The Entropy Method and Repeated Games with Bounded Memory

Ron Peretz

Tel Aviv University
October 27

Introductory example

- Take a random ordering of the integers $0,1, \ldots, 7$.

Introductory example

- Take a random ordering of the integers $0,1, \ldots, 7$.
- Write them in binary representation. We have a random sequence of 24 bits, x_{1}, \ldots, x_{24}.

Introductory example

- Take a random ordering of the integers $0,1, \ldots, 7$.
- Write them in binary representation. We have a random sequence of 24 bits, x_{1}, \ldots, x_{24}.
- How random is this sequence? How well does it play repeated matching pennies?

Introductory example

- Take a random ordering of the integers $0,1, \ldots, 7$.
- Write them in binary representation. We have a random sequence of 24 bits, x_{1}, \ldots, x_{24}.
- How random is this sequence? How well does it play repeated matching pennies?

Let's play!

Introductory example

- Take a random ordering of the integers $0,1, \ldots, 7$.
- Write them in binary representation. We have a random sequence of 24 bits, x_{1}, \ldots, x_{24}.
- How random is this sequence? How well does it play repeated matching pennies?

Let's play!
1

Introductory example

- Take a random ordering of the integers $0,1, \ldots, 7$.
- Write them in binary representation. We have a random sequence of 24 bits, x_{1}, \ldots, x_{24}.
- How random is this sequence? How well does it play repeated matching pennies?

Let's play! 10

Introductory example

- Take a random ordering of the integers $0,1, \ldots, 7$.
- Write them in binary representation. We have a random sequence of 24 bits, x_{1}, \ldots, x_{24}.
- How random is this sequence? How well does it play repeated matching pennies?

Let's play! 101

Introductory example

- Take a random ordering of the integers $0,1, \ldots, 7$.
- Write them in binary representation. We have a random sequence of 24 bits, x_{1}, \ldots, x_{24}.
- How random is this sequence? How well does it play repeated matching pennies?

Let's play! 1010

Introductory example

- Take a random ordering of the integers $0,1, \ldots, 7$.
- Write them in binary representation. We have a random sequence of 24 bits, x_{1}, \ldots, x_{24}.
- How random is this sequence? How well does it play repeated matching pennies?

Let's play! 10100

Introductory example

- Take a random ordering of the integers $0,1, \ldots, 7$.
- Write them in binary representation. We have a random sequence of 24 bits, x_{1}, \ldots, x_{24}.
- How random is this sequence? How well does it play repeated matching pennies?

Let's play!
101001

Introductory example

- Take a random ordering of the integers $0,1, \ldots, 7$.
- Write them in binary representation. We have a random sequence of 24 bits, x_{1}, \ldots, x_{24}.
- How random is this sequence? How well does it play repeated matching pennies?

```
Let's play!
101001111011000 100 110
```


Introductory example

- Take a random ordering of the integers $0,1, \ldots, 7$.
- Write them in binary representation. We have a random sequence of 24 bits, x_{1}, \ldots, x_{24}.
- How random is this sequence? How well does it play repeated matching pennies?

```
Let's play!
1 0 1 0 0 1 1 1 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0
```


Introductory example

- Take a random ordering of the integers $0,1, \ldots, 7$.
- Write them in binary representation. We have a random sequence of 24 bits, x_{1}, \ldots, x_{24}.
- How random is this sequence? How well does it play repeated matching pennies?
- What is the asymptotic value, if we take $n 2^{n}$ such bits?

```
Let's play!
1 0 1 0 0 1 1 1 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0
```


Introductory example

- Take a random ordering of the integers $0,1, \ldots, 7$.
- Write them in binary representation. We have a random sequence of 24 bits, x_{1}, \ldots, x_{24}.
- How random is this sequence? How well does it play repeated matching pennies?
- What is the asymptotic value, if we take $n 2^{n}$ such bits?
- What is the value if we are allowed to take a glimpse at the realization of $x_{1}, \ldots, x_{n 2^{n}}$?

Introductory example

- Take a random ordering of the integers $0,1, \ldots, 7$.
- Write them in binary representation. We have a random sequence of 24 bits, x_{1}, \ldots, x_{24}.
- How random is this sequence? How well does it play repeated matching pennies?
- What is the asymptotic value, if we take $n 2^{n}$ such bits?
- What is the value if we are allowed to take a glimpse at the realization of $x_{1}, \ldots, x_{n 2^{n}}$?

Let's play again!

