
Adverse sele
tion without single 
rossing∗Christoph S
hottmüller†September 19, 2011Abstra
tS
reening models are used to analyze 
ontra
ting in many sub�elds of e
onomi
s like regulation,labor e
onomi
s, monopoly pri
ing, taxation or �nan
e. Most models assume single 
rossing. Thissimpli�es the analysis as lo
al in
entive 
ompatibility is in this 
ase su�
ient for global in
entive
ompatibility. If single 
rossing is violated, global in
entive 
ompatibility 
onstraints have to betaken into a

ount. This paper studies monotone solutions in a model where single 
rossing isviolated.It is shown that lo
al and non-lo
al in
entive 
onstraints distort the solution in opposite dire
-tions. Therefore, the optimal de
ision might involve distortions above as well as below the �rstbest de
ision. Furthermore, the well known �no distortion at the top� property does not ne
essarilyhold. Su�
ient 
onditions for monotoni
ity and 
ontinuity of the solution and an algorithm toobtain su
h a solution are derived.Some results 
an be readily applied. For example, overinsuran
e, i.e. insuran
e levels above�rst best as in so 
alled �Cadilla
� insuran
e plans, 
an be rationalized. In a non-linear pri
ingframework, the model also provides an explanation for marginal pri
es below marginal 
osts asobserved in �at rate o�ers.Keywords: adverse sele
tion, single 
rossing, Spen
e-Mirrlees 
ondition, global in
entive 
om-patibilityJEL 
lassi�
ation: D82, D86
∗I want to thank Jan Boone and Bruno Jullien for interesting dis
ussions and numerous suggestions. I have also ben-e�ted from 
omments by Matthias Lang, François Salanié and seminar parti
ipants at the Toulouse S
hool of E
onomi
sand Tilburg University.
†Department of E
onomi
s, University of Tilburg, P.O. Box 90153, 5000 LE, Tilburg, The Netherlands; Tile
, CentER;E-mail: 
hristophs
hottmueller [at℄ googlemail.
om 1



1. Introdu
tionAdverse sele
tion models1 are among the most used mi
roe
onomi
 models sin
e their introdu
tion byAkerlof (1970). The main feature of these models is that one (or more) agents have private informationwhi
h is relevant for transa
tions with other players. This private information 
an be the e�
ien
y ofa �rm in models of regulation (Baron and Myerson, 1982; La�ont and Tirole, 1987), the produ
tivityof a worker in labor market (Guas
h and Weiss, 1981) as well as in optimal taxation models (Mirrlees,1971), the risk of an a

ident in insuran
e models (Stiglitz, 1977) or the willingness to pay for a produ
tin models of monopoly pri
ing (Mussa and Rosen, 1978) and au
tions (Myerson, 1981).Two standard resear
h questions typi
ally emerge in this kind of models: What will be the marketout
ome, e.g. the optimal 
ontra
t? How does the presen
e of asymmetri
 information a�e
t welfareand the distribution of the so
ial surplus? Generally speaking, a menu emerges as optimal 
ontra
t,i.e. several options are o�ered and the player who has private information will 
hoose his preferredoption. The 
hosen option will normally not be what a benevolent planner with 
omplete informationwould assign. Hen
e, informational distortions exist and will redu
e welfare. The reason in a nutshellis that the agent reveals (some of) his private information by his 
hoi
e. This will not be 
ostless forthe prin
ipal who designs the menu: The agent re
eives an informational rent. By distorting the menuaway from �rst best, the prin
ipal 
an redu
e this informational rent to his own bene�t.In the regulation example, a regulator will want a more e�
ient �rm to produ
e a higher quantitythan a less e�
ient �rm. But an e�
ient �rm 
ould 
laim to be ine�
ient and 
hoose the (low quantity)option intended for an ine�
ient �rm from the menu. Sin
e the �rm is e�
ient, it would make a pro�tby �misrepresenting�. By distorting the quantity intended for an ine�
ient �rm, the regulator 
anmake su
h misrepresenting less pro�table for an e�
ient �rm. Hen
e, the regulator 
an save on theinformational rents of an e�
ient �rm by distorting the menu option intended for an ine�
ient �rmaway from �rst best.Single 
rossing2 is a te
hni
al assumption whi
h is usually made in hidden information models. Inone dimensional models, single 
rossing states that types3 
an be ordered a

ording to their marginalrate of substitution between monetary transfers and the de
ision, e.g. produ
ed quantity in the reg-ulation example above. With the usual quasilinear preferen
es, single 
rossing is equivalent to a typeordering a

ording to marginal utilities.In the regulation example above, the �rm's 
ost fun
tion depends on quantity and type. Single1Adverse sele
tion models are sometimes also referred to as hidden information or s
reening models.2The single 
rossing property is also referred to as Spen
e-Mirrlees 
ondition or sorting 
ondition.3A �type� is an agent with a spe
i�
 private information attribute, see Harsanyi (1967). In the regulation exampletypes 
orrespond to 
ost fun
tions of the �rm. 2




rossing means that higher types have lower marginal 
osts (for any admissible quantity). Single
rossing is violated if su
h an ordering is impossible, e.g. a higher type has lower marginal 
osts forhigh quantities but higher marginal 
osts for low quantities.In a non-linear pri
ing framework, single 
rossing would mean that higher types have a highermarginal utility at every possible quantity level. Now think of �xed line internet a

ess. Heavyinternet users will 
ertainly have a higher marginal utility from the �fth gigabyte of data than lightusers. If heavy users, however, also own smartphones with internet a

ess (and light users do not),light users will probably have a higher willingness to pay for the �rst 50 megabyte: They 
annot swit
hto their mobile devi
es to 
he
k emails et
.. Hen
e, single 
rossing would be violated.This paper analyzes an adverse sele
tion model in whi
h single 
rossing is violated. Agents havequasilinear preferen
es and a one-dimensional type. The setting allows for a one time violation ofsingle 
rossing; e.g. for a given quantity, marginal 
osts are �rst in- and then de
reasing in type.Without single 
rossing, lo
al in
entive 
ompatibility does no longer guarantee global in
entive 
om-patibility. Therefore, non-lo
al in
entive 
ompatibility 
onstraints have to be taken into a

ount. Thepaper analyzes monotone solutions in this setup, e.g. situations in whi
h higher types produ
e higherquantities under the optimal 
ontra
t. Su�
ient 
onditions for the existen
e of a monotone solutionand an algorithm to 
al
ulate su
h a solution are presented.With single 
rossing, there is no distortion at the top and the distortion for all types goes in thesame dire
tion, e.g. all types produ
e a quantity whi
h is weakly below their �rst best quantity. Ifsingle 
rossing is violated, both results no longer hold. The reason is that binding non-lo
al in
entive
onstraints will 
ountera
t the normal distortion stemming from lo
al in
entive 
ompatibility and rentextra
tion motives. A rough intuition for this result is the following: With single 
rossing, distortionso

ur be
ause the prin
ipal wants to lower the agent's informational rent. If a non-lo
al in
entive
onstraint is violated, a 
ertain type's rent at �his 
ontra
t� is too low 
ompared with another type's
ontra
t. To satisfy his non-lo
al in
entive 
onstraint, his rent has to be in
reased. Redu
ing thenormal distortion (or even distorting the de
ision in the opposite dire
tion) will result in su
h anin
rease.The following se
tion gives several examples of settings in whi
h single 
rossing is violated. Then theliterature is reviewed and the formal model is introdu
ed. Se
tion 4 also states a su�
ient 
ondition forthe existen
e of a monotone solution. Given existen
e, one 
an turn to analyzing the solution. Se
tion5 introdu
es ne
essary 
onditions whi
h have to hold at types where non-lo
al in
entive 
onstraints arebinding. The 
ore of the paper are the se
tions 6 and 7: The former 
hara
terizes monotone solutionswhile the latter fo
uses on the spe
ial 
ase of monotone and 
ontinuous solutions. An explanation why3



the no-distortion-at-the-top property is not always satis�ed follows. Before 
on
luding, I dis
uss someassumptions and point out di�eren
es with solutions obtained in related problems in the literature.Most proofs are relegated to the appendix. 2. ExamplesThis se
tion illustrates why single 
rossing is violated in a number of reasonable e
onomi
 settings. A
ommon theme of the examples is that there are more than one input/option/relevant 
hara
teristi
.It is then a priori not 
lear (and sometimes even unreasonable) that a higher type is �better� on alldimensions. But this is exa
tly what single 
rossing would require.Example 1: two fa
tor produ
tion. Take a setting where a �rm or government has to 
ontra
twith the provider of a good (input or publi
 good/infrastru
ture et
.). If the prin
ipal is a government,this setting is mathemati
ally equivalent to in
entive regulation (
ompare for example La�ont andTirole (1993)). Assume now that produ
tion uses variable produ
tion fa
tors in �xed proportions.Costs of these fa
tors 
an be proportional to output, e.g. energy 
osts and unskilled labor, whileother fa
tors in
rease 
osts 
onvexly in quantity, e.g. skilled labor (due to sear
h 
osts) and ma
hineutilization. Type indexes the possible produ
tion te
hnologies and denotes whi
h of these two groupsof fa
tors is used more e�
iently by the �rm. A 
ost fun
tion representing this setting 
ould be4
c(q, θ) = θq +

q2

θ
+ γ(θ)where γ(θ) are (possibly type dependent) �xed 
osts. Whether marginal 
osts cq(q, θ) = θ+ 2q

θ
are in-or de
reasing in type depends on q. Put di�erently, the 
ross partial derivative cqθ(q, θ) = 1 − 2q/θ2
an 
hange sign and therefore single 
rossing is violated. The idea is simple: For low quantities, thelinear part of the 
ost fun
tion dominates marginal 
osts and therefore high types have higher marginal
osts. For high quantities, the 
onvex part of the 
ost fun
tion is more relevant and therefore hightypes have lower marginal 
osts.In pra
ti
e, type 
ould represent whether a �rm uses a labor intensive or 
apital intensive produ
tionte
hnology. A labor intensive produ
tion te
hnology requires espe
ially unskilled labor whi
h 
an behired at a 
onstant market wage (linear part). A 
apital intensive te
hnology requires less but moreskilled employees. Finding them is in
reasingly di�
ult and results therefore in 
onvexly in
reasing
osts.A se
ond interpretation of the 
ost fun
tion above 
ould apply in the 
ase of environmental regula-tion. Let the prin
ipal be a government designing a subsidy s
heme to redu
e emissions. The de
ision4The alternative 
ost fun
tion c(q, θ) = θq + (1− θ)q2 + γ(θ) also violates single 
rossing.4



q is the amount of emission redu
tion. Redu
ing emissions 
an be a
hieved by lowering the 
ontent ofa dirty input in favor of a more expensive 
lean input. This is a linear 
ost. Alternatively, the emissionredu
tion 
an be obtained by �ltering and other 
hanges in the produ
tion pro
ess. This se
ond optionbe
omes in
reasingly 
ostly the more one has to rely on it. Hen
e, the 
onvex part of the 
ost fun
tion.The government does not know the �rm's produ
tion te
hnology whi
h is its type θ. Depending onthe produ
tion te
hnology, it is easier for the �rm to �lter or to substitute inputs.It should be mentioned that the 
ost fun
tion in this example 
an be viewed as a simpli�ed versionof the �exible �xed 
ost quadrati
 
ost fun
tion suggested by Baumol et al. (1982). Beard et al.(1991) estimate su
h a 
ost fun
tion for savings and loans asso
iations. Interestingly, they allow fortwo unobservable types of produ
tion te
hnology in their estimation. In table 5, Beard et al. (1991)report estimated 
osts for the two types (�mixtures� in their language) at di�erent quantity levels. Ifone interprets 
ost di�eren
es between the output levels as marginal 
osts, it turns out that mixture 1has lower marginal 
osts at low output levels but higher marginal 
osts at high output levels. Hen
e,single 
rossing is violated.Example 2: hiring talent and produ
tivity. This example is in the 
ontext of 
ompensationof workers.5 The prin
ipal is the owner of a �rm and the agent a worker the �rm wants to hire. Forthe quality of the worker talent and e�ort are relevant, e.g. talent is what the worker produ
es in aregular working time like the 40 hours week and e�ort is the additional time he is willing to invest.Assume the worker 
reates value q = eθ+ T where T is his talent, e is the unobservable e�ort and θ ishis type. The owner of the �rm observes a publi
 signal, e.g. edu
ation, whi
h is a mix of talent andprodu
tivity (he does not observe T and θ dire
tly). To be pre
ise, assume that the signal is σ = θ ∗T .Given this signal, a more produ
tive worker will have lower talent and vi
e versa. The produ
tionfun
tion of the manager for a given signal is q = eθ + σ/θ where q is the quantity/value produ
ed bythe worker. If 
osts of e�ort are e2 and the worker's preferen
es are quasilinear in money, his utilityfun
tion 
an be written as
u(q, θ) = w −

(q − σ/θ)2

θ2
(1)where w is wage. It is easy to 
he
k that single 
rossing is violated. The intuition is that a low type
an produ
e a low output q without mu
h e�ort just within the regular working time. Hen
e, hismarginal 
osts of e�ort (and therefore of q) are low. A high type already has to exert some e�ort torea
h the same output level and therefore his marginal 
osts of e�ort (and q) are higher. Note herethat the 
ontra
t is 
onditional on edu
ation, i.e. given σ a more produ
tive type will be less talented.For high output, where e�ort of both types is substantial, higher types have lower marginal 
osts sin
e5A similar example 
an be found in Araujo and Moreira (2010).5



they are more produ
tive.Example 3: 
ommon agen
y. As already mentioned in Martimort and Stole (2009), violationsof single 
rossing 
an arise if more than one prin
ipal 
ontra
t with the same agent. Interestingly,the utility fun
tion itself will satisfy single 
rossing (for a �xed de
ision with the other prin
ipal) andthe violation of single 
rossing results from the existen
e of multiple prin
ipals. This example tries to
onvey the idea in a simpli�ed setup.The sour
e of hidden information in this example is the inability of �rms to know the exa
t pref-eren
es of a 
ustomer. A �rm 
annot observe the preferen
es of a 
ustomer but it 
an engage innon-linear pri
ing, i.e. se
ond degree pri
e dis
rimination.Say, 
onsumers 
an buy two goods whi
h are imperfe
t substitutes: Good A is sold only by �rm
A while good B is available on a perfe
tly 
ompetitive market at a 
onstant per unit pri
e pB .6 For
on
reteness, let the demand fun
tion for good B of a type θ 
onsumer be

qB(qA, θ) = θ(β − pB − δqA) (2)whi
h means that type rotates the inverse demand fun
tion outwards. The following quadrati
 utilityfun
tion yields su
h a demand fun
tion:
u(qA, qB , θ) = αqA + βqB −

γ

2θ
qA

2
−

1

2θ
qB

2
− δqAqB − pBqB − pA(qA)Firm A fa
es 
onsumers buying produ
t B a

ording to (2). By plugging (2) into the utility fun
tion,one 
an obtain utility as a fun
tion of qA and θ alone, i.e. v(qA, θ) = u(qA, qB(qA, θ), θ). This is theutility fun
tion �rm A has to take into a

ount in its pro�t maximization problem. Be
ause 
onsumersbuy also produ
t B, single 
rossing is violated:

vqAθ(q
A, θ) = uqAθ(q

A, qB(qA, θ), θ) + uqBθ(q
A, qB(qA, θ), θ)

∂qB(qA, θ)

∂qA
= qA

( γ

θ2
+ δ2

)

− δ(β − pB)Clearly, vqAθ is negative for low qA and positive for high qA. The reason for the violation of single
rossing is that high type 
onsumers have, on the one hand, a higher marginal willingness to paybe
ause of their high type (that is the γ
2θq

