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1. IntrodutionAdverse seletion models1 are among the most used miroeonomi models sine their introdution byAkerlof (1970). The main feature of these models is that one (or more) agents have private informationwhih is relevant for transations with other players. This private information an be the e�ieny ofa �rm in models of regulation (Baron and Myerson, 1982; La�ont and Tirole, 1987), the produtivityof a worker in labor market (Guash and Weiss, 1981) as well as in optimal taxation models (Mirrlees,1971), the risk of an aident in insurane models (Stiglitz, 1977) or the willingness to pay for a produtin models of monopoly priing (Mussa and Rosen, 1978) and autions (Myerson, 1981).Two standard researh questions typially emerge in this kind of models: What will be the marketoutome, e.g. the optimal ontrat? How does the presene of asymmetri information a�et welfareand the distribution of the soial surplus? Generally speaking, a menu emerges as optimal ontrat,i.e. several options are o�ered and the player who has private information will hoose his preferredoption. The hosen option will normally not be what a benevolent planner with omplete informationwould assign. Hene, informational distortions exist and will redue welfare. The reason in a nutshellis that the agent reveals (some of) his private information by his hoie. This will not be ostless forthe prinipal who designs the menu: The agent reeives an informational rent. By distorting the menuaway from �rst best, the prinipal an redue this informational rent to his own bene�t.In the regulation example, a regulator will want a more e�ient �rm to produe a higher quantitythan a less e�ient �rm. But an e�ient �rm ould laim to be ine�ient and hoose the (low quantity)option intended for an ine�ient �rm from the menu. Sine the �rm is e�ient, it would make a pro�tby �misrepresenting�. By distorting the quantity intended for an ine�ient �rm, the regulator anmake suh misrepresenting less pro�table for an e�ient �rm. Hene, the regulator an save on theinformational rents of an e�ient �rm by distorting the menu option intended for an ine�ient �rmaway from �rst best.Single rossing2 is a tehnial assumption whih is usually made in hidden information models. Inone dimensional models, single rossing states that types3 an be ordered aording to their marginalrate of substitution between monetary transfers and the deision, e.g. produed quantity in the reg-ulation example above. With the usual quasilinear preferenes, single rossing is equivalent to a typeordering aording to marginal utilities.In the regulation example above, the �rm's ost funtion depends on quantity and type. Single1Adverse seletion models are sometimes also referred to as hidden information or sreening models.2The single rossing property is also referred to as Spene-Mirrlees ondition or sorting ondition.3A �type� is an agent with a spei� private information attribute, see Harsanyi (1967). In the regulation exampletypes orrespond to ost funtions of the �rm. 2



rossing means that higher types have lower marginal osts (for any admissible quantity). Singlerossing is violated if suh an ordering is impossible, e.g. a higher type has lower marginal osts forhigh quantities but higher marginal osts for low quantities.In a non-linear priing framework, single rossing would mean that higher types have a highermarginal utility at every possible quantity level. Now think of �xed line internet aess. Heavyinternet users will ertainly have a higher marginal utility from the �fth gigabyte of data than lightusers. If heavy users, however, also own smartphones with internet aess (and light users do not),light users will probably have a higher willingness to pay for the �rst 50 megabyte: They annot swithto their mobile devies to hek emails et.. Hene, single rossing would be violated.This paper analyzes an adverse seletion model in whih single rossing is violated. Agents havequasilinear preferenes and a one-dimensional type. The setting allows for a one time violation ofsingle rossing; e.g. for a given quantity, marginal osts are �rst in- and then dereasing in type.Without single rossing, loal inentive ompatibility does no longer guarantee global inentive om-patibility. Therefore, non-loal inentive ompatibility onstraints have to be taken into aount. Thepaper analyzes monotone solutions in this setup, e.g. situations in whih higher types produe higherquantities under the optimal ontrat. Su�ient onditions for the existene of a monotone solutionand an algorithm to alulate suh a solution are presented.With single rossing, there is no distortion at the top and the distortion for all types goes in thesame diretion, e.g. all types produe a quantity whih is weakly below their �rst best quantity. Ifsingle rossing is violated, both results no longer hold. The reason is that binding non-loal inentiveonstraints will ounterat the normal distortion stemming from loal inentive ompatibility and rentextration motives. A rough intuition for this result is the following: With single rossing, distortionsour beause the prinipal wants to lower the agent's informational rent. If a non-loal inentiveonstraint is violated, a ertain type's rent at �his ontrat� is too low ompared with another type'sontrat. To satisfy his non-loal inentive onstraint, his rent has to be inreased. Reduing thenormal distortion (or even distorting the deision in the opposite diretion) will result in suh aninrease.The following setion gives several examples of settings in whih single rossing is violated. Then theliterature is reviewed and the formal model is introdued. Setion 4 also states a su�ient ondition forthe existene of a monotone solution. Given existene, one an turn to analyzing the solution. Setion5 introdues neessary onditions whih have to hold at types where non-loal inentive onstraints arebinding. The ore of the paper are the setions 6 and 7: The former haraterizes monotone solutionswhile the latter fouses on the speial ase of monotone and ontinuous solutions. An explanation why3



the no-distortion-at-the-top property is not always satis�ed follows. Before onluding, I disuss someassumptions and point out di�erenes with solutions obtained in related problems in the literature.Most proofs are relegated to the appendix. 2. ExamplesThis setion illustrates why single rossing is violated in a number of reasonable eonomi settings. Aommon theme of the examples is that there are more than one input/option/relevant harateristi.It is then a priori not lear (and sometimes even unreasonable) that a higher type is �better� on alldimensions. But this is exatly what single rossing would require.Example 1: two fator prodution. Take a setting where a �rm or government has to ontratwith the provider of a good (input or publi good/infrastruture et.). If the prinipal is a government,this setting is mathematially equivalent to inentive regulation (ompare for example La�ont andTirole (1993)). Assume now that prodution uses variable prodution fators in �xed proportions.Costs of these fators an be proportional to output, e.g. energy osts and unskilled labor, whileother fators inrease osts onvexly in quantity, e.g. skilled labor (due to searh osts) and mahineutilization. Type indexes the possible prodution tehnologies and denotes whih of these two groupsof fators is used more e�iently by the �rm. A ost funtion representing this setting ould be4
c(q, θ) = θq +

q2

θ
+ γ(θ)where γ(θ) are (possibly type dependent) �xed osts. Whether marginal osts cq(q, θ) = θ+ 2q

θ
are in-or dereasing in type depends on q. Put di�erently, the ross partial derivative cqθ(q, θ) = 1 − 2q/θ2an hange sign and therefore single rossing is violated. The idea is simple: For low quantities, thelinear part of the ost funtion dominates marginal osts and therefore high types have higher marginalosts. For high quantities, the onvex part of the ost funtion is more relevant and therefore hightypes have lower marginal osts.In pratie, type ould represent whether a �rm uses a labor intensive or apital intensive produtiontehnology. A labor intensive prodution tehnology requires espeially unskilled labor whih an behired at a onstant market wage (linear part). A apital intensive tehnology requires less but moreskilled employees. Finding them is inreasingly di�ult and results therefore in onvexly inreasingosts.A seond interpretation of the ost funtion above ould apply in the ase of environmental regula-tion. Let the prinipal be a government designing a subsidy sheme to redue emissions. The deision4The alternative ost funtion c(q, θ) = θq + (1− θ)q2 + γ(θ) also violates single rossing.4



q is the amount of emission redution. Reduing emissions an be ahieved by lowering the ontent ofa dirty input in favor of a more expensive lean input. This is a linear ost. Alternatively, the emissionredution an be obtained by �ltering and other hanges in the prodution proess. This seond optionbeomes inreasingly ostly the more one has to rely on it. Hene, the onvex part of the ost funtion.The government does not know the �rm's prodution tehnology whih is its type θ. Depending onthe prodution tehnology, it is easier for the �rm to �lter or to substitute inputs.It should be mentioned that the ost funtion in this example an be viewed as a simpli�ed versionof the �exible �xed ost quadrati ost funtion suggested by Baumol et al. (1982). Beard et al.(1991) estimate suh a ost funtion for savings and loans assoiations. Interestingly, they allow fortwo unobservable types of prodution tehnology in their estimation. In table 5, Beard et al. (1991)report estimated osts for the two types (�mixtures� in their language) at di�erent quantity levels. Ifone interprets ost di�erenes between the output levels as marginal osts, it turns out that mixture 1has lower marginal osts at low output levels but higher marginal osts at high output levels. Hene,single rossing is violated.Example 2: hiring talent and produtivity. This example is in the ontext of ompensationof workers.5 The prinipal is the owner of a �rm and the agent a worker the �rm wants to hire. Forthe quality of the worker talent and e�ort are relevant, e.g. talent is what the worker produes in aregular working time like the 40 hours week and e�ort is the additional time he is willing to invest.Assume the worker reates value q = eθ+ T where T is his talent, e is the unobservable e�ort and θ ishis type. The owner of the �rm observes a publi signal, e.g. eduation, whih is a mix of talent andprodutivity (he does not observe T and θ diretly). To be preise, assume that the signal is σ = θ ∗T .Given this signal, a more produtive worker will have lower talent and vie versa. The produtionfuntion of the manager for a given signal is q = eθ + σ/θ where q is the quantity/value produed bythe worker. If osts of e�ort are e2 and the worker's preferenes are quasilinear in money, his utilityfuntion an be written as
u(q, θ) = w −

(q − σ/θ)2

θ2
(1)where w is wage. It is easy to hek that single rossing is violated. The intuition is that a low typean produe a low output q without muh e�ort just within the regular working time. Hene, hismarginal osts of e�ort (and therefore of q) are low. A high type already has to exert some e�ort toreah the same output level and therefore his marginal osts of e�ort (and q) are higher. Note herethat the ontrat is onditional on eduation, i.e. given σ a more produtive type will be less talented.For high output, where e�ort of both types is substantial, higher types have lower marginal osts sine5A similar example an be found in Araujo and Moreira (2010).5



they are more produtive.Example 3: ommon ageny. As already mentioned in Martimort and Stole (2009), violationsof single rossing an arise if more than one prinipal ontrat with the same agent. Interestingly,the utility funtion itself will satisfy single rossing (for a �xed deision with the other prinipal) andthe violation of single rossing results from the existene of multiple prinipals. This example tries toonvey the idea in a simpli�ed setup.The soure of hidden information in this example is the inability of �rms to know the exat pref-erenes of a ustomer. A �rm annot observe the preferenes of a ustomer but it an engage innon-linear priing, i.e. seond degree prie disrimination.Say, onsumers an buy two goods whih are imperfet substitutes: Good A is sold only by �rm
A while good B is available on a perfetly ompetitive market at a onstant per unit prie pB .6 Foronreteness, let the demand funtion for good B of a type θ onsumer be

qB(qA, θ) = θ(β − pB − δqA) (2)whih means that type rotates the inverse demand funtion outwards. The following quadrati utilityfuntion yields suh a demand funtion:
u(qA, qB , θ) = αqA + βqB −

γ

2θ
qA

2
−

1

2θ
qB

2
− δqAqB − pBqB − pA(qA)Firm A faes onsumers buying produt B aording to (2). By plugging (2) into the utility funtion,one an obtain utility as a funtion of qA and θ alone, i.e. v(qA, θ) = u(qA, qB(qA, θ), θ). This is theutility funtion �rm A has to take into aount in its pro�t maximization problem. Beause onsumersbuy also produt B, single rossing is violated:

vqAθ(q
A, θ) = uqAθ(q

A, qB(qA, θ), θ) + uqBθ(q
A, qB(qA, θ), θ)

∂qB(qA, θ)

∂qA
= qA

( γ

θ2
+ δ2

)

− δ(β − pB)Clearly, vqAθ is negative for low qA and positive for high qA. The reason for the violation of singlerossing is that high type onsumers have, on the one hand, a higher marginal willingness to paybeause of their high type (that is the γ
2θq

A2 term in the utility funtion). On the other hand, a hightype buys more of produt B whih redues his willingness to pay for produt A as the two goods aresubstitutes.Example 4: health insurane. This example is worked out in Boone and Shottmüller (2011)and therefore only skethed here. In health insurane, it is empirially doumented that people withhigh health risks have often little insurane overage. This annot be explained by a standard insurane6See Martimort and Stole (2009) for a model in whih the seond good is also o�ered by a strategially ating prinipal.6



model with single rossing. Boone and Shottmüller (2011) point out that an empirially observedorrelation between health risk and inome might lead to a violation of single rossing.In a nutshell, assume that risk is private information but that high risk agents are poorer. At fulloverage, that is indemnity insurane without dedutible, wealth does not matter and high risk agentswill (in expetation) onsume more are. Therefore, their marginal willingness to pay for overage ishigher. Now think of a situation without insurane overage: As health are is a normal good, poor,high risk agents will onsume less are when falling ill: They annot a�ord are. Beause they utilizeless, their marginal willingness to pay for insurane overage is less than the one of a rih, low riskagent. Consequently, it depends on the overage level whether higher types are willing to pay more orless for a marginal unit of insurane overage; single rossing is violated.Example 5: insurane with mean variane utility. An agent faes a risk of losing a (moneyequivalent) amount D with probability θ where θ is private information. His preferenes are given bythe mean variane utility funtion
u(q, θ) = θ(w − (1− q)D) + (1− θ)w − p− 1/2rθ(1− θ)(1− q)2D2where p is the insurane premium of an insurane overing fration q of the loss, w is initial wealthand r > 0 is a measure of risk aversion. The ross derivative uqθ = D+ (1− q)rD2(1− 2θ). If θ > 1/2and rD > 1, the ross derivative an hange sign depending on q. Hene, single rossing is violated.The intuition is that for θ > 1/2 a higher risk also implies less variane. Consequently, a highertype is on the one hand more eager to buy insurane beause he has a higher risk on the other handhe is less eager to buy insurane beause there is less variane in his payo�s. At full overage, i.e. for

q = 1, the payo� variane is zero and the latter e�et is no longer present. For lower overage levels,however, it might dominate. 3. LiteratureThe standard sreening model with single rossing is well known and explained in many textbooks,see for example Fudenberg and Tirole (1991) or Bolton and Dewatripont (2005). Surprisingly, theliterature on violations of single rossing in sreening models remains relatively sare.Some insights have been gained for disrete type insurane models with perfet ompetition amongprinipals. Several papers analyze settings where private information has two dimensions and an takeeither a high or a low value in eah dimension, i.e there are 2 × 2 types. In Smart (2000), the twodimensions are risk and risk aversion while in Wambah (2000) they are wealth and risk. Netzer andSheuer (2010) model an additional labor supply deision and the two dimensions are produtivity and7



risk. All three papers share a pooling result, i.e. if single rossing is violated two of the four types anbe pooled. Boone and Shottmüller (2011) show that with imperfet ompetition among prinipalsthere an even be an order reversal: Types with higher risk an have more but also less insuraneoverage if single rossing is violated.My paper will analyze a model with a ontinuum of types and one prinipal. As I will illustrate inthe next setion, the main tehnial di�ulty aused by a violation of single rossing are non-loallybinding inentive onstraints. In disrete type models one an take all inentive onstraints expliitlyinto aount. This is quite di�ult in a ontinuous type model sine a ontinuum of onstraints exist.Indeed the main tehnial hallenge is to handle those onstraints. Also some additional qualitativeresults emerge from the ontinuous type model, e.g. distortion above as well as below �rst best anddistortion at the top.Araujo and Moreira (2010) haraterize in a ontinuous type framework (inversely) U-shaped solu-tions in a setup where single rossing is not satis�ed. In these solutions, some ontrats are hosen bytwo types (�disrete pooling�). It turns out that in (inversely) U-shaped solutions non-loal inentiveonstraints are only binding between types hoosing the same ontrat from the menu. My paperomplements their work by haraterizing monotone solutions in the same model. The main tehnialdi�erene is that non-loal inentive onstraints an bind between types hoosing di�erent options fromthe menu. The solution in Araujo and Moreira (2010) features either a disontinuity or a bunhinginterval. My paper shows that this is not the ase for monotone solutions and therefore not a neessaryimpliation of a violation of single rossing.Violations of single rossing are also related to the literature on multidimensional sreening, seeArmstrong (1996) and Rohet and Chone (1998) for seminal ontributions and Rohet and Stole (2003)for a survey. As pointed out in the survey, �the problems arise not beause of multiple dimensionalityitself, but beause of a ommonly assoiated lak of exogenous type-ordering in multiple-dimensionalenvironments.� A violation of single rossing also onveys a lak of type-ordering. To make therelationship lear, think of a multidimensional, disrete type model. Clearly, one an reassign typesto a one-dimensional parameter but this reassigned type will regularly not satisfy single rossing.Consequently, an applied researher will often have the hoie between a multidimensional type modelor a one-dimensional type model violating single rossing. My paper provides tools to make the latterway feasible.The paper also relates to work relaxing the basi assumptions of the textbook model. Jullien(2000) allows for type dependent partiipation onstraints while Hellwig (2010) analyzes the ase ofirregular type distributions, i.e. distributions with mass points and zero densities. In setion 9 the8



solution obtained with a violation of single rossing will be ompared with the solutions obtained inthose papers. 4. ModelThere is a one-dimensional deision in a prinipal agent relationship whih is denoted by q ∈ R+.Furthermore, there is a monetary transfer t ∈ R. The agent's utility is π = t− c(q, θ) where θ ∈ Θ ≡