Introductory example

- Take a random ordering of the integers $0,1, \ldots, 7$.
- Write them in binary representation. We have a random sequence of 24 bits, x_{1}, \ldots, x_{24}.
- How random is this sequence? How well does it play repeated matching pennies?
- What is the asymptotic value, if we take $n 2^{n}$ such bits?
- What is the value if we are allowed to take a glimpse at the realization of $x_{1}, \ldots, x_{n 2^{n}}$?

Let's play again!
1

Introductory example

- Take a random ordering of the integers $0,1, \ldots, 7$.
- Write them in binary representation. We have a random sequence of 24 bits, x_{1}, \ldots, x_{24}.
- How random is this sequence? How well does it play repeated matching pennies?
- What is the asymptotic value, if we take $n 2^{n}$ such bits?
- What is the value if we are allowed to take a glimpse at the realization of $x_{1}, \ldots, x_{n 2^{n}}$?

Let's play again!

Introductory example

- Take a random ordering of the integers $0,1, \ldots, 7$.
- Write them in binary representation. We have a random sequence of 24 bits, x_{1}, \ldots, x_{24}.
- How random is this sequence? How well does it play repeated matching pennies?
- What is the asymptotic value, if we take $n 2^{n}$ such bits?
- What is the value if we are allowed to take a glimpse at the realization of $x_{1}, \ldots, x_{n 2^{n}}$?

Let's play again! 101

Introductory example

- Take a random ordering of the integers $0,1, \ldots, 7$.
- Write them in binary representation. We have a random sequence of 24 bits, x_{1}, \ldots, x_{24}.
- How random is this sequence? How well does it play repeated matching pennies?
- What is the asymptotic value, if we take $n 2^{n}$ such bits?
- What is the value if we are allowed to take a glimpse at the realization of $x_{1}, \ldots, x_{n 2^{n}}$?

Let's play again! 1010

Introductory example

- Take a random ordering of the integers $0,1, \ldots, 7$.
- Write them in binary representation. We have a random sequence of 24 bits, x_{1}, \ldots, x_{24}.
- How random is this sequence? How well does it play repeated matching pennies?
- What is the asymptotic value, if we take $n 2^{n}$ such bits?
- What is the value if we are allowed to take a glimpse at the realization of $x_{1}, \ldots, x_{n 2^{n}}$?

Let's play again! 10100

Introductory example

- Take a random ordering of the integers $0,1, \ldots, 7$.
- Write them in binary representation. We have a random sequence of 24 bits, x_{1}, \ldots, x_{24}.
- How random is this sequence? How well does it play repeated matching pennies?
- What is the asymptotic value, if we take $n 2^{n}$ such bits?
- What is the value if we are allowed to take a glimpse at the realization of $x_{1}, \ldots, x_{n 2^{n}}$?

Let's play again!
101001

Introductory example

- Take a random ordering of the integers $0,1, \ldots, 7$.
- Write them in binary representation. We have a random sequence of 24 bits, x_{1}, \ldots, x_{24}.
- How random is this sequence? How well does it play repeated matching pennies?
- What is the asymptotic value, if we take $n 2^{n}$ such bits?
- What is the value if we are allowed to take a glimpse at the realization of $x_{1}, \ldots, x_{n 2^{n}}$?

Let's play again!
1010011

Introductory example

- Take a random ordering of the integers $0,1, \ldots, 7$.
- Write them in binary representation. We have a random sequence of 24 bits, x_{1}, \ldots, x_{24}.
- How random is this sequence? How well does it play repeated matching pennies?
- What is the asymptotic value, if we take $n 2^{n}$ such bits?
- What is the value if we are allowed to take a glimpse at the realization of $x_{1}, \ldots, x_{n 2^{n}}$?

Let's play again!
10100111

Introductory example

- Take a random ordering of the integers $0,1, \ldots, 7$.
- Write them in binary representation. We have a random sequence of 24 bits, x_{1}, \ldots, x_{24}.
- How random is this sequence? How well does it play repeated matching pennies?
- What is the asymptotic value, if we take $n 2^{n}$ such bits?
- What is the value if we are allowed to take a glimpse at the realization of $x_{1}, \ldots, x_{n 2^{n}}$?

Let's play again!
101001111

Introductory example

- Take a random ordering of the integers $0,1, \ldots, 7$.
- Write them in binary representation. We have a random sequence of 24 bits, x_{1}, \ldots, x_{24}.
- How random is this sequence? How well does it play repeated matching pennies?
- What is the asymptotic value, if we take $n 2^{n}$ such bits?
- What is the value if we are allowed to take a glimpse at the realization of $x_{1}, \ldots, x_{n 2^{n}}$?