A2 term in the utility fun
tion). On the other hand, a hightype buys more of produ
t B whi
h redu
es his willingness to pay for produ
t A as the two goods aresubstitutes.Example 4: health insuran
e. This example is worked out in Boone and S
hottmüller (2011)and therefore only sket
hed here. In health insuran
e, it is empiri
ally do
umented that people withhigh health risks have often little insuran
e 
overage. This 
annot be explained by a standard insuran
e6See Martimort and Stole (2009) for a model in whi
h the se
ond good is also o�ered by a strategi
ally a
ting prin
ipal.6



model with single 
rossing. Boone and S
hottmüller (2011) point out that an empiri
ally observed
orrelation between health risk and in
ome might lead to a violation of single 
rossing.In a nutshell, assume that risk is private information but that high risk agents are poorer. At full
overage, that is indemnity insuran
e without dedu
tible, wealth does not matter and high risk agentswill (in expe
tation) 
onsume more 
are. Therefore, their marginal willingness to pay for 
overage ishigher. Now think of a situation without insuran
e 
overage: As health 
are is a normal good, poor,high risk agents will 
onsume less 
are when falling ill: They 
annot a�ord 
are. Be
ause they utilizeless, their marginal willingness to pay for insuran
e 
overage is less than the one of a ri
h, low riskagent. Consequently, it depends on the 
overage level whether higher types are willing to pay more orless for a marginal unit of insuran
e 
overage; single 
rossing is violated.Example 5: insuran
e with mean varian
e utility. An agent fa
es a risk of losing a (moneyequivalent) amount D with probability θ where θ is private information. His preferen
es are given bythe mean varian
e utility fun
tion
u(q, θ) = θ(w − (1− q)D) + (1− θ)w − p− 1/2rθ(1− θ)(1− q)2D2where p is the insuran
e premium of an insuran
e 
overing fra
tion q of the loss, w is initial wealthand r > 0 is a measure of risk aversion. The 
ross derivative uqθ = D+ (1− q)rD2(1− 2θ). If θ > 1/2and rD > 1, the 
ross derivative 
an 
hange sign depending on q. Hen
e, single 
rossing is violated.The intuition is that for θ > 1/2 a higher risk also implies less varian
e. Consequently, a highertype is on the one hand more eager to buy insuran
e be
ause he has a higher risk on the other handhe is less eager to buy insuran
e be
ause there is less varian
e in his payo�s. At full 
overage, i.e. for

q = 1, the payo� varian
e is zero and the latter e�e
t is no longer present. For lower 
overage levels,however, it might dominate. 3. LiteratureThe standard s
reening model with single 
rossing is well known and explained in many textbooks,see for example Fudenberg and Tirole (1991) or Bolton and Dewatripont (2005). Surprisingly, theliterature on violations of single 
rossing in s
reening models remains relatively s
ar
e.Some insights have been gained for dis
rete type insuran
e models with perfe
t 
ompetition amongprin
ipals. Several papers analyze settings where private information has two dimensions and 
an takeeither a high or a low value in ea
h dimension, i.e there are 2 × 2 types. In Smart (2000), the twodimensions are risk and risk aversion while in Wamba
h (2000) they are wealth and risk. Netzer andS
heuer (2010) model an additional labor supply de
ision and the two dimensions are produ
tivity and7



risk. All three papers share a pooling result, i.e. if single 
rossing is violated two of the four types 
anbe pooled. Boone and S
hottmüller (2011) show that with imperfe
t 
ompetition among prin
ipalsthere 
an even be an order reversal: Types with higher risk 
an have more but also less insuran
e
overage if single 
rossing is violated.My paper will analyze a model with a 
ontinuum of types and one prin
ipal. As I will illustrate inthe next se
tion, the main te
hni
al di�
ulty 
aused by a violation of single 
rossing are non-lo
allybinding in
entive 
onstraints. In dis
rete type models one 
an take all in
entive 
onstraints expli
itlyinto a

ount. This is quite di�
ult in a 
ontinuous type model sin
e a 
ontinuum of 
onstraints exist.Indeed the main te
hni
al 
hallenge is to handle those 
onstraints. Also some additional qualitativeresults emerge from the 
ontinuous type model, e.g. distortion above as well as below �rst best anddistortion at the top.Araujo and Moreira (2010) 
hara
terize in a 
ontinuous type framework (inversely) U-shaped solu-tions in a setup where single 
rossing is not satis�ed. In these solutions, some 
ontra
ts are 
hosen bytwo types (�dis
rete pooling�). It turns out that in (inversely) U-shaped solutions non-lo
al in
entive
onstraints are only binding between types 
hoosing the same 
ontra
t from the menu. My paper
omplements their work by 
hara
terizing monotone solutions in the same model. The main te
hni
aldi�eren
e is that non-lo
al in
entive 
onstraints 
an bind between types 
hoosing di�erent options fromthe menu. The solution in Araujo and Moreira (2010) features either a dis
ontinuity or a bun
hinginterval. My paper shows that this is not the 
ase for monotone solutions and therefore not a ne
essaryimpli
ation of a violation of single 
rossing.Violations of single 
rossing are also related to the literature on multidimensional s
reening, seeArmstrong (1996) and Ro
het and Chone (1998) for seminal 
ontributions and Ro
het and Stole (2003)for a survey. As pointed out in the survey, �the problems arise not be
ause of multiple dimensionalityitself, but be
ause of a 
ommonly asso
iated la
k of exogenous type-ordering in multiple-dimensionalenvironments.� A violation of single 
rossing also 
onveys a la
k of type-ordering. To make therelationship 
lear, think of a multidimensional, dis
rete type model. Clearly, one 
an reassign typesto a one-dimensional parameter but this reassigned type will regularly not satisfy single 
rossing.Consequently, an applied resear
her will often have the 
hoi
e between a multidimensional type modelor a one-dimensional type model violating single 
rossing. My paper provides tools to make the latterway feasible.The paper also relates to work relaxing the basi
 assumptions of the textbook model. Jullien(2000) allows for type dependent parti
ipation 
onstraints while Hellwig (2010) analyzes the 
ase ofirregular type distributions, i.e. distributions with mass points and zero densities. In se
tion 9 the8



solution obtained with a violation of single 
rossing will be 
ompared with the solutions obtained inthose papers. 4. ModelThere is a one-dimensional de
ision in a prin
ipal agent relationship whi
h is denoted by q ∈ R+.Furthermore, there is a monetary transfer t ∈ R. The agent's utility is π = t− c(q, θ) where θ ∈ Θ ≡

[θ, θ̄] ⊂ R is the type of the agent whi
h is his private information. The fun
tion c(q, θ) is assumedto be three times 
ontinuously di�erentiable with cq > 0, cqq > 0, cθ < 0.7 The prin
ipal's utility is
u(q, θ)− t and is two times 
ontinuously di�erentiable with uq > 0 and uqq ≤ 0. The prin
ipal has theprior distribution F (θ) with 
ontinuous density f(θ) > 0 for all θ ∈ [θ, θ̄].For example, the prin
ipal 
ould be the regulator of a natural monopolist and q 
ould be thequality (or quantity) of servi
e provided. The regulator might maximize expe
ted 
onsumer surpluswhi
h 
ould be q−p where p is the pri
e paid. The natural monopolist would have 
ost fun
tion c(q, θ)and maximize pro�ts. A higher type would 
orrespond to a more e�
ient �rm in the sense that its
osts are lower than the 
osts of a lower type.By the revelation prin
iple, any general me
hanism 
an also be implemented by a dire
t revelationme
hanism in whi
h the agent truthfully reports his type. The task is to design a menu q(θ), imple-mented by transfers t(θ), whi
h is individually rational (ir) and in
entive 
ompatible (i
) for the agentand maximizes the prin
ipal's obje
tive under these two 
onstraints.Fa
ed with a menu (q(θ), t(θ)), a type θ agent will maximize t(θ̂) − c(q(θ̂), θ) over his type an-noun
ement θ̂. If an implementable menu (q(θ), t(θ)) leads to rents/pro�ts π(θ), the envelope theoremand truthful revelation therefore require πθ(θ) = −cθ(q(θ), θ).In
entive 
ompatibility of a de
ision q(θ) requires in general for any θ, θ̂ ∈ Θ

Φ(θ, θ̂) ≡ π(θ)− π(θ̂)− c(q(θ̂), θ̂) + c(q(θ̂), θ) ≥ 0. (IC)Using the envelope 
ondition above, Φ(θ, θ̂) 
an be rewritten as
Φ(θ, θ̂) =

∫ θ̂

θ

cθ(q(t), t)− ct(q(θ̂), t) dt = −

∫ θ̂

θ

∫ q(θ̂)

q(t)
cqθ(s, t) ds dt.Consequently, (IC) is equivalent to

−

∫ θ̂

θ

∫ q(θ̂)

q(t)
cqθ(s, t) ds dt ≥ 0. (IC')7For the 
ase where cθ 
an 
hange sign (but single 
rossing is satis�ed) see Jullien (2000).9



θ

cqθ > 0

cqθ < 0 s(θ)

q(θ)(a) inverse U-shape solution θ

cqθ > 0

cqθ < 0
s(θ)

q(θ)

θ̂ θ(b) monotone solutionFigure 1: possible solution shapesSingle 
rossing in this model is equivalent to cqθ(q, θ) not 
hanging sign for any value of q and θ.But then in
entive 
ompatibility in (IC') boils down to a simple monotoni
ity 
ondition on q(θ) (plusthe envelope 
ondition): If cqθ < 0, then inequality (IC') will hold whenever q(θ) is monotoni
allyin
reasing. If however cqθ 
an 
hange sign, this is no longer true. It remains true that q(θ) has to bein
reasing (de
reasing) at θ if cqθ(q(θ), θ) < (>)0. Otherwise, (IC') would be violated for types 
loseenough to θ. But this no longer implies global in
entive 
ompatibility for two arbitrary types θ and θ̂.This paper fo
usses on a one-time violation of single 
rossing also used by Araujo and Moreira(2010): It is assumed that cqθ 
hanges sign only on
e for a given q (or a given θ). More pre
isely,I assume cqθθ > 0 and cqqθ < 0. Hen
e, there exists a stri
tly in
reasing fun
tion s(θ) su
h that
cqθ(s(θ), θ) = 0. The assumption on third derivatives are normally made to ensure 
on
avity of theobje
tive fun
tion and monotoni
ity of the de
ision, see for example Fudenberg and Tirole (1991).Here, however, they provide some stru
ture on the way single 
rossing is violated.Araujo and Moreira (2010) �nd ne
essary 
onditions for the 
ase where the solution is inverselyU-shaped, see �gure 1a.8 Note that distin
t types are assigned the same de
ision. Consequently, theyhave to get the same transfer as well and the in
entive 
ompatibility 
onstraint has to be bindingbetween those types. It turns out that non-lo
al in
entive 
ompatibility 
onstraints are only bindingbetween su
h dis
retely pooled types.The fo
us of my paper will be on the 
ase where the optimal de
ision is monotone.Although cqθ(q(θ), θ) < 0 for all θ, the violation of single 
rossing still plays a role in monotonesolutions. It follows from (IC') that one 
an represent in
entive 
ompatibility as an integral over theshaded area in �gure 1b: If the integral of cqθ over this shaded area is negative, in
entive 
ompatibility8The �gure is more s
hemati
 than re�e
ting the solution in Araujo and Moreira (2010): They show that the inverselyU-shaped solution typi
ally displays a bun
hing interval or a dis
ontinuity.10



is satis�ed for θ and θ̂. Hen
e, the part where cqθ > 0 plays a role though the solution does not passit. The intuition is the following: Take two types θ and θ̂ with θ > θ̂. Type θ̂ is assigned a transferde
ision pair (t̂, q̂) and likewise θ has pair (t, q) with q > q̂. When de
iding whether he shouldmisrepresent, type θ will 
ompare the transfer di�eren
e t− t̂ with the 
ost di�eren
e c(q, θ)− c(q̂, θ).Note that the transfer di�eren
e does not depend on type while the 
ost di�eren
e does. With single
rossing, the 
ost di�eren
e is de
reasing in type. If a type θ′ ∈ (θ̂, θ) with q′ ∈ (θ̂, q) is introdu
ed,it follows that c(q, θ)− c(q̂, θ) < c(q, θ)− c(q′, θ) + c(q′, θ′)− c(q̂, θ′). On the other hand, for transfers
t− t̂ = t− t′ + t′ − t̂ holds. Therefore, in
entive 
ompatibility between θ and θ̂ is implied by in
entive
ompatibility between θ and θ′ as well as between θ′ and θ̂. Evidently, lo
al in
entive 
ompatibilityimplies non-lo
al in
entive 
ompatibility be
ause single 
rossing implies that the 
ost di�eren
e isde
reasing in type. Without the single 
rossing assumption, the 
ost di�eren
e c(q, θ) − c(q̂, θ) isnot ne
essarily de
reasing in type and therefore lo
al in
entive 
onstraints are not ne
essarily moredemanding than non-lo
al ones.Before turning to the analysis of the solution, some de�nitions and one assumption is needed. Ide�ne the �rst best solution as the solution to

max
q(θ)

u(q(θ), θ)− c(q(θ), θ)whi
h would be the optimal de
ision if the prin
ipal observed the agent's type. As a se
ond referen
epoint, it is useful to look at the relaxed program. This is the program taking only lo
al in
entive
ompatibility into a

ount:
max
q(θ)

∫ θ̄

θ

{u(q(θ), θ)− c(q(θ), θ)− π(θ)}f(θ) dθ (RP)
s.t. : πθ(θ) = −cθ(q(θ), θ)

qθ(θ)cqθ(q(θ), θ) ≤ 0

π(θ) ≥ 0The �rst and se
ond 
onstraint are the lo
al in
entive 
ompatibility 
onstraints. More spe
i�
ally, the�rst 
onstraint is a �rst order 
ondition for in
entive 
ompatibility and the se
ond 
onstraint is theso 
alled monotoni
ity 
onstraint. The third 
onstraint is the parti
ipation 
onstraint whi
h will bindonly for θ by the assumption cθ < 0. I will 
all the solution of (RP) the relaxed solution and denote itby qr(θ).Sin
e this paper fo
uses on the violation of single 
rossing in monotone solutions, the followingassumption is made: 11



Assumption 1. The relaxed program is stri
tly 
on
ave in q(θ) and the relaxed solution is stri
tlymonotoni
ally in
reasing and stri
tly above s(θ).Put di�erently, I assume that the monotoni
ity 
onstraint does not bind and the relaxed solutionis fully 
hara
terized by the �rst order 
ondition. It is easy to show that uqq ≤ 0 and cqq ≥ 0 aresu�
ient for 
on
avity. For stri
t monotoni
ity and qr(θ) > s(θ), the following assumptions wouldbe su�
ient: uqθ ≥ 0, qfb(θ) > s(θ) and the 
ommonly made monotone hazard rate assumption, i.e.
f(θ)/(1− F (θ)) non-de
reasing in θ.Under assumption 1, it is routine to verify that the relaxed solution is 
hara
terized by the �rstorder 
ondition

{uq(q(θ), θ)− cq(q(θ), θ)}f(θ) + (1− F (θ))cqθ(q(θ), θ) = 0. (3)Sin
e qr(θ) > s(θ), it follows that cqθ(qr(θ), θ) < 0. Therefore, (3) implies that qr(θ) ≤ qfb(θ) wherethe inequality is stri
t for all types but θ̄.As already indi
ated, solutions 
an be monotone or inversely U-shaped (or even 
rossing s(θ) witha dis
ontinuous jump). It is therefore useful to have a su�
ient 
ondition under whi
h the solution ismonotone. To get su
h a su�
ient 
ondition, a te
hni
al 
ondition has to be added to assumption 1.To state this te
hni
al 
ondition some �mirror images� have to be de�ned: Take a de
ision qbelow s(θ) and 
onsider mirroring this de
ision in two ways: First, mirror it along s(θ) su
h that
∫ qs

q
cqθ(x, θ) dx = 0 where qs(q, θ) is the impli
itly de�ned mirror image. Se
ond, mirror q along therelaxed solution qr su
h that {u(q, θ) − c(q, θ)}f(θ) + (1 − F (θ))cqθ(q(θ), θ) is the same for q and itsmirror image qv(q, θ). Sin
e cθ(q, θ) and (RP) are 
on
ave in q, the two mirror images are well de�ned.Last de�ne qf (θ) < s(θ) su
h that qs(qf (θ), θ) = qr(θ), i.e. qf (θ) is a kind of mirror image of therelaxed solution along s(θ).9Proposition 1. If qv(q, θ) ≥ qs(q, θ) for all q ∈ [0, qf (θ)] and all θ ∈ [θ, θ̄], then any de
ision fun
tion

q(θ) whi
h imposes de
isions below s(θ) for some type is dominated by the following 
hanged de
ision
qc(θ) =











q(θ) if q(θ) ≥ s(θ)

qs(q(θ), θ) else
ombined with transfers su
h that πc
θ = −cθ(q

c(θ), θ).Proof. see appendixNote that the imposed 
ondition is automati
ally satis�ed for q 
lose to qf (θ) by assumption 1.Hen
e, the 
ondition roughly states that qs(q, θ) is not mu
h steeper in q than qv(q, θ). This holds,9If no qf (θ) ≥ 0 exists, take qf (θ) = 0. 12



for example, true if {u(q, θ) − c(q, θ)}f(θ) + (1 − F (θ))cθ(q(θ), θ) and cθ(·) are both symmetri
 in
q, i.e. if {u(qr(θ) − ∆, θ) − c(qr(θ) − ∆, θ)}f(θ) + (1 − F (θ))cθ(q

r(θ) − ∆, θ) = {u(qr(θ) + ∆, θ) −

c(qr(θ) + ∆, θ)}f(θ) + (1 − F (θ))cθ(q
r(θ) + ∆, θ) and cθ(s(θ) −∆, θ) = cθ(s(θ) + ∆, θ) for any ∆ asthen qvq (q, θ) = qsq(q, θ) = −1.In short, proposition 1 says that under the 
ondition qv(q, θ) ≥ qs(q, θ) the optimal de
ision ismonotone. This is not exa
tly true as proposition 1 does not establish existen
e of an optimal solution.Appendix C 
loses this loophole by showing that a solution exists.Given that qv(q, θ) ≥ qs(q, θ) is su�
ient but not ne
essary for a monotone solution, this 
onditionwill not be used in the remainder of the paper where monotone solutions are 
hara
terized.5. Ne
essary 
onditionsThis se
tion presents ne
essary 
onditions whi
h have to be met whenever a non-lo
al in
entive 
on-straint is binding. Sin
e these 
onditions are only a slight generalization of those presented in Araujoand Moreira (2010), the presentation will be brief and more intuitive than formal.Take an optimal de
ision s
hedule q(θ) and let transfers be determined by lo
al in
entive 
ompat-ibility, i.e. su
h that πθ(θ) = −cθ(q(θ), θ) and π(θ) = 0. Furthermore, suppose that IC is binding fortwo types θ and θ̂, i.e. Φ(θ, θ̂) = 0. By in
entive 
ompatibility, Φ(·) has to be non-negative for alltypes and therefore (θ, θ̂) ∈ argmin(s,t)Φ(s, t).Given that π(·) and c(·) are di�erentiable, the �rst order 
ondition with respe
t to θ has to hold:10