[θ, θ̄] ⊂ R is the type of the agent whih is his private information. The funtion c(q, θ) is assumedto be three times ontinuously di�erentiable with cq > 0, cqq > 0, cθ < 0.7 The prinipal's utility is
u(q, θ)− t and is two times ontinuously di�erentiable with uq > 0 and uqq ≤ 0. The prinipal has theprior distribution F (θ) with ontinuous density f(θ) > 0 for all θ ∈ [θ, θ̄].For example, the prinipal ould be the regulator of a natural monopolist and q ould be thequality (or quantity) of servie provided. The regulator might maximize expeted onsumer surpluswhih ould be q−p where p is the prie paid. The natural monopolist would have ost funtion c(q, θ)and maximize pro�ts. A higher type would orrespond to a more e�ient �rm in the sense that itsosts are lower than the osts of a lower type.By the revelation priniple, any general mehanism an also be implemented by a diret revelationmehanism in whih the agent truthfully reports his type. The task is to design a menu q(θ), imple-mented by transfers t(θ), whih is individually rational (ir) and inentive ompatible (i) for the agentand maximizes the prinipal's objetive under these two onstraints.Faed with a menu (q(θ), t(θ)), a type θ agent will maximize t(θ̂) − c(q(θ̂), θ) over his type an-nounement θ̂. If an implementable menu (q(θ), t(θ)) leads to rents/pro�ts π(θ), the envelope theoremand truthful revelation therefore require πθ(θ) = −cθ(q(θ), θ).Inentive ompatibility of a deision q(θ) requires in general for any θ, θ̂ ∈ Θ

Φ(θ, θ̂) ≡ π(θ)− π(θ̂)− c(q(θ̂), θ̂) + c(q(θ̂), θ) ≥ 0. (IC)Using the envelope ondition above, Φ(θ, θ̂) an be rewritten as
Φ(θ, θ̂) =

∫ θ̂

θ

cθ(q(t), t)− ct(q(θ̂), t) dt = −

∫ θ̂

θ

∫ q(θ̂)

q(t)
cqθ(s, t) ds dt.Consequently, (IC) is equivalent to

−

∫ θ̂

θ

∫ q(θ̂)

q(t)
cqθ(s, t) ds dt ≥ 0. (IC')7For the ase where cθ an hange sign (but single rossing is satis�ed) see Jullien (2000).9
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q(θ)(a) inverse U-shape solution θ

cqθ > 0

cqθ < 0
s(θ)

q(θ)

θ̂ θ(b) monotone solutionFigure 1: possible solution shapesSingle rossing in this model is equivalent to cqθ(q, θ) not hanging sign for any value of q and θ.But then inentive ompatibility in (IC') boils down to a simple monotoniity ondition on q(θ) (plusthe envelope ondition): If cqθ < 0, then inequality (IC') will hold whenever q(θ) is monotoniallyinreasing. If however cqθ an hange sign, this is no longer true. It remains true that q(θ) has to beinreasing (dereasing) at θ if cqθ(q(θ), θ) < (>)0. Otherwise, (IC') would be violated for types loseenough to θ. But this no longer implies global inentive ompatibility for two arbitrary types θ and θ̂.This paper fousses on a one-time violation of single rossing also used by Araujo and Moreira(2010): It is assumed that cqθ hanges sign only one for a given q (or a given θ). More preisely,I assume cqθθ > 0 and cqqθ < 0. Hene, there exists a stritly inreasing funtion s(θ) suh that
cqθ(s(θ), θ) = 0. The assumption on third derivatives are normally made to ensure onavity of theobjetive funtion and monotoniity of the deision, see for example Fudenberg and Tirole (1991).Here, however, they provide some struture on the way single rossing is violated.Araujo and Moreira (2010) �nd neessary onditions for the ase where the solution is inverselyU-shaped, see �gure 1a.8 Note that distint types are assigned the same deision. Consequently, theyhave to get the same transfer as well and the inentive ompatibility onstraint has to be bindingbetween those types. It turns out that non-loal inentive ompatibility onstraints are only bindingbetween suh disretely pooled types.The fous of my paper will be on the ase where the optimal deision is monotone.Although cqθ(q(θ), θ) < 0 for all θ, the violation of single rossing still plays a role in monotonesolutions. It follows from (IC') that one an represent inentive ompatibility as an integral over theshaded area in �gure 1b: If the integral of cqθ over this shaded area is negative, inentive ompatibility8The �gure is more shemati than re�eting the solution in Araujo and Moreira (2010): They show that the inverselyU-shaped solution typially displays a bunhing interval or a disontinuity.10



is satis�ed for θ and θ̂. Hene, the part where cqθ > 0 plays a role though the solution does not passit. The intuition is the following: Take two types θ and θ̂ with θ > θ̂. Type θ̂ is assigned a transferdeision pair (t̂, q̂) and likewise θ has pair (t, q) with q > q̂. When deiding whether he shouldmisrepresent, type θ will ompare the transfer di�erene t− t̂ with the ost di�erene c(q, θ)− c(q̂, θ).Note that the transfer di�erene does not depend on type while the ost di�erene does. With singlerossing, the ost di�erene is dereasing in type. If a type θ′ ∈ (θ̂, θ) with q′ ∈ (θ̂, q) is introdued,it follows that c(q, θ)− c(q̂, θ) < c(q, θ)− c(q′, θ) + c(q′, θ′)− c(q̂, θ′). On the other hand, for transfers
t− t̂ = t− t′ + t′ − t̂ holds. Therefore, inentive ompatibility between θ and θ̂ is implied by inentiveompatibility between θ and θ′ as well as between θ′ and θ̂. Evidently, loal inentive ompatibilityimplies non-loal inentive ompatibility beause single rossing implies that the ost di�erene isdereasing in type. Without the single rossing assumption, the ost di�erene c(q, θ) − c(q̂, θ) isnot neessarily dereasing in type and therefore loal inentive onstraints are not neessarily moredemanding than non-loal ones.Before turning to the analysis of the solution, some de�nitions and one assumption is needed. Ide�ne the �rst best solution as the solution to

max
q(θ)

u(q(θ), θ)− c(q(θ), θ)whih would be the optimal deision if the prinipal observed the agent's type. As a seond referenepoint, it is useful to look at the relaxed program. This is the program taking only loal inentiveompatibility into aount:
max
q(θ)

∫ θ̄

θ

{u(q(θ), θ)− c(q(θ), θ)− π(θ)}f(θ) dθ (RP)
s.t. : πθ(θ) = −cθ(q(θ), θ)

qθ(θ)cqθ(q(θ), θ) ≤ 0

π(θ) ≥ 0The �rst and seond onstraint are the loal inentive ompatibility onstraints. More spei�ally, the�rst onstraint is a �rst order ondition for inentive ompatibility and the seond onstraint is theso alled monotoniity onstraint. The third onstraint is the partiipation onstraint whih will bindonly for θ by the assumption cθ < 0. I will all the solution of (RP) the relaxed solution and denote itby qr(θ).Sine this paper fouses on the violation of single rossing in monotone solutions, the followingassumption is made: 11



Assumption 1. The relaxed program is stritly onave in q(θ) and the relaxed solution is stritlymonotonially inreasing and stritly above s(θ).Put di�erently, I assume that the monotoniity onstraint does not bind and the relaxed solutionis fully haraterized by the �rst order ondition. It is easy to show that uqq ≤ 0 and cqq ≥ 0 aresu�ient for onavity. For strit monotoniity and qr(θ) > s(θ), the following assumptions wouldbe su�ient: uqθ ≥ 0, qfb(θ) > s(θ) and the ommonly made monotone hazard rate assumption, i.e.
f(θ)/(1− F (θ)) non-dereasing in θ.Under assumption 1, it is routine to verify that the relaxed solution is haraterized by the �rstorder ondition

{uq(q(θ), θ)− cq(q(θ), θ)}f(θ) + (1− F (θ))cqθ(q(θ), θ) = 0. (3)Sine qr(θ) > s(θ), it follows that cqθ(qr(θ), θ) < 0. Therefore, (3) implies that qr(θ) ≤ qfb(θ) wherethe inequality is strit for all types but θ̄.As already indiated, solutions an be monotone or inversely U-shaped (or even rossing s(θ) witha disontinuous jump). It is therefore useful to have a su�ient ondition under whih the solution ismonotone. To get suh a su�ient ondition, a tehnial ondition has to be added to assumption 1.To state this tehnial ondition some �mirror images� have to be de�ned: Take a deision qbelow s(θ) and onsider mirroring this deision in two ways: First, mirror it along s(θ) suh that
∫ qs

q
cqθ(x, θ) dx = 0 where qs(q, θ) is the impliitly de�ned mirror image. Seond, mirror q along therelaxed solution qr suh that {u(q, θ) − c(q, θ)}f(θ) + (1 − F (θ))cqθ(q(θ), θ) is the same for q and itsmirror image qv(q, θ). Sine cθ(q, θ) and (RP) are onave in q, the two mirror images are well de�ned.Last de�ne qf (θ) < s(θ) suh that qs(qf (θ), θ) = qr(θ), i.e. qf (θ) is a kind of mirror image of therelaxed solution along s(θ).9Proposition 1. If qv(q, θ) ≥ qs(q, θ) for all q ∈ [0, qf (θ)] and all θ ∈ [θ, θ̄], then any deision funtion

q(θ) whih imposes deisions below s(θ) for some type is dominated by the following hanged deision
qc(θ) =











q(θ) if q(θ) ≥ s(θ)

qs(q(θ), θ) elseombined with transfers suh that πc
θ = −cθ(q

c(θ), θ).Proof. see appendixNote that the imposed ondition is automatially satis�ed for q lose to qf (θ) by assumption 1.Hene, the ondition roughly states that qs(q, θ) is not muh steeper in q than qv(q, θ). This holds,9If no qf (θ) ≥ 0 exists, take qf (θ) = 0. 12



for example, true if {u(q, θ) − c(q, θ)}f(θ) + (1 − F (θ))cθ(q(θ), θ) and cθ(·) are both symmetri in
q, i.e. if {u(qr(θ) − ∆, θ) − c(qr(θ) − ∆, θ)}f(θ) + (1 − F (θ))cθ(q

r(θ) − ∆, θ) = {u(qr(θ) + ∆, θ) −

c(qr(θ) + ∆, θ)}f(θ) + (1 − F (θ))cθ(q
r(θ) + ∆, θ) and cθ(s(θ) −∆, θ) = cθ(s(θ) + ∆, θ) for any ∆ asthen qvq (q, θ) = qsq(q, θ) = −1.In short, proposition 1 says that under the ondition qv(q, θ) ≥ qs(q, θ) the optimal deision ismonotone. This is not exatly true as proposition 1 does not establish existene of an optimal solution.Appendix C loses this loophole by showing that a solution exists.Given that qv(q, θ) ≥ qs(q, θ) is su�ient but not neessary for a monotone solution, this onditionwill not be used in the remainder of the paper where monotone solutions are haraterized.5. Neessary onditionsThis setion presents neessary onditions whih have to be met whenever a non-loal inentive on-straint is binding. Sine these onditions are only a slight generalization of those presented in Araujoand Moreira (2010), the presentation will be brief and more intuitive than formal.Take an optimal deision shedule q(θ) and let transfers be determined by loal inentive ompat-ibility, i.e. suh that πθ(θ) = −cθ(q(θ), θ) and π(θ) = 0. Furthermore, suppose that IC is binding fortwo types θ and θ̂, i.e. Φ(θ, θ̂) = 0. By inentive ompatibility, Φ(·) has to be non-negative for alltypes and therefore (θ, θ̂) ∈ argmin(s,t)Φ(s, t).Given that π(·) and c(·) are di�erentiable, the �rst order ondition with respet to θ has to hold:10

∂Φ(θ, θ̂)

∂θ
= −cθ(q(θ), θ) + cθ(q(θ̂), θ) ≤ 0 with �=� if θ < θ̄ (C1)In the same way the �rst order ondition for θ̂ is derived:

∂Φ(θ, θ̂)

∂θ̂
= qθ(θ̂)

(

−cq(q(θ̂), θ̂) + cq(q(θ̂), θ)
)

≥ 0 with �=� if θ̂ > θ (C2)Hene, θ̂ is either bunhed or marginal osts of θ and θ̂ are equal at q(θ̂).The interpretation of these two onditions is straightforward. Reall that πθ(θ) = −cθ(q(θ), θ) while
cθ(q(θ̂), θ) is how pro�ts of misrepresenting as θ̂ hange in the misrepresenting type θ. Then ondition(C1) says that pro�ts π(θ) should hange in type in the same way as misrepresentation-pro�ts hangein type. For a graphial interpretation, it is worthwhile to rewrite (C1) as

∫ q(θ)

q(θ̂)
cqθ(q, θ) dq = 0 (C1')10It turns out that non-loal inentive ompatibility onstraints are only downward binding, see lemma 1. For thisreason as well as notational onveniene, I ignore the possibilities Φ(θ, θ̄) = 0 and Φ(θ, θ̂) = 0 already here.13



whih means that the right hand side boundary of the shaded area in �gure 1b is zero when weightedwith cqθ. If the integral above was positive and Φ(θ, θ̂) = 0, then inentive ompatibility would beviolated for θ + ε and θ̂ as Φ(θ + ε, θ̂) ≈ Φ(θ, θ̂) − ε
∫ q(θ)

q(θ̂)
cqθ(q, θ) dq, i.e. the �shaded area� for θ + εwould be the same plus some area having the �wrong� sign.If the integral above is negative, the same applies aordingly for θ− ε, i.e. Φ(θ− ε, θ̂) ≈ Φ(θ, θ̂) +

ε
∫ q(θ)

q(θ̂)
cqθ(q, θ) dq.The seond ondition simply says that either θ̂ is bunhed with other types or also the weightedlower boundary of the shaded area in �gure 1b is zero, i.e.