Let's play again!
1010011110

Introductory example

- Take a random ordering of the integers $0,1, \ldots, 7$.
- Write them in binary representation. We have a random sequence of 24 bits, x_{1}, \ldots, x_{24}.
- How random is this sequence? How well does it play repeated matching pennies?
- What is the asymptotic value, if we take $n 2^{n}$ such bits?
- What is the value if we are allowed to take a glimpse at the realization of $x_{1}, \ldots, x_{n 2^{n}}$?

Let's play again!
101001111 01...

Introductory example

- Take a random ordering of the integers $0,1, \ldots, 7$.
- Write them in binary representation. We have a random sequence of 24 bits, x_{1}, \ldots, x_{24}.
- How random is this sequence? How well does it play repeated matching pennies?
- What is the asymptotic value, if we take $n 2^{n}$ such bits?
- What is the value if we are allowed to take a glimpse at the realization of $x_{1}, \ldots, x_{n 2^{n}}$?
- Bounded memory.

Let's play again!
101001111 01...

Entropy

- Shannon's entropy of a discrete random variable X, denoted $H(X)$, expresses the expected number of bits of information one might need in order to communicate the value of X, or equivalently, the number of bits of information conveyed by X.

Entropy

- Shannon's entropy of a discrete random variable X, denoted $H(X)$, expresses the expected number of bits of information one might need in order to communicate the value of X, or equivalently, the number of bits of information conveyed by X.
- The mutual information of a pair of discrete random variables X and Y, denoted $I(X ; Y)$, expresses the amount of information conveyed by X about Y and vice versa (since $I(X ; Y)=I(Y ; X)$). As such, it measured the amount of dependence between X and Y.

Why entropy?

- Consider the n fold repeated version of a finite two-person game $G=\langle A, B, g\rangle$.

Why entropy?

- Consider the n fold repeated version of a finite two-person game $G=\langle A, B, g\rangle$.
- Player 1 plays a mixed oblivious strategy X.

Why entropy?

- Consider the n fold repeated version of a finite two-person game $G=\langle A, B, g\rangle$.
- Player 1 plays a mixed oblivious strategy X.
- Player 2, who has some information about the realization of X, plays a correlated (nonoblivious) strategy τ.

Why entropy?

- Consider the n fold repeated version of a finite two-person game $G=\langle A, B, g\rangle$.
- Player 1 plays a mixed oblivious strategy X.
- Player 2, who has some information about the realization of X, plays a correlated (nonoblivious) strategy τ.
- The pair (X, τ) induces a random play $\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$, where $X=\left(x_{1}, \ldots, x_{n}\right)$ and $y_{t}=\tau\left(x_{1}, \ldots, x_{t-1}\right)$.

Why entropy?

- Consider the n fold repeated version of a finite two-person game $G=\langle A, B, g\rangle$.
- Player 1 plays a mixed oblivious strategy X.
- Player 2, who has some information about the realization of X, plays a correlated (nonoblivious) strategy τ.
- The pair (X, τ) induces a random play $\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$, where $X=\left(x_{1}, \ldots, x_{n}\right)$ and $y_{t}=\tau\left(x_{1}, \ldots, x_{t-1}\right)$.
- We want to evaluate the expected average payoffs in the n fold repeated game. It is sufficient to consider the expected empirical frequency of the play, i.e. the expected number of times that each action profile was played divided by n.

Lemma (Neyman-Okada 2009)

Let X and τ be (correlated) random variables assuming values in

- $X-A^{n}$,
- τ - the set of pure strategies of player 2 in the n fold repeated version of G.

The pair (X, τ) induces a random play $\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$, where $X=\left(x_{1}, \ldots, x_{n}\right)$ and $y_{t}=\tau\left(x_{1}, \ldots, x_{t-1}\right)$.
Let a and b be random variables whose joint distribution is the expected empirical frequency of the induced play. We have

$$
I(a ; b) \leq H(a)-\frac{1}{n} H(X)+\frac{1}{n} I(X ; \tau) .
$$

Lemma (Neyman-Okada 2009)

Let X and τ be (correlated) random variables assuming values in

- $X-A^{n}$,
- τ - the set of pure strategies of player 2 in the n fold repeated version of G.

The pair (X, τ) induces a random play $\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$, where $X=\left(x_{1}, \ldots, x_{n}\right)$ and $y_{t}=\tau\left(x_{1}, \ldots, x_{t-1}\right)$.
Let a and b be random variables whose joint distribution is the expected empirical frequency of the induced play. We have

$$
\underset{\text { dependency }}{I(a ; b)} \leq H(a)-\frac{1}{n} H(X)+\frac{1}{n} I(X ; \tau)
$$

Lemma (Neyman-Okada 2009)

Let X and τ be (correlated) random variables assuming values in

- $X-A^{n}$,
- τ - the set of pure strategies of player 2 in the n fold repeated version of G.