∂Φ(θ, θ̂)

∂θ
= −cθ(q(θ), θ) + cθ(q(θ̂), θ) ≤ 0 with �=� if θ < θ̄ (C1)In the same way the �rst order 
ondition for θ̂ is derived:

∂Φ(θ, θ̂)

∂θ̂
= qθ(θ̂)

(

−cq(q(θ̂), θ̂) + cq(q(θ̂), θ)
)

≥ 0 with �=� if θ̂ > θ (C2)Hen
e, θ̂ is either bun
hed or marginal 
osts of θ and θ̂ are equal at q(θ̂).The interpretation of these two 
onditions is straightforward. Re
all that πθ(θ) = −cθ(q(θ), θ) while
cθ(q(θ̂), θ) is how pro�ts of misrepresenting as θ̂ 
hange in the misrepresenting type θ. Then 
ondition(C1) says that pro�ts π(θ) should 
hange in type in the same way as misrepresentation-pro�ts 
hangein type. For a graphi
al interpretation, it is worthwhile to rewrite (C1) as

∫ q(θ)

q(θ̂)
cqθ(q, θ) dq = 0 (C1')10It turns out that non-lo
al in
entive 
ompatibility 
onstraints are only downward binding, see lemma 1. For thisreason as well as notational 
onvenien
e, I ignore the possibilities Φ(θ, θ̄) = 0 and Φ(θ, θ̂) = 0 already here.13



whi
h means that the right hand side boundary of the shaded area in �gure 1b is zero when weightedwith cqθ. If the integral above was positive and Φ(θ, θ̂) = 0, then in
entive 
ompatibility would beviolated for θ + ε and θ̂ as Φ(θ + ε, θ̂) ≈ Φ(θ, θ̂) − ε
∫ q(θ)

q(θ̂)
cqθ(q, θ) dq, i.e. the �shaded area� for θ + εwould be the same plus some area having the �wrong� sign.If the integral above is negative, the same applies a

ordingly for θ− ε, i.e. Φ(θ− ε, θ̂) ≈ Φ(θ, θ̂) +

ε
∫ q(θ)

q(θ̂)
cqθ(q, θ) dq.The se
ond 
ondition simply says that either θ̂ is bun
hed with other types or also the weightedlower boundary of the shaded area in �gure 1b is zero, i.e.

∫ θ

θ̂

cqt(q(θ̂), t) dt = 0. (C2')Again, �gure 1b illustrates the idea. If the integral was positive, in
entive 
ompatibility would beviolated between θ and θ̂ − ε as Φ(θ, θ̂ − ε) ≈ Φ(θ, θ̂)− εqθ(θ̂)
∫ θ

θ̂
cqt(q(θ̂), t) dt.The graphi
al interpretation also allows to qui
kly generalize these 
onditions at points of dis
on-tinuity and bun
hing. This situation is depi
ted in �gure 2. Assume Φ(θ, θ̂i) = 0 for i = 1, 2. To keepin
entive 
ompatibility for types 
lose to θ, θ̂1 and θ̂2 the following 
onditions have to hold:11� ∫ q−(θ)

q(θ̂i)
cqθ(q, θ) dq ≥ 0 as otherwise Φ(θ − ε, θ̂i) < 0� ∫ q+(θ)

q(θ̂i)
cqθ(q, θ) dq ≤ 0 as otherwise Φ(θ + ε, θ̂i) < 0� ∫ θ

θ̂1
cqt(q(θ̂), t) dt ≤ 0 as otherwise Φ(θ, θ̂1 − ε) < 0� ∫ θ

θ̂2
cqt(q(θ̂), t) dt ≥ 0 as otherwise Φ(θ, θ̂1 + ε) < 0Given (C1) and (C2), one 
an use variational 
al
ulus to derive a third ne
essary 
ondition fortypes at whi
h the in
entive 
onstraint binds. While (C1) and (C2) are purely driven by in
entive
ompatibility, this third 
ondition will be derived from the prin
ipal's optimization. The idea is to per-turb the optimal de
ision around θ and θ̂ su
h that the two ne
essary 
onditions are still satis�ed. Foran optimal de
ision the derivative of the prin
ipal's virtual valuation with respe
t to the perturbationparameter has to be zero. The method di�ers only slightly from the one used in Araujo and Moreira(2010) for dis
retely pooled types and therefore the steps are relegated to appendix A. The followingvariational 
ondition results:

[uq(q(θ), θ)− cq(q(θ), θ)]f(θ)

cqθ(q(θ), θ)
+ 1− F (θ) =

[uq(q(θ̂), θ̂)− cq(q(θ̂), θ̂)]f(θ̂)

cqθ(q(θ̂), θ̂)
+ 1− F (θ̂) (C3)The interpretation of this 
ondition will be
ome 
learer later on.11I use the supers
ript ��� (�+�) to indi
ate limits from below (above).14



θ

cqθ > 0

cqθ < 0
s(θ)

q(θ)

θ̂1 θ̂2 θFigure 2: ne
essary 
onditions at dis
ontinuity6. Monotone solutionThe remainder of the paper deals with the 
hara
terization of monotone solutions. As pointed outbefore, the main di�
ulties are non-lo
ally binding in
entive 
onstraints. The following two lemmatashow that only a 
ertain subset of non-lo
al in
entive 
onstraints 
an be binding. Lemma 1 impliesthat in
entive 
onstraints 
annot be upward binding in monotone solutions. Put di�erently, no typewill be indi�erent between the 
ontra
t designated for him and the 
ontra
t of a higher type. Theonly possible way a non-lo
al in
entive 
onstraint 
an be binding is downward, i.e. a type might beindi�erent between his 
ontra
t and the 
ontra
t of a lower type.Lemma 1. If q(θ) ≥ s(θ) and q(θ) is lo
ally in
entive 
ompatible, then no type wants to (non-lo
ally)misrepresent upwards.Proof. Re
all that lo
al in
entive 
ompatibility requires monotoni
ity of q(θ), i.e. q(θ) has to bemonotoni
ally in
reasing as q(θ) ≥ s(θ). Now take θ̂ > θ. In
entive 
ompatibility requires
Φ(θ, θ̂) ≡ π(θ)− π(θ̂)− c(q(θ̂), θ̂) + c(q(θ̂), θ) ≥ 0 (4)Be
ause of lo
al in
entive 
ompatibility, this 
an be rewritten as

∫ θ̂

θ

ct(q(t), t)− ct(q(θ̂), t) dt = −

∫ θ̂

θ

∫ q(θ̂)

q(t)
cqt(s, t) ds dt ≥ 0But the last inequality holds automati
ally sin
e q(θ) ≥ s(θ) and qθ(θ) ≥ 0. This implies that theintegrand is non-positive for all (s, t) in question. Figure 3a gives a graphi
al representation of thisfa
t. 15



θ

cqθ > 0

cqθ < 0
s(θ)

q(θ)

θ θ̂(a) no upwards binding θ

cqθ > 0

cqθ < 0
s(θ)

q(θ)

θ4 θ3 θ2 θ1(b) no overlapFigure 3: non-binding 
onstraintsThe intuition for lemma 1 is the same as in models with single 
rossing. A higher de
ision in
reasesthe 
osts for higher types less than for lower types. For a low type, this holds true for all de
isions abovehis own. Lo
al in
entive 
ompatibility indu
es transfer di�eren
es making higher types indi�erentbetween their de
ision and a marginally higher de
ision. A lower type will fa
e the same transferdi�eren
es but higher 
ost di�eren
es when opting for a higher de
ision. Therefore, lo
al in
entive
ompatibility of higher types implies that low types do not want to misrepresent upwards non-lo
ally.The following lemma puts more stru
ture on the ways in
entive 
ompatibility 
onstraints 
an bind.It states that binding non-lo
al in
entive 
onstraints 
annot overlap. Before, stating the lemma oneremark on wording: I say a non-lo
al in
entive 
onstraint binds from θ to θ̂ if Φ(θ, θ̂) = 0.Lemma 2. Assume the solution is monotone. If the non-lo
al in
entive 
onstraint binds from θ to
θ̂, it 
annot bind from any θ′ ∈ [θ̂, θ) to any θ̂′ 6∈ [θ̂, θ). Neither 
an it bind for any θ̂′′ ∈ (θ̂, θ] and
θ′′ 6∈ (θ̂, θ). (assuming that not all relevant types are bun
hed)Proof. The proof is by 
ontradi
tion. Suppose, 
ontrary to the lemma, there are types θ1 > θ2 ≥

θ3 > θ4 with Φ(θ1, θ3) = 0 and Φ(θ2, θ4) = 0. Then the in
entive 
onstraint between θ1 and θ4 will be

16



θ

cqθ > 0

cqθ < 0
s(θ)

q(θ)

θ1θ0θ̂0θ̂1 θ̂3 θ̂2 θ2 θ3Figure 4: how in
entive 
onstraints 
an bindviolated, i.e. Φ(θ1, θ4) < 0:
Φ(θ1, θ4) = −

∫ θ1

θ4

∫ q(t)

q(θ4)
cqt(s, t) ds dt

= −

∫ θ2

θ4

∫ q(t)

q(θ4)
cqt(s, t) ds dt−

∫ θ1

θ2

∫ q(θ3)

q(θ4)
cqt(s, t) ds dt−

∫ θ1

θ2

∫ q(t)

q(θ3)
cqt(s, t) ds dt

= −

∫ θ2

θ4

∫ q(t)

q(θ4)
cqt(s, t) ds dt−

∫ θ1

θ2

∫ q(θ3)

q(θ4)
cqt(s, t) ds dt

+

∫ θ2

θ3

∫ q(t)

q(θ3)
cqt(s, t) ds dt−

∫ θ1

θ3

∫ q(t)

q(θ3)
cqt(s, t) ds dt

= −Φ(θ2, θ3)−

∫ θ1

θ2

∫ q(θ3)

q(θ4)
cqt(s, t) ds dt < 0The �rst and se
ond equality are simple splitting up the integral steps (and 
an readily be seenin �gure 3b), the third uses the fa
t that Φ(θ1, θ3) = Φ(θ2, θ4) = 0 and the last inequality followsfrom the in
entive 
ompatibility between θ2 and θ3 as well as the following idea: By the binding
onstraint between θ2 and θ4 and the fa
t that θ2 is interior, ∫ q−(θ2)

q(θ4)
csθ(s, θ2) ds ≥ 0 holds by C1(with equality if q(θ) is 
ontinuous at θ2). By the monotoni
ity of q(·), q(θ3) ≤ q−(θ2) and therefore

∫ q(θ3)
q(θ4)

csθ(s, θ2) ds ≥ 0 (see �gure 3b). The inequality above follows then from cqθθ ≥ 0.As a spe
ial 
ase, i.e. with θ2 = θ3, the pre
eding lemma in
ludes the following: If θ is indi�erentbetween his and θ̂'s 
ontra
t, i.e. Φ(θ, θ̂) = 0, then no other type θ′ is indi�erent between his 
ontra
tand θ's 
ontra
t, i.e. Φ(θ′, θ) > 0 for all θ′ ∈ Θ \ θ. Put di�erently, in
entive 
ompatibility 
an bindnon-lo
ally from a type or to a type but not both. Figure 4 summarizes the two previous lemmata byshowing how non-lo
al in
entive 
ompatibility 
onstraints 
an bind in a monotone solution.One of the 
ontributions of this paper is that a violation of single 
rossing 
an a�e
t the solution17



without leading to irregularities, i.e. dis
ontinuities or bun
hing. The following lemma shows thatsome irregularities 
an be ruled out on the grounds of in
entive 
ompatibility alone.Lemma 3. Assume a non lo
al in
entive 
onstraint binds from θ to θ̂, i.e. Φ(θ, θ̂) = 0. The de
ision is
ontinuous at θ̂ if θ̂ is not the boundary type of a bun
hing interval. Furthermore, θ 
annot be bun
hedif the de
ision is 
ontinuous at θ and θ < θ̄.Proof. see appendixAfter these te
hni
al results, it is possible to obtain a qualitative result of pra
ti
al importan
e. Ifthe solution is monotone, non-lo
al in
entive 
ompatibility might require �distortions� that are unusual:With single 
rossing, lo
al in
entive 
onstraints are downward binding. This explains why the relaxedsolution is below the �rst best de
ision. With single 
rossing, a high type has lower marginal 
oststhan a low type. By distorting the low type's de
ision downward, the 
ost advantage of the high typeis redu
ed, i.e. the low type's de
ision be
omes less attra
tive. Consequently, the rent paid to the hightype 
an be lower without indu
ing misrepresentation. Without single 
rossing, it is no longer 
learthat a high type has lower marginal 
osts than a low type at the low type's de
ision. Figure 1b, forexample, illustrates that ∫ θ

θ̂
cqθ(q(θ̂), t) dt = cq(q(θ̂), θ)−cq(q(θ̂), θ̂) 
ould be positive. Therefore, makingthe low type's 
ontra
t unattra
tive might require in
reasing the low type's de
ision. Informationaldistortion from lo
al and non-lo
al in
entive 
onstraints will then go in opposite dire
tions. Thefollowing proposition shows that this indeed the 
ase.Proposition 2. If the optimal de
ision is monotone, it will be above the relaxed solution, i.e. if q(θ)monotoni
ally in
reasing, then q(θ) ≥ qr(θ).Proof. see appendixThe previous proposition highlights how violations of non-lo
al i
 are dealt with under monotonesolutions. This 
an also be illustrated with �gure 1b. In
entive 
ompatibility is violated if the greyarea weighted by cqθ is positive. To satisfy in
entive 
ompatibility one 
an raise q for all types between

θ̂ and θ. The additional grey area features cqθ < 0 and therefore the in
entive problem is mitigated.One noteworthy point is that the in
entive 
onstraint is mainly relaxed by in
reasing q for typesat whi
h the in
entive 
onstraint is non-binding; i.e. if i
 is binding from θ′ to θ̂′, it is less q(θ′) and
q(θ̂′) that has to be in
reased but q for the types between θ̂′ and θ′. To see the intuition, re
all that
πθ(θ) = −cθ(q(θ), θ) and that cqθ(q(θ), θ) < 0. Therefore, in
reasing q will raise the slope of the rentfun
tion π(θ). In
reasing q for types in (θ̂′, θ′) will therefore in
rease the rent of θ′ at his assignedmenu point. Obviously, the non-lo
al in
entive 
onstraint is relaxed.The last paragraph illustrates that non-lo
al in
entive 
onstraints are potentially di�
ult to handle:The de
ision of a type is not only in�uen
ed by the in
entive 
onstraints binding for him but also by18