∫ θ

θ̂

cqt(q(θ̂), t) dt = 0. (C2')Again, �gure 1b illustrates the idea. If the integral was positive, inentive ompatibility would beviolated between θ and θ̂ − ε as Φ(θ, θ̂ − ε) ≈ Φ(θ, θ̂)− εqθ(θ̂)
∫ θ

θ̂
cqt(q(θ̂), t) dt.The graphial interpretation also allows to quikly generalize these onditions at points of dison-tinuity and bunhing. This situation is depited in �gure 2. Assume Φ(θ, θ̂i) = 0 for i = 1, 2. To keepinentive ompatibility for types lose to θ, θ̂1 and θ̂2 the following onditions have to hold:11� ∫ q−(θ)

q(θ̂i)
cqθ(q, θ) dq ≥ 0 as otherwise Φ(θ − ε, θ̂i) < 0� ∫ q+(θ)

q(θ̂i)
cqθ(q, θ) dq ≤ 0 as otherwise Φ(θ + ε, θ̂i) < 0� ∫ θ

θ̂1
cqt(q(θ̂), t) dt ≤ 0 as otherwise Φ(θ, θ̂1 − ε) < 0� ∫ θ

θ̂2
cqt(q(θ̂), t) dt ≥ 0 as otherwise Φ(θ, θ̂1 + ε) < 0Given (C1) and (C2), one an use variational alulus to derive a third neessary ondition fortypes at whih the inentive onstraint binds. While (C1) and (C2) are purely driven by inentiveompatibility, this third ondition will be derived from the prinipal's optimization. The idea is to per-turb the optimal deision around θ and θ̂ suh that the two neessary onditions are still satis�ed. Foran optimal deision the derivative of the prinipal's virtual valuation with respet to the perturbationparameter has to be zero. The method di�ers only slightly from the one used in Araujo and Moreira(2010) for disretely pooled types and therefore the steps are relegated to appendix A. The followingvariational ondition results:

[uq(q(θ), θ)− cq(q(θ), θ)]f(θ)

cqθ(q(θ), θ)
+ 1− F (θ) =

[uq(q(θ̂), θ̂)− cq(q(θ̂), θ̂)]f(θ̂)

cqθ(q(θ̂), θ̂)
+ 1− F (θ̂) (C3)The interpretation of this ondition will beome learer later on.11I use the supersript ��� (�+�) to indiate limits from below (above).14



θ

cqθ > 0

cqθ < 0
s(θ)

q(θ)

θ̂1 θ̂2 θFigure 2: neessary onditions at disontinuity6. Monotone solutionThe remainder of the paper deals with the haraterization of monotone solutions. As pointed outbefore, the main di�ulties are non-loally binding inentive onstraints. The following two lemmatashow that only a ertain subset of non-loal inentive onstraints an be binding. Lemma 1 impliesthat inentive onstraints annot be upward binding in monotone solutions. Put di�erently, no typewill be indi�erent between the ontrat designated for him and the ontrat of a higher type. Theonly possible way a non-loal inentive onstraint an be binding is downward, i.e. a type might beindi�erent between his ontrat and the ontrat of a lower type.Lemma 1. If q(θ) ≥ s(θ) and q(θ) is loally inentive ompatible, then no type wants to (non-loally)misrepresent upwards.Proof. Reall that loal inentive ompatibility requires monotoniity of q(θ), i.e. q(θ) has to bemonotonially inreasing as q(θ) ≥ s(θ). Now take θ̂ > θ. Inentive ompatibility requires
Φ(θ, θ̂) ≡ π(θ)− π(θ̂)− c(q(θ̂), θ̂) + c(q(θ̂), θ) ≥ 0 (4)Beause of loal inentive ompatibility, this an be rewritten as

∫ θ̂

θ

ct(q(t), t)− ct(q(θ̂), t) dt = −

∫ θ̂

θ

∫ q(θ̂)

q(t)
cqt(s, t) ds dt ≥ 0But the last inequality holds automatially sine q(θ) ≥ s(θ) and qθ(θ) ≥ 0. This implies that theintegrand is non-positive for all (s, t) in question. Figure 3a gives a graphial representation of thisfat. 15



θ

cqθ > 0

cqθ < 0
s(θ)

q(θ)

θ θ̂(a) no upwards binding θ

cqθ > 0

cqθ < 0
s(θ)

q(θ)

θ4 θ3 θ2 θ1(b) no overlapFigure 3: non-binding onstraintsThe intuition for lemma 1 is the same as in models with single rossing. A higher deision inreasesthe osts for higher types less than for lower types. For a low type, this holds true for all deisions abovehis own. Loal inentive ompatibility indues transfer di�erenes making higher types indi�erentbetween their deision and a marginally higher deision. A lower type will fae the same transferdi�erenes but higher ost di�erenes when opting for a higher deision. Therefore, loal inentiveompatibility of higher types implies that low types do not want to misrepresent upwards non-loally.The following lemma puts more struture on the ways inentive ompatibility onstraints an bind.It states that binding non-loal inentive onstraints annot overlap. Before, stating the lemma oneremark on wording: I say a non-loal inentive onstraint binds from θ to θ̂ if Φ(θ, θ̂) = 0.Lemma 2. Assume the solution is monotone. If the non-loal inentive onstraint binds from θ to
θ̂, it annot bind from any θ′ ∈ [θ̂, θ) to any θ̂′ 6∈ [θ̂, θ). Neither an it bind for any θ̂′′ ∈ (θ̂, θ] and
θ′′ 6∈ (θ̂, θ). (assuming that not all relevant types are bunhed)Proof. The proof is by ontradition. Suppose, ontrary to the lemma, there are types θ1 > θ2 ≥

θ3 > θ4 with Φ(θ1, θ3) = 0 and Φ(θ2, θ4) = 0. Then the inentive onstraint between θ1 and θ4 will be

16



θ

cqθ > 0

cqθ < 0
s(θ)

q(θ)

θ1θ0θ̂0θ̂1 θ̂3 θ̂2 θ2 θ3Figure 4: how inentive onstraints an bindviolated, i.e. Φ(θ1, θ4) < 0:
Φ(θ1, θ4) = −

∫ θ1

θ4

∫ q(t)

q(θ4)
cqt(s, t) ds dt

= −

∫ θ2

θ4

∫ q(t)

q(θ4)
cqt(s, t) ds dt−

∫ θ1

θ2

∫ q(θ3)

q(θ4)
cqt(s, t) ds dt−

∫ θ1

θ2

∫ q(t)

q(θ3)
cqt(s, t) ds dt

= −

∫ θ2

θ4

∫ q(t)

q(θ4)
cqt(s, t) ds dt−

∫ θ1

θ2

∫ q(θ3)

q(θ4)
cqt(s, t) ds dt

+

∫ θ2

θ3

∫ q(t)

q(θ3)
cqt(s, t) ds dt−

∫ θ1

θ3

∫ q(t)

q(θ3)
cqt(s, t) ds dt

= −Φ(θ2, θ3)−

∫ θ1

θ2

∫ q(θ3)

q(θ4)
cqt(s, t) ds dt < 0The �rst and seond equality are simple splitting up the integral steps (and an readily be seenin �gure 3b), the third uses the fat that Φ(θ1, θ3) = Φ(θ2, θ4) = 0 and the last inequality followsfrom the inentive ompatibility between θ2 and θ3 as well as the following idea: By the bindingonstraint between θ2 and θ4 and the fat that θ2 is interior, ∫ q−(θ2)

q(θ4)
csθ(s, θ2) ds ≥ 0 holds by C1(with equality if q(θ) is ontinuous at θ2). By the monotoniity of q(·), q(θ3) ≤ q−(θ2) and therefore

∫ q(θ3)
q(θ4)

csθ(s, θ2) ds ≥ 0 (see �gure 3b). The inequality above follows then from cqθθ ≥ 0.As a speial ase, i.e. with θ2 = θ3, the preeding lemma inludes the following: If θ is indi�erentbetween his and θ̂'s ontrat, i.e. Φ(θ, θ̂) = 0, then no other type θ′ is indi�erent between his ontratand θ's ontrat, i.e. Φ(θ′, θ) > 0 for all θ′ ∈ Θ \ θ. Put di�erently, inentive ompatibility an bindnon-loally from a type or to a type but not both. Figure 4 summarizes the two previous lemmata byshowing how non-loal inentive ompatibility onstraints an bind in a monotone solution.One of the ontributions of this paper is that a violation of single rossing an a�et the solution17



without leading to irregularities, i.e. disontinuities or bunhing. The following lemma shows thatsome irregularities an be ruled out on the grounds of inentive ompatibility alone.Lemma 3. Assume a non loal inentive onstraint binds from θ to θ̂, i.e. Φ(θ, θ̂) = 0. The deision isontinuous at θ̂ if θ̂ is not the boundary type of a bunhing interval. Furthermore, θ annot be bunhedif the deision is ontinuous at θ and θ < θ̄.Proof. see appendixAfter these tehnial results, it is possible to obtain a qualitative result of pratial importane. Ifthe solution is monotone, non-loal inentive ompatibility might require �distortions� that are unusual:With single rossing, loal inentive onstraints are downward binding. This explains why the relaxedsolution is below the �rst best deision. With single rossing, a high type has lower marginal oststhan a low type. By distorting the low type's deision downward, the ost advantage of the high typeis redued, i.e. the low type's deision beomes less attrative. Consequently, the rent paid to the hightype an be lower without induing misrepresentation. Without single rossing, it is no longer learthat a high type has lower marginal osts than a low type at the low type's deision. Figure 1b, forexample, illustrates that ∫ θ

θ̂
cqθ(q(θ̂), t) dt = cq(q(θ̂), θ)−cq(q(θ̂), θ̂) ould be positive. Therefore, makingthe low type's ontrat unattrative might require inreasing the low type's deision. Informationaldistortion from loal and non-loal inentive onstraints will then go in opposite diretions. Thefollowing proposition shows that this indeed the ase.Proposition 2. If the optimal deision is monotone, it will be above the relaxed solution, i.e. if q(θ)monotonially inreasing, then q(θ) ≥ qr(θ).Proof. see appendixThe previous proposition highlights how violations of non-loal i are dealt with under monotonesolutions. This an also be illustrated with �gure 1b. Inentive ompatibility is violated if the greyarea weighted by cqθ is positive. To satisfy inentive ompatibility one an raise q for all types between

θ̂ and θ. The additional grey area features cqθ < 0 and therefore the inentive problem is mitigated.One noteworthy point is that the inentive onstraint is mainly relaxed by inreasing q for typesat whih the inentive onstraint is non-binding; i.e. if i is binding from θ′ to θ̂′, it is less q(θ′) and
q(θ̂′) that has to be inreased but q for the types between θ̂′ and θ′. To see the intuition, reall that
πθ(θ) = −cθ(q(θ), θ) and that cqθ(q(θ), θ) < 0. Therefore, inreasing q will raise the slope of the rentfuntion π(θ). Inreasing q for types in (θ̂′, θ′) will therefore inrease the rent of θ′ at his assignedmenu point. Obviously, the non-loal inentive onstraint is relaxed.The last paragraph illustrates that non-loal inentive onstraints are potentially di�ult to handle:The deision of a type is not only in�uened by the inentive onstraints binding for him but also by18



binding inentive onstraints of other types. The following theorem strutures this intuition andharaterizes the solution.Theorem 1. A monotone solution is haraterized by the equation
(uq(q(θ), θ)− cq(q(θ), θ))f(θ) + (1− F (θ))cqθ(q(θ), θ) = η(θ)cqθ(q(θ), θ) (5)where η(θ) is a non-negative funtion with the following properties:� η(θ) is onstant on eah interval of types for whih non-loal inentive onstraints are not bindingand the deision is stritly inreasing.� η(θ) is non-dereasing at types θ̂ to whih non-loal inentive onstraints are binding whenever θ̂is not bunhed.� η(θ) is non-inreasing at types from whih non-loal inentive onstraints are binding.� η(θ̄) is zero if no non-loal inentive onstraint is binding from θ̄.� η(θ) is zero if no non-loal inentive onstraint is binding to θ.Proof. see appendixBefore giving an intuitive interpretation to η(θ), let me brie�y sketh the idea behind the proofof the theorem. Given the solution q(θ), one an simply de�ne η(θ) by (5). The properties of η(θ)are derived by showing that q(θ) ould be hanged in a way that (i) is inentive ompatible and (ii)inreases the prinipal's payo� if these properties were not satis�ed. Figure 5 shows feasible hangeswhen a non-loal inentive onstraint is binding from θ′ to θ̂′. Inreasing the deision for types slightlybelow θ′ will relax (or not a�et) binding non-loal inentive onstraints. Sine this hange relaxes theinentive onstraints from types above θ′ to types below θ′, it is then feasible to assign types slightlyabove θ′ a lower deision, see �gure 5. Note that lemma 2 is essential for feasibility as it assuresthat no non-loal inentive onstraint is binding to types slightly above θ′. It an then be shownthat suh a feasible hange would inrease the prinipal's payo� if η(θ) was inreasing at θ′. At θ̂, adi�erent hange in the deision is feasible, see �gure 5, whih an be used to show that η(θ) annotbe dereasing at θ̂. At types where non-loal inentive onstraints are lax, both kind of hanges arefeasible and onsequently η(θ) has to be onstant.The properties of η(θ) have an intuitive interpretation. The left hand side of (5) measures by howmuh the prinipal's payo� is hanged when marginally inreasing q(θ). Marginally inreasing q(θ) willalso relax all non-loal inentive onstraints binding from types θ′ > θ to types θ̂′ < θ, see �gure 1b. Asthese inentive onstraints an be expressed as integrals over cqθ (see equation (IC')), the �amount� by19



θ

cqθ > 0

cqθ < 0

qc(θ̂)

qc(θ)

s(θ)

q(θ)