The pair (X, τ) induces a random play $\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$, where $X=\left(x_{1}, \ldots, x_{n}\right)$ and $y_{t}=\tau\left(x_{1}, \ldots, x_{t-1}\right)$.
Let a and b be random variables whose joint distribution is the expected empirical frequency of the induced play. We have

$$
\underset{\text { dependency }}{I(a ; b)} \leq \underset{\text { randomness }}{H(a)-\frac{1}{n} H(X)}+\frac{1}{n} I(X ; \tau)
$$

Lemma (Neyman-Okada 2009)

Let X and τ be (correlated) random variables assuming values in

- $X-A^{n}$,
- τ - the set of pure strategies of player 2 in the n fold repeated version of G.

The pair (X, τ) induces a random play $\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)$, where $X=\left(x_{1}, \ldots, x_{n}\right)$ and $y_{t}=\tau\left(x_{1}, \ldots, x_{t-1}\right)$.
Let a and b be random variables whose joint distribution is the expected empirical frequency of the induced play. We have

$$
\underset{\text { dependency }}{I(a ; b)} \leq \underbrace{H(a)-\frac{1}{n} H(X)}_{\text {randomness }}+\frac{1}{n} \underbrace{I(X ; \tau)}_{\substack{\text { mutual } \\ \text { information }}}
$$

Neyman-Okada's lemma, continued

$$
\underset{\text { dependency }}{I(a ; b)} \leq \underbrace{H(a)-\frac{1}{n} H(X)}_{\text {randomness }}+\frac{1}{n} I(X ; \tau)
$$

Neyman-Okada's lemma, continued

$$
\underset{\text { dependency }}{l(a ; b)} \leq \underbrace{H(a)-\frac{1}{n} H(X)}_{\text {randomness }}+\frac{1}{n} \underset{\substack{\text { mutual } \\ \text { information }}}{I(X ; \tau)}
$$

- If X was a sequence of i.i.d. random variables and X and τ were independent, then the payoff of player 1 would be at least the payoff secured by a in one-stage game.

Neyman-Okada's lemma, continued

$$
\underset{\text { dependency }}{I(a ; b)} \leq \underbrace{H(a)-\frac{1}{n} H(X)}_{\text {randomness }}+\frac{1}{n} \underset{\substack{\text { mutual } \\ \text { information }}}{I(X ; \tau)}
$$

- If X was a sequence of i.i.d. random variables and X and τ were independent, then the payoff of player 1 would be at least the payoff secured by a in one-stage game.
- In general, the payoff of player 1 is at least the payoff secured by a in the one-stage game where player 2 is allowed to correlate with player 1 up to the amount on the right-hand side of the inequality.

Uninformed game, revisited

$$
I(a ; b) \leq\left[H(a)-\frac{1}{n 2^{n}} H\left(x_{1}, \ldots, x_{n 2^{n}}\right)\right]+\frac{1}{n 2^{n}} I\left(x_{1}, \ldots, x_{n 2^{n}} ; \tau\right)
$$

- Player 2 is not informed of the realization of $x_{1}, \ldots, x_{n 2^{n}}$.

Uninformed game, revisited

$$
I(a ; b) \leq\left[H(a)-\frac{1}{n 2^{n}} H\left(x_{1}, \ldots, x_{n 2^{n}}\right)\right]+\frac{1}{n 2^{n}} I\left(x_{1}, \ldots, x_{n 2^{n}} ; \tau\right)
$$

- Player 2 is not informed of the realization of $x_{1}, \ldots, x_{n 2^{n}}$.

Uninformed game, revisited

$$
I(a ; b) \leq\left[H(a)-\frac{1}{n 2^{n}} H\left(x_{1}, \ldots, x_{n 2^{n}}\right)\right]+\frac{1}{n 2^{n}} I\left(x_{1}, \ldots, x_{n 2^{n}} ; \tau\right)
$$

- Player 2 is not informed of the realization of $x_{1}, \ldots, x_{n 2^{n}}$.
- The entropy of the uniform distribution on m objects is $\log _{2} m$.

Uninformed game, revisited

$$
I(a ; b) \leq\left[H(a)-\frac{1}{n 2^{n}} H\left(x_{1}, \ldots, x_{n 2^{n}}\right)\right]+\frac{1}{n 2^{n}} I\left(x_{1}, \ldots, x_{n 2^{n} ;} ; \tau\right)
$$

- Player 2 is not informed of the realization of $x_{1}, \ldots, x_{n 2^{n}}$.
- The entropy of the uniform distribution on m objects is $\log _{2} m$.

