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1 Introduction

I am interested in the behavior over multiple horizons of the relation between expected

excess returns and risk, proxied by the conditional volatility of returns or consumption, for

three main reasons: first, understanding what drives the dynamics of the equity premium, the

expected excess return on a market portfolio over the risk-free interest rate, is a fundamental

problem of financial economics; second, the idea that changing volatility of consumption or

aggregate cash flows can affect asset prices and equity premia is intuitive and has a long-

standing place in the asset pricing literature;2 and third, time horizon (i.e. holding period)

is almost as important a consideration as asset classes for investors.

With very few exceptions,3 the great majority of the empirical literature investigating the

natural hypothesis that changing risk premia are induced by movements in volatility does

assume that the only relevant source of information is at the fine scale of resolution. As a

point of departure from this previous body of work I argue that data observed at different

time-scales reveal different information and there is the need for an asset pricing model to

combine and integrate the information arising at these different levels of resolution.4

To get an intuition of the behavior of the risk-return trade-off at different scales, it is useful

to look at Figure 2. Following the approach of Bandi and Perron (2008) I run multi-horizons

regressions of future returns on past consumption volatility. The Figure shows the R2 at-

tained in these regressions for US, UK and Canada and provides evidence of a weak relation

at short-horizon and of a strong one at long-horizon, the R2 being increasing from around

zero at the 1-year horizon to more than 50% at the 10-years horizon. These empirical results

are especially interesting for two reasons. First, the statistical weak risk-return relation at

short-horizon runs counter the strong intuition of a positive relation between volatility and

2Early work investigating the relationship between consumption volatility and expected excess returns includes
Abel (1988), Barsky (1989), Giovannini (1989), Kandel and Stambaugh (1990), and Gennotte and Marsh (1992).
More recently, Bansal and Yaron (2004) have taken this idea to a model of recursive preferences of the type explored
by Epstein and Zin (1989, 1991), and Weil (1989), showing that a reduction in consumption volatility can raise asset
prices if the intertemporal elasticity of substitution is greater than unity.

3See Ghysels, Santa-Clara and Valkanov (2005) and Bandi and Perron (2008).
4The term “time-scale” may be viewed as “resolution”. At high time-scales (low frequencies, long-term) there

is a coarse resolution of a time series, while at low time-scales (high frequency, short-term), there exists a fine
resolution. Moving from low time-scales to high time-scales (from short-term to long-term) leads to a more coarse
characterization of the time series due to averaging. In this study, high-frequency refers to variability on time-scales
of one year, whereas the lowest frequency refers to decadal variations as well as trends. Table 3 shows how to interpret
each scale in terms of frequency interval.



expected returns that comes from the above mentioned models. Second, and more impor-

tant, I show that these results are inconsistent with general equilibrium models where the

time series properties of variables driving equity returns, e.g. consumption growth, are de-

fined only for the finest scale. In fact simple aggregation of a model for volatility and returns

specified at one time horizon, for instance monthly, may not necessarily lead to obtain a

long-term risk-returns. A question naturally arises. What feature are necessary to generate

this counterintuitive behavior of expected returns and volatility?

In this article, I address this question by developing a new asset pricing model that suc-

cessfully and simultaneously characterize both the short- and long-term behaviors of a time

series. To this end, I depart from the conventional time series analysis in the way I model

changing consumption volatility, moving away from specifications in which the focus is ex-

clusively on a given time-scale and all implications at coarser levels of aggregation may be

obtained by simply scaling up the series (e.g. by non-overlapping averages). Conversely I

propose a new modeling approach built in a cascade way from coarse to fine scales in order to

incorporate information observed at different scales of resolution. More specifically I couple

standard linear models at different levels of resolution using an autoregressive process for

each level to allow the existence of relevant dynamics at multiple resolution levels.