θ̂′ θ′Figure 5: feasible hangeswhih those non-loal inentive onstraints are relaxed is given by cqθ(q(θ), θ) whih an be found onthe right hand side of (5). Consequently, η(θ) ould be interpreted as the shadow value of all non-loalinentive onstraints binding from types θ′ > θ to types θ̂′ < θ. These binding onstraints are thesame for all types in an interval of types for whih non-loal inentive onstraints are lax, see �gure 4.This explains the �rst property of η(θ).The other properties an also be explained by the shadow value interpretation of η(θ). If a non-loalinentive onstraint is binding to a type θ̂, then there are more non-loal inentive onstraints binding�over� θ̂ + ε than �over� θ̂ − ε.12 Consequently, the shadow value of non-loal inentive onstraintsbinding over a type has to be higher for θ̂+ ε than for θ̂− ε. Put di�erently, inreasing q(θ̂+ ε) relaxesmore non-loal inentive onstraints than inreasing q(θ̂ − ε).Also the last two properties are straightforward: Inreasing the deision of the boundary types doesnot a�et non-loal inentive onstraints of other types.Furthermore, the interpretation as shadow value provides some intuition for the neessary ondition(C3) whih basially says that η(θ) = η(θ̂) when a non-loal inentive onstraint is binding from θ to θ̂.This makes sense in light of lemma 2. Beause there is no overlap in binding inentive onstraints, thenon-loal inentive onstraints binding over θ are the same as the ones binding over θ̂. Consequently,the shadow value of relaxing those onstraints is the same for the two types.Theorem 1 establishes what happens at types where non-loal inentive onstraints are binding(or lax). Here I want to argue that non-loal inentive onstraints are typially binding from and tointervals of types. Put di�erently, there are intervals [θ0, θ1] and [θ̂1, θ̂0] suh that a non-loal inentive12With binding �over� θ I mean binding from a type θ′ > θ to a type θ̂ < θ.20



onstraint is binding from eah θ′ ∈ [θ0, θ1] to some θ̂′ ∈ [θ̂1, θ̂0]. From theorem 1, it follows that
η(θ′) = η(θ̂′) and η(θ) is inreasing (dereasing) on [θ̂1, θ̂0] (on [θ0, θ1]). The intuition for this strutureis the following: Take types θ′ and θ̂′ suh that a non-loal inentive onstraint between θ′ and θ̂′ isviolated under the relaxed solution. Proposition 2 indiates that the deision of the types between θ̂and θ′ is inreased to establish inentive ompatibility. The usual optimization intuition suggests thatit should be optimal to inrease the deision for all those types by �the same amount.�13 However,this is not possible beause of inentive ompatibility onstraints: Clearly, the deision of types θ′ − εannot be inreased disretely beause of the monotoniity onstraint at θ′. Lemma 3 establishes thatthe monotoniity onstraint annot even be binding for θ′ as then the non-loal onstraint from θ′ − εto θ̂′ would be violated. Lemma 3 also makes lear that the deision should not jump at θ̂′ as otherwisethe non-loal onstraint from θ′ to θ̂′ + ε would be violated. One ould now onjeture that non-loalinentive onstraints are binding from θ′ not only to θ̂′ but also to slightly higher types and�with thesame logi�from types slightly below θ′ to θ̂′. However, it is not di�ult to show that the inentiveonstraint between θ′ − ε and θ̂′ + ε would be violated in this ase. Consequently, one is left with theinterval struture desribed above where non-loal inentive onstraints are binding from types slightlybelow θ′ to types slightly above θ̂′.The following lemma takes another perspetive on the struture by establishing that non-loalinentive onstraints annot bind at a �nite number of interior types. With the additional proper-ties established in the lemma, one should indeed expet the set of types where non-loal inentiveonstraints bind to ontain an interval.14Lemma 4. If the optimal solution is monotone and the relaxed solution is not implementable, non-loal inentive onstraints annot bind only from a �nite number of interior types to a �nite numberof interior types. Even stronger, the set of types from (to) whih non-loal inentive onstraints bindannot onsist of isolated interior types.15The solution an be hosen suh that (i) the set of types from whih non-loal inentive onstraintsare binding is losed and (ii) the set of types to whih non-loal inentive onstraints are binding islosed.Proof. see appendix13Theorem 1 on�rms this intuition by establishing that η(θ) is onstant at types where non-loal inentive onstraintsare lax.14Stritly speaking, the lemma leaves the option that non-loal inentive onstraints are binding at a Cantor set ofinterior types. As the following results do not depend on this arti�ial looking ase, I will ignore this possibility andspeak of intervals in the remainder of the paper.15Isolated means here that for eah type θ from (to) whih a non-loal inentive onstraint binds, there exists aneighborhood of θ in whih non-loal inentive onstraints are lax for all types but θ.21



Some of the properties of η(θ) in theorem 1 hold only at types where the deision is stritlyinreasing. The reason is that, the way (5) is written, η(θ) aptures not only the e�et of non-loalinentive onstraints but also the e�et of the monotoniity onstraint. If one wants to avoid thisluttering of e�ets, it is straightforward to introdue a monotoniity parameter ν(θ) whih apturesthe e�et of the monotoniity onstraint. In this ase it is easy to see that the properties of η(θ)desribed in theorem 1 extend also to bunhed types. Instead of (5) the solution would then beharaterized by
νθ(θ) = (uq(q(θ), θ)− cq(q(θ), θ))f(θ) + (1− F (θ)− η(θ))cqθ(q(θ), θ)where ν(θ)qθ(θ) = 0 for all θ ∈ Θ, i.e. ν(θ) orresponds to the Lagrange parameter of the monotoniityonstraint. If the start and ending type of a bunhing interval are denoted by θbs and θbe, then obvi-ously ∫ θbe

θbs
νθ(θ) dθ = 0. As desribed in the existing literature on ironing, see Guesnerie and La�ont(1984) or the exposition in Fudenberg and Tirole (1991), the bunhing interval is haraterized by thislast ondition and the endpoint onditions ν(θbs) = ν(θbe) = 0. The following lemma formalizes thedisussion of the last paragraph.Lemma 5. If types in the interval (θbs, θbe) are bunhed in the optimal solution, then there exists afuntion η(θ) whih satis�es the properties of theorem 1 also for bunhed types. In partiular, η(θ)is non-dereasing on (θbs, θ

b
e) and onstant if no non-loal inentive onstraint binds to the bunhedtypes. Furthermore, η(θ) satis�es (i) η(θ) = η(θ̂) if Φ(θ, θ̂) = 0 and (C1') as well as (C2') hold, (ii)

∫ θbe
θbs

νθ(θ) dθ = 0 with νθ(θ) de�ned as above.Proof. see appendix 7. Continuous solutionsThis setion has two goals: First, to provide su�ient onditions under whih a monotone solution isontinuous and, seond, to introdue an algorithm for determining suh a ontinuous solution.The �rst su�ient ondition for ontinuity is loosely based on the idea of having a one-to-onerelationship between η and q for a given type θ; i.e. the idea that for a given type θ and η(θ) > 0,equation (5) yields a unique solution for q. The ondition in the proposition ensures this and alsoasertains that this relationship is monotoni, i.e. a higher η(θ) results in a higher q.Proposition 3. A monotone solution is ontinuous if
uqq(q, θ)− cqq(q, θ)

cqqθ(q, θ)
>

uq(q, θ)− cq(q, θ)

cqθ(q, θ)
(6)22



holds for all types and all q ≥ qfb(θ).16Proof. see appendixHene, if the soial objetive u(q, θ) − c(q, θ) is onave enough or if the ross derivative cqθ(q, θ)is in absolute value large enough (at the �rst best deision), the optimal deision will be ontinuous.Take for example the ost funtion in example 1 in setion 4 and assume that u(q, θ) = βq. It turnsout that (6) is equivalent to the ondition for qfb(θ) > s(θ), i.e. β > 2θ̄.17The following proposition gives an alternative ondition under whih the optimal solution is belowthe �rst best deision. Having a solution below �rst best turns out to be su�ient for ontinuity andstrit monotoniity of the solution (under a standard monotone hazard rate assumption). This is initself remarkable. As the relaxed solution is below �rst best, one should expet the solution to bebelow �rst best whenever non-loal inentive onstraints are not violated �too muh� by the relaxedsolution. Hene, there is a broad lass of problems in whih the solution will be stritly monotone andontinuous. Furthermore, the proof of the following proposition shows that the property holds alsoloally. That is, if the deision is below �rst best on some interval (θ1, θ2), then the deision will bestritly monotone and ontinuous on (θ1, θ2).Before stating the proposition some additional notation is needed. De�ne qm(θ) suh that cθ(qfb(θ), θ) =
cθ(q

m(θ), θ). Hene, qm(θ) is a mirror image of qfb(θ) along s(θ) with respet to cθ(q, θ).Proposition 4. Assume that qm(θ) is non-dereasing and that there is no distortion at the top.18Then the optimal solution is below �rst best and ontinuous. The optimal solution is stritly inreasingat all types where it is below �rst best if f(θ)/(1− F (θ)) is non-dereasing and uqθ ≥ 0.Proof. see appendixOne example for a lass of funtion where qm(θ) is inreasing are ost funtions of the form c(q, θ) =

θq + φ(q − αθ) + γ(θ) where φ(·) is a funtion of whih the �rst three derivatives are positive.19 Anyinreasing and onave bene�t funtion u(q, θ) with uqθ = 0 and qfb(θ) > s(θ) yields an inreasing
qm(θ).Note that in many appliations uqθ = 0 will hold. For example, in regulation models, labor marketmodels and monopoly priing, this property will typially hold beause the prinipal's utility dependsonly on the deision and the transfer and not diretly on the agent's type.16Obviously, it is enough if the ondition holds for all q ∈ [qfb(θ), q̄] where q̄ is de�ned as in appendix C.17In fat, this also holds true if q2 in the ost funtion is replaed by any inreasing and onvex funtion.18See the following setion for a simple su�ient ondition for no distortion at the top.19The interpretation of this ost funtion is that there is a �normal sale� of αθ. Produing above this normal saleis inreasingly ostly. Type re�ets a tradeo� between the size of the normal sale and marginal ost when produingwithin the normal sale. 23



Now it is time to turn to the issue of alulating a solution. In priniple, the solution is alreadydesribed by (5), the properties of η(θ) and the neessary onditions C1, C2 and C3. If a non-loalinentive onstraint binds from a type θ, the three neessary onditions ould be used to determine θ̂,
q(θ) and q(θ̂) (assuming that there is a unique solution). If non-loal inentive onstraints are lax at atype θ, (5) an be used to alulate q(θ) where η(θ) equals η(θ̂′) with θ̂′ being de�ned as the next lowertype to whih a non-loal inentive onstraint is binding. While nothing is wrong with this desription,it might be burdensome to alulate a solution in this way. Hene, a more strutured alternative toobtain a ontinuous solution might be helpful. This alternative will also give some additional insightsinto the logi behind the solution. The algorithm is based on the following proposition.Proposition 5. De�ne Φη(θ, θ̂) as Φ(θ, θ̂) under q̃(θ) where q̃(θ) is derived from

{uq(q, θ)− cq(q, θ)}f(θ) + (1− F (θ)− η)cqθ(q, θ) = 0.If the inentive onstraint binds between θ′ and θ̂′ in a ontinuous solution q(θ), then (θ′, θ̂′) minimize
Φη(θ, θ̂) on [θ̂′, θ′] where η = η(θ′) = η(θ̂′). Furthermore, Φη(θ′, θ̂′) < Φη(θ′′, θ̂′′) for any θ′′ > θ′ and
θ̂′′ < θ̂′.Proof. see appendixTo get a feeling for this proposition take η = 0. Then q̃(θ) = qr(θ). Denote the global minimizer of
Φ0(θ, θ̂) by (θr, θ̂r). Although a little extra work is needed, the following result follows almost diretlyfrom proposition 5:Corollary 1. If the relaxed solution is not implementable, the non-loal inentive onstraint from θrto θ̂r will bind in the optimal deision. If one of the two types (both) is interior, his (their) optimaldeision is the relaxed deision; i.e. q(θ) = qr(θ) or (and) q(θ̂) = qr(θ̂) respetively.Proof. see appendixThe proposition then says that a similar logi applies for all pairs (θ′, θ̂′) at whih inentive om-patibility is binding: One only has to replae qr(θ) in the orollary by the orresponding q̃(θ). This q̃is the deision that would result if all types had the same η(θ) and this η(θ) would equal η(θ′) in theoptimal deision.The last proposition in onnetion with theorem 1 gives a method for determining q(θ).Solve (5) for q as a funtion of type θ and η. Plugging this q(θ, η) into Φ(·) yields a funtion
Φη(θ, θ̂) whih an be minimized over θ and θ̂ yielding θ(η) and θ̂(η) as minimizers. There ouldbe several pairs (θ(η), θ̂(η)) loally minimizing Φη(θ, θ̂). Relevant is eah pair (θ, θ̂) (i) that globallyminimizes Φη(·) on the interval [θ̂, θ], (ii) for whih no Φη(·) minimizer (θ′, θ̂′) with θ′ > θ, θ̂′ < θ̂ and
Φη(θ′, θ̂′) < Φη(θ, θ̂) exists. For now, assume there is only one suh relevant pair.24



Under the optimal deision, the onstraint will bind from θ(η) to θ̂(η) for all η ∈ [0, η̄] where η̄is determined by Φη(θ(η), θ̂(η)) = 0. The optimal deision for types θ where the onstraint binds isgiven by q(θ, η) where η is suh that θ = θ(η). Types for whih the onstraint does not bind an besorted into two ategories: First, types θ suh that non-loal inentive onstraints do not bind fromany type above θ to any type below θ. These types simply have q(θ) = qr(θ). Seond, types θ suhthat the onstraint is binding from some θ′ > θ to some θ̂′ < θ. These types have η(θ) equal to
η(inf{θ′ : Φ(θ′, θ̂′) = 0 with θ′ > θ > θ̂′}), i.e. their η is the same as the one of the next lowest type towhih a non-loal inentive onstraint binds. Their q(θ) is then q(θ, η(θ)).One remark on the possibility that several relevant pairs (θ(η), θ̂(η)) exist. For example, say thereexist the pairs (θ1(η), θ̂1(η)) and (θ2(η), θ̂2(η)) both satisfying (i) and (ii) above. The non-loal inentiveonstraint ould in this ase bind from an interval [θ0, θ1] to the interval [θ̂1, θ̂0] as well as from theinterval [θ2, θ3] to the interval [θ̂3, θ̂2] where θ̂1 < θ̂0 < θ0 < θ1 < θ̂3 < θ̂2 < θ2 < θ3; see �gure 4 foran illustration. Indeed one has to be a bit more preise in this ase: There will be di�erent η̄ for thetwo �brakets� of binding inentive onstraints. In this ase η(θ) will not be single peaked. Hene, thealgorithm will then be applied to the two brakets separately and nothing else hanges.A seond remark has to be made with regard to bunhing. Some types might have an ironed outsolution. This solution is then not q(θ, η(θ)) as desribed above but an ironed out version of it. Theondition for determining η̄, i.e. Φη(θ(η), θ̂(η)) = 0 has to hold for the ironed out deision wheneverironing is relevant. If the monotone hazard rate holds and uqθ ≥ 0, one does not have to worry aboutironing as long as η ≤ 1 − F (θ(η)): This implies q(θ) ≤ qfb(θ) for all types for whih bunhing ouldhave been possible and the deision will be stritly inreasing (see the proof of proposition 4).The algorithm is illustrated with a numerial example in the following setion.8. Distortion at the topIf the non-loal inentive onstraint binds from θ̄, something unusual an happen. Reall that theneessary ondition (C1) might hold with inequality at θ = θ̄. It is therefore possible that non-loalinentive onstraints bind from θ̄ to several non-bunhed θ̂ even if the solution is ontinuous. Notethat this is impossible for interior types: For a given q(θ), (C1) and (C2) will uniquely determine θ̂and q(θ̂).Now onsider the ase where the non-loal inentive onstraint binds not only to several but to amass of types θ̂ (or to θ as will be shown below). Then the shadow value of the onstraint η(θ) willbe stritly positive and bounded away from 0 for types slightly below θ̄. Hene, these types have a25



deision q(θ) whih is at least ε away from their relaxed deision qr(θ) for some ε > 0. Obviously, thesame has then to apply for θ̄ beause of the monotoniity onstraint. Put di�erently, η(θ̄) > 0 andtherefore q(θ̄) is distorted: There is distortion at the top.The algorithm desribed above works also in this situation. The minimizer θ(η) will then be theboundary type θ̄. The deision of θ̄ and his shadow value are determined by the highest θ̂ to whih hisnon-loal inentive onstraint binds. At this θ̂ also ondition (C1) holds with equality (if θ̂ is above θ).It should be pointed out that distortion at the top is a generi property. Put di�erently, therewill still be distortion at the top if, for example, the distribution of types is slightly perturbed. Byproposition 5, distortion at the top implies that θ̄ will minimize Φη(θ, θ̂) for all η < η̃ for some η̃ > 0.
Φη(θ, θ̂) is ontinuous in q(θ, η) whih in turn is ontinuous in the density f(θ). Therefore, θ̄ will remainglobal minimizer of Φη(θ, θ̂) under minor perturbations of the density. Consequently, distortion at thetop has to be generi by proposition 5.A natural question is whether there is a su�ient ondition for no distortion at the top. Indeedorollary 1 allows to formulate suh a ondition. If θ̄ is not the global minimizer of Φr(θ, θ̂) where
Φr(·) is Φ(·) under the relaxed solution qr(·), then non loal inentive onstraints annot bind from θ̄.Therefore, the relaxed deision is optimal for θ̄ implying that q(θ̄) = qfb(θ̄).Another su�ient ondition for no distortion at the top an be formulated using (C1): ∫ qfb(θ̄)