Uninformed game, revisited

$$
I(a ; b) \leq\left[H(a)-\frac{1}{n 2^{n}} H\left(x_{1}, \ldots, x_{n 2^{n}}\right)\right]+\frac{1}{n 2^{n}} I\left(x_{1}, \ldots, x_{n 2^{n} ;} ; \tau\right)
$$

- Player 2 is not informed of the realization of $x_{1}, \ldots, x_{n 2^{n}}$.
- The entropy of the uniform distribution on m objects is $\log _{2} m$.
- The empirical frequency of $x_{1}, \ldots, x_{n 2^{n}}$ is $\left(\frac{1}{2}, \frac{1}{2}\right)$.

Uninformed game, revisited

$$
I(a ; b) \leq\left[\begin{array}{cc}
H(a)-\frac{1}{n 2^{n}} H\left(x_{1}, \ldots, x_{n 2^{n}}\right) \\
\| & \| \\
1 & \frac{\log _{2} 2^{n!}}{n 2^{n}}
\end{array}\right]+\frac{1}{n 2^{n}} I\left(x_{1}, \ldots, x_{\left.n 2^{n} ; \tau\right)} \quad \|\right.
$$

- Player 2 is not informed of the realization of $x_{1}, \ldots, x_{n 2^{n}}$.
- The entropy of the uniform distribution on m objects is $\log _{2} m$.
- The empirical frequency of $x_{1}, \ldots, x_{n 2^{n}}$ is $\left(\frac{1}{2}, \frac{1}{2}\right)$.

Uninformed game, revisited

$$
I(a ; b) \leq\left[\begin{array}{cc}
H(a)-\frac{1}{n 2^{n}} H\left(x_{1}, \ldots, x_{n 2^{n}}\right) \\
\| & \| \\
1 & \frac{\log _{2} 2^{n!}}{n 2^{n}}
\end{array}\right]+\frac{1}{n 2^{n}} I\left(x_{1}, \ldots, x_{\left.n 2^{n} ; \tau\right)}^{\|}\right.
$$

- Player 2 is not informed of the realization of $x_{1}, \ldots, x_{n 2^{n}}$.
- The entropy of the uniform distribution on m objects is $\log _{2} m$.
- The empirical frequency of $x_{1}, \ldots, x_{n 2^{n}}$ is $\left(\frac{1}{2}, \frac{1}{2}\right)$.
- $\log m!/ m \log m \rightarrow 1$

Uninformed game, revisited

$$
I(a ; b) \leq\left[\begin{array}{cc}
H(a) & -\frac{1}{n 2^{n}} H\left(x_{1}, \ldots, x_{n 2^{n}}\right) \\
\| & \| \\
1 & \frac{\log _{2} 2^{n!}}{n 2^{n}}
\end{array}\right]+\frac{1}{n 2^{n}} I\left(x_{1}, \ldots, x_{n 2^{n} ;} ; \tau\right)
$$

- Player 2 is not informed of the realization of $x_{1}, \ldots, x_{n 2^{n}}$.
- The entropy of the uniform distribution on m objects is $\log _{2} m$.
- The empirical frequency of $x_{1}, \ldots, x_{n 2^{n}}$ is $\left(\frac{1}{2}, \frac{1}{2}\right)$.
- $\log m!/ m \log m \rightarrow 1$
- Conclusion:

Uninformed game, revisited

$$
I(a ; b) \leq\left[\begin{array}{cc}
H(a)-\frac{1}{n 2^{n}} H\left(x_{1}, \ldots, x_{n 2^{n}}\right) \\
\| & \| \\
1 & \frac{\log _{2} 2^{n!}}{n 2^{n}}
\end{array}\right]+\frac{1}{n 2^{n}} I\left(x_{1}, \ldots, x_{n 2^{n} ;} ; \tau\right)
$$

- Player 2 is not informed of the realization of $x_{1}, \ldots, x_{n 2^{n}}$.
- The entropy of the uniform distribution on m objects is $\log _{2} m$.
- The empirical frequency of $x_{1}, \ldots, x_{n 2^{n}}$ is $\left(\frac{1}{2}, \frac{1}{2}\right)$.
- $\log m!/ m \log m \rightarrow 1$
- Conclusion: the value of the uninformed game converges to the value of the one-stage game.

Informed strategies and bounded memory

- A strategy of an informed player depends on his information. In our example, the information is the realization of $x_{1}, \ldots, x_{n 2^{n}}$.