binding in
entive 
onstraints of other types. The following theorem stru
tures this intuition and
hara
terizes the solution.Theorem 1. A monotone solution is 
hara
terized by the equation
(uq(q(θ), θ)− cq(q(θ), θ))f(θ) + (1− F (θ))cqθ(q(θ), θ) = η(θ)cqθ(q(θ), θ) (5)where η(θ) is a non-negative fun
tion with the following properties:� η(θ) is 
onstant on ea
h interval of types for whi
h non-lo
al in
entive 
onstraints are not bindingand the de
ision is stri
tly in
reasing.� η(θ) is non-de
reasing at types θ̂ to whi
h non-lo
al in
entive 
onstraints are binding whenever θ̂is not bun
hed.� η(θ) is non-in
reasing at types from whi
h non-lo
al in
entive 
onstraints are binding.� η(θ̄) is zero if no non-lo
al in
entive 
onstraint is binding from θ̄.� η(θ) is zero if no non-lo
al in
entive 
onstraint is binding to θ.Proof. see appendixBefore giving an intuitive interpretation to η(θ), let me brie�y sket
h the idea behind the proofof the theorem. Given the solution q(θ), one 
an simply de�ne η(θ) by (5). The properties of η(θ)are derived by showing that q(θ) 
ould be 
hanged in a way that (i) is in
entive 
ompatible and (ii)in
reases the prin
ipal's payo� if these properties were not satis�ed. Figure 5 shows feasible 
hangeswhen a non-lo
al in
entive 
onstraint is binding from θ′ to θ̂′. In
reasing the de
ision for types slightlybelow θ′ will relax (or not a�e
t) binding non-lo
al in
entive 
onstraints. Sin
e this 
hange relaxes thein
entive 
onstraints from types above θ′ to types below θ′, it is then feasible to assign types slightlyabove θ′ a lower de
ision, see �gure 5. Note that lemma 2 is essential for feasibility as it assuresthat no non-lo
al in
entive 
onstraint is binding to types slightly above θ′. It 
an then be shownthat su
h a feasible 
hange would in
rease the prin
ipal's payo� if η(θ) was in
reasing at θ′. At θ̂, adi�erent 
hange in the de
ision is feasible, see �gure 5, whi
h 
an be used to show that η(θ) 
annotbe de
reasing at θ̂. At types where non-lo
al in
entive 
onstraints are lax, both kind of 
hanges arefeasible and 
onsequently η(θ) has to be 
onstant.The properties of η(θ) have an intuitive interpretation. The left hand side of (5) measures by howmu
h the prin
ipal's payo� is 
hanged when marginally in
reasing q(θ). Marginally in
reasing q(θ) willalso relax all non-lo
al in
entive 
onstraints binding from types θ′ > θ to types θ̂′ < θ, see �gure 1b. Asthese in
entive 
onstraints 
an be expressed as integrals over cqθ (see equation (IC')), the �amount� by19
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θ̂′ θ′Figure 5: feasible 
hangeswhi
h those non-lo
al in
entive 
onstraints are relaxed is given by cqθ(q(θ), θ) whi
h 
an be found onthe right hand side of (5). Consequently, η(θ) 
ould be interpreted as the shadow value of all non-lo
alin
entive 
onstraints binding from types θ′ > θ to types θ̂′ < θ. These binding 
onstraints are thesame for all types in an interval of types for whi
h non-lo
al in
entive 
onstraints are lax, see �gure 4.This explains the �rst property of η(θ).The other properties 
an also be explained by the shadow value interpretation of η(θ). If a non-lo
alin
entive 
onstraint is binding to a type θ̂, then there are more non-lo
al in
entive 
onstraints binding�over� θ̂ + ε than �over� θ̂ − ε.12 Consequently, the shadow value of non-lo
al in
entive 
onstraintsbinding over a type has to be higher for θ̂+ ε than for θ̂− ε. Put di�erently, in
reasing q(θ̂+ ε) relaxesmore non-lo
al in
entive 
onstraints than in
reasing q(θ̂ − ε).Also the last two properties are straightforward: In
reasing the de
ision of the boundary types doesnot a�e
t non-lo
al in
entive 
onstraints of other types.Furthermore, the interpretation as shadow value provides some intuition for the ne
essary 
ondition(C3) whi
h basi
ally says that η(θ) = η(θ̂) when a non-lo
al in
entive 
onstraint is binding from θ to θ̂.This makes sense in light of lemma 2. Be
ause there is no overlap in binding in
entive 
onstraints, thenon-lo
al in
entive 
onstraints binding over θ are the same as the ones binding over θ̂. Consequently,the shadow value of relaxing those 
onstraints is the same for the two types.Theorem 1 establishes what happens at types where non-lo
al in
entive 
onstraints are binding(or lax). Here I want to argue that non-lo
al in
entive 
onstraints are typi
ally binding from and tointervals of types. Put di�erently, there are intervals [θ0, θ1] and [θ̂1, θ̂0] su
h that a non-lo
al in
entive12With binding �over� θ I mean binding from a type θ′ > θ to a type θ̂ < θ.20




onstraint is binding from ea
h θ′ ∈ [θ0, θ1] to some θ̂′ ∈ [θ̂1, θ̂0]. From theorem 1, it follows that
η(θ′) = η(θ̂′) and η(θ) is in
reasing (de
reasing) on [θ̂1, θ̂0] (on [θ0, θ1]). The intuition for this stru
tureis the following: Take types θ′ and θ̂′ su
h that a non-lo
al in
entive 
onstraint between θ′ and θ̂′ isviolated under the relaxed solution. Proposition 2 indi
ates that the de
ision of the types between θ̂and θ′ is in
reased to establish in
entive 
ompatibility. The usual optimization intuition suggests thatit should be optimal to in
rease the de
ision for all those types by �the same amount.�13 However,this is not possible be
ause of in
entive 
ompatibility 
onstraints: Clearly, the de
ision of types θ′ − ε
annot be in
reased dis
retely be
ause of the monotoni
ity 
onstraint at θ′. Lemma 3 establishes thatthe monotoni
ity 
onstraint 
annot even be binding for θ′ as then the non-lo
al 
onstraint from θ′ − εto θ̂′ would be violated. Lemma 3 also makes 
lear that the de
ision should not jump at θ̂′ as otherwisethe non-lo
al 
onstraint from θ′ to θ̂′ + ε would be violated. One 
ould now 
onje
ture that non-lo
alin
entive 
onstraints are binding from θ′ not only to θ̂′ but also to slightly higher types and�with thesame logi
�from types slightly below θ′ to θ̂′. However, it is not di�
ult to show that the in
entive
onstraint between θ′ − ε and θ̂′ + ε would be violated in this 
ase. Consequently, one is left with theinterval stru
ture des
ribed above where non-lo
al in
entive 
onstraints are binding from types slightlybelow θ′ to types slightly above θ̂′.The following lemma takes another perspe
tive on the stru
ture by establishing that non-lo
alin
entive 
onstraints 
annot bind at a �nite number of interior types. With the additional proper-ties established in the lemma, one should indeed expe
t the set of types where non-lo
al in
entive
onstraints bind to 
ontain an interval.14Lemma 4. If the optimal solution is monotone and the relaxed solution is not implementable, non-lo
al in
entive 
onstraints 
annot bind only from a �nite number of interior types to a �nite numberof interior types. Even stronger, the set of types from (to) whi
h non-lo
al in
entive 
onstraints bind
annot 
onsist of isolated interior types.15The solution 
an be 
hosen su
h that (i) the set of types from whi
h non-lo
al in
entive 
onstraintsare binding is 
losed and (ii) the set of types to whi
h non-lo
al in
entive 
onstraints are binding is
losed.Proof. see appendix13Theorem 1 
on�rms this intuition by establishing that η(θ) is 
onstant at types where non-lo
al in
entive 
onstraintsare lax.14Stri
tly speaking, the lemma leaves the option that non-lo
al in
entive 
onstraints are binding at a Cantor set ofinterior types. As the following results do not depend on this arti�
ial looking 
ase, I will ignore this possibility andspeak of intervals in the remainder of the paper.15Isolated means here that for ea
h type θ from (to) whi
h a non-lo
al in
entive 
onstraint binds, there exists aneighborhood of θ in whi
h non-lo
al in
entive 
onstraints are lax for all types but θ.21



Some of the properties of η(θ) in theorem 1 hold only at types where the de
ision is stri
tlyin
reasing. The reason is that, the way (5) is written, η(θ) 
aptures not only the e�e
t of non-lo
alin
entive 
onstraints but also the e�e
t of the monotoni
ity 
onstraint. If one wants to avoid this
luttering of e�e
ts, it is straightforward to introdu
e a monotoni
ity parameter ν(θ) whi
h 
apturesthe e�e
t of the monotoni
ity 
onstraint. In this 
ase it is easy to see that the properties of η(θ)des
ribed in theorem 1 extend also to bun
hed types. Instead of (5) the solution would then be
hara
terized by
νθ(θ) = (uq(q(θ), θ)− cq(q(θ), θ))f(θ) + (1− F (θ)− η(θ))cqθ(q(θ), θ)where ν(θ)qθ(θ) = 0 for all θ ∈ Θ, i.e. ν(θ) 
orresponds to the Lagrange parameter of the monotoni
ity
onstraint. If the start and ending type of a bun
hing interval are denoted by θbs and θbe, then obvi-ously ∫ θbe

θbs
νθ(θ) dθ = 0. As des
ribed in the existing literature on ironing, see Guesnerie and La�ont(1984) or the exposition in Fudenberg and Tirole (1991), the bun
hing interval is 
hara
terized by thislast 
ondition and the endpoint 
onditions ν(θbs) = ν(θbe) = 0. The following lemma formalizes thedis
ussion of the last paragraph.Lemma 5. If types in the interval (θbs, θbe) are bun
hed in the optimal solution, then there exists afun
tion η(θ) whi
h satis�es the properties of theorem 1 also for bun
hed types. In parti
ular, η(θ)is non-de
reasing on (θbs, θ

b
e) and 
onstant if no non-lo
al in
entive 
onstraint binds to the bun
hedtypes. Furthermore, η(θ) satis�es (i) η(θ) = η(θ̂) if Φ(θ, θ̂) = 0 and (C1') as well as (C2') hold, (ii)

∫ θbe
θbs

νθ(θ) dθ = 0 with νθ(θ) de�ned as above.Proof. see appendix 7. Continuous solutionsThis se
tion has two goals: First, to provide su�
ient 
onditions under whi
h a monotone solution is
ontinuous and, se
ond, to introdu
e an algorithm for determining su
h a 
ontinuous solution.The �rst su�
ient 
ondition for 
ontinuity is loosely based on the idea of having a one-to-onerelationship between η and q for a given type θ; i.e. the idea that for a given type θ and η(θ) > 0,equation (5) yields a unique solution for q. The 
ondition in the proposition ensures this and alsoas
ertains that this relationship is monotoni
, i.e. a higher η(θ) results in a higher q.Proposition 3. A monotone solution is 
ontinuous if
uqq(q, θ)− cqq(q, θ)

cqqθ(q, θ)
>

uq(q, θ)− cq(q, θ)

cqθ(q, θ)
(6)22



holds for all types and all q ≥ qfb(θ).16Proof. see appendixHen
e, if the so
ial obje
tive u(q, θ) − c(q, θ) is 
on
ave enough or if the 
ross derivative cqθ(q, θ)is in absolute value large enough (at the �rst best de
ision), the optimal de
ision will be 
ontinuous.Take for example the 
ost fun
tion in example 1 in se
tion 4 and assume that u(q, θ) = βq. It turnsout that (6) is equivalent to the 
ondition for qfb(θ) > s(θ), i.e. β > 2θ̄.17The following proposition gives an alternative 
ondition under whi
h the optimal solution is belowthe �rst best de
ision. Having a solution below �rst best turns out to be su�
ient for 
ontinuity andstri
t monotoni
ity of the solution (under a standard monotone hazard rate assumption). This is initself remarkable. As the relaxed solution is below �rst best, one should expe
t the solution to bebelow �rst best whenever non-lo
al in
entive 
onstraints are not violated �too mu
h� by the relaxedsolution. Hen
e, there is a broad 
lass of problems in whi
h the solution will be stri
tly monotone and
ontinuous. Furthermore, the proof of the following proposition shows that the property holds alsolo
ally. That is, if the de
ision is below �rst best on some interval (θ1, θ2), then the de
ision will bestri
tly monotone and 
ontinuous on (θ1, θ2).Before stating the proposition some additional notation is needed. De�ne qm(θ) su
h that cθ(qfb(θ), θ) =
cθ(q

m(θ), θ). Hen
e, qm(θ) is a mirror image of qfb(θ) along s(θ) with respe
t to cθ(q, θ).Proposition 4. Assume that qm(θ) is non-de
reasing and that there is no distortion at the top.18Then the optimal solution is below �rst best and 
ontinuous. The optimal solution is stri
tly in
reasingat all types where it is below �rst best if f(θ)/(1− F (θ)) is non-de
reasing and uqθ ≥ 0.Proof. see appendixOne example for a 
lass of fun
tion where qm(θ) is in
reasing are 
ost fun
tions of the form c(q, θ) =

θq + φ(q − αθ) + γ(θ) where φ(·) is a fun
tion of whi
h the �rst three derivatives are positive.19 Anyin
reasing and 
on
ave bene�t fun
tion u(q, θ) with uqθ = 0 and qfb(θ) > s(θ) yields an in
reasing
qm(θ).Note that in many appli
ations uqθ = 0 will hold. For example, in regulation models, labor marketmodels and monopoly pri
ing, this property will typi
ally hold be
ause the prin
ipal's utility dependsonly on the de
ision and the transfer and not dire
tly on the agent's type.16Obviously, it is enough if the 
ondition holds for all q ∈ [qfb(θ), q̄] where q̄ is de�ned as in appendix C.17In fa
t, this also holds true if q2 in the 
ost fun
tion is repla
ed by any in
reasing and 
onvex fun
tion.18See the following se
tion for a simple su�
ient 
ondition for no distortion at the top.19The interpretation of this 
ost fun
tion is that there is a �normal s
ale� of αθ. Produ
ing above this normal s
aleis in
reasingly 
ostly. Type re�e
ts a tradeo� between the size of the normal s
ale and marginal 
ost when produ
ingwithin the normal s
ale. 23



Now it is time to turn to the issue of 
al
ulating a solution. In prin
iple, the solution is alreadydes
ribed by (5), the properties of η(θ) and the ne
essary 
onditions C1, C2 and C3. If a non-lo
alin
entive 
onstraint binds from a type θ, the three ne
essary 
onditions 
ould be used to determine θ̂,
q(θ) and q(θ̂) (assuming that there is a unique solution). If non-lo
al in
entive 
onstraints are lax at atype θ, (5) 
an be used to 
al
ulate q(θ) where η(θ) equals η(θ̂′) with θ̂′ being de�ned as the next lowertype to whi
h a non-lo
al in
entive 
onstraint is binding. While nothing is wrong with this des
ription,it might be burdensome to 
al
ulate a solution in this way. Hen
e, a more stru
tured alternative toobtain a 
ontinuous solution might be helpful. This alternative will also give some additional insightsinto the logi
 behind the solution. The algorithm is based on the following proposition.Proposition 5. De�ne Φη(θ, θ̂) as Φ(θ, θ̂) under q̃(θ) where q̃(θ) is derived from

{uq(q, θ)− cq(q, θ)}f(θ) + (1− F (θ)− η)cqθ(q, θ) = 0.If the in
entive 
onstraint binds between θ′ and θ̂′ in a 
ontinuous solution q(θ), then (θ′, θ̂′) minimize
Φη(θ, θ̂) on [θ̂′, θ′] where η = η(θ′) = η(θ̂′). Furthermore, Φη(θ′, θ̂′) < Φη(θ′′, θ̂′′) for any θ′′ > θ′ and
θ̂′′ < θ̂′.Proof. see appendixTo get a feeling for this proposition take η = 0. Then q̃(θ) = qr(θ). Denote the global minimizer of
Φ0(θ, θ̂) by (θr, θ̂r). Although a little extra work is needed, the following result follows almost dire
tlyfrom proposition 5:Corollary 1. If the relaxed solution is not implementable, the non-lo
al in
entive 
onstraint from θrto θ̂r will bind in the optimal de
ision. If one of the two types (both) is interior, his (their) optimalde
ision is the relaxed de
ision; i.e. q(θ) = qr(θ) or (and) q(θ̂) = qr(θ̂) respe
tively.Proof. see appendixThe proposition then says that a similar logi
 applies for all pairs (θ′, θ̂′) at whi
h in
entive 
om-patibility is binding: One only has to repla
e qr(θ) in the 
orollary by the 
orresponding q̃(θ). This q̃is the de
ision that would result if all types had the same η(θ) and this η(θ) would equal η(θ′) in theoptimal de
ision.The last proposition in 
onne
tion with theorem 1 gives a method for determining q(θ).Solve (5) for q as a fun
tion of type θ and η. Plugging this q(θ, η) into Φ(·) yields a fun
tion
Φη(θ, θ̂) whi
h 
an be minimized over θ and θ̂ yielding θ(η) and θ̂(η) as minimizers. There 
ouldbe several pairs (θ(η), θ̂(η)) lo
ally minimizing Φη(θ, θ̂). Relevant is ea
h pair (θ, θ̂) (i) that globallyminimizes Φη(·) on the interval [θ̂, θ], (ii) for whi
h no Φη(·) minimizer (θ′, θ̂′) with θ′ > θ, θ̂′ < θ̂ and
Φη(θ′, θ̂′) < Φη(θ, θ̂) exists. For now, assume there is only one su
h relevant pair.24