In modeling macroeconomic risk in this manner, I draw on an extensive body of work in the

finance literature that studies the memory in volatility at different time intervals and finds

evidence of volatility clustering at all time-scales, as well as evidence of multifractality in the

moment-scaling behavior of the data. In a related paper, Calvet and Fisher (2007) capture

volatility persistence across time-scales and long memory using the multifractal model of

asset returns. In the same vein, Ghysels et al. (2005) study the predictability of return

volatility at different frequencies by employing mixed data sampling regressions. Our paper

also relates to the recent work by Sizova (2010), where the author show that it is important

to account for long-range dependence in predictive variables when considering long-horizon

regressions. Our multi-scale time series approach has in fact the capacity to emulate long-

memory processes. However the main advantage of our approach over actual long memory

models is interpretability - the long-memory type of behavior is explicitly modeled as a result

of high autocorrelation in the coarse level of the hierarchy.

In order to preserve tractability and to provide insight into the relation between risk and

return, our model specification is kept simple and developed in the context of a representative

agent, exchange economy (Lucas, 1978). The model generates realistic features of the relation
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between risk and returns that are broadly consistent with the empirical evidence and delivers

a number of testable implications.

The empirical part of this article follows the multiresolution approach suggested by our model

and characterizes the relation between equity premia and macroeconomic risk at all time-

scales. Our estimation evidence is based on the data sampled annually. We use a long span

of data over the 1930-2010 period that covers a wide range of macroeconomic events that

potentially contain important information about variation in consumption growth volatility.

The empirical results can be summarized as follows. First, “macroeconomic uncertainty”,

as measured by the persistent components of consumption growth variance, is an important

source of aggregate risk and an important driver of long-run expected market returns. Our

work uncovers an important relation between macroeconomic uncertainty, consumption risk

and asset prices and thus complements the existing literature which has mainly looked at just

equity market risk, see e.g. Glosten, Jagannathan and Runkle (1993), Whitelaw (1994) and

Boudoukh, Richardson and Whitelaw (1997) for the intertemporal relation between equity

risk and return at short-horizon and Bandi and Perron (2008) for the long-run. Second,

combining information at different levels of aggregation, we find a significantly positive

relation between stock market risk and returns. In particular the estimate of risk aversion

γ is around 4, which lines up well with economic intuition about a reasonable level of risk

aversion. Finally, my work points to new directions for empirical work on the dynamics of

interest rates and risk. In particular I found evidence for “macroeconomic uncertainty” as a

key channel driving the time variation in the real short-term interest rate.

The rest of this article is organized as follows. Sections 2 and 3 document the failure of

conventional asset pricing models, focusing exclusively on a time series at a given scale,

in explaining the nature of the risk-return trade-offs. Section 4 introduce the principles of

multiresolution analysis and the multi-scale modeling approach. Section 5 presents an asset

pricing model that incorporates the multiresolution approach, provides intuition behind the

risk-return relation in this setting and evaluates how well it performs in explaining the mild

dependence at short horizons along with the strong statistical relationship in the long-run. I

then explore the statistical relations implied by our model and document common movements

in measures of the price-dividend ratio for the aggregate stock market and volatility of

measured consumption growth. Section 7 concludes.
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2 Macroeconomic Uncertainty and Risk-Return Trade-offs

The purpose of this section is twofold. First I illustrate how macroeconomic risk can affect

asset prices by using simple models. Second I show that none of these models is quite

sufficient to represent the whole structure of risk and returns reported in Figure 2.

and cannot helps us in interpreting the empirical evidence that the dependence of excess

market returns on past consumption variance increases with the horizon and is strong in the

long-run (i.e., between 7 and 10 years).

2.1 A standard set-up

I start by presenting a classic specification, an endowment economy as in Lucas (1978) where

there is a representative agent who maximizes a time-separable power utility function given

by:

u(Ct) =
C1−γ
t

1− γ
with γ being the risk aversion parameter. The stochastic discount factor is equal to the

intertemporal marginal rate of substitution in aggregate consumption, Ct:

Mt,t+1 =

(
Ct+1

Ct

)−γ
Let the process for aggregate consumption growth gt+1 ≡ log Ct+1

Ct
follow:

gt+1 = µ+ vtηt+1

v2t+1 = (1− ϕv)v + ϕvv
2
t + σwwt+1

where v2t is the conditional variance and ηt+1, wt+1 are i.i.d. N(0, 1) shocks. Plugging the

above dynamics for consumption into the expression for the log stochastic discount factor

mt,t+1 ≡ logMt,t+1 yields

mt,t+1 = δ1gt+1

= δ0 + δ1vtwt+1 (1)
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where δ1 = −γ. For any asset i, consider the Campbell and Shiller (1988) linear approxima-

tion for the log return

ri,t+1 ≈ κ0 + gdi,t+1 + κi,1pdi,t+1 − pdi,t (2)

where pdi,t ≡ log
(
Pi,t
Di,t

)
is the log price-cash flow ratio and gdi,t the log cash flow growth

rate. To make our point and keep the discussion brief I assume that dividends are perfectly

correlated with consumption and thus I will focus on the asset valuation associated with the

claim to the consumption stream.

The price-dividend ratio (once it has been solved endogenously) is an affine function of the

state variable, i.e.

pdi,t = b0 + bσv
2
t

Given the solution for the price-dividend ratio it is possible to derive the innovation to the

asset return can as a function of the evolution of the state variables and the parameters of

the model:

rt+1 − Et[rt+1] = vtηt+1 + bσκ1σwwt+1 (3)

As asset returns and the pricing kernel in this model economy are conditionally log-normal,

the risk premium for any asset is determined by the conditional covariance between the

return and mt,t+1:

Et[ri,t+1 − rf,t] = −covt(mt,t+1, ri,t+1)− 0.5Vart(ri,t+1) (4)

Exploiting the innovations in (1) and (3) into (4) it follows that:

Et[rt+1 − rf,t] = γv2t − 0.5Vart(rt+1) (5)

i.e. expected returns are determined by the conditional volatility of aggregate consumption.

Of course, this stylized model has important limitations, but its very simplicity serves to

illustrate the crucial point: macroeconomic risk plays an important role in determining asset

values. Moreover, as shown in the next section, the relation (5) is not specific to this set-up

but in fact can be obtained in a variety of models.

2.2 Economic Uncertainty and Recursive Preferences

I now present an economic model adapted from Bansal and Yaron (2004) and I show that

adopting recursive preferences together with a channel for time varying expected growth does
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not alter the main conclusion of the previous section, i.e. expected returns are determined

by the conditional volatility of aggregate consumption.

Consider an endowment economy as in Lucas (1978) where the representative agent has

Epstein and Zin (1989) - Weil (1990) preferences. In this economy the intertemporal marginal

rate of substitution is

Mt+1 = exp

(
θ log β − θ

ψ
gt+1 + (θ − 1)rc,t+1

)
where the parameter ψ, is the intertemporal elasticity of substitution (IES), and θ = (1 −
γ)/(1− (1/ψ)). The return, rc,t+1 denotes the log return on wealth, which in this economy

is simply the return on the claim to the consumption stream. Let the process for aggregate

consumption growth,

gt+1 = µ+ xt + vtηt+1

xt+1 = ρxt + φevtet+1

v2t+1 = (1− ϕv)v + ϕvv
2
t + σwwt+1

where xt is the conditional expected growth rate and et+1, ηt+1, wt+1 are i.i.d. N(0, 1) shocks.

Again to make our point and keep the discussion brief I will focus on the asset valuation

associated with the claim to the consumption stream. Exploiting the Euler equation for

valuing any asset ri,t+1

Et

[
exp

(
θ log β − θ

ψ
gt+1 + (θ − 1)rc,t+1 + ri,t+1

)]
the solution for the log priceconsumption ratio is pct = b0 + bxxt + bσ where

bx =
1− 1

ψ

1− κ1ϕv

bσ =
0.5[(θ − θ

ψ
)2 + (θbxκ1φe)

2]

θ(1− κ1ϕv)

In the model with Epstein-Zin preferences the risk premium takes the following expression:5

Et[rt+1 − rf,t] = γv2t + λeκ1bxφev
2
t + λwκ1bσσ

2
w − 0.5Vart(rt+1) (6)

5Details of the derivation are available from the author upon request. See also Bansal and Yaron (2004) and
Bansal, Yaron and Kiku (2009).
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where λe ≡ (1− θ)κ1bxφe is the market price of expected growth rate risk, λw ≡ (1− θ)κ1bσ
is the market price of volatility risk. The first term in the premium is the familiar i.i.d. case

where risk aversion multiplies consumption volatility. The second term captures the exposure

of the asset return to expected growth rate news. The third term is the compensation for

risk associated with fluctuating consumption volatility and is absent in the case of power

utility (when θ = 1).