Informed strategies and bounded memory

- A strategy of an informed player depends on his information. In our example, the information is the realization of $x_{1}, \ldots, x_{n 2^{n}}$.
- For every realization $\xi=\xi_{1}, \ldots, \xi_{n 2^{n}}$, the player must specify a strategy in the n fold repeated matching pennies game, $\tau_{\mid \xi}$. The informed strategy $\tau: \xi \mapsto \tau_{\mid \xi}$ is a random variable that depends on $x_{1}, \ldots, x_{n 2^{n}}$.

Informed strategies and bounded memory

- A strategy of an informed player depends on his information. In our example, the information is the realization of $x_{1}, \ldots, x_{n 2^{n}}$.
- For every realization $\xi=\xi_{1}, \ldots, \xi_{n 2^{n}}$, the player must specify a strategy in the n fold repeated matching pennies game, $\tau_{\mid \xi}$. The informed strategy $\tau: \xi \mapsto \tau_{\mid \xi}$ is a random variable that depends on $x_{1}, \ldots, x_{n 2^{n}}$.
- A player who can only memorize M bits of information, can only use informed strategies that have at most 2^{M} distinct realizations. Namely,

$$
\log _{2} \#\left\{\tau_{\mid \xi}: \xi \in\{0,1\}^{n 2^{n}}\right\} \leq M
$$

Informed strategies and bounded memory

- A strategy of an informed player depends on his information. In our example, the information is the realization of $x_{1}, \ldots, x_{n 2^{n}}$.
- For every realization $\xi=\xi_{1}, \ldots, \xi_{n 2^{n}}$, the player must specify a strategy in the n fold repeated matching pennies game, $\tau_{\mid \xi}$. The informed strategy $\tau: \xi \mapsto \tau_{\mid \xi}$ is a random variable that depends on $x_{1}, \ldots, x_{n 2^{n}}$.
- A player who can only memorize M bits of information, can only use informed strategies that have at most 2^{M} distinct realizations. Namely,

$$
\log _{2} \#\left\{\tau_{\mid \xi}: \xi \in\{0,1\}^{n 2^{n}}\right\} \leq M
$$

- We use the above as a definition for M-memory informed strategies ("0-memory" = "uninformed").

Informed game, revisited

$$
I(a ; b) \leq\left[H(a)-\frac{1}{n 2^{n}} H\left(x_{1}, \ldots, x_{n 2^{n}}\right)\right]+\frac{1}{n 2^{n}} I\left(x_{1}, \ldots, x_{n 2^{n}} ; \tau\right)
$$

Informed game, revisited

$$
I(a ; b) \leq\left[H(a)-\frac{1}{n 2^{n}} H\left(x_{1}, \ldots, x_{n 2^{n}}\right)\right]+\frac{1}{n 2^{n}} I\left(x_{1}, \ldots, x_{n 2^{n}} ; \tau\right)
$$

- We have already seen that the first term on the right-hand side vanishes as n grows.

Informed game, revisited

$$
I(a ; b) \leq\left[H(a)-\frac{1}{n 2^{n}} H\left(x_{1}, \ldots, x_{n 2^{n}}\right)\right]+\frac{1}{n 2^{n}} I\left(x_{1}, \ldots, x_{n 2^{n}} ; \tau\right)
$$

- We have already seen that the first term on the right-hand side vanishes as n grows.
- The amount of information that τ conveys about $x_{1}, \ldots, x_{n 2^{n}}$, $I\left(x_{1}, \ldots, x_{n 2^{n}}, \tau\right)$, is at most the total amount of information that τ conveys, $H(\tau)$.

Informed game, revisited

$$
\begin{aligned}
I(a ; b) \leq\left[H(a)-\frac{1}{n 2^{n}} H\left(x_{1}, \ldots, x_{n 2^{n}}\right)\right] & +\frac{1}{n 2^{n}} I\left(x_{1}, \ldots, x_{n 2^{n}} ; \tau\right) \\
& \leq \mathrm{o}(1)+\frac{1}{n 2^{n}} H(\tau)
\end{aligned}
$$

- We have already seen that the first term on the right-hand side vanishes as n grows.
- The amount of information that τ conveys about $x_{1}, \ldots, x_{n 2^{n}}$, $I\left(x_{1}, \ldots, x_{n 2^{n}}, \tau\right)$, is at most the total amount of information that τ conveys, $H(\tau)$.