Under the optimal de
ision, the 
onstraint will bind from θ(η) to θ̂(η) for all η ∈ [0, η̄] where η̄is determined by Φη(θ(η), θ̂(η)) = 0. The optimal de
ision for types θ where the 
onstraint binds isgiven by q(θ, η) where η is su
h that θ = θ(η). Types for whi
h the 
onstraint does not bind 
an besorted into two 
ategories: First, types θ su
h that non-lo
al in
entive 
onstraints do not bind fromany type above θ to any type below θ. These types simply have q(θ) = qr(θ). Se
ond, types θ su
hthat the 
onstraint is binding from some θ′ > θ to some θ̂′ < θ. These types have η(θ) equal to
η(inf{θ′ : Φ(θ′, θ̂′) = 0 with θ′ > θ > θ̂′}), i.e. their η is the same as the one of the next lowest type towhi
h a non-lo
al in
entive 
onstraint binds. Their q(θ) is then q(θ, η(θ)).One remark on the possibility that several relevant pairs (θ(η), θ̂(η)) exist. For example, say thereexist the pairs (θ1(η), θ̂1(η)) and (θ2(η), θ̂2(η)) both satisfying (i) and (ii) above. The non-lo
al in
entive
onstraint 
ould in this 
ase bind from an interval [θ0, θ1] to the interval [θ̂1, θ̂0] as well as from theinterval [θ2, θ3] to the interval [θ̂3, θ̂2] where θ̂1 < θ̂0 < θ0 < θ1 < θ̂3 < θ̂2 < θ2 < θ3; see �gure 4 foran illustration. Indeed one has to be a bit more pre
ise in this 
ase: There will be di�erent η̄ for thetwo �bra
kets� of binding in
entive 
onstraints. In this 
ase η(θ) will not be single peaked. Hen
e, thealgorithm will then be applied to the two bra
kets separately and nothing else 
hanges.A se
ond remark has to be made with regard to bun
hing. Some types might have an ironed outsolution. This solution is then not q(θ, η(θ)) as des
ribed above but an ironed out version of it. The
ondition for determining η̄, i.e. Φη(θ(η), θ̂(η)) = 0 has to hold for the ironed out de
ision wheneverironing is relevant. If the monotone hazard rate holds and uqθ ≥ 0, one does not have to worry aboutironing as long as η ≤ 1 − F (θ(η)): This implies q(θ) ≤ qfb(θ) for all types for whi
h bun
hing 
ouldhave been possible and the de
ision will be stri
tly in
reasing (see the proof of proposition 4).The algorithm is illustrated with a numeri
al example in the following se
tion.8. Distortion at the topIf the non-lo
al in
entive 
onstraint binds from θ̄, something unusual 
an happen. Re
all that thene
essary 
ondition (C1) might hold with inequality at θ = θ̄. It is therefore possible that non-lo
alin
entive 
onstraints bind from θ̄ to several non-bun
hed θ̂ even if the solution is 
ontinuous. Notethat this is impossible for interior types: For a given q(θ), (C1) and (C2) will uniquely determine θ̂and q(θ̂).Now 
onsider the 
ase where the non-lo
al in
entive 
onstraint binds not only to several but to amass of types θ̂ (or to θ as will be shown below). Then the shadow value of the 
onstraint η(θ) willbe stri
tly positive and bounded away from 0 for types slightly below θ̄. Hen
e, these types have a25



de
ision q(θ) whi
h is at least ε away from their relaxed de
ision qr(θ) for some ε > 0. Obviously, thesame has then to apply for θ̄ be
ause of the monotoni
ity 
onstraint. Put di�erently, η(θ̄) > 0 andtherefore q(θ̄) is distorted: There is distortion at the top.The algorithm des
ribed above works also in this situation. The minimizer θ(η) will then be theboundary type θ̄. The de
ision of θ̄ and his shadow value are determined by the highest θ̂ to whi
h hisnon-lo
al in
entive 
onstraint binds. At this θ̂ also 
ondition (C1) holds with equality (if θ̂ is above θ).It should be pointed out that distortion at the top is a generi
 property. Put di�erently, therewill still be distortion at the top if, for example, the distribution of types is slightly perturbed. Byproposition 5, distortion at the top implies that θ̄ will minimize Φη(θ, θ̂) for all η < η̃ for some η̃ > 0.
Φη(θ, θ̂) is 
ontinuous in q(θ, η) whi
h in turn is 
ontinuous in the density f(θ). Therefore, θ̄ will remainglobal minimizer of Φη(θ, θ̂) under minor perturbations of the density. Consequently, distortion at thetop has to be generi
 by proposition 5.A natural question is whether there is a su�
ient 
ondition for no distortion at the top. Indeed
orollary 1 allows to formulate su
h a 
ondition. If θ̄ is not the global minimizer of Φr(θ, θ̂) where
Φr(·) is Φ(·) under the relaxed solution qr(·), then non lo
al in
entive 
onstraints 
annot bind from θ̄.Therefore, the relaxed de
ision is optimal for θ̄ implying that q(θ̄) = qfb(θ̄).Another su�
ient 
ondition for no distortion at the top 
an be formulated using (C1): ∫ qfb(θ̄)

0 cqθ(q, θ̄) dq ≤

0 is su�
ient sin
e (C1) 
annot hold with inequality.To illustrate the distortion at the top result and also the algorithm introdu
ed in the previousse
tion, 
onsider the following numeri
al example whi
h is inspired by example 1 in se
tion 2.20The 
ost fun
tion is given by c(q, θ) = θq+ q2

θ
− θ

3 . The prin
ipal's valuation fun
tion is u(q) = 8q
5 .Furthermore, I assume that types are distributed on [1/4, 3/4] a

ording to a triangular density with a�
ushion� (to prevent f(θ) = 0). I use the density f(θ) = 4/5(8θ − 2). Re
all from se
tion 7 that withthese parameter values the su�
ient 
ondition in proposition 3 is met. The solution will therefore be
ontinuous.The �rst order 
ondition for the relaxed solution is

(

8

5
− θ −

2q

θ

)

∗
4

5
(8θ − 2) +

33 + 64θ − 144θ

40

(

1−
2q

θ2

)

= 0whi
h leads to the relaxed solution
qr(θ) =

−347θ2 + 1660θ3 − 2444θ4

330 + 1440θ2
.20A Mathemati
a notebook with detailed 
al
ulations 
an be found under https://www.sites.google.
om/site/
hristophs
hottmueller/jmp. 26
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Figure 6: numeri
al example 1To use the algorithm, q(θ, η) has to be 
al
ulated. In this example
q(θ, η) =

−2160θ4 + 2944θ3 − 347θ2 − 200ηθ2

330− 400η + 1440θ2
.

Φη(θ, θ̂) 
an be numeri
ally minimized. The result is that θ̄ and θ minimize Φη(θ, θ̂) for all η ≤ η̄ ≈

0.47298. This means that a non-lo
al in
entive 
onstraint is only binding from θ̄ to θ and η(θ) = 0.47298for all types. Consequently, there is distortion at the top and the optimal de
ision is q(θ) = q(θ, η̄) or
q(θ) =

−110399
1250 θ2 + 2944

5 θ3 − 432θ4

17601
625 + 288θ2

.Graphi
ally, �gure 6 shows that q(θ) (upper solid line) is above qr(θ) (dotted line) for all types andthat q(θ) is above qfb(θ) (dashed line) for high types.9. Dis
ussionThis se
tion dis
usses assumptions and 
ompares the monotone solution with the solution of thestandard s
reening model with single 
rossing and some related papers.First, I want to dis
uss the assumptions on third derivatives, i.e. cqqθ < 0 and cqθθ > 0. The fa
tthat these derivatives do not 
hange sign ensures that the 
ross derivative cqθ 
hanges sign only on
e forany given θ (or q). While this property is admittedly important for the analysis, it is immaterial whi
hsign the third derivatives have (as long as the sign is the same for all relevant de
isions and types).To illustrate this (and also to show an example where the monotoni
ity 
onstraint binds) 
onsider thefollowing version of example 2:21 Types are distributed uniformly on [2, 3] and the prin
ipal's obje
tiveis the expe
ted value of q(θ)− t(θ). The agent's utility is given by
π(q, θ) = t(θ)−

(q − θ/σ)2

θ2
+ γ(3− θ).21A Mathemati
a notebook with detailed 
al
ulations 
an be found under https://www.sites.google.
om/site/
hristophs
hottmueller/jmp. 27
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13.5Figure 7: numeri
al example 2Here the parameter values σ = 27 and γ = 12 are used. In this 
ase, third derivatives have the followingsigns in the relevant range of the de
ision: cqqθ < 0 and cqθθ < 0. Consequently, the sign swit
hingde
ision s(θ) is downward sloping. As depi
ted in �gure 7a, �rst best de
ision and relaxed de
ision arealso downward sloping.Although the example looks di�erent on �rst sight, it is equivalent to the model of the maintext and all results apply a

ordingly. It turns out that also in this example (θ̄, θ) minimize Φη(θ, θ̂)and therefore only the non-lo
al in
entive 
onstraint from the highest to the lowest type is binding.However, the monotoni
ity 
onstraint is binding for the highest types. For ea
h q(θ, η), the optimalbun
hing interval [θs(η), θ̄] is determined by the 
ondition
∫ θ̄

θs(η)
[uq(q(θ, η), θ)− cq(q(θ, η), θ)]f(θ) + (1− F (θ)− η(θ))cqθ(q(θ, η), θ) dθ = 0.Here, η̄ turns out to be approximately 0.18 and the solution for the highest types is depi
ted in �gure7b. The solution exhibits bun
hing of types in [2.9, 3].Se
ond, I want to 
ompare the obtained solution with solutions of s
reening models with single
rossing. Su
h a 
omparison will pin down those e�e
ts whi
h 
an only be explained by a violation ofsingle 
rossing. In the standard textbook model with single 
rossing, see for example Fudenberg andTirole (1991) or Bolton and Dewatripont (2005), de
isions are downward distorted for rent extra
tionreasons. The solution is 
ontinuous and under some regularity 
onditions, e.g. monotone hazard rate,stri
tly in
reasing. This paper shows that a violation of single 
rossing 
an lead to a redu
tion ofdistortion and even to de
ision levels above �rst best. The reason is that binding non-lo
al in
entive
onstraints distort the de
ision upwards while binding lo
al in
entive 
onstraints distort it downwards.The underlying 
ause is the one time violation of single 
rossing: A high type misrepresenting as a low28



type 
an have higher marginal 
ost at the low type's de
ision (this is impossible with single 
rossing).To make the de
ision of the low type less attra
tive for the high type it is then best to in
rease the lowtype's de
ision. By in
reasing also the de
isions of the types in between, the slope of the rent fun
tionis in
reased. Consequently, the high type gets a higher rent at his own 
ontra
t whi
h also preventsmisrepresentation.Even with the monotone hazard rate assumption bun
hing 
an o

ur if the de
ision of some types isdistorted su�
iently above �rst best. In 
ontrast to the standard model, a violation of single 
rossing
an lead to distortions at the top. Distortion at the top will o

ur if non-lo
al in
entive 
onstraintsbind from the best type to a mass of types or to the lowest type.Jumps and bun
hing 
an also be part of the standard model if one allows for arbitrary type distri-butions as in Hellwig (2010). However, this will not lead to de
isions above �rst best. Furthermore,a no distortion at the top result remains valid in Hellwigs's model. The reason is that with single
rossing only lo
al in
entive 
onstraints bind while non-lo
al in
entive 
onstraints remain lax.The reader familiar with the literature on adverse sele
tion models might have noti
ed the similaritybetween the ��rst order 
ondition�
{uq(q, θ)− cq(q(θ), θ)}f(θ) + (1− F (θ)− η(θ))cqθ(q(θ), θ) = 0and the �rst order 
ondition in Jullien (2000). In Jullien's paper type dependent parti
ipation 
on-straints are analyzed in a framework with single 
rossing. If one writes γ(θ) instead of 1− η(θ) in the
ondition above, the �rst order 
ondition of his model results. There γ(θ) is the Lagrange parameterdenoting the shadow value of relaxing the parti
ipation 
onstraint for all types below θ.A te
hni
al di�eren
e is that γ(θ) is monotoni
ally in
reasing while η(θ) is �rst in- and laterde
reasing. Intuitively, one 
an start thinking from the relaxed de
ision. If a parti
ipation 
onstraintis violated in the interior at type θ′, the response is to redu
e the distortion for all types below θ′. Thiswill in
rease the slope of the pro�t fun
tion for all types below θ′ and therefore in
rease the payo�s of

θ′. If, on the other hand, the non-lo
al in
entive 
onstraint is violated between two types θ̂′, θ′ underthe relaxed de
ision, there is no reason to 
hange the de
ision of types below θ̂′. The problem is solvedby in
reasing the de
ision only for types between θ̂′ and θ′.The overprodu
tion result, i.e. q above �rst best, 
an o

ur with type dependent parti
ipation
onstraints as well. It 
an even o

ur at the highest type, so there 
an be distortion at the top.However, with type dependent parti
ipation 
onstraints this pe
uliarity is 
aused by upward bindingin
entive 
onstraints, i.e. low types want to misrepresent as high types. With violations of single
rossing, the same results is obtained although in
entive 
onstraints are only downward binding.Although the model is the same, it is not straightforward to 
ompare the optimal solution obtained29



in this paper with the one in Araujo and Moreira (2010). Both, the monotone and the inversely U-shaped solution, are 
loser to �rst best than the relaxed solution (and might even 
ross �rst best). In
ontrast to this paper there is a no distortion at the top result in Araujo and Moreira (2010): Thetype with the highest �rst best de
ision, i.e. the type where qfb(θ) 
rosses s(θ), will be assigned his�rst best de
ision in the optimal solution. Another di�eren
e is that the monotone solution 
an be
ontinuous without bun
hing intervals of types. This di�eren
e is partly due to the dire
tion non-lo
alin
entive 
onstraints bind: In the monotone solution they bind only downward while they bind in bothdire
tions in an inversely U-shaped solution.10. Con
lusionThis paper 
hara
terizes monotone solutions in a s
reening environment where single 
rossing is vio-lated. Although the model restri
ts itself to a one time violation of single 
rossing, the main e�e
ts ofa violation of single 
rossing 
an be illustrated. Non-lo
al in
entive 
onstraints 
an be
ome binding.The distortion 
aused by non-lo
ally binding in
entive 
onstraints 
an 
ountera
t the normal rent ex-tra
tion distortion. Therefore, the solution 
an be partly above as well as below the �rst best de
ision.There 
an be distortion at the top if non lo
al in
entive 
onstraints are binding from the top type to amass of types (or the lowest type). Furthermore, su�
ient 
onditions for monotoni
ity and 
ontinuityare provided and an algorithm for determining su
h a 
ontinuous, monotone solution is proposed.Possible appli
ations 
an be found in various �elds of e
onomi
s. While the paper uses the notationof a regulation or pro
urement setting, the same model is appli
able, for example, in models of labor,insuran
e, monopoly pri
ing or optimal taxation. The 
hara
terization of 
ontinuous and monotonesolutions is relatively simple and reasonable 
lasses of fun
tions satisfy su�
ient 
onditions for fallinginto this 
lass of solutions.I 
on
lude with some immediate impli
ations of the qualitative results in this paper. In optimaltaxation models where single 
rossing is violated negative marginal tax rates for top in
omes 
an berationalized be
ause of the distortion at the top result. Note that distortion at the top always is in an�unusual� dire
tion, i.e. above �rst best. The rough intuition is that subsidizing produ
tive types towork more in
reases their rent and therefore relaxes their in
entive 
ompatibility 
onstraint.Overinsuran
e 
an be optimal in insuran
e models where single 
rossing is violated. This givesan alternative explanation for so 
alled �Cadilla
� insuran
e plans. While the politi
al debate fo
useson viewing them as (insu�
iently taxed) part of a 
ompensation pa
kage, s
reening by insurers withmarket power 
ould also explain parts of the phenomenon.30



Con
erning the regulation example, it was mentioned in example 1 that the estimation results inBeard et al. (1991) provide eviden
e of a violation of single 
rossing in the 
ost fun
tions of savings andloan asso
iations. My results show that optimal regulation might indu
e a subset of su
h asso
iationsto o�er more loans than �rst best optimal.In Martimort and Stole (2009) the ordering of �rst best quantities and the 
ompetitive menu undersubstitutes is no longer 
lear 
ut if one 
onsiders the 
ases without single 
rossing. Put di�erently,�rms using non-linear pri
ing might optimally o�er pa
kages whi
h lead to over
onsumption of thegood. Tele
ommuni
ation might be an example for this: Consumers often buy pa
kages where anadditional unit of 
alling (or internet use) is for free. If the marginal 
osts of the provider are only εabove zero, su
h a pri
e s
heme will lead to 
onsumption above the so
ially optimal 
onsumption.22

22Of 
ourse, there are alternative explanation based on the theory of two-sided markets. However, the two explanationsare not mutually ex
lusive and, for example, two-sidedness is less obvious in 
ase of internet a

ess.31
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AppendixA. Variational 
onditionIn Araujo and Moreira (2010), it always holds that q(θ) = q(θ̂) whenever Φ(θ, θ̂) = 0. Consequently,(C1) does not play a role. Starting from (C2), they derive the following 
ondition (with q = q(θ) =

q(θ̂)):
uq(q, θ)− cq(q, θ) +

1−F (θ)
f(θ) cqθ(q, θ)

cqθ(q, θ)
f(θ) =

uq(q, θ̂)− cq(q, θ̂) +
1−F (θ̂)

f(θ̂)
cqθ(q, θ̂)

cqθ(q, θ̂)
f(θ̂) (7)To derive a similar 
ondition for q(θ) 6= q(θ̂) take θ and θ̂ su
h that cq(q(θ̂), θ̂) = cq(q(θ̂), θ), cθ(q(θ), θ) =

cθ(q(θ̂), θ), Φ(θ, θ̂) = 0 and assume that q(·) is stri
tly monotone and 
ontinuous at θ and θ̂.Given θ and q(θ), the equation cθ(q(θ), θ) = cθ(q(θ̂), θ) pins down a de
ision q(θ̂) where in
entive
ompatibility 
ould be binding. Given this q(θ̂) as well as θ and q(θ), the equation cq(q(θ̂), θ̂) =

cq(q(θ̂), θ) determines θ̂. Therefore, the 
riti
al θ̂ 
an be written as a fun
tion of θ and q(θ), i.e.
θ̂ = φ(θ, q(θ)).Di�erentiating the two 
onditions, the partial derivatives φθ and φq 
an be obtained as

φθ(θ, q) =
cqθ(q̂, θ)

cqθ(q̂, θ̂)
+

(cqq(q̂, θ)− cqq(q̂, θ̂))(cθθ(q, θ)− cθθ(q̂, θ))

cqθ(q̂, θ̂)cqθ(q̂, θ)