0 cqθ(q, θ̄) dq ≤

0 is su�ient sine (C1) annot hold with inequality.To illustrate the distortion at the top result and also the algorithm introdued in the previoussetion, onsider the following numerial example whih is inspired by example 1 in setion 2.20The ost funtion is given by c(q, θ) = θq+ q2

θ
− θ

3 . The prinipal's valuation funtion is u(q) = 8q
5 .Furthermore, I assume that types are distributed on [1/4, 3/4] aording to a triangular density with a�ushion� (to prevent f(θ) = 0). I use the density f(θ) = 4/5(8θ − 2). Reall from setion 7 that withthese parameter values the su�ient ondition in proposition 3 is met. The solution will therefore beontinuous.The �rst order ondition for the relaxed solution is

(
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5
− θ −

2q

θ

)

∗
4

5
(8θ − 2) +

33 + 64θ − 144θ

40

(

1−
2q

θ2

)

= 0whih leads to the relaxed solution
qr(θ) =

−347θ2 + 1660θ3 − 2444θ4

330 + 1440θ2
.20A Mathematia notebook with detailed alulations an be found under https://www.sites.google.om/site/hristophshottmueller/jmp. 26
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Figure 6: numerial example 1To use the algorithm, q(θ, η) has to be alulated. In this example
q(θ, η) =

−2160θ4 + 2944θ3 − 347θ2 − 200ηθ2

330− 400η + 1440θ2
.

Φη(θ, θ̂) an be numerially minimized. The result is that θ̄ and θ minimize Φη(θ, θ̂) for all η ≤ η̄ ≈

0.47298. This means that a non-loal inentive onstraint is only binding from θ̄ to θ and η(θ) = 0.47298for all types. Consequently, there is distortion at the top and the optimal deision is q(θ) = q(θ, η̄) or
q(θ) =

−110399
1250 θ2 + 2944

5 θ3 − 432θ4

17601
625 + 288θ2

.Graphially, �gure 6 shows that q(θ) (upper solid line) is above qr(θ) (dotted line) for all types andthat q(θ) is above qfb(θ) (dashed line) for high types.9. DisussionThis setion disusses assumptions and ompares the monotone solution with the solution of thestandard sreening model with single rossing and some related papers.First, I want to disuss the assumptions on third derivatives, i.e. cqqθ < 0 and cqθθ > 0. The fatthat these derivatives do not hange sign ensures that the ross derivative cqθ hanges sign only one forany given θ (or q). While this property is admittedly important for the analysis, it is immaterial whihsign the third derivatives have (as long as the sign is the same for all relevant deisions and types).To illustrate this (and also to show an example where the monotoniity onstraint binds) onsider thefollowing version of example 2:21 Types are distributed uniformly on [2, 3] and the prinipal's objetiveis the expeted value of q(θ)− t(θ). The agent's utility is given by
π(q, θ) = t(θ)−

(q − θ/σ)2

θ2
+ γ(3− θ).21A Mathematia notebook with detailed alulations an be found under https://www.sites.google.om/site/hristophshottmueller/jmp. 27
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13.5Figure 7: numerial example 2Here the parameter values σ = 27 and γ = 12 are used. In this ase, third derivatives have the followingsigns in the relevant range of the deision: cqqθ < 0 and cqθθ < 0. Consequently, the sign swithingdeision s(θ) is downward sloping. As depited in �gure 7a, �rst best deision and relaxed deision arealso downward sloping.Although the example looks di�erent on �rst sight, it is equivalent to the model of the maintext and all results apply aordingly. It turns out that also in this example (θ̄, θ) minimize Φη(θ, θ̂)and therefore only the non-loal inentive onstraint from the highest to the lowest type is binding.However, the monotoniity onstraint is binding for the highest types. For eah q(θ, η), the optimalbunhing interval [θs(η), θ̄] is determined by the ondition
∫ θ̄

θs(η)
[uq(q(θ, η), θ)− cq(q(θ, η), θ)]f(θ) + (1− F (θ)− η(θ))cqθ(q(θ, η), θ) dθ = 0.Here, η̄ turns out to be approximately 0.18 and the solution for the highest types is depited in �gure7b. The solution exhibits bunhing of types in [2.9, 3].Seond, I want to ompare the obtained solution with solutions of sreening models with singlerossing. Suh a omparison will pin down those e�ets whih an only be explained by a violation ofsingle rossing. In the standard textbook model with single rossing, see for example Fudenberg andTirole (1991) or Bolton and Dewatripont (2005), deisions are downward distorted for rent extrationreasons. The solution is ontinuous and under some regularity onditions, e.g. monotone hazard rate,stritly inreasing. This paper shows that a violation of single rossing an lead to a redution ofdistortion and even to deision levels above �rst best. The reason is that binding non-loal inentiveonstraints distort the deision upwards while binding loal inentive onstraints distort it downwards.The underlying ause is the one time violation of single rossing: A high type misrepresenting as a low28



type an have higher marginal ost at the low type's deision (this is impossible with single rossing).To make the deision of the low type less attrative for the high type it is then best to inrease the lowtype's deision. By inreasing also the deisions of the types in between, the slope of the rent funtionis inreased. Consequently, the high type gets a higher rent at his own ontrat whih also preventsmisrepresentation.Even with the monotone hazard rate assumption bunhing an our if the deision of some types isdistorted su�iently above �rst best. In ontrast to the standard model, a violation of single rossingan lead to distortions at the top. Distortion at the top will our if non-loal inentive onstraintsbind from the best type to a mass of types or to the lowest type.Jumps and bunhing an also be part of the standard model if one allows for arbitrary type distri-butions as in Hellwig (2010). However, this will not lead to deisions above �rst best. Furthermore,a no distortion at the top result remains valid in Hellwigs's model. The reason is that with singlerossing only loal inentive onstraints bind while non-loal inentive onstraints remain lax.The reader familiar with the literature on adverse seletion models might have notied the similaritybetween the ��rst order ondition�
{uq(q, θ)− cq(q(θ), θ)}f(θ) + (1− F (θ)− η(θ))cqθ(q(θ), θ) = 0and the �rst order ondition in Jullien (2000). In Jullien's paper type dependent partiipation on-straints are analyzed in a framework with single rossing. If one writes γ(θ) instead of 1− η(θ) in theondition above, the �rst order ondition of his model results. There γ(θ) is the Lagrange parameterdenoting the shadow value of relaxing the partiipation onstraint for all types below θ.A tehnial di�erene is that γ(θ) is monotonially inreasing while η(θ) is �rst in- and laterdereasing. Intuitively, one an start thinking from the relaxed deision. If a partiipation onstraintis violated in the interior at type θ′, the response is to redue the distortion for all types below θ′. Thiswill inrease the slope of the pro�t funtion for all types below θ′ and therefore inrease the payo�s of

θ′. If, on the other hand, the non-loal inentive onstraint is violated between two types θ̂′, θ′ underthe relaxed deision, there is no reason to hange the deision of types below θ̂′. The problem is solvedby inreasing the deision only for types between θ̂′ and θ′.The overprodution result, i.e. q above �rst best, an our with type dependent partiipationonstraints as well. It an even our at the highest type, so there an be distortion at the top.However, with type dependent partiipation onstraints this peuliarity is aused by upward bindinginentive onstraints, i.e. low types want to misrepresent as high types. With violations of singlerossing, the same results is obtained although inentive onstraints are only downward binding.Although the model is the same, it is not straightforward to ompare the optimal solution obtained29



in this paper with the one in Araujo and Moreira (2010). Both, the monotone and the inversely U-shaped solution, are loser to �rst best than the relaxed solution (and might even ross �rst best). Inontrast to this paper there is a no distortion at the top result in Araujo and Moreira (2010): Thetype with the highest �rst best deision, i.e. the type where qfb(θ) rosses s(θ), will be assigned his�rst best deision in the optimal solution. Another di�erene is that the monotone solution an beontinuous without bunhing intervals of types. This di�erene is partly due to the diretion non-loalinentive onstraints bind: In the monotone solution they bind only downward while they bind in bothdiretions in an inversely U-shaped solution.10. ConlusionThis paper haraterizes monotone solutions in a sreening environment where single rossing is vio-lated. Although the model restrits itself to a one time violation of single rossing, the main e�ets ofa violation of single rossing an be illustrated. Non-loal inentive onstraints an beome binding.The distortion aused by non-loally binding inentive onstraints an ounterat the normal rent ex-tration distortion. Therefore, the solution an be partly above as well as below the �rst best deision.There an be distortion at the top if non loal inentive onstraints are binding from the top type to amass of types (or the lowest type). Furthermore, su�ient onditions for monotoniity and ontinuityare provided and an algorithm for determining suh a ontinuous, monotone solution is proposed.Possible appliations an be found in various �elds of eonomis. While the paper uses the notationof a regulation or prourement setting, the same model is appliable, for example, in models of labor,insurane, monopoly priing or optimal taxation. The haraterization of ontinuous and monotonesolutions is relatively simple and reasonable lasses of funtions satisfy su�ient onditions for fallinginto this lass of solutions.I onlude with some immediate impliations of the qualitative results in this paper. In optimaltaxation models where single rossing is violated negative marginal tax rates for top inomes an berationalized beause of the distortion at the top result. Note that distortion at the top always is in an�unusual� diretion, i.e. above �rst best. The rough intuition is that subsidizing produtive types towork more inreases their rent and therefore relaxes their inentive ompatibility onstraint.Overinsurane an be optimal in insurane models where single rossing is violated. This givesan alternative explanation for so alled �Cadilla� insurane plans. While the politial debate fouseson viewing them as (insu�iently taxed) part of a ompensation pakage, sreening by insurers withmarket power ould also explain parts of the phenomenon.30



Conerning the regulation example, it was mentioned in example 1 that the estimation results inBeard et al. (1991) provide evidene of a violation of single rossing in the ost funtions of savings andloan assoiations. My results show that optimal regulation might indue a subset of suh assoiationsto o�er more loans than �rst best optimal.In Martimort and Stole (2009) the ordering of �rst best quantities and the ompetitive menu undersubstitutes is no longer lear ut if one onsiders the ases without single rossing. Put di�erently,�rms using non-linear priing might optimally o�er pakages whih lead to overonsumption of thegood. Teleommuniation might be an example for this: Consumers often buy pakages where anadditional unit of alling (or internet use) is for free. If the marginal osts of the provider are only εabove zero, suh a prie sheme will lead to onsumption above the soially optimal onsumption.22

22Of ourse, there are alternative explanation based on the theory of two-sided markets. However, the two explanationsare not mutually exlusive and, for example, two-sidedness is less obvious in ase of internet aess.31
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AppendixA. Variational onditionIn Araujo and Moreira (2010), it always holds that q(θ) = q(θ̂) whenever Φ(θ, θ̂) = 0. Consequently,(C1) does not play a role. Starting from (C2), they derive the following ondition (with q = q(θ) =

q(θ̂)):
uq(q, θ)− cq(q, θ) +

1−F (θ)
f(θ) cqθ(q, θ)

cqθ(q, θ)
f(θ) =

uq(q, θ̂)− cq(q, θ̂) +
1−F (θ̂)

f(θ̂)
cqθ(q, θ̂)

cqθ(q, θ̂)
f(θ̂) (7)To derive a similar ondition for q(θ) 6= q(θ̂) take θ and θ̂ suh that cq(q(θ̂), θ̂) = cq(q(θ̂), θ), cθ(q(θ), θ) =

cθ(q(θ̂), θ), Φ(θ, θ̂) = 0 and assume that q(·) is stritly monotone and ontinuous at θ and θ̂.Given θ and q(θ), the equation cθ(q(θ), θ) = cθ(q(θ̂), θ) pins down a deision q(θ̂) where inentiveompatibility ould be binding. Given this q(θ̂) as well as θ and q(θ), the equation cq(q(θ̂), θ̂) =

cq(q(θ̂), θ) determines θ̂. Therefore, the ritial θ̂ an be written as a funtion of θ and q(θ), i.e.
θ̂ = φ(θ, q(θ)).Di�erentiating the two onditions, the partial derivatives φθ and φq an be obtained as

φθ(θ, q) =
cqθ(q̂, θ)

cqθ(q̂, θ̂)
+

(cqq(q̂, θ)− cqq(q̂, θ̂))(cθθ(q, θ)− cθθ(q̂, θ))

cqθ(q̂, θ̂)cqθ(q̂, θ)

φq(θ, q) =
cqθ(q, θ)[cqq(q̂, θ)− cqq(q̂, θ̂)]

cqθ(q̂, θ̂)cqθ(q̂, θ)where q̂ = q(θ̂) and q = q(θ).Denote by h an admissible perturbation of the optimal solution q∗ on some interval [θ1, θ2], i.e.
h(θ1) = h(θ2) = 0. Admissibility implies that if the inentive onstraint binds from θ to θ̂, then
θ̂ = φ(θ, q(θ)).23The idea of the variational argument is the following: I want to derive a neessary ondition fora type θ suh that Φ(θ, θ̂) = 0 for some θ̂. To do so, it is assumed that also under the perturbeddeision the inentive onstraint is binding for θ and some (other) θ̂. The type θ̂ to whih the non-loalinentive onstraint binds depends on the perturbation and is given by φ(θ, q(θ)). The way one shouldthink about it is that inentive ompatibility is binding from eah θ ∈ [θ1, θ2] to some θ̂ in some interval
[θ̂1, θ̂2].24 The spei� type θ̂ to whih a non-loal inentive onstraint binds from a given θ dependson the perturbation h.23Furthermore, admissibility requires monotoniity.24As it turns out, this is indeed the typial struture of a ontinuous solution, see lemma 4.34



For brevity, I denote in the remainder of this setion the optimal solution by q∗(θ) and the perturbedsolution by q(θ) = q∗(θ) + εh(θ). Hene the part of the prinipal's objetive funtion a�eted by theperturbation an be written as25
G(ε) =