Informed game, revisited

$$
\begin{aligned}
I(a ; b) \leq\left[H(a)-\frac{1}{n 2^{n}} H\left(x_{1}, \ldots, x_{n 2^{n}}\right)\right] & +\frac{1}{n 2^{n}} I\left(x_{1}, \ldots, x_{n 2^{n}} ; \tau\right) \\
& \leq o(1)+\frac{1}{n 2^{n}} H(\tau)
\end{aligned}
$$

- We have already seen that the first term on the right-hand side vanishes as n grows.
- The amount of information that τ conveys about $x_{1}, \ldots, x_{n 2^{n}}$, $I\left(x_{1}, \ldots, x_{n 2^{n}}, \tau\right)$, is at most the total amount of information that τ conveys, $H(\tau)$.
- The entropy if a random variable is bounded by the binary logarithm of the number of its possible values.

Informed game, revisited

$$
\begin{aligned}
I(a ; b) \leq\left[H(a)-\frac{1}{n 2^{n}} H\left(x_{1}, \ldots, x_{n 2^{n}}\right)\right] & +\frac{1}{n 2^{n}} I\left(x_{1}, \ldots, x_{n 2^{n}} ; \tau\right) \\
& \leq o(1)+\frac{1}{n 2^{n}} H(\tau)
\end{aligned}
$$

- We have already seen that the first term on the right-hand side vanishes as n grows.
- The amount of information that τ conveys about $x_{1}, \ldots, x_{n 2^{n}}$, $I\left(x_{1}, \ldots, x_{n 2^{n}}, \tau\right)$, is at most the total amount of information that τ conveys, $H(\tau)$.
- The entropy if a random variable is bounded by the binary logarithm of the number of its possible values.
- Let M be the memory capacity of player 2 .

Informed game, revisited

$$
\begin{aligned}
I(a ; b) \leq\left[H(a)-\frac{1}{n 2^{n}} H\left(x_{1}, \ldots, x_{n 2^{n}}\right)\right] & +\frac{1}{n 2^{n}} I\left(x_{1}, \ldots, x_{n 2^{n}} ; \tau\right) \\
& \leq \mathrm{o}(1)+\frac{1}{n 2^{n}} H(\tau) \leq \mathrm{o}(1)+\frac{M}{n 2^{n}}
\end{aligned}
$$

- We have already seen that the first term on the right-hand side vanishes as n grows.
- The amount of information that τ conveys about $x_{1}, \ldots, x_{n 2^{n}}$, $I\left(x_{1}, \ldots, x_{n 2^{n}}, \tau\right)$, is at most the total amount of information that τ conveys, $H(\tau)$.
- The entropy if a random variable is bounded by the binary logarithm of the number of its possible values.
- Let M be the memory capacity of player 2 .

Informed game, conclusions

$$
I(a ; b) \leq o(1)+\frac{M}{n 2^{n}}
$$

- If $M \ll n 2^{n}$, then the value of the informed game converges the value of the one-stage game.

Informed game, conclusions

$$
I(a ; b) \leq o(1)+\frac{M}{n 2^{n}}
$$

- If $M \ll n 2^{n}$, then the value of the informed game converges the value of the one-stage game.
- If $M \geq n 2^{n}$, then the informed plater can memorize and hence "beat" the random sequence.

Informed game, conclusions

$$
I(a ; b) \leq o(1)+\frac{M}{n 2^{n}}
$$

- If $M \ll n 2^{n}$, then the value of the informed game converges the value of the one-stage game.
- If $M \geq n 2^{n}$, then the informed plater can memorize and hence "beat" the random sequence.
- What if $M \sim \Theta n 2^{n}$, for some constant $\Theta>0$?

Informed game, conclusions

$$
I(a ; b) \leq o(1)+\frac{M}{n 2^{n}}
$$

- If $M \ll n 2^{n}$, then the value of the informed game converges the value of the one-stage game.
- If $M \geq n 2^{n}$, then the informed plater can memorize and hence "beat" the random sequence.
- What if $M \sim \Theta n 2^{n}$, for some constant $\Theta>0$?
- It can be shown that for every joint distribution of a and b such that $a \sim\left(\frac{1}{2}, \frac{1}{2}\right)$ and $I(a ; b) \leq \Theta$, there exists an oblivious M-memory informed strategy that achieves that joint distribution.