φq(θ, q) =
cqθ(q, θ)[cqq(q̂, θ)− cqq(q̂, θ̂)]

cqθ(q̂, θ̂)cqθ(q̂, θ)where q̂ = q(θ̂) and q = q(θ).Denote by h an admissible perturbation of the optimal solution q∗ on some interval [θ1, θ2], i.e.
h(θ1) = h(θ2) = 0. Admissibility implies that if the in
entive 
onstraint binds from θ to θ̂, then
θ̂ = φ(θ, q(θ)).23The idea of the variational argument is the following: I want to derive a ne
essary 
ondition fora type θ su
h that Φ(θ, θ̂) = 0 for some θ̂. To do so, it is assumed that also under the perturbedde
ision the in
entive 
onstraint is binding for θ and some (other) θ̂. The type θ̂ to whi
h the non-lo
alin
entive 
onstraint binds depends on the perturbation and is given by φ(θ, q(θ)). The way one shouldthink about it is that in
entive 
ompatibility is binding from ea
h θ ∈ [θ1, θ2] to some θ̂ in some interval
[θ̂1, θ̂2].24 The spe
i�
 type θ̂ to whi
h a non-lo
al in
entive 
onstraint binds from a given θ dependson the perturbation h.23Furthermore, admissibility requires monotoni
ity.24As it turns out, this is indeed the typi
al stru
ture of a 
ontinuous solution, see lemma 4.34



For brevity, I denote in the remainder of this se
tion the optimal solution by q∗(θ) and the perturbedsolution by q(θ) = q∗(θ) + εh(θ). Hen
e the part of the prin
ipal's obje
tive fun
tion a�e
ted by theperturbation 
an be written as25
G(ε) =

∫ θ2

θ1

g(q(θ), θ) dθ +

∫ φ(θ1,q(θ1))

φ(θ2,q(θ2))
g(q(θ), θ) dθ

=

∫ θ2

θ1

{g(q(θ), θ)− g(q̂(θ, q(θ)), φ(θ, q(θ))) [φq(q(θ), θ)qθ(θ) + φθ(q(θ), θ)]} dθ (8)where g(q(θ), θ) =
[

u(q(θ), θ)− c(q(θ), θ) + 1−F (θ)
f(θ) cθ(q(θ), θ)

]

f(θ) is the virtual valuation weightedby the density. The se
ond line is a normal 
hange of variables where q̂(θ, q) denotes the q̂ solving
cθ(q, θ) = cθ(q̂, θ) with q 6= q̂. Note that ∂q̂/∂q = cqθ(q, θ)/cqθ(q̂, θ).Di�erentiating (8) gives

G′(0) =

∫ θ2

θ1

{gqh− ĝ((φqqq
∗
θ + φqθ)h+ φqhθ)− (ĝq q̂q + ĝθφq)(φqq

∗
θ + φθ)h} dθ = 0where arguments are omitted and a hat denotes evaluation at (θ̂, q∗(θ̂)). Integrating ∫ θ2

θ1
(ĝφq)hθ dθ byparts and substituting yields for the previous equation

∫ θ2

θ1

{gq − ĝq q̂qφθ + ĝq q̂θφq}hdθ =

∫ θ2

θ1

{

gq − ĝq
cqθ(q(θ), θ)

cqθ(q(θ̂), θ̂)

}

h dθ = 0.As h was arbitrary, the following 
ondition has to hold at optimum:
gq(q(θ), θ) = gq(q(θ̂), θ̂)

cqθ(q(θ), θ)

cqθ(q(θ̂), θ̂)
(C3')This is 
ondition (C3). For q(θ) = q(θ̂), (C3') boils down to (7).B. ProofsProof of proposition 1: First, it is shown that the prin
ipal's payo� is higher under qc(θ) thanunder q(θ): The prin
ipal maximizes expe
tation of u(q, θ) − c(q, θ) + (1 − F (θ))/f(θ)cθ(q, θ). If

qs(q, θ) ≤ qr(θ), the prin
ipal's obje
tive in
reases due to the 
hange be
ause of the 
on
avity of(RP) and qr(θ) > s(θ). If qs(q(θ), θ) > qfb(θ), then the same 
on
lusion follows from qv(q(θ), θ) ≥

qs(q(θ), θ) > qr(θ) and the 
on
avity of (RP).Se
ond, the 
hanged de
ision qc(θ) is monotoni
ally in
reasing: From lo
al in
entive 
ompatibility
q(θ) was already in
reasing wherever it was above s(θ). At types with q(θ) < s(θ) the de
ision q(θ)had to be de
reasing be
ause of lo
al in
entive 
ompatibility. But then qs(q(θ), θ) is 
learly in
reasing25It follows from lemma 2 that φ(θ1, q(θ1)) > φ(θ2, q(θ2)).35



in θ for these types be
ause of cqθθ > 0. This leaves types at whi
h q(θ) jumped dis
ontinuously over
s(θ). But at these jump types lo
al in
entive 
ompatibility required cθ(q

−(θ), θ)− cθ(q
+(θ), θ) ≥ 0 atdownwards jumps (and the 
onverse inequality at upwards jumps) a
ross s(θ). This implies that alsoat jump points of q(θ) monotoni
ity of qc(θ) is guaranteed.Third, the 
hanged de
ision qc(θ) is in
entive 
ompatible: Sin
e qc(θ) is monotoni
ally in
reasing,only downward misrepresentation has to be 
onsidered (see lemma 1). Note that the pro�t fun
tion

π(θ) was not a�e
ted by the 
hange from q(θ) to qc(θ) be
ause of the de�nition of qs(θ) and πθ(θ) =

−cθ(q(θ), θ) by lo
al in
entive 
ompatibility. Therefore, one has only to 
he
k whether any type wantsto misrepresent as a lower type θ̂ at whi
h q(θ̂) < s(θ̂). Sin
e π(θ) is un
hanged, one 
an write in
entive
ompatibility under the 
hanged de
ision as
Φc(θ, θ̂) = −

∫ θ

θ̂

∫ q(t)

qc(θ̂)
cqθ(q, t) dq dt = −

∫ θ

θ̂

∫ q(θ̂)

qc(θ̂)
cqθ(q, t) dq dt−

∫ θ

θ̂

∫ q(t)

q(θ̂)
cqθ(q, t) dq dt

=

∫ θ

θ̂

∫ qc(θ̂)

q(θ̂)
cqθ(q, t) dq dt+Φ(θ, θ̂) > 0where the inequality follows from ∫ qc(θ̂)

q(θ̂)
cqθ(q, θ̂) dq = 0 by the de�nition of qs(·) and cqθθ > 0.Proof of lemma 3: First, it is shown that there 
annot be a dis
ontinuity at θ̂. Take a type θ̂ towhi
h non-lo
al in
entive 
onstraint is binding from some type θ. Suppose that q(·) is dis
ontinuousat θ̂, i.e. q−(θ̂) < q+(θ̂) by lo
al in
entive 
ompatibility (monotoni
ity). Binding in
entive 
onstraintmeans that either (i) ∫ θ

θ̂

∫ q(t)

q−(θ̂)
cqθ(q, t) dq dt = 0 or (ii) ∫ θ

θ̂

∫ q(t)

q+(θ̂)
cqθ(q, t) dq dt = 0 or (iii) q−(θ̂) <

q(θ̂) < q+(θ̂) and ∫ θ

θ̂

∫ q(t)

q(θ̂)
cqθ(q, t) dq dt = 0.In 
ase (i) it must hold that ∫ θ

θ̂
cqθ(q

−(θ̂), t) dt ≤ 0 whi
h is just (C2) adapted to apply for aright hand side dis
ontinuity, i.e. if this did not hold in
entive 
ompatibility would be violated for
θ and θ̂ − ε. But then ∫ θ

θ̂

∫ q+(θ̂)

q−(θ̂)
cqθ(q, t) dq dt < 0 from cqqθ < 0. Hen
e, Φ(θ, θ̂+) = Φ(θ, θ̂−) +

∫ θ

θ̂

∫ q+(θ̂)

q−(θ̂)
cqθ(q, t) dq dt < 0 as Φ(θ, θ̂−) = 0 by assumption. Hen
e, in
entive 
ompatibility is violatedfrom θ to types slightly above θ̂. This is the desired 
ontradi
tion.In 
ase (ii) it must hold that ∫ θ

θ̂
cqθ(q

+(θ̂), t) dt ≥ 0. But then ∫ θ

θ̂

∫ q+(θ̂)

q−(θ̂)
cqθ(q, t) dq dt > 0 from

cqqθ < 0. Consequently, Φ(θ, θ̂−) = Φ(θ, θ̂+) −
∫ θ

θ̂

∫ q+(θ̂)

q−(θ̂)
cqθ(q, t) dq dt < 0 and therefore in
entive
ompatibility is violated from θ to types slightly below θ̂.In 
ase (iii) the same arguments as in 
ase (i) apply if ∫ θ

θ̂
cqθ(q(θ̂), t) dt ≤ 0 while the same argumentsas in 
ase (ii) apply if ∫ θ

θ̂
cqθ(q(θ̂), t) dt > 0.Se
ond, it is shown that θ < θ̄ 
annot be bun
hed with some type θ′ if q(·) is 
ontinuous at θ.Suppose θ and θ′ were bun
hed on qb (and by monotoni
ity all types in between them are as well) and
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suppose for now θ < θ′. But then Φ(θ′, θ̂) < 0 and i
 is violated as
Φ(θ′, θ̂) = −

∫ θ′

θ̂

∫ q(t)

q(θ̂)
cs,t ds dt = −

∫ θ

θ̂

∫ q(t)

q(θ̂)
cs,t ds dt−

∫ θ

θ

∫ q(t)

q(θ̂)
cs,t ds dt

= Φ(θ, θ̂)−

∫ θ′

θ

∫ qb

q(θ̂)
cs,t ds dt < 0where the last inequality follows from (C1) and cqθθ > 0.Now suppose θ > θ′ and both types are bun
hed. From 
ondition (C1) for θ < θ̄ and cqθθ >

0 it follows that ∫ q(t)

q(θ̂)
cqθ(q, t) dq < 0 for every t ∈ (θ − ε, θ). But then Φ(θ − ε, θ̂) = Φ(θ, θ̂) +

∫ θ

θ−ε

∫ q(t)

q(θ̂)
cqθ(q, t) dq dt < 0, so in
entive 
ompatibility would be violated.Proof of proposition 2: Suppose q(θ) < qr(θ) for some types. Sin
e lo
al in
entive 
ompatibilitydoes not allow downward jumps, q(θ) has to be stri
tly below qr(θ) for a mass of types. Consider 
hang-ing this `optimal' de
ision to q∗(θ) where q∗(θ) = max{q(θ), qr(θ)}. Transfers t∗(θ) are determinedsu
h that π(θ) = 0 and πθ(θ) = −cθ(q

∗(θ), θ).By the de�nition of qr(θ), this 
hange will in
rease the prin
ipal's expe
ted payo�.It remains to 
he
k in
entive 
ompatibility, i.e
Φ∗(θ, θ̂) = −

∫ θ

θ̂

∫ q∗(t)

q∗(θ̂)
cqt(q, t) dq dt ≥ 0for arbitrary types θ and θ̂ < θ. If q∗(θ̂) = q(θ̂), in
entive 
ompatibility follows from q∗(t) ≥ q(t) andas q(t) ≥ s(t) the 
orresponding `additional' c(q, t) are negative.If q∗(θ̂) > q(θ̂) (and therefore q∗(θ̂) = qr(θ̂)), there are three possibilities: (i) There exists a type

θ′ ∈ (θ̂, θ) with q(θ′) = q∗(θ̂), (ii) all types θ′ ∈ (θ̂, θ) have q(θ′) < q∗(θ̂) and (iii) there are types
θ′ ∈ (θ̂, θ) with q(θ′) > q∗(θ̂) but no type θ′ with q(θ′) = q∗(θ̂), hen
e q(·) is dis
ontinuous26.If (i), then Φ(θ, θ′) ≥ 0 implies in
entive 
ompatibility as Φ∗(θ, θ̂) > Φ(θ, θ′). In 
ase (ii) q∗(θ̂)has to be above q(θ′) for all θ′ ∈ (θ̂, θ). But sin
e q(θ′) > s(θ′) for all these types it follows that
q∗(θ̂) > s(θ) and therefore in
entive 
ompatibility is trivially satis�ed.In 
ase (iii) de�ne θ′ = sup{t ∈ (θ̂, θ) : q(t) < q∗(θ̂)} that is θ′ is the jump point. In
entive
ompatibility between θ and θ′ implies ∫ θ

θ′

∫ q(t)
q−(θ′)

cqt(q, t) dq dt ≤ 0 as well as ∫ θ

θ′

∫ q(t)
q+(θ′)

cqt(q, t) dq dt ≤ 0where q−(θ′) denotes the limit of q(t) as t → θ′ from below. From cqqθ < 0 and q−(θ′) < q∗(θ̂) < q+(θ′),it follows that ∫ θ

θ′

∫ q(t)

q∗(θ̂)
cqt(q, t) dq dt ≤ 0. But as Φ∗(θ, θ̂) > −

∫ θ

θ′

∫ q(t)

q∗(θ̂)
cqt(q, t) dq dt ≥ 0 in
entive
ompatibility is satis�ed.Proof of theorem 1: Note that even if the theorem was not true one 
ould de�ne a fun
tion

η(θ) by rearranging (5). What one has to show are the properties of this fun
tion. η(θ) ≥ 0 followsimmediately from proposition 2 and the fa
t that the left hand side of (5) is de
reasing in q.26Given that solutions in Araujo and Moreira (2010) display sometimes dis
ontinuities, one 
annot totally ex
lude thispossibility. 37



Next turn the property that η(θ) is 
onstant on an interval of types on whi
h non lo
al in
entive
onstraints are lax. Suppose to the 
ontrary that η(θ) is not 
onstant. In parti
ular suppose η(θ) wasin
reasing on some interval [θ1, θ3] where non-lo
al i
 is lax for all θ ∈ [θ1, θ3]. Denote by θ2 someinterior type of the interval. For ea
h θ ∈ [θ2, θ2 + ε] de�ne a 
orresponding type θ′ ∈ [θ2 − ε, θ2] by
θ′ = θ2−(θ−θ2) for some small ε > 0. I will show that one 
an 
hange su
h a de
ision on [θ2−ε, θ2+ε]in a way whi
h in
reases the prin
ipal's payo� (while keeping in
entive 
ompatibility). This 
ontradi
tsthe optimality of q(θ).Consider a 
hanged de
ision qc(·) su
h that (i) qc(θ) > q(θ) on [θ2 − ε, θ2), (ii) qc(θ) ≤ q(θ) on
[θ2, θ2 + ε], (iii) for 
orresponding types θ and θ′ it holds that ∫ qc(θ′)

q(θ′) cqθ(q, θ
′) dq = −

∫ qc(θ)
q(θ) cqθ(q, θ) dqand (iv) qcθ(θ) ≥ 0 on [θ2 − ε, θ2 + ε]. The 
hanged de
ision will therefore display upwards jumps at

θ2 − ε and θ2 + ε. For small 
hanges in q (iii) 
an be written as δ(θ′)cqθ(q(θ′), θ′) = −δ(θ)cqθ(q(θ), θ)where δ(θ) = qc(θ)− q(θ). This in turn 
an be written as δ(θ′) = −δ(θ)k(θ) where k(θ) is de�ned as
cqθ(q(θ),θ)

cqθ(q(θ′(θ)),θ′(θ))
.Before pro
eeding, let me show that a fun
tion qc(θ) satisfying (i)-(iv) exists. Note that k(θ2) = 1and that�due to the di�erentiability and 
ontinuity assumptions on c(·) and the monotoni
ity of q(θ)�the fun
tion k(θ) is 
ontinuously di�erentiable almost everywhere.27 First, 
onsider the 
ase where

k+θ (θ2) < 0. Then it is feasible to set qc(θ) = q(θ2) for types θ ∈ [θ2, θ2 + ε] if ε > 0 is 
hosensmall enough. Feasibility means that determining q(θ′) by δ(θ′) = −δ(θ)k(θ) will satisfy all 
onditionsespe
ially (iv). Feasibility of qc(θ) = q(θ2) for θ ∈ [θ2, θ2 + ε] and monotoni
ity of q(θ) imply that
qc∗ = αqc(θ) + (1− α)q(θ) is also feasible. The e�e
t of a marginal 
hange of q is the e�e
t 
hanging
q(·) to qc∗(·) as α → 0.Se
ond, 
onsider kθ(θ2)+ > 0. By the same argument, it is feasible to bun
h types θ ∈ [θ2 − ε, θ2]on q(θ2) and the remaining argument goes through analogously. Obviously, the third 
ase k+θ (θ2) = 0is analogous to either the �rst or the se
ond 
ase (depending on the se
ond derivative).The e�e
t of a marginal 
hange on the prin
ipal's obje
tive is

