-periodic sequence x1, x2, . . . that behaves similar to a sequence of
i.i.d. random variables with distribution Q ∈ ∆(A1 × A2).

Namely, the expected empirical distribution is close to Q and
H(x1, . . . , xn)/n is close to H(Q).

Let C (Q) be the smallest real number such that, if M2M ≥ C (Q)n,
then the above is possible.

What is C (Q)? This is an open problem!

In an ongoing joint work with Olivier Gossner and Penelope
Hernandez we were able to show that

min
i

(
H(Qi )

|A−i | − 1

)
≤ C (Q) ≤ max

i

(
H(Q)

|Ai | − 1

)
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