Informed game, conclusions

$$
I(a ; b) \leq o(1)+\frac{M}{n 2^{n}}
$$

- If $M \ll n 2^{n}$, then the value of the informed game converges the value of the one-stage game.
- If $M \geq n 2^{n}$, then the informed plater can memorize and hence "beat" the random sequence.
- What if $M \sim \Theta n 2^{n}$, for some constant $\Theta>0$?
- It can be shown that for every joint distribution of a and b such that $a \sim\left(\frac{1}{2}, \frac{1}{2}\right)$ and $I(a ; b) \leq \Theta$, there exists an oblivious M-memory informed strategy that achieves that joint distribution.
- Therefore, the value of the informed game converges to the value of the one-stage game where player 1 plays $\left(\frac{1}{2}, \frac{1}{2}\right)$ and player 2 choose a correlated strategy whose mutual information is bounded by Θ.

Repeated Games with Bounded Memory

- The information of a player in a repeated game is the history up to the current stage. Thereby, an M-memory strategy τ is defined by

$$
\log _{2} \#\left\{\tau_{\mid h}: " h \text { is a finite history" }\right\} \leq M
$$

where $\tau_{\mid h}$ is the strategy that τ induces on the sub-game that starts after the history h has been played.

Correlation through bounded memory strategies

- Suppose two M-memory players correlate in order to produce an n-periodic sequence x_{1}, x_{2}, \ldots that behaves similar to a sequence of i.i.d. random variables with distribution $Q \in \Delta\left(A_{1} \times A_{2}\right)$.

Correlation through bounded memory strategies

- Suppose two M-memory players correlate in order to produce an n-periodic sequence x_{1}, x_{2}, \ldots that behaves similar to a sequence of i.i.d. random variables with distribution $Q \in \Delta\left(A_{1} \times A_{2}\right)$.
- Namely, the expected empirical distribution is close to Q and $H\left(x_{1}, \ldots, x_{n}\right) / n$ is close to $H(Q)$.

Correlation through bounded memory strategies

- Suppose two M-memory players correlate in order to produce an n-periodic sequence x_{1}, x_{2}, \ldots that behaves similar to a sequence of i.i.d. random variables with distribution $Q \in \Delta\left(A_{1} \times A_{2}\right)$.
- Namely, the expected empirical distribution is close to Q and $H\left(x_{1}, \ldots, x_{n}\right) / n$ is close to $H(Q)$.
- Let $C(Q)$ be the smallest real number such that, if $M 2^{M} \geq C(Q) n$, then the above is possible.

Correlation through bounded memory strategies

- Suppose two M-memory players correlate in order to produce an n-periodic sequence x_{1}, x_{2}, \ldots that behaves similar to a sequence of i.i.d. random variables with distribution $Q \in \Delta\left(A_{1} \times A_{2}\right)$.
- Namely, the expected empirical distribution is close to Q and $H\left(x_{1}, \ldots, x_{n}\right) / n$ is close to $H(Q)$.
- Let $C(Q)$ be the smallest real number such that, if $M 2^{M} \geq C(Q) n$, then the above is possible.
- What is $C(Q)$?

Correlation through bounded memory strategies

- Suppose two M-memory players correlate in order to produce an n-periodic sequence x_{1}, x_{2}, \ldots that behaves similar to a sequence of i.i.d. random variables with distribution $Q \in \Delta\left(A_{1} \times A_{2}\right)$.
- Namely, the expected empirical distribution is close to Q and $H\left(x_{1}, \ldots, x_{n}\right) / n$ is close to $H(Q)$.
- Let $C(Q)$ be the smallest real number such that, if $M 2^{M} \geq C(Q) n$, then the above is possible.
- What is $C(Q)$? This is an open problem!

Correlation through bounded memory strategies

- Suppose two M-memory players correlate in order to produce an n-periodic sequence x_{1}, x_{2}, \ldots that behaves similar to a sequence of i.i.d. random variables with distribution $Q \in \Delta\left(A_{1} \times A_{2}\right)$.
- Namely, the expected empirical distribution is close to Q and $H\left(x_{1}, \ldots, x_{n}\right) / n$ is close to $H(Q)$.
- Let $C(Q)$ be the smallest real number such that, if $M 2^{M} \geq C(Q) n$, then the above is possible.
- What is $C(Q)$? This is an open problem!
- In an ongoing joint work with Olivier Gossner and Penelope Hernandez we were able to show that

$$
\min _{i}\left(\frac{H\left(Q_{i}\right)}{\left|A_{-i}\right|-1}\right) \leq C(Q) \leq \max _{i}\left(\frac{H(Q)}{\left|A_{i}\right|-1}\right)
$$

Further results

Ron Peretz.
Conceald correlation through bounded recall strategies. International Journal of Game Theory (forthcoming).

Ron Peretz.
Learning cycle length through finite automata.
Mathematics of Operations Research (forthcoming).
Ron Peretz.
The strategic value of recall.
Games and Economic Behavior (published online).