∫ θ2+ε

θ2−ε

{(uq(q(θ), θ)− cq(q(θ), θ))f(θ) + (1− F (θ))cqθ(q(θ), θ)} δ(θ) dθ

=

∫ θ2+ε

θ2−ε

η(θ)cqθ(q(θ), θ)δ(θ) dθ =

∫ θ2+ε

θ2

δ(θ)cqθ(q(θ), θ)[η(θ)− η(θ′(θ))] > 0where the last inequality follows from δ(θ) ≤ 0 for θ ∈ [θ2, θ2+ ε] and ηθ(θ) > 0. Hen
e, the prin
ipal'sobje
tive in
reases. Due to (iii) in
entive 
ompatibility is still satis�ed. This 
ontradi
ts the optimalityof q(θ).27Note that a feasible qc(θ) exists even around types θ2 where q(θ) is dis
ontinuous: Whether bun
hing types [θ2−ε, θ2)on q−(θ2) or bun
hing types (θ2, θ2 + ε] on q+(θ2) is feasible is then de
ided by k+

θ (θ2) just as in the text.38



A similar argument 
an be made when η(θ) is de
reasing almost everywhere on some interval [θ1, θ3]where non-lo
al i
 is lax. The only di�eren
e is that (i) and (ii) are substituted by (i) qc(θ) < q(θ) on
[θ2 − ε, θ2), (ii) qc(θ) ≥ q(θ) on [θ2, θ2 + ε]. The argument for existen
e is then that for kθ(θ2) < 0 one
an 
hoose a θ2 + ε su
h that setting qc(θ) = q(θ2 + ε) for all θ ∈ [θ2, θ2 + ε] is feasible. Everythingelse goes through a

ordingly.Hen
e, η(θ) is 
onstant on all intervals on whi
h non-lo
al in
entive 
onstraints do not bind.28To see that η(θ) is non-de
reasing at types θ̂ to whi
h a non-lo
al in
entive 
onstraint is bindingone 
an use the same steps as above for types where non-lo
al in
entive 
onstraints were lax. The keyinsight is that su
h a 
hange is feasible due to the stru
ture given by lemma 1 and lemma 2 (see also�gure 4): In
reasing q for slightly higher types than θ̂ (and redu
ing for slightly lower types than θ̂) willrelax (or not a�e
t) binding non-lo
al in
entive 
onstraints be
ause these 
onstraints are downwardbinding and not overlapping.The argument why η(θ) is non-in
reasing at types θ from whi
h non-lo
al in
entive 
onstraintsbind is also equivalent to the one above. The key with respe
t to feasibility is now that redu
ing q fortypes slightly below θ (and in
reasing for types slightly above θ) will again relax (or not a�e
t) bindingnon-lo
al in
entive 
onstraints be
ause these 
onstraints are downward binding.Now turn to η(θ̄) = 0 (and therefore q(θ̄) = qfb(θ̄)) whenever no non-lo
al in
entive 
onstraint isbinding from θ̄. Clearly, q(θ̄) does not a�e
t non-lo
al in
entive 
onstraints of other types, see �gure1b for an illustration. Consequently, the prin
ipal's payo� is maximized by setting q(θ̄) = qr(θ̄). Theonly thing to show is that the monotoni
ity 
onstraint is not binding at θ̄. Suppose to the 
ontrarythat types [θ′, θ̄] were bun
hed on qb > qfb(θ̄). By lemma 3, non-lo
al in
entive 
onstraints 
annot bebinding for types in (θ′, θ̄]. First, note that q(θ) has to be 
ontinuous at θ′ as otherwise the prin
ipal'spayo� 
ould be in
reased by redu
ing qb. Therefore�by the same argument as in the proof of lemma3�non-lo
al in
entive 
onstraints 
annot bind from types [θ′ − ε, θ′] for some small ε > 0. Given that
q(θ) > qfb(θ̄) > qr(θ) for all θ ∈ [θ′ − ε, θ̄), the prin
ipal's payo� 
ould be in
reased by 
hanging q(θ)to q(θ′ − ε) for all θ ∈ [θ′ − ε, θ̄]. This 
ontradi
ts the optimality of q(θ).The part that η(θ) = 0 if no non-lo
al in
entive 
onstraint is binding to θ is even simpler: Redu
ing
q(θ) to qr(θ) 
annot violate the monotoni
ity 
onstraint as q(θ) ≥ qr(θ) ≥ qr(θ) by proposition 2.Proof of lemma 4: I proof the stronger statement, i.e. non-lo
al in
entive 
onstraints do notonly bind at isolated interior types. The proof is by 
ontradi
tion.Suppose, non-lo
al in
entive 
onstraints bound only from isolated interior types. Denote by θ′ the28Note that η(θ) 
annot be di�erent for isolated types in su
h an interval: This would, by (5) and the 
ontinuity ofthe derivatives of c(·), lead to q(θ) being dis
ontinuous at isolated points. Su
h a dis
ontinuity, however, violates lo
alin
entive 
ompatibility. 39



supremum of all types with η(θ) > 0, i.e. θ′ = sup{θ : η(θ) > 0}. By theorem 1, a non-lo
al in
entive
onstraint is binding from θ′ and η(θ) = 0 for all θ > θ′.29 As the set of types from whi
h non-lo
alin
entive 
onstraints bind 
onsists only of isolated types, there exists an ε > 0 su
h that non-lo
alin
entive 
onstraints are lax for all θ ∈ (θ′− ε, θ′). By theorem 1, η(θ) is 
onstant on (θ′− ε, θ′) and bythe de�nition of θ′ there has to be a dis
ontinuity in η(θ) at θ′, i.e. η−(θ′) > η+(θ′) = 0. The de�nitionof η(θ) in (5) implies then that q−(θ′) > q+(θ′). But this violates the monotoni
ity 
onstraint. Hen
e,
θ′ 
annot be isolated in the set of types from whi
h non-lo
al in
entive 
onstraints bind.Similarly, take θ̂′ = inf(θ̂ : η(θ̂) > 0). It holds that η(θ) = 0 for all θ < θ̂′. Therefore, byproposition 2, θ̂′ 
annot be bun
hed. Consequently, a non-lo
al in
entive 
onstraint has to bind to θ̂′.If θ̂′ is isolated in the set of types to whi
h non-lo
al in
entive 
onstraints are binding, η(θ) has to bedis
ontinuous at θ̂′ by the de�nition of θ̂′. Then also q(θ) is dis
ontinuous at θ̂′. But this is impossibleby lemma 3. Hen
e, θ̂′ 
annot be isolated in the set of types to whi
h non-lo
al in
entive 
onstraintsbind.It remains to show the 
losedness part of the lemma. Note �rst that a monotone solution is
ontinuous almost everywhere. Consequently, the prin
ipal's payo� is not 
hanged if q(·) is 
hangedat its dis
ontinuity points. I want to resolve this ambiguity using the following 
onvention: Say q(θ) isdis
ontinuous at θ′. Then q(θ′) = q−(θ′) if there exists an in
reasing sequen
e of types θi i = 1, 2, . . .su
h that (i) limi→∞ θi = θ′ and (ii) a non-lo
al in
entive 
onstraint is binding from or to ea
h θi. Ifsu
h a sequen
e does not exist, q(θ′) = q+(θ′).With this 
onvention in mind, 
onsider a sequen
e of types θn with n = 1, 2, . . . su
h that a non-lo
al in
entive 
onstraint is binding from ea
h θn to some θ̂n. Assume that limn→∞ θn = θ′. Then ithas to be shown that Φ(θ′, θ̂′) = 0 for some θ̂′. Sin
e all θ̂n belong to the 
losed and bounded interval
[θ, θ̄], there is a 
onvergent subsequen
e of θ̂n. I will denote the elements of this subsequen
e by θ̂kwith k = 1, 2, . . . . The 
orresponding type from whi
h a non-lo
al in
entive 
onstraint is binding to θ̂kis denoted by θk. Now, take θ̂′ = limk→∞ θ̂k. Note that there always exists a monotone subsequen
eof θk. It is therefore without loss of generality to assume θk to be monotone. For 
on
reteness, assume
θk+1 ≥ θk for all k = 1, 2, . . . . As Φ(θk, θ̂k) = 0 for all k = 1, 2, . . . , 
ontinuity of Φ(·) at (θ′, θ̂′) issu�
ient for Φ(θ′, θ̂′) = 0. As π(·) is 
ontinuous by lo
al in
entive 
ompatibility and c(·) is 
ontinuousby assumption, 
ontinuity of Φ(·) at (θ′, θ̂′) follows if q(·) is 
ontinuous at θ̂′. Sin
e θk is monotoni
allyin
reasing, 
ontinuity from below is a
tually su�
ient. But this is ensured by the 
onvention above.If θk+1 ≤ θk for all k = 1, 2, . . . , the 
onvention establishes q(θ̂′) = q+(θ̂′) whi
h is needed in this
ase.29Note that θ′ 
annot be bun
hed be
ause of proposition 4 and q−(θ′) = qr(θ′).40



The proof for the 
losedness of the set of types to whi
h non-lo
al in
entive 
onstraints bind worksin the same way.Proof of lemma 5: From lemma 3, non-lo
al in
entive 
onstraints 
annot bind from any θ ∈

[θbs, θ
b
e). To satisfy similar properties as in theorem 1, η(θ) has therefore to be non-de
reasing on (θbs, θ

b
e).Let η(θ) be de�ned by (5) for all types that are not bun
hed. De�ne η(θ) on the bun
hing intervalusing the following two step pro
edure: First, all θ̂ ∈ (θbs, θ

b
e) su
h that Φ(θ, θ̂) = 0 and (C1') as wellas (C2') are satis�ed are assigned η(θ̂) = η(θ). Se
ond, types in θ ∈ (θbs, θ

b
e) who are not assigned avalue for η(θ) in step 1 are assigned the same η as the highest type θ′ < θ that was already assigned avalue η(θ′).Now it is shown that the 
onstru
ted η(θ) is non-de
reasing on (θbs, θ

b
e): Say, there are two types

θ̂1, θ̂2 ∈ (θbs, θ
b
e) with θ̂2 > θ̂1 whi
h are assigned an η in the �rst step. Then (C2') implies that θ1 > θ2.From theorem 1 and the stru
ture of the solution as depi
ted in �gure 4, it follows that η(θ2) ≥ η(θ1).Therefore, η(θ̂2) ≥ η(θ̂1). The se
ond step does not 
hange the monotoni
ity of η(θ) whi
h proves that

η(θ) is non-de
reasing on (θbs, θ
b
e).If non-lo
al in
entive 
onstraints are not binding for the bun
hed types, no type is assigned a valuefor η(θ) in step 1. Consequently, η(θ) is 
onstant on (θbs, θ

b
e).Next, it is shown that η(θ) is also non-de
reasing at the types θbs and θbe. First, note that the proof oftheorem 1 
an be easily extended to show that η(θbs) ≤ η(θbe): If this inequality did not hold, redu
e q(θ)on (θbs−ε, θbs) and in
rease q(θ) marginally on (θbe, θ

b
e+ε) su
h that ∫ θbe+ε

θbs−ε

∫ q(t)

q(θbs−ε)
cqθ(q, t) dq dt remainsthe same before and after the 
hange. As in the proof of theorem 1, this 
hange would in
rease theprin
ipal's payo� without impeding in
entive 
ompatibility (note that non-lo
al in
entive 
onstraints
annot bind from the bun
hed types be
ause of lemma 3). Consequently, η(θbs) ≤ η(θbe).Se
ond, it is ne
essary to show that�with the above 
onstru
ted η(θ) on (θbs, θ
b
e)�there is no upwardjump of η(θ) at θbe (no downward jump of η(θ) at θbs). If no type is assigned an η in the �rst step of thepro
edure above, this is obvious. Therefore, take the 
ase where some type in the bun
hing interval isassigned a value η(θ) in the �rst step of the pro
edure. Then the 
laim follows from theorem 1: Say,

η−(θbe) = η(θ1) for some type θ1 from whi
h a non-lo
al in
entive 
onstraint binds. The stru
ture ofthe solution (as depi
ted in �gure 4) and theorem 1 imply that η+(θbe) = η−(θ1).30 Sin
e η(θ) is non-in
reasing at θ1 a

ording to theorem 1, it follows that η−(θ1) ≥ η+(θ1) and therefore η−(θbe) ≥ η+(θbe).A similar argument holds for θbs.30If non-lo
al in
entive 
onstraints bind from types θ′ ∈ (θbe, θ1) to types θ̂′ ∈ (θbe, θ1), this holds still true be
ause ofthe ne
essary 
ondition (C3). Also dis
ontinuities at θ′′ ∈ (θbe, θ1) do not matter as by lemma 3 and theorem 1 η(θ) isnon-in
reasing at θ′′. If there are several bun
hing intervals, the argument holds for the highest interval and given this,it holds for the se
ond highest et
.. 41



It remains to show ∫ θbe
θbs

νθ(θ) dθ = 0. But this follows dire
tly from ν(θbs) = ν(θbe) = 0.Proof of proposition 3: By lemma 3, q(θ) 
annot be dis
ontinuous at a type to whi
h a non-lo
alin
entive 
onstraint binds (with the ex
eption of boundary types of bun
hing intervals). Therefore,theorem 1 implies that a solution 
ould only be dis
ontinuous at types where η(θ) is non-in
reasing orat the boundary types of a bun
hing interval to whi
h a non-lo
al in
entive 
onstraint is binding.First, it is shown that η(θ) is also non-in
reasing at su
h boundary types of a bun
hing interval.To see this take a bun
hing interval [θ̂1, θ̂2] to whi
h non-lo
al in
entive 
onstraints bind and supposethe solution was dis
ontinuous at θ̂, i.e. q−(θ̂2) < q+(θ̂2). By the arguments in the proof of lemma3, ∫ θ

θ̂2
cqθ(q

−(θ̂2), t) dt > 0 for any θ su
h that Φ(θ, θ̂2) = 0. But then an argument as in the proofof theorem 1 applies: There is an in
entive 
ompatible way to in
rease q(θ̂) for θ̂ ∈ [θ̂2 − ε, θ̂2] andde
rease the de
ision for types in [θ̂2, θ̂+ε]. In
entive 
ompatible means that binding non-lo
al in
entive
onstraints are not violated and the de
ision remains monotone (details in the proof of theorem 1). If
η(·) was stri
tly in
reasing at θ̂2, su
h a 
hange would in
rease the prin
ipal's payo�. Therefore, η(·)has to be de
reasing at θ̂2. A similar argument applies at θ̂1. A dis
ontinuity is only possible at θ̂1 if
∫ θ

θ̂1
cqθ(q(θ̂1), t) dt < 0 for all θ su
h that Φ(θ, θ̂1) = 0. Therefore, de
reasing the de
ision on [θ̂1, θ̂1 + ε]and in
reasing the de
ision on [θ̂1 − ε, θ̂1) 
an be done in an in
entive 
ompatible way. If η(·) wasstri
tly in
reasing, su
h a 
hange would in
rease the prin
ipal's payo�.Hen
e, q(θ) 
an only be dis
ontinuous at types where η(θ) is non-in
reasing. Se
ond, it is shownthat a dis
ontinuity in q(θ) would lead to an upward jump of η(θ) at the dis
ontinuity type whi
himplies that there 
annot be a dis
ontinuity in q(θ).By lo
al in
entive 
ompatibility, q(θ) 
an only jump upwards, i.e. q−(θ′) < q+(θ′) at a hypotheti
aldis
ontinuity type θ′. Using the de�nition of η(θ) in (5) one 
an 
al
ulate the 
hange in η(θ′) at thedis
ontinuity type

η+(θ′)− η−(θ′) =

∫ q+(θ′)

q−(θ′)

d η(θ′)

d q(θ′)
dq

=

∫ q+(θ′)

q−(θ′)

(uqq − cqq)fcqθ + (1− F )cqqθcqθ − (uq − cq)fcqqθ − (1− F )cqθcqqθ
c2qθ

dqwhere all fun
tions are evaluated at (q, θ′). Note that the integrand is positive whenever q ≤ qfb(θ′).If q > qfb(θ′), the integrand 
an be written as
f(uq − cq)

cqθ

(

uqq − cqq
uq − cq

−
cqqθ
cqθ

)whi
h is also positive due to the 
ondition of the proposition. Hen
e, η(θ) would jump up at θ′ butthis 
ontradi
ts that q(θ) 
an only be dis
ontinuous at types where η(θ) is non-in
reasing.42



Proof of proposition 4: The proof is by 
ontradi
tion. Suppose the optimal de
ision q(θ) wasabove the �rst best de
ision for some types. Sin
e there is no distortion at the top by assumption andsin
e the optimal de
ision 
annot drop dis
ontinuously downward (lo
al in
entive 
ompatibility), therehas to be a type θ′ at whi
h the optimal de
ision interse
ts qfb(θ) from above. The proof works nowin two steps. First, I show that a non lo
al in
entive 
onstraint must bind from θ′ and se
ond thatthen non lo
al in
entive 
ompatibility is violated for some type 
lose to θ′.Note that q(θ) > qfb(θ) if and only if η(θ) > 1 − F (θ). Sin
e 1 − F (θ) is de
reasing and q(θ) >