The above discussion implies that, although in the model with Epstein-Zin preferences

volatility shocks carry a separate risk premium, it still holds that risk premia is a linear

affine function of consumption volatility, that is

Et[rt+1 − rf,t] = γ0 + γ1v
2
t (7)

which has the same form as the equation for the risk premia asserted in (5).6

3 Short- and Long-Run Implications of Fixed Time-Scale Model

In the previous section I showed that in a variety of models,7 expected returns are determined

by the conditional volatility of aggregate consumption, that is:

Et[rt+1 − rf,t] = γ0 + γ1v
2
t (8)

v2t+1 = (1− ϕv)v + ϕvv
2
t + σwwt+1 (9)

where the second equation models the variance process as a persistent autoregressive process.

As noted in Hansen (2008), when I build dynamic economic models, I typically specify

transitional dynamics over a unit of time for discrete-time models or an instant of time for

continuous time models. Long-run implications are encoded in such specifications. I therefore

consider the implication of equations (8) and (9) upon an aggregation scheme where both

the equity premium and the variance are measured over the same horizon h. More formally

6Note that if the IES is greater than one then it immediately follows that bx is positive. In addition, if γ is also
greater than one (i.e., θ < 0, λe, and hence γ1, is positive.

7Additional models not considered in the previous section are the ones in Hansen and Singleton (1982, 1983), Abel
(1988), Kandel and Stambaugh (1990) and Campbell (1993).
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consider:

Et[r
ex
t+1 + rext+2 + . . .+ rext+h]︸ ︷︷ ︸
expected return at scale h

= β (v2t + v2t−1 + . . .+ v2t−h−1)︸ ︷︷ ︸
Risk at scale h

(10)

v2t+1 = (1− ϕv)v + ϕvv
2
t + σwwt+1

where rext+1 ≡ rt+1 − rf,t and we think of the right-hand side of (10) as a measure of the

uncertainty over horizon h.8 Figure 1 shows on simulated data from a long-run risk econ-

omy that the R2 from a regression of the equity premium on the risk, as measured by the

consumption variance would be high at short horizon and small at long-horizons.

[Insert Figure 1 about here.]

I next bring relation (8) and its aggregated counterpart (10) to the data. In order to do

so I need to find a proxy both for expected returns and consumption volatility. Following

many empirical studies I employ realized excess returns to proxy for the equity premium.

With regard to economic uncertainty we consider three empirical measures for consumption

volatility; the first two specifications are not parametric whereas the last one is. The first

measure is obtained computing standard deviations over h-year (past) rolling windows. The

second measure, motivated by Andersen, Bollerslev and Diebold (2003a) and used in Bansal,

Khatchatrian and Yaron (2005) is the realized volatility. We begin by fitting an AR(1)

process for consumption growth:

gt+1 = µ+ βgt + ut+1

Then we calculate h-period realized volatility as the sum of the absolute values of the resid-

uals over K periods:

vt−h,t ≡ log
h−1∑
i=0

(|ηt|)

8Indeed if we assume that consumption growth is unpredictable then we have that

Vart(gt,t+h) = Vart

(
µh+

h−1∑
i=0

vt+iηt+i+1

)

=

h−1∑
i=0

v2t+i
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Taking logs makes the volatility measure less sensitive to outliers and does not qualitatively

affect any of our empirical results. Our third specification for volatility is parametric and is

based on modeling consumption growth as following an AR(1)-HARCH(5). HARCH(n) is a

variant of the ARCH model when we consider the arrival of heterogeneous information and

it was introduced by Muller, Dacorogna, Dave, Olsen, Pictet and von Weizsacker (1997). As

discussed below, our results are robust to these alternative measures of volatility. Appendix

A contains a detailed description of the data. In all, to evaluate the relation between return

and risk at different horizons h I consider regressions of the type:

rt,t+h = αh + βhRiskt−h,t + εt,t+h h = 1, . . . , 10 (11)

where rt,t+h denotes excess market returns between years t and t+ h, Riskt−h,t denotes past

consumption variance, and εt,t+h is a forecast error. The relationship between returns and

variance across different levels of aggregation h is what I call the multi-scale behavior of the

risk-return trade-off.