∫ θ2

θ1

g(q(θ), θ) dθ +

∫ φ(θ1,q(θ1))

φ(θ2,q(θ2))
g(q(θ), θ) dθ

=

∫ θ2

θ1

{g(q(θ), θ)− g(q̂(θ, q(θ)), φ(θ, q(θ))) [φq(q(θ), θ)qθ(θ) + φθ(q(θ), θ)]} dθ (8)where g(q(θ), θ) =
[

u(q(θ), θ)− c(q(θ), θ) + 1−F (θ)
f(θ) cθ(q(θ), θ)

]

f(θ) is the virtual valuation weightedby the density. The seond line is a normal hange of variables where q̂(θ, q) denotes the q̂ solving
cθ(q, θ) = cθ(q̂, θ) with q 6= q̂. Note that ∂q̂/∂q = cqθ(q, θ)/cqθ(q̂, θ).Di�erentiating (8) gives

G′(0) =

∫ θ2

θ1

{gqh− ĝ((φqqq
∗
θ + φqθ)h+ φqhθ)− (ĝq q̂q + ĝθφq)(φqq

∗
θ + φθ)h} dθ = 0where arguments are omitted and a hat denotes evaluation at (θ̂, q∗(θ̂)). Integrating ∫ θ2

θ1
(ĝφq)hθ dθ byparts and substituting yields for the previous equation

∫ θ2

θ1

{gq − ĝq q̂qφθ + ĝq q̂θφq}hdθ =

∫ θ2

θ1

{

gq − ĝq
cqθ(q(θ), θ)

cqθ(q(θ̂), θ̂)

}

h dθ = 0.As h was arbitrary, the following ondition has to hold at optimum:
gq(q(θ), θ) = gq(q(θ̂), θ̂)

cqθ(q(θ), θ)

cqθ(q(θ̂), θ̂)
(C3')This is ondition (C3). For q(θ) = q(θ̂), (C3') boils down to (7).B. ProofsProof of proposition 1: First, it is shown that the prinipal's payo� is higher under qc(θ) thanunder q(θ): The prinipal maximizes expetation of u(q, θ) − c(q, θ) + (1 − F (θ))/f(θ)cθ(q, θ). If

qs(q, θ) ≤ qr(θ), the prinipal's objetive inreases due to the hange beause of the onavity of(RP) and qr(θ) > s(θ). If qs(q(θ), θ) > qfb(θ), then the same onlusion follows from qv(q(θ), θ) ≥

qs(q(θ), θ) > qr(θ) and the onavity of (RP).Seond, the hanged deision qc(θ) is monotonially inreasing: From loal inentive ompatibility
q(θ) was already inreasing wherever it was above s(θ). At types with q(θ) < s(θ) the deision q(θ)had to be dereasing beause of loal inentive ompatibility. But then qs(q(θ), θ) is learly inreasing25It follows from lemma 2 that φ(θ1, q(θ1)) > φ(θ2, q(θ2)).35



in θ for these types beause of cqθθ > 0. This leaves types at whih q(θ) jumped disontinuously over
s(θ). But at these jump types loal inentive ompatibility required cθ(q

−(θ), θ)− cθ(q
+(θ), θ) ≥ 0 atdownwards jumps (and the onverse inequality at upwards jumps) aross s(θ). This implies that alsoat jump points of q(θ) monotoniity of qc(θ) is guaranteed.Third, the hanged deision qc(θ) is inentive ompatible: Sine qc(θ) is monotonially inreasing,only downward misrepresentation has to be onsidered (see lemma 1). Note that the pro�t funtion

π(θ) was not a�eted by the hange from q(θ) to qc(θ) beause of the de�nition of qs(θ) and πθ(θ) =

−cθ(q(θ), θ) by loal inentive ompatibility. Therefore, one has only to hek whether any type wantsto misrepresent as a lower type θ̂ at whih q(θ̂) < s(θ̂). Sine π(θ) is unhanged, one an write inentiveompatibility under the hanged deision as
Φc(θ, θ̂) = −

∫ θ

θ̂

∫ q(t)

qc(θ̂)
cqθ(q, t) dq dt = −

∫ θ

θ̂

∫ q(θ̂)

qc(θ̂)
cqθ(q, t) dq dt−

∫ θ

θ̂

∫ q(t)

q(θ̂)
cqθ(q, t) dq dt

=

∫ θ

θ̂

∫ qc(θ̂)

q(θ̂)
cqθ(q, t) dq dt+Φ(θ, θ̂) > 0where the inequality follows from ∫ qc(θ̂)

q(θ̂)
cqθ(q, θ̂) dq = 0 by the de�nition of qs(·) and cqθθ > 0.Proof of lemma 3: First, it is shown that there annot be a disontinuity at θ̂. Take a type θ̂ towhih non-loal inentive onstraint is binding from some type θ. Suppose that q(·) is disontinuousat θ̂, i.e. q−(θ̂) < q+(θ̂) by loal inentive ompatibility (monotoniity). Binding inentive onstraintmeans that either (i) ∫ θ

θ̂

∫ q(t)

q−(θ̂)
cqθ(q, t) dq dt = 0 or (ii) ∫ θ

θ̂

∫ q(t)

q+(θ̂)
cqθ(q, t) dq dt = 0 or (iii) q−(θ̂) <

q(θ̂) < q+(θ̂) and ∫ θ

θ̂

∫ q(t)

q(θ̂)
cqθ(q, t) dq dt = 0.In ase (i) it must hold that ∫ θ

θ̂
cqθ(q

−(θ̂), t) dt ≤ 0 whih is just (C2) adapted to apply for aright hand side disontinuity, i.e. if this did not hold inentive ompatibility would be violated for
θ and θ̂ − ε. But then ∫ θ

θ̂

∫ q+(θ̂)

q−(θ̂)
cqθ(q, t) dq dt < 0 from cqqθ < 0. Hene, Φ(θ, θ̂+) = Φ(θ, θ̂−) +

∫ θ

θ̂

∫ q+(θ̂)

q−(θ̂)
cqθ(q, t) dq dt < 0 as Φ(θ, θ̂−) = 0 by assumption. Hene, inentive ompatibility is violatedfrom θ to types slightly above θ̂. This is the desired ontradition.In ase (ii) it must hold that ∫ θ

θ̂
cqθ(q

+(θ̂), t) dt ≥ 0. But then ∫ θ

θ̂

∫ q+(θ̂)

q−(θ̂)
cqθ(q, t) dq dt > 0 from

cqqθ < 0. Consequently, Φ(θ, θ̂−) = Φ(θ, θ̂+) −
∫ θ

θ̂

∫ q+(θ̂)

q−(θ̂)
cqθ(q, t) dq dt < 0 and therefore inentiveompatibility is violated from θ to types slightly below θ̂.In ase (iii) the same arguments as in ase (i) apply if ∫ θ

θ̂
cqθ(q(θ̂), t) dt ≤ 0 while the same argumentsas in ase (ii) apply if ∫ θ

θ̂
cqθ(q(θ̂), t) dt > 0.Seond, it is shown that θ < θ̄ annot be bunhed with some type θ′ if q(·) is ontinuous at θ.Suppose θ and θ′ were bunhed on qb (and by monotoniity all types in between them are as well) and
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suppose for now θ < θ′. But then Φ(θ′, θ̂) < 0 and i is violated as
Φ(θ′, θ̂) = −

∫ θ′

θ̂

∫ q(t)

q(θ̂)
cs,t ds dt = −

∫ θ

θ̂

∫ q(t)

q(θ̂)
cs,t ds dt−

∫ θ

θ

∫ q(t)

q(θ̂)
cs,t ds dt

= Φ(θ, θ̂)−

∫ θ′

θ

∫ qb

q(θ̂)
cs,t ds dt < 0where the last inequality follows from (C1) and cqθθ > 0.Now suppose θ > θ′ and both types are bunhed. From ondition (C1) for θ < θ̄ and cqθθ >

0 it follows that ∫ q(t)

q(θ̂)
cqθ(q, t) dq < 0 for every t ∈ (θ − ε, θ). But then Φ(θ − ε, θ̂) = Φ(θ, θ̂) +

∫ θ

θ−ε

∫ q(t)

q(θ̂)
cqθ(q, t) dq dt < 0, so inentive ompatibility would be violated.Proof of proposition 2: Suppose q(θ) < qr(θ) for some types. Sine loal inentive ompatibilitydoes not allow downward jumps, q(θ) has to be stritly below qr(θ) for a mass of types. Consider hang-ing this `optimal' deision to q∗(θ) where q∗(θ) = max{q(θ), qr(θ)}. Transfers t∗(θ) are determinedsuh that π(θ) = 0 and πθ(θ) = −cθ(q

∗(θ), θ).By the de�nition of qr(θ), this hange will inrease the prinipal's expeted payo�.It remains to hek inentive ompatibility, i.e
Φ∗(θ, θ̂) = −

∫ θ

θ̂

∫ q∗(t)

q∗(θ̂)
cqt(q, t) dq dt ≥ 0for arbitrary types θ and θ̂ < θ. If q∗(θ̂) = q(θ̂), inentive ompatibility follows from q∗(t) ≥ q(t) andas q(t) ≥ s(t) the orresponding `additional' c(q, t) are negative.If q∗(θ̂) > q(θ̂) (and therefore q∗(θ̂) = qr(θ̂)), there are three possibilities: (i) There exists a type

θ′ ∈ (θ̂, θ) with q(θ′) = q∗(θ̂), (ii) all types θ′ ∈ (θ̂, θ) have q(θ′) < q∗(θ̂) and (iii) there are types
θ′ ∈ (θ̂, θ) with q(θ′) > q∗(θ̂) but no type θ′ with q(θ′) = q∗(θ̂), hene q(·) is disontinuous26.If (i), then Φ(θ, θ′) ≥ 0 implies inentive ompatibility as Φ∗(θ, θ̂) > Φ(θ, θ′). In ase (ii) q∗(θ̂)has to be above q(θ′) for all θ′ ∈ (θ̂, θ). But sine q(θ′) > s(θ′) for all these types it follows that
q∗(θ̂) > s(θ) and therefore inentive ompatibility is trivially satis�ed.In ase (iii) de�ne θ′ = sup{t ∈ (θ̂, θ) : q(t) < q∗(θ̂)} that is θ′ is the jump point. Inentiveompatibility between θ and θ′ implies ∫ θ

θ′

∫ q(t)
q−(θ′)

cqt(q, t) dq dt ≤ 0 as well as ∫ θ

θ′

∫ q(t)
q+(θ′)

cqt(q, t) dq dt ≤ 0where q−(θ′) denotes the limit of q(t) as t → θ′ from below. From cqqθ < 0 and q−(θ′) < q∗(θ̂) < q+(θ′),it follows that ∫ θ

θ′

∫ q(t)

q∗(θ̂)
cqt(q, t) dq dt ≤ 0. But as Φ∗(θ, θ̂) > −

∫ θ

θ′

∫ q(t)

q∗(θ̂)
cqt(q, t) dq dt ≥ 0 inentiveompatibility is satis�ed.Proof of theorem 1: Note that even if the theorem was not true one ould de�ne a funtion

η(θ) by rearranging (5). What one has to show are the properties of this funtion. η(θ) ≥ 0 followsimmediately from proposition 2 and the fat that the left hand side of (5) is dereasing in q.26Given that solutions in Araujo and Moreira (2010) display sometimes disontinuities, one annot totally exlude thispossibility. 37



Next turn the property that η(θ) is onstant on an interval of types on whih non loal inentiveonstraints are lax. Suppose to the ontrary that η(θ) is not onstant. In partiular suppose η(θ) wasinreasing on some interval [θ1, θ3] where non-loal i is lax for all θ ∈ [θ1, θ3]. Denote by θ2 someinterior type of the interval. For eah θ ∈ [θ2, θ2 + ε] de�ne a orresponding type θ′ ∈ [θ2 − ε, θ2] by
θ′ = θ2−(θ−θ2) for some small ε > 0. I will show that one an hange suh a deision on [θ2−ε, θ2+ε]in a way whih inreases the prinipal's payo� (while keeping inentive ompatibility). This ontraditsthe optimality of q(θ).Consider a hanged deision qc(·) suh that (i) qc(θ) > q(θ) on [θ2 − ε, θ2), (ii) qc(θ) ≤ q(θ) on
[θ2, θ2 + ε], (iii) for orresponding types θ and θ′ it holds that ∫ qc(θ′)

q(θ′) cqθ(q, θ
′) dq = −

∫ qc(θ)
q(θ) cqθ(q, θ) dqand (iv) qcθ(θ) ≥ 0 on [θ2 − ε, θ2 + ε]. The hanged deision will therefore display upwards jumps at

θ2 − ε and θ2 + ε. For small hanges in q (iii) an be written as δ(θ′)cqθ(q(θ′), θ′) = −δ(θ)cqθ(q(θ), θ)where δ(θ) = qc(θ)− q(θ). This in turn an be written as δ(θ′) = −δ(θ)k(θ) where k(θ) is de�ned as
cqθ(q(θ),θ)

cqθ(q(θ′(θ)),θ′(θ))
.Before proeeding, let me show that a funtion qc(θ) satisfying (i)-(iv) exists. Note that k(θ2) = 1and that�due to the di�erentiability and ontinuity assumptions on c(·) and the monotoniity of q(θ)�the funtion k(θ) is ontinuously di�erentiable almost everywhere.27 First, onsider the ase where

k+θ (θ2) < 0. Then it is feasible to set qc(θ) = q(θ2) for types θ ∈ [θ2, θ2 + ε] if ε > 0 is hosensmall enough. Feasibility means that determining q(θ′) by δ(θ′) = −δ(θ)k(θ) will satisfy all onditionsespeially (iv). Feasibility of qc(θ) = q(θ2) for θ ∈ [θ2, θ2 + ε] and monotoniity of q(θ) imply that
qc∗ = αqc(θ) + (1− α)q(θ) is also feasible. The e�et of a marginal hange of q is the e�et hanging
q(·) to qc∗(·) as α → 0.Seond, onsider kθ(θ2)+ > 0. By the same argument, it is feasible to bunh types θ ∈ [θ2 − ε, θ2]on q(θ2) and the remaining argument goes through analogously. Obviously, the third ase k+θ (θ2) = 0is analogous to either the �rst or the seond ase (depending on the seond derivative).The e�et of a marginal hange on the prinipal's objetive is

∫ θ2+ε

θ2−ε

{(uq(q(θ), θ)− cq(q(θ), θ))f(θ) + (1− F (θ))cqθ(q(θ), θ)} δ(θ) dθ

=

∫ θ2+ε

θ2−ε

η(θ)cqθ(q(θ), θ)δ(θ) dθ =

∫ θ2+ε

θ2

δ(θ)cqθ(q(θ), θ)[η(θ)− η(θ′(θ))] > 0where the last inequality follows from δ(θ) ≤ 0 for θ ∈ [θ2, θ2+ ε] and ηθ(θ) > 0. Hene, the prinipal'sobjetive inreases. Due to (iii) inentive ompatibility is still satis�ed. This ontradits the optimalityof q(θ).27Note that a feasible qc(θ) exists even around types θ2 where q(θ) is disontinuous: Whether bunhing types [θ2−ε, θ2)on q−(θ2) or bunhing types (θ2, θ2 + ε] on q+(θ2) is feasible is then deided by k+