(<)qfb(θ) slightly above (below) θ′, it follows that ηθ(θ′) is negative. But then, by theorem 1, a nonlo
al in
entive 
onstraint has to be binding from θ′ to some θ̂′. Furthermore, the ne
essary 
ondition
∫ q(θ′)

q(θ̂′)
cqθ(q, θ

′) dq = 0 has to hold.Next 
onsider a type θ′′ = θ′−ǫwith ǫ > 0 very small. Sin
e qm(θ) is in
reasing and ∫ q(θ)

q(θ̂)
cqθ(q, θ

′) dq =

0, 
learly ∫ qfb(θ′′)

q(θ̂′)
cqθ(q, θ

′′) dq < 0. Sin
e q(θ′′) > qfb(θ′′), it has to hold that ∫ q(θ′′)

q(θ̂′)
cqθ(q, θ

′′) dq < 0 aswell. The same inequality holds for all θ ∈ (θ′′, θ′). But then Φ(θ′′, θ̂′) = Φ(θ′, θ̂′)+
∫ θ′

θ′′

∫ q(t)

q(θ̂′)
cqθ(q, t) dq dt <

0, i.e. in
entive 
ompatibility from θ′′ to θ̂′ is violated. Hen
e, the optimal de
ision 
annot be abovethe �rst best de
ision.Continuity of the optimal de
ision is now straightforward: q(θ) ≤ qfb(θ) implies that 1 − F (θ) −

η(θ) ≥ 0. Therefore, the left hand side of the �rst order 
ondition uq − cq + (1 − F − η)cqθ = 0 isstri
tly de
reasing in q. The same arguments as in the proof of proposition 3 show that q(θ) has to be
ontinuous.Last it has to be shown that the de
ision is stri
tly monotone when it is below �rst best. This willbe done in two steps. The �rst step is to show that q(θ) is stri
tly in
reasing if ηθ(θ) ≥ 0. The se
ondstep is to show that in a hypotheti
al bun
hing interval there are types θ at whi
h ηθ(θ) ≥ 0 whi
h bythe �rst step 
ontradi
ts that these types are bun
hed.First, the de
ision q(θ) has to satisfy
[uq(q(θ), θ)− cq(q(θ), θ)] +

(1− F (θ)− η(θ))

f(θ)
cqθ(q(θ), θ) = 0 (9)by theorem 1. From the impli
it fun
tion theorem, the sign of qθ(θ) 
an be determined. Note that

q(θ) ≤ qfb(θ) implies 1−F (θ)− η(θ) ≥ 0. This in turn implies that the derivative of the left hand sideof (9) with respe
t to q is negative. Hen
e, the sign of qθ(θ) is the sign of the partial derivative of theequation above with respe
t to θ. Denoting (1− F (θ)− η(θ)) by λ(θ) this derivative is
uqθ(q(θ), θ)− cqθ(q(θ), θ) +

λ(θ)

f(θ)
cqθθ +

∂ λ(θ)/f(θ)

∂θ
cqθ(q(θ), θ). (10)Now take a bun
hing interval [θ1, θ2] (
losed or open). The �rst three terms are 
learly positive as43



q(θ1) ≤ qfb(θ1) implies λ(θ) ≥ 0. The fourth term is positive if ηθ(θ) ≥ 0 as then
∂ λ(θ)/f(θ)

∂θ
=

−f2(θ)− fθ(θ)(1− F (θ))

f2(θ)
−

ηθ(θ)

f(θ)
+

fθ(θ)η(θ)

f2(θ)
< 0where the inequality 
omes from the monotone hazard rate assumption if fθ(θ) ≤ 0. If fθ(θ) > 0, then

qfb(θ) ≥ q(θ) implies λ(θ) ≥ 0 whi
h ensures the inequality above.Now turn to the se
ond step. Suppose 
ontrary to the proposition that an interval (θ1, θ2) existsin whi
h types are bun
hed and non-lo
al in
entive 
onstraints are either binding to these types orare lax.31 Using the same argument as in the proof of theorem 1, it be
omes evident that η(θ) asde�ned by (5) 
annot be de
reasing on the whole interval (θ1, θ2): If this was the 
ase, in
reasing q(θ)for types ((θ2 + θ1)/2, θ2) and de
reasing q(θ) slightly for the other bun
hed types would in
rease theprin
ipal's payo� (and 
an be done in an in
entive 
ompatible way). From the de�nition of η(θ) andthe di�erentiability of q on the bun
hing interval, it follows that η(θ) is 
ontinuous and di�erentiableon this interval. Consequently, there has to be some type in the interior of the bun
hing interval where
ηθ(θ) ≥ 0. But then the �rst step shows that this type 
annot be bun
hed.Proof of proposition 5: Take two types θ′ and θ̂′ su
h that a non-lo
al in
entive 
onstraint isbinding from θ to θ̂ under the optimal de
ision q(θ). By (C3), η(θ′) = η(θ̂′) and for this proof η (in
Φη()) simply denotes this 
ommon value η(θ′) = η(θ̂′).First, suppose that (θ′, θ̂′) does not minimize Φη(θ, θ̂) on [θ̂′, θ] and 
all the minimizer (θ′′, θ̂′′).Then in
entive 
ompatibility under the optimal de
ision requires Φ(θ′′, θ̂′′) ≥ 0. If q(θ) was q̃(θ) for alltypes in [θ̂′, θ̂′′] ∪ [θ′′, θ′], then Φ(θ′, θ̂′) = Φη(θ′, θ̂′) + Φ(θ′′, θ̂′′) − Φη(θ′′, θ̂′′) > 0 where the inequalitystems from the de�nition of (θ′′, θ̂′′) as global minimizer of Φη(θ, θ̂). Therefore i
 would not be bindingbetween θ′ and θ̂′.If q(θ) 6= q̃(θ) for some types in [θ̂′, θ̂′′]∪ [θ′′, θ′], then i
 must be binding for some of these types.32But this will only relax i
, i.e. q(θ) > q̃(θ) in a monotone solution. Therefore Φ(θ′, θ̂′) will be evenhigher than when q(θ) = q̃(θ) and therefore i
 
annot bind between θ′ and θ̂′. This is the desired
ontradi
tion. Consequently, (θ′, θ̂′) has to minimize Φη(θ, θ̂) on [θ̂′, θ′].Se
ond, suppose that (θ′′, θ̂′′) with θ̂′′ < θ̂′ < θ′ < θ′′ has Φη(θ′, θ̂′) > Φ′(θ′′, θ̂′′). In fa
t 
hoose θ′′and θ̂′′ su
h that it is the global minimizer of Φη(θ, θ̂) under the 
onstraint θ̂ < θ̂′ < θ′ < θ.Now suppose for the moment that all types in [θ̂′′, θ̂′] ∪ [θ′, θ′′] had q(θ) = q̃(θ). Then sin
e
Φ(θ′, θ̂′) = 0 but (θ′′, θ̂′′) minimizes Φη(θ, θ̂), i
 would be violated for θ′′ and θ̂′′.If q(θ) 6= q̃(θ) for some types in [θ̂′′, θ̂′]∪[θ′, θ′′], then i
 was binding for some types in those intervals.In a monotone solution this implies that q(θ) < q̃(θ) for these types. Put di�erently, i
 is stri
ter under31By lemma 3, types from whi
h non-lo
al in
entive 
onstraints bind 
annot be bun
hed.32Be
ause of lemma 2 i
 
annot bind from outside [θ̂′, θ] into the interval (neither the other way round).44



q(θ) than under q̃(θ).33 But then i
 will be even more violated for θ′′ and θ̂′′ under q(θ) than under
q̃(θ). Therefore, there 
annot be a global minimizer (θ′′, θ̂′′) with θ̂′′ < θ̂′ < θ′ < θ′′.Proof of 
orollary 1: Note �rst that the highest type θ from whi
h a non-lo
al in
entive 
onstraintis binding must have q(θ) = qr(θ) if θ is interior. This follows from the reasoning in the proof of lemma4. The same holds for the lowest type θ̂ to whi
h a non-lo
al in
entive 
onstraint binds. Therefore,there is a type pair su
h that (i) q(θ′) = qr(θ′), (ii) q(θ̂′) = qr(θ̂′) and (iii) Φ(θ′, θ̂′) = 0.Sin
e (θ′, θ̂′) satisfy (C2) and (C1) with qr and given the results of proposition 5, (θ′, θ̂′) lo
allyminimize Φr(θ, θ̂). Proposition 5 rules out that θ̂r < θ̂′ < θ′ < θr and also θ̂′ < θ̂r < θr < θ′. Hen
e, itstill has to be shown that there 
annot be an overlap between the two type pairs, i.e. θ̂′ < θ̂r < θ′ < θror θ̂r < θ̂′ < θr < θ′. To get a 
ontradi
tion suppose θ̂′ < θ̂r < θ′ < θr. In a similar way as in lemma2, one 
an now show that in this 
ase Φr(θr, θ̂′) < Φr(θr, θ̂r) thereby 
ontradi
ting that (θr, θ̂r) is theglobal minimizer of Φr(θ, θ̂):

Φr(θr, θ̂′) = Φr(θr, θ̂r) + Φr(θ′, θ̂′) +

∫ θ′

θ̂r

∫ qr(t)

qr(θ̂r)
cqθ(q, t) dq dt−

∫ θr

θ′

∫ qr(θ̂r)

qr(θ̂′)
cqθ(q, t) dq dt

= Φr(θr, θ̂r) + Φr(θ′, θ̂′)− Φr(θ′, θ̂r)−

∫ θr

θ′

∫ qr(θ̂r)

qr(θ̂′)
cqθ(q, t) dq dtBy proposition 5, Φr(θ′, θ̂′) − Φr(θ′, θ̂r) ≤ 0. Furthermore, ∫ qr(θ′)

qr(θ̂′)
cqθ dq = 0 sin
e (θ′, θ̂′) lo
allyminimize Φr(θ, θ̂). Therefore, ∫ q(θ̂r)

qr(θ̂′)
cqθ dq > 0 as qr(θ′) > qr(θ̂r) and cqqθ < 0. From cqθθ > 0 itfollows that ∫ θr

θ′

∫ qr(θ̂r)

qr(θ̂′)
cqθ(q, t) dq dt > 0 whi
h shows that Φr(θr, θ̂′) < Φr(θr, θ̂r). This is the desired
ontradi
tion.A similar argument 
an be made for the 
ase θ̂r < θ̂′ < θr < θ′. Consequently, the only possibilityis that (θ′, θ̂′) = (θr, θ̂r) whi
h had to be shown.If the highest/lowest type from/to whi
h a non-lo
al in
entive 
onstraint is binding is a boundarytype, this type's de
ision is not ne
essarily the relaxed de
ision. However, the minimization argumentdoes not 
hange whi
h 
on
ludes the proof.33Stri
tly speaking one also has to show that i
 did not bind from outside [θ̂′′, θ′′] into this interval (or the other wayround), thereby in
reasing q(θ) for some types in say (θ′, θ′′). If however this was the 
ase and the in
rease in q(θ) wassu
h that i
 between θ′′ and θ̂′′ was relaxed by it, then there has to exist a type θ̂′′′ ∈ (θ′, θ′′) and a type θ′′′ > θ′′ with

Φ(θ′′′, θ̂′′′) = 0 and q(θ̂′′′) = q̃(θ̂′′′). But this would 
ontradi
t that (θ′′, θ̂′′) is a global minimum of Φη(θ, θ̂) (analogouslyto the proof of lemma 2), i.e. Φ′(θ′′′, θ̂′′) < Φ′(θ′′, θ̂′′).
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C. Existen
e of an optimal 
ontra
tThis appendix shows that an optimal 
ontra
t exists and therefore the 
hara
terization done in thepaper is meaningful. It is assumed that qv(q, θ) ≥ qs(q, θ) for all q ∈ [0, qf (θ)] and all θ ∈ [θ, θ̄] andtherefore proposition 1 applies. Before showing existen
e, two useful lemmata are derived.De�ne q̃ su
h that ∫ q̃

0 cqθ(q, θ̄) dq = 0. Sin
e cqqθ < 0, q̃ is unique and therefore properly de�ned.Lemma 6. Any in
entive 
ompatible 
ontra
t with a de
ision q(θ) above q̄ = max{qfb(θ̄), q̃} for sometype is dominated by a 
ontra
t 
onsisting of de
ision
qc(θ) = min{q(θ), q̄}and transfers su
h that π(θ) = 0 and πθ(θ) =

∫ θ

θ
−cθ(q(t), t) dt.Proof. The 
on
avity of the virtual valuation implies that the prin
ipal's payo� under qc(θ) ishigher than under q(θ). Hen
e, the lemma holds if the 
hanged 
ontra
t is in
entive 
ompatible.Note that in
entive 
ompatibility of qc(θ) is obvious if q(θ) > q̄ for all θ. Now de�ne θm = inf{θ :

q(θ) > q̄}. Note that in
entive 
ompatibility from θm to any lower type is not a�e
ted by the 
hangefrom q(·) to qc(·) sin
e Φ(θm, θ̂) does not 
hange.The next step is to see that q(θ) > q̄ for all θ > θm. The reason is that lo
al in
entive 
ompatibilitydoes not allow for any de
ision in [s(θ), q̄] as long as q(θ) stays above s(θ). Furthermore, downwardjumps to a de
ision below s(θ) would require that ∫ q−(θj)
q+(θj)

cqθ(q, θ
j) dq ≥ 0 at the jump type θj (forlo
al in
entive 
ompatibility). But by the de�nition of q̄ and from cqθθ > 0, this inequality 
annot holdfor any type below θ̄ (and a jump at the boundary type θ̄ would not hurt the following argument).Therefore, all types above θm will have q̄ as their 
hanged de
ision. From lemma 1 it follows thatonly in
entive 
ompatibility from types above θm to types below θm has to be 
he
ked. Therefore takean arbitrary θ > θm and some θ̂ < θm. Then Φ(θ, θ̂) = Φ(θm, θ̂) −

∫ θ

θm

∫ q̄

q(θ̂)
cqθ(q, t) dq dt > 0 wherethe inequality follows from the in
entive 
ompatibility between θm and θ̂ under q(θ), the de�nition of

q̃ and cqθθ > 0.Lemma 7. Take a sequen
e of in
entive 
ompatible de
ision fun
tions34 qn(θ) ≤ q̄, n = 1, 2 . . . , andlet this sequen
e 
onverge to q(θ). Then q(θ) is in
entive 
ompatible.Proof. De�ne c̃qθ = maxq∈[0,q̄], θ∈[θ,θ̄] |cqθ(q, θ)|. Sin
e [0, q̄]× [θ, θ̄] is 
ompa
t and cqθ(·) is 
ontin-uous by assumption, c̃qθ exists.34An in
entive 
ompatible de
ision is a de
ision su
h that the menu 
onsisting of this de
ision and transfers de�nedby π(θ) =
∫ θ

θ
−cθ(q(t), t) dt is in
entive 
ompatible. 46



Now suppose 
ontrary to the lemma that Φ(θ, θ̂) = −ε for some θ, θ̂ ∈ Θ and ε > 0 and thereforein
entive 
ompatibility is violated under q(θ). From 
onvergen
e of {qn(θ)}, for ea
h δ > 0 there existsan Nδ su
h that |qn(θ)− q(θ)| ≤ δ for all types and all n > Nδ. Therefore,
Φ(θ, θ̂) =

∫ θ

θ̂

∫ q(t)

q(θ̂)
−cqθ(q, t) dq dt ≥

∫ θ

θ̂

∫ qn(t)

qn(θ̂)
−cqθ(q, t) dq dt−

∫ θ

θ̂

2δc̃qθ dtfor an arbitrary n > Nδ. But then 
hoosing a δ < ε
2c̃qθ(θ̄−θ)

shows that Φ(θ, θ̂) > −ε as Φn(θ, θ̂) ≥ 0where Φn(·) denotes Φ(·) under qn(·). This 
ontradi
ts the de�nition of ε and therefore q(θ) is in
entive
ompatible.Given proposition 1 and the previous two results, the existen
e proof in Jullien (2000) applies. For
ompleteness, I repli
ate the proof brie�y. The problem of the prin
ipal is the program:
max
q(θ)

∫ θ̄

θ

(u(q(θ), θ)− c(q(θ), θ))f(θ) + (1− F (θ))cθ(q(θ), θ) dθsubje
t to
Φ(θ, θ̂) ≥ 0 for all θ, θ̂ ∈ [θ, θ̄]

0 ≤ q(θ) ≤ q̄Let W ∗ be the maximum value of the program. Take a sequen
e of de
ision fun
tions su
h that
qn(θ) indu
e a value larger than W ∗− 1

n
and ea
h qn(θ) is in
entive 
ompatible . Be
ause of proposition1, the sequen
e 
an be 
hosen su
h that ea
h qn(θ) is an in
reasing fun
tion. Then Helly's sele
tiontheorem, see Billingsley (1986) Thm. 25.9, yields that there exists a non-de
reasing fun
tion q(θ)whi
h is the limit of a subsequen
e qnk(θ) at every point of 
ontinuity of q(θ) and therefore almosteverywhere on [θ, θ̄]. Lebesgue's dominated 
onvergen
e theorem, see Billingsley (1986) Thm. 16.4,yields that the prin
ipal's payo� under q(θ) is W ∗. By lemma 7, q(θ) is implementable and thereforean optimal 
ontra
t exists.
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