Table 1 report the results of this set of regressions. The results in the first column show

that when returns and variance are measured at the highest frequency possible9 there is

only weak evidence that periods of high stock market/consumption volatility coincide with

periods of predictably high stock returns. The empirical evidence that expected stock returns

are weakly related to volatility appears to contradict the model implication that risk and

return are positively related. This is consistent with previous estimates of the relation

between risk and return which often have been insignificant and sometimes even negative,

see Lettau and Ludvigson (2010) for a thorough discussion.10 Table 1 shows that although

the dependence between excess market returns and past consumption variance is statistically

mild at short horizons (thereby leading to a hard-to-detect risk-return trade-off, as in the

existing literature) it increases with the horizon and is strong in the long-run (i.e., between

7 and 10 years), consistent with the recent empirical findings in Bandi and Perron (2008).

For aggregation levels h = 7, 8, 9, and 10 years the former relation reveals a pronounced

dependence as highlighted by a monotonously increasing R2 that peaks to 55% at the 10-

year horizon. Importantly this result is insensitive to how volatility is measured.

9Tests of the short-run risk-return trade-off have been mainly conducted with returns computed for a holding
period of one month. For our long data sample 1929-2010 consumption data are available at annual frequencies and
fix the highest frequencies time interval for our empirical analysis.

10French, Schwert and Stambaugh (1987), Baillie and DeGennaro (1990) and Campbell and Hentschel (1992) do
find a positive albeit mostly insignificant relation between the conditional variance and the conditional expected
return. In contrast, Campbell (1987) and Nelson (1991) find a significantly negative relation. Glosten et al. (1993),
Harvey (2001), and Turner et al. (1989) find both a positive and a negative relation depending on the method used.
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[Insert Table 1 about here.]

Two natural concerns however arise with regard to the above results. Our work analyzes

one US based dataset, with one history of returns and variance. Using this data set alone,

it is hard to definitively exclude the possibility of spurious results. International data offer

an interesting test of our hypothesis of a multi-scale behavior of the risk-return trade-off.

Thus I estimate the horizon-dependent relation(s) (11) between the conditional mean of

excess market returns and variance of consumption growth for different countries and I plot

in Figure 2 the estimated R2. As follows from the figure, the R2 derived in regressions of

future returns on past volatility is increasing from around zero at the 3-month horizon to

more than 60% for US, UK and Canada. This results support a positive long-run risk-return

relation in international markets.

[Insert Figure 2 about here.]

The second concern11 regards the use of the sum of squared daily returns, i.e. the second

moment, as a proxy for market risk. This holds true when the drift of returns is negligible

and in particular for very short horizons. The long-horizon results could simply reflect the

effect of the drift on the second moment in order to deliver a constant variance. To ensure

the robustness of our results, I thus consider a measure of realized volatility used by Bansal

et al. (2005) that account explicitly the time-varying mean of consumption growth at long-

horizons. Results are reported in Panel B of Table 1 and are broadly consistent with the one

obtained using volatility from the AR(1)-HARCH(5) specification.

Overall whereas much work has been devoted to assessing the validity of the classical short-

run (h = 1) risk-return trade-off I have shown that the models testable restrictions are

rejected on a stronger ground when the risk-return relation is studied across different hori-

zons. This is consistent with the results in Bandi and Perron (2008) and Sizova (2010). These

works explore the long-run implications of traditional short-term risk-return models such as

(8) augmented with a classical (autoregressive) process for variance as (9), and prove that

simple temporal aggregation of such short-term specification cannot imply the long-term

results.
11I thank Francesco Corielli for pointing this out.
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The above facts reveal that the dynamics of risk and returns change with the time horizon

and the risk-return trade-off should be considered time-scale dependent. The interval size of

the time grid on which volatility is measured is therefore an essential parameter. Volatility

measured with high resolution contains information that is not covered by low resolution

volatility and vice versa.