θ (θ2) just as in the text.38



A similar argument an be made when η(θ) is dereasing almost everywhere on some interval [θ1, θ3]where non-loal i is lax. The only di�erene is that (i) and (ii) are substituted by (i) qc(θ) < q(θ) on
[θ2 − ε, θ2), (ii) qc(θ) ≥ q(θ) on [θ2, θ2 + ε]. The argument for existene is then that for kθ(θ2) < 0 onean hoose a θ2 + ε suh that setting qc(θ) = q(θ2 + ε) for all θ ∈ [θ2, θ2 + ε] is feasible. Everythingelse goes through aordingly.Hene, η(θ) is onstant on all intervals on whih non-loal inentive onstraints do not bind.28To see that η(θ) is non-dereasing at types θ̂ to whih a non-loal inentive onstraint is bindingone an use the same steps as above for types where non-loal inentive onstraints were lax. The keyinsight is that suh a hange is feasible due to the struture given by lemma 1 and lemma 2 (see also�gure 4): Inreasing q for slightly higher types than θ̂ (and reduing for slightly lower types than θ̂) willrelax (or not a�et) binding non-loal inentive onstraints beause these onstraints are downwardbinding and not overlapping.The argument why η(θ) is non-inreasing at types θ from whih non-loal inentive onstraintsbind is also equivalent to the one above. The key with respet to feasibility is now that reduing q fortypes slightly below θ (and inreasing for types slightly above θ) will again relax (or not a�et) bindingnon-loal inentive onstraints beause these onstraints are downward binding.Now turn to η(θ̄) = 0 (and therefore q(θ̄) = qfb(θ̄)) whenever no non-loal inentive onstraint isbinding from θ̄. Clearly, q(θ̄) does not a�et non-loal inentive onstraints of other types, see �gure1b for an illustration. Consequently, the prinipal's payo� is maximized by setting q(θ̄) = qr(θ̄). Theonly thing to show is that the monotoniity onstraint is not binding at θ̄. Suppose to the ontrarythat types [θ′, θ̄] were bunhed on qb > qfb(θ̄). By lemma 3, non-loal inentive onstraints annot bebinding for types in (θ′, θ̄]. First, note that q(θ) has to be ontinuous at θ′ as otherwise the prinipal'spayo� ould be inreased by reduing qb. Therefore�by the same argument as in the proof of lemma3�non-loal inentive onstraints annot bind from types [θ′ − ε, θ′] for some small ε > 0. Given that
q(θ) > qfb(θ̄) > qr(θ) for all θ ∈ [θ′ − ε, θ̄), the prinipal's payo� ould be inreased by hanging q(θ)to q(θ′ − ε) for all θ ∈ [θ′ − ε, θ̄]. This ontradits the optimality of q(θ).The part that η(θ) = 0 if no non-loal inentive onstraint is binding to θ is even simpler: Reduing
q(θ) to qr(θ) annot violate the monotoniity onstraint as q(θ) ≥ qr(θ) ≥ qr(θ) by proposition 2.Proof of lemma 4: I proof the stronger statement, i.e. non-loal inentive onstraints do notonly bind at isolated interior types. The proof is by ontradition.Suppose, non-loal inentive onstraints bound only from isolated interior types. Denote by θ′ the28Note that η(θ) annot be di�erent for isolated types in suh an interval: This would, by (5) and the ontinuity ofthe derivatives of c(·), lead to q(θ) being disontinuous at isolated points. Suh a disontinuity, however, violates loalinentive ompatibility. 39



supremum of all types with η(θ) > 0, i.e. θ′ = sup{θ : η(θ) > 0}. By theorem 1, a non-loal inentiveonstraint is binding from θ′ and η(θ) = 0 for all θ > θ′.29 As the set of types from whih non-loalinentive onstraints bind onsists only of isolated types, there exists an ε > 0 suh that non-loalinentive onstraints are lax for all θ ∈ (θ′− ε, θ′). By theorem 1, η(θ) is onstant on (θ′− ε, θ′) and bythe de�nition of θ′ there has to be a disontinuity in η(θ) at θ′, i.e. η−(θ′) > η+(θ′) = 0. The de�nitionof η(θ) in (5) implies then that q−(θ′) > q+(θ′). But this violates the monotoniity onstraint. Hene,
θ′ annot be isolated in the set of types from whih non-loal inentive onstraints bind.Similarly, take θ̂′ = inf(θ̂ : η(θ̂) > 0). It holds that η(θ) = 0 for all θ < θ̂′. Therefore, byproposition 2, θ̂′ annot be bunhed. Consequently, a non-loal inentive onstraint has to bind to θ̂′.If θ̂′ is isolated in the set of types to whih non-loal inentive onstraints are binding, η(θ) has to bedisontinuous at θ̂′ by the de�nition of θ̂′. Then also q(θ) is disontinuous at θ̂′. But this is impossibleby lemma 3. Hene, θ̂′ annot be isolated in the set of types to whih non-loal inentive onstraintsbind.It remains to show the losedness part of the lemma. Note �rst that a monotone solution isontinuous almost everywhere. Consequently, the prinipal's payo� is not hanged if q(·) is hangedat its disontinuity points. I want to resolve this ambiguity using the following onvention: Say q(θ) isdisontinuous at θ′. Then q(θ′) = q−(θ′) if there exists an inreasing sequene of types θi i = 1, 2, . . .suh that (i) limi→∞ θi = θ′ and (ii) a non-loal inentive onstraint is binding from or to eah θi. Ifsuh a sequene does not exist, q(θ′) = q+(θ′).With this onvention in mind, onsider a sequene of types θn with n = 1, 2, . . . suh that a non-loal inentive onstraint is binding from eah θn to some θ̂n. Assume that limn→∞ θn = θ′. Then ithas to be shown that Φ(θ′, θ̂′) = 0 for some θ̂′. Sine all θ̂n belong to the losed and bounded interval
[θ, θ̄], there is a onvergent subsequene of θ̂n. I will denote the elements of this subsequene by θ̂kwith k = 1, 2, . . . . The orresponding type from whih a non-loal inentive onstraint is binding to θ̂kis denoted by θk. Now, take θ̂′ = limk→∞ θ̂k. Note that there always exists a monotone subsequeneof θk. It is therefore without loss of generality to assume θk to be monotone. For onreteness, assume
θk+1 ≥ θk for all k = 1, 2, . . . . As Φ(θk, θ̂k) = 0 for all k = 1, 2, . . . , ontinuity of Φ(·) at (θ′, θ̂′) issu�ient for Φ(θ′, θ̂′) = 0. As π(·) is ontinuous by loal inentive ompatibility and c(·) is ontinuousby assumption, ontinuity of Φ(·) at (θ′, θ̂′) follows if q(·) is ontinuous at θ̂′. Sine θk is monotoniallyinreasing, ontinuity from below is atually su�ient. But this is ensured by the onvention above.If θk+1 ≤ θk for all k = 1, 2, . . . , the onvention establishes q(θ̂′) = q+(θ̂′) whih is needed in thisase.29Note that θ′ annot be bunhed beause of proposition 4 and q−(θ′) = qr(θ′).40



The proof for the losedness of the set of types to whih non-loal inentive onstraints bind worksin the same way.Proof of lemma 5: From lemma 3, non-loal inentive onstraints annot bind from any θ ∈

[θbs, θ
b
e). To satisfy similar properties as in theorem 1, η(θ) has therefore to be non-dereasing on (θbs, θ

b
e).Let η(θ) be de�ned by (5) for all types that are not bunhed. De�ne η(θ) on the bunhing intervalusing the following two step proedure: First, all θ̂ ∈ (θbs, θ

b
e) suh that Φ(θ, θ̂) = 0 and (C1') as wellas (C2') are satis�ed are assigned η(θ̂) = η(θ). Seond, types in θ ∈ (θbs, θ

b
e) who are not assigned avalue for η(θ) in step 1 are assigned the same η as the highest type θ′ < θ that was already assigned avalue η(θ′).Now it is shown that the onstruted η(θ) is non-dereasing on (θbs, θ

b
e): Say, there are two types

θ̂1, θ̂2 ∈ (θbs, θ
b
e) with θ̂2 > θ̂1 whih are assigned an η in the �rst step. Then (C2') implies that θ1 > θ2.From theorem 1 and the struture of the solution as depited in �gure 4, it follows that η(θ2) ≥ η(θ1).Therefore, η(θ̂2) ≥ η(θ̂1). The seond step does not hange the monotoniity of η(θ) whih proves that

η(θ) is non-dereasing on (θbs, θ
b
e).If non-loal inentive onstraints are not binding for the bunhed types, no type is assigned a valuefor η(θ) in step 1. Consequently, η(θ) is onstant on (θbs, θ

b
e).Next, it is shown that η(θ) is also non-dereasing at the types θbs and θbe. First, note that the proof oftheorem 1 an be easily extended to show that η(θbs) ≤ η(θbe): If this inequality did not hold, redue q(θ)on (θbs−ε, θbs) and inrease q(θ) marginally on (θbe, θ

b
e+ε) suh that ∫ θbe+ε

θbs−ε

∫ q(t)

q(θbs−ε)
cqθ(q, t) dq dt remainsthe same before and after the hange. As in the proof of theorem 1, this hange would inrease theprinipal's payo� without impeding inentive ompatibility (note that non-loal inentive onstraintsannot bind from the bunhed types beause of lemma 3). Consequently, η(θbs) ≤ η(θbe).Seond, it is neessary to show that�with the above onstruted η(θ) on (θbs, θ
b
e)�there is no upwardjump of η(θ) at θbe (no downward jump of η(θ) at θbs). If no type is assigned an η in the �rst step of theproedure above, this is obvious. Therefore, take the ase where some type in the bunhing interval isassigned a value η(θ) in the �rst step of the proedure. Then the laim follows from theorem 1: Say,

η−(θbe) = η(θ1) for some type θ1 from whih a non-loal inentive onstraint binds. The struture ofthe solution (as depited in �gure 4) and theorem 1 imply that η+(θbe) = η−(θ1).30 Sine η(θ) is non-inreasing at θ1 aording to theorem 1, it follows that η−(θ1) ≥ η+(θ1) and therefore η−(θbe) ≥ η+(θbe).A similar argument holds for θbs.30If non-loal inentive onstraints bind from types θ′ ∈ (θbe, θ1) to types θ̂′ ∈ (θbe, θ1), this holds still true beause ofthe neessary ondition (C3). Also disontinuities at θ′′ ∈ (θbe, θ1) do not matter as by lemma 3 and theorem 1 η(θ) isnon-inreasing at θ′′. If there are several bunhing intervals, the argument holds for the highest interval and given this,it holds for the seond highest et.. 41



It remains to show ∫ θbe
θbs

νθ(θ) dθ = 0. But this follows diretly from ν(θbs) = ν(θbe) = 0.Proof of proposition 3: By lemma 3, q(θ) annot be disontinuous at a type to whih a non-loalinentive onstraint binds (with the exeption of boundary types of bunhing intervals). Therefore,theorem 1 implies that a solution ould only be disontinuous at types where η(θ) is non-inreasing orat the boundary types of a bunhing interval to whih a non-loal inentive onstraint is binding.First, it is shown that η(θ) is also non-inreasing at suh boundary types of a bunhing interval.To see this take a bunhing interval [θ̂1, θ̂2] to whih non-loal inentive onstraints bind and supposethe solution was disontinuous at θ̂, i.e. q−(θ̂2) < q+(θ̂2). By the arguments in the proof of lemma3, ∫ θ

θ̂2
cqθ(q

−(θ̂2), t) dt > 0 for any θ suh that Φ(θ, θ̂2) = 0. But then an argument as in the proofof theorem 1 applies: There is an inentive ompatible way to inrease q(θ̂) for θ̂ ∈ [θ̂2 − ε, θ̂2] andderease the deision for types in [θ̂2, θ̂+ε]. Inentive ompatible means that binding non-loal inentiveonstraints are not violated and the deision remains monotone (details in the proof of theorem 1). If
η(·) was stritly inreasing at θ̂2, suh a hange would inrease the prinipal's payo�. Therefore, η(·)has to be dereasing at θ̂2. A similar argument applies at θ̂1. A disontinuity is only possible at θ̂1 if
∫ θ

θ̂1
cqθ(q(θ̂1), t) dt < 0 for all θ suh that Φ(θ, θ̂1) = 0. Therefore, dereasing the deision on [θ̂1, θ̂1 + ε]and inreasing the deision on [θ̂1 − ε, θ̂1) an be done in an inentive ompatible way. If η(·) wasstritly inreasing, suh a hange would inrease the prinipal's payo�.Hene, q(θ) an only be disontinuous at types where η(θ) is non-inreasing. Seond, it is shownthat a disontinuity in q(θ) would lead to an upward jump of η(θ) at the disontinuity type whihimplies that there annot be a disontinuity in q(θ).By loal inentive ompatibility, q(θ) an only jump upwards, i.e. q−(θ′) < q+(θ′) at a hypothetialdisontinuity type θ′. Using the de�nition of η(θ) in (5) one an alulate the hange in η(θ′) at thedisontinuity type

η+(θ′)− η−(θ′) =

∫ q+(θ′)

q−(θ′)

d η(θ′)

d q(θ′)
dq

=

∫ q+(θ′)

q−(θ′)

(uqq − cqq)fcqθ + (1− F )cqqθcqθ − (uq − cq)fcqqθ − (1− F )cqθcqqθ
c2qθ

dqwhere all funtions are evaluated at (q, θ′). Note that the integrand is positive whenever q ≤ qfb(θ′).If q > qfb(θ′), the integrand an be written as
f(uq − cq)

cqθ

(

uqq − cqq
uq − cq

−
cqqθ
cqθ

)whih is also positive due to the ondition of the proposition. Hene, η(θ) would jump up at θ′ butthis ontradits that q(θ) an only be disontinuous at types where η(θ) is non-inreasing.42



Proof of proposition 4: The proof is by ontradition. Suppose the optimal deision q(θ) wasabove the �rst best deision for some types. Sine there is no distortion at the top by assumption andsine the optimal deision annot drop disontinuously downward (loal inentive ompatibility), therehas to be a type θ′ at whih the optimal deision intersets qfb(θ) from above. The proof works nowin two steps. First, I show that a non loal inentive onstraint must bind from θ′ and seond thatthen non loal inentive ompatibility is violated for some type lose to θ′.Note that q(θ) > qfb(θ) if and only if η(θ) > 1 − F (θ). Sine 1 − F (θ) is dereasing and q(θ) >

(<)qfb(θ) slightly above (below) θ′, it follows that ηθ(θ′) is negative. But then, by theorem 1, a nonloal inentive onstraint has to be binding from θ′ to some θ̂′. Furthermore, the neessary ondition
∫ q(θ′)

q(θ̂′)
cqθ(q, θ

′) dq = 0 has to hold.Next onsider a type θ′′ = θ′−ǫwith ǫ > 0 very small. Sine qm(θ) is inreasing and ∫ q(θ)

q(θ̂)
cqθ(q, θ

′) dq =

0, learly ∫ qfb(θ′′)

q(θ̂′)
cqθ(q, θ

′′) dq < 0. Sine q(θ′′) > qfb(θ′′), it has to hold that ∫ q(θ′′)

q(θ̂′)
cqθ(q, θ

′′) dq < 0 aswell. The same inequality holds for all θ ∈ (θ′′, θ′). But then Φ(θ′′, θ̂′) = Φ(θ′, θ̂′)+
∫ θ′

θ′′

∫ q(t)

q(θ̂′)
cqθ(q, t) dq dt <

0, i.e. inentive ompatibility from θ′′ to θ̂′ is violated. Hene, the optimal deision annot be abovethe �rst best deision.Continuity of the optimal deision is now straightforward: q(θ) ≤ qfb(θ) implies that 1 − F (θ) −

η(θ) ≥ 0. Therefore, the left hand side of the �rst order ondition uq − cq + (1 − F − η)cqθ = 0 isstritly dereasing in q. The same arguments as in the proof of proposition 3 show that q(θ) has to beontinuous.Last it has to be shown that the deision is stritly monotone when it is below �rst best. This willbe done in two steps. The �rst step is to show that q(θ) is stritly inreasing if ηθ(θ) ≥ 0. The seondstep is to show that in a hypothetial bunhing interval there are types θ at whih ηθ(θ) ≥ 0 whih bythe �rst step ontradits that these types are bunhed.First, the deision q(θ) has to satisfy
[uq(q(θ), θ)− cq(q(θ), θ)] +

(1− F (θ)− η(θ))

f(θ)
cqθ(q(θ), θ) = 0 (9)by theorem 1. From the impliit funtion theorem, the sign of qθ(θ) an be determined. Note that

q(θ) ≤ qfb(θ) implies 1−F (θ)− η(θ) ≥ 0. This in turn implies that the derivative of the left hand sideof (9) with respet to q is negative. Hene, the sign of qθ(θ) is the sign of the partial derivative of theequation above with respet to θ. Denoting (1− F (θ)− η(θ)) by λ(θ) this derivative is
uqθ(q(θ), θ)− cqθ(q(θ), θ) +

λ(θ)

f(θ)
cqθθ +

∂ λ(θ)/f(θ)

∂θ
cqθ(q(θ), θ). (10)Now take a bunhing interval [θ1, θ2] (losed or open). The �rst three terms are learly positive as43



q(θ1) ≤ qfb(θ1) implies λ(θ) ≥ 0. The fourth term is positive if ηθ(θ) ≥ 0 as then
∂ λ(θ)/f(θ)

∂θ
=

−f2(θ)− fθ(θ)(1− F (θ))

f2(θ)
−

ηθ(θ)

f(θ)
+

fθ(θ)η(θ)

f2(θ)
< 0where the inequality omes from the monotone hazard rate assumption if fθ(θ) ≤ 0. If fθ(θ) > 0, then

qfb(θ) ≥ q(θ) implies λ(θ) ≥ 0 whih ensures the inequality above.Now turn to the seond step. Suppose ontrary to the proposition that an interval (θ1, θ2) existsin whih types are bunhed and non-loal inentive onstraints are either binding to these types orare lax.31 Using the same argument as in the proof of theorem 1, it beomes evident that η(θ) asde�ned by (5) annot be dereasing on the whole interval (θ1, θ2): If this was the ase, inreasing q(θ)for types ((θ2 + θ1)/2, θ2) and dereasing q(θ) slightly for the other bunhed types would inrease theprinipal's payo� (and an be done in an inentive ompatible way). From the de�nition of η(θ) andthe di�erentiability of q on the bunhing interval, it follows that η(θ) is ontinuous and di�erentiableon this interval. Consequently, there has to be some type in the interior of the bunhing interval where
ηθ(θ) ≥ 0. But then the �rst step shows that this type annot be bunhed.Proof of proposition 5: Take two types θ′ and θ̂′ suh that a non-loal inentive onstraint isbinding from θ to θ̂ under the optimal deision q(θ). By (C3), η(θ′) = η(θ̂′) and for this proof η (in
Φη()) simply denotes this ommon value η(θ′) = η(θ̂′).First, suppose that (θ′, θ̂′) does not minimize Φη(θ, θ̂) on [θ̂′, θ] and all the minimizer (θ′′, θ̂′′).Then inentive ompatibility under the optimal deision requires Φ(θ′′, θ̂′′) ≥ 0. If q(θ) was q̃(θ) for alltypes in [θ̂′, θ̂′′] ∪ [θ′′, θ′], then Φ(θ′, θ̂′) = Φη(θ′, θ̂′) + Φ(θ′′, θ̂′′) − Φη(θ′′, θ̂′′) > 0 where the inequalitystems from the de�nition of (θ′′, θ̂′′) as global minimizer of Φη(θ, θ̂). Therefore i would not be bindingbetween θ′ and θ̂′.If q(θ) 6= q̃(θ) for some types in [θ̂′, θ̂′′]∪ [θ′′, θ′], then i must be binding for some of these types.32But this will only relax i, i.e. q(θ) > q̃(θ) in a monotone solution. Therefore Φ(θ′, θ̂′) will be evenhigher than when q(θ) = q̃(θ) and therefore i annot bind between θ′ and θ̂′. This is the desiredontradition. Consequently, (θ′, θ̂′) has to minimize Φη(θ, θ̂) on [θ̂′, θ′].Seond, suppose that (θ′′, θ̂′′) with θ̂′′ < θ̂′ < θ′ < θ′′ has Φη(θ′, θ̂′) > Φ′(θ′′, θ̂′′). In fat hoose θ′′and θ̂′′ suh that it is the global minimizer of Φη(θ, θ̂) under the onstraint θ̂ < θ̂′ < θ′ < θ.Now suppose for the moment that all types in [θ̂′′, θ̂′] ∪ [θ′, θ′′] had q(θ) = q̃(θ). Then sine
Φ(θ′, θ̂′) = 0 but (θ′′, θ̂′′) minimizes Φη(θ, θ̂), i would be violated for θ′′ and θ̂′′.If q(θ) 6= q̃(θ) for some types in [θ̂′′, θ̂′]∪[θ′, θ′′], then i was binding for some types in those intervals.In a monotone solution this implies that q(θ) < q̃(θ) for these types. Put di�erently, i is striter under31By lemma 3, types from whih non-loal inentive onstraints bind annot be bunhed.32Beause of lemma 2 i annot bind from outside [θ̂′, θ] into the interval (neither the other way round).44



q(θ) than under q̃(θ).33 But then i will be even more violated for θ′′ and θ̂′′ under q(θ) than under
q̃(θ). Therefore, there annot be a global minimizer (θ′′, θ̂′′) with θ̂′′ < θ̂′ < θ′ < θ′′.Proof of orollary 1: Note �rst that the highest type θ from whih a non-loal inentive onstraintis binding must have q(θ) = qr(θ) if θ is interior. This follows from the reasoning in the proof of lemma4. The same holds for the lowest type θ̂ to whih a non-loal inentive onstraint binds. Therefore,there is a type pair suh that (i) q(θ′) = qr(θ′), (ii) q(θ̂′) = qr(θ̂′) and (iii) Φ(θ′, θ̂′) = 0.Sine (θ′, θ̂′) satisfy (C2) and (C1) with qr and given the results of proposition 5, (θ′, θ̂′) loallyminimize Φr(θ, θ̂). Proposition 5 rules out that θ̂r < θ̂′ < θ′ < θr and also θ̂′ < θ̂r < θr < θ′. Hene, itstill has to be shown that there annot be an overlap between the two type pairs, i.e. θ̂′ < θ̂r < θ′ < θror θ̂r < θ̂′ < θr < θ′. To get a ontradition suppose θ̂′ < θ̂r < θ′ < θr. In a similar way as in lemma2, one an now show that in this ase Φr(θr, θ̂′) < Φr(θr, θ̂r) thereby ontraditing that (θr, θ̂r) is theglobal minimizer of Φr(θ, θ̂):

Φr(θr, θ̂′) = Φr(θr, θ̂r) + Φr(θ′, θ̂′) +

∫ θ′

θ̂r

∫ qr(t)

qr(θ̂r)
cqθ(q, t) dq dt−

∫ θr

θ′

∫ qr(θ̂r)

qr(θ̂′)
cqθ(q, t) dq dt

= Φr(θr, θ̂r) + Φr(θ′, θ̂′)− Φr(θ′, θ̂r)−

∫ θr

θ′

∫ qr(θ̂r)

qr(θ̂′)
cqθ(q, t) dq dtBy proposition 5, Φr(θ′, θ̂′) − Φr(θ′, θ̂r) ≤ 0. Furthermore, ∫ qr(θ′)

qr(θ̂′)
cqθ dq = 0 sine (θ′, θ̂′) loallyminimize Φr(θ, θ̂). Therefore, ∫ q(θ̂r)

qr(θ̂′)
cqθ dq > 0 as qr(θ′) > qr(θ̂r) and cqqθ < 0. From cqθθ > 0 itfollows that ∫ θr

θ′

∫ qr(θ̂r)

qr(θ̂′)
cqθ(q, t) dq dt > 0 whih shows that Φr(θr, θ̂′) < Φr(θr, θ̂r). This is the desiredontradition.A similar argument an be made for the ase θ̂r < θ̂′ < θr < θ′. Consequently, the only possibilityis that (θ′, θ̂′) = (θr, θ̂r) whih had to be shown.If the highest/lowest type from/to whih a non-loal inentive onstraint is binding is a boundarytype, this type's deision is not neessarily the relaxed deision. However, the minimization argumentdoes not hange whih onludes the proof.33Stritly speaking one also has to show that i did not bind from outside [θ̂′′, θ′′] into this interval (or the other wayround), thereby inreasing q(θ) for some types in say (θ′, θ′′). If however this was the ase and the inrease in q(θ) wassuh that i between θ′′ and θ̂′′ was relaxed by it, then there has to exist a type θ̂′′′ ∈ (θ′, θ′′) and a type θ′′′ > θ′′ with

Φ(θ′′′, θ̂′′′) = 0 and q(θ̂′′′) = q̃(θ̂′′′). But this would ontradit that (θ′′, θ̂′′) is a global minimum of Φη(θ, θ̂) (analogouslyto the proof of lemma 2), i.e. Φ′(θ′′′, θ̂′′) < Φ′(θ′′, θ̂′′).
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C. Existene of an optimal ontratThis appendix shows that an optimal ontrat exists and therefore the haraterization done in thepaper is meaningful. It is assumed that qv(q, θ) ≥ qs(q, θ) for all q ∈ [0, qf (θ)] and all θ ∈ [θ, θ̄] andtherefore proposition 1 applies. Before showing existene, two useful lemmata are derived.De�ne q̃ suh that ∫ q̃

0 cqθ(q, θ̄) dq = 0. Sine cqqθ < 0, q̃ is unique and therefore properly de�ned.Lemma 6. Any inentive ompatible ontrat with a deision q(θ) above q̄ = max{qfb(θ̄), q̃} for sometype is dominated by a ontrat onsisting of deision
qc(θ) = min{q(θ), q̄}and transfers suh that π(θ) = 0 and πθ(θ) =

∫ θ

θ
−cθ(q(t), t) dt.Proof. The onavity of the virtual valuation implies that the prinipal's payo� under qc(θ) ishigher than under q(θ). Hene, the lemma holds if the hanged ontrat is inentive ompatible.Note that inentive ompatibility of qc(θ) is obvious if q(θ) > q̄ for all θ. Now de�ne θm = inf{θ :

q(θ) > q̄}. Note that inentive ompatibility from θm to any lower type is not a�eted by the hangefrom q(·) to qc(·) sine Φ(θm, θ̂) does not hange.The next step is to see that q(θ) > q̄ for all θ > θm. The reason is that loal inentive ompatibilitydoes not allow for any deision in [s(θ), q̄] as long as q(θ) stays above s(θ). Furthermore, downwardjumps to a deision below s(θ) would require that ∫ q−(θj)
q+(θj)

cqθ(q, θ
j) dq ≥ 0 at the jump type θj (forloal inentive ompatibility). But by the de�nition of q̄ and from cqθθ > 0, this inequality annot holdfor any type below θ̄ (and a jump at the boundary type θ̄ would not hurt the following argument).Therefore, all types above θm will have q̄ as their hanged deision. From lemma 1 it follows thatonly inentive ompatibility from types above θm to types below θm has to be heked. Therefore takean arbitrary θ > θm and some θ̂ < θm. Then Φ(θ, θ̂) = Φ(θm, θ̂) −

∫ θ

θm

∫ q̄

q(θ̂)
cqθ(q, t) dq dt > 0 wherethe inequality follows from the inentive ompatibility between θm and θ̂ under q(θ), the de�nition of

q̃ and cqθθ > 0.Lemma 7. Take a sequene of inentive ompatible deision funtions34 qn(θ) ≤ q̄, n = 1, 2 . . . , andlet this sequene onverge to q(θ). Then q(θ) is inentive ompatible.Proof. De�ne c̃qθ = maxq∈[0,q̄], θ∈[θ,θ̄] |cqθ(q, θ)|. Sine [0, q̄]× [θ, θ̄] is ompat and cqθ(·) is ontin-uous by assumption, c̃qθ exists.34An inentive ompatible deision is a deision suh that the menu onsisting of this deision and transfers de�nedby π(θ) =
∫ θ

θ
−cθ(q(t), t) dt is inentive ompatible. 46



Now suppose ontrary to the lemma that Φ(θ, θ̂) = −ε for some θ, θ̂ ∈ Θ and ε > 0 and thereforeinentive ompatibility is violated under q(θ). From onvergene of {qn(θ)}, for eah δ > 0 there existsan Nδ suh that |qn(θ)− q(θ)| ≤ δ for all types and all n > Nδ. Therefore,
Φ(θ, θ̂) =

∫ θ

θ̂

∫ q(t)

q(θ̂)
−cqθ(q, t) dq dt ≥

∫ θ

θ̂

∫ qn(t)

qn(θ̂)
−cqθ(q, t) dq dt−

∫ θ

θ̂

2δc̃qθ dtfor an arbitrary n > Nδ. But then hoosing a δ < ε
2c̃qθ(θ̄−θ)

shows that Φ(θ, θ̂) > −ε as Φn(θ, θ̂) ≥ 0where Φn(·) denotes Φ(·) under qn(·). This ontradits the de�nition of ε and therefore q(θ) is inentiveompatible.Given proposition 1 and the previous two results, the existene proof in Jullien (2000) applies. Forompleteness, I repliate the proof brie�y. The problem of the prinipal is the program:
max
q(θ)

∫ θ̄

θ

(u(q(θ), θ)− c(q(θ), θ))f(θ) + (1− F (θ))cθ(q(θ), θ) dθsubjet to
Φ(θ, θ̂) ≥ 0 for all θ, θ̂ ∈ [θ, θ̄]

0 ≤ q(θ) ≤ q̄Let W ∗ be the maximum value of the program. Take a sequene of deision funtions suh that
qn(θ) indue a value larger than W ∗− 1

n
and eah qn(θ) is inentive ompatible . Beause of proposition1, the sequene an be hosen suh that eah qn(θ) is an inreasing funtion. Then Helly's seletiontheorem, see Billingsley (1986) Thm. 25.9, yields that there exists a non-dereasing funtion q(θ)whih is the limit of a subsequene qnk(θ) at every point of ontinuity of q(θ) and therefore almosteverywhere on [θ, θ̄]. Lebesgue's dominated onvergene theorem, see Billingsley (1986) Thm. 16.4,yields that the prinipal's payo� under q(θ) is W ∗. By lemma 7, q(θ) is implementable and thereforean optimal ontrat exists.
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