The failure of the previous models can be attributed to the fact that they typically model

only one time-scale (usually a month) at time. In the next section I make sure that, indeed,

this is the case and even expanding the state space by allowing the volatility process to be

the sum of two conventional models, where one has nearly a unit root, and the other has a

much more rapid decay does not solve the empirical puzzle as far as these components are

specified at the same time-scale.

3.1 Too big to be true

As follows from the pattern shown in Figure 2 the R2 for the return regression seems very

high. In this section I conjecture that the observed patterns in Figure 2 emerged spuriously.

My first goal is to check if the type of model described by equations (8) and (9) can capture

the long-run predictability pattern. Assuming a nearly integrated framework as in Valka-

nov (2003), Bandi and Perron (2008, Proposition 3) show that, under the assumption that

limT→∞ h/T = λ (where T is the sample size) the R2 in regression(s) (11) converges to a

nondegenerate random variable:12

R2 ⇒

(∫ 1−λ
λ

A(τ)B(τ)dτ
)2(∫ 1−λ

λ
A2(τ)dτ

)(∫ 1−λ
λ

B2(τ)dτ
) (12)

(13)

where A(τ) and B(τ) are processes on the interval [0, 1] whose expressions are given in

equations (B.5) and (B.6) and the symbol ⇒ denotes weak convergence as T → ∞. I can

now study the implications of a short-memory model that takes into account overlapping

observations, persistence in the predictive variable and the effect of a negative correlation

between shocks to returns and shocks to variances. To examine the asymptotic distribution

we consider reasonable values for the coefficients of the processes A(τ) and B(τ). Appendix

12See Appendix B for a proof.
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B describes our choice. Using formula (12), I construct a distribution for R2 in regression(s)

(11) when the DGP is given by the Fixed Time-Scale Model, see equations (8) and (9).

[Insert Table 2 about here.]

The results are reported in Table 2 for the horizon H = 10 and T = 81 observations, as in

our sample. Table 2 shows that the the limiting distribution of the R2 is more concentrated

around zero. This is contrary to our findings. However the resulting values of R2 are very

imprecisely measured. For example, in Case 1, the 90% probability interval for R2 stretches

from 0.0% to 25.7%. Note that despite the high dispersion of estimates, a value of R2 from

regression(s) (11) above 50% is rarely observed. As follows from the data in Table 2, the

probability of this event is equal to 0.1-0.4% for all cases.

Overall these observation leads to the conclusion that fixed-time scale models have hard time

in in revealing and assessing long-run predictability in returns based on volatility.

3.2 Expanding the State-Space

Intuition could lead to think that a model where volatility is made up of the sum of in-

dependent autoregressions, each with a different persistence level can be better suited to

capture short-term and long-term effects such as the ones presented in the previous section.

Superposition models of this type have become popular in financial econometrics as they

are more general than empirically limiting Markov volatility models while close to corre-

sponding continuous time models (Engle and Lee (1993); Barndorff-Nielsen and Shephard,

2001; Chernov, Gallant, Ghysels and Tauchen (2003)). In this section I instead show that

expanding the state space cannot help us in interpreting the empirical evidence presented in

the previous section. In particular I assume a two-factor stochastic volatility model for both

the consumption and dividend claim:

gt,t+1 = µ+
√
dv2p,t + (1− d)v2s,tηt+1 (14)

gdt,t+1 = µd + ϕd

√
cv2p,t + (1− c)v2s,tut+1 (15)
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where v2p,t and v2s,t are the slowly evolving component and the quickly mean reverting one,

respectively and ut+1 is correlated with wt+1. The dynamics of the two fundamental uncer-

tainty factors are:

v2p,t+1 = (1− ϕv,p)v + ϕv,pv
2
p,t + σpwp,t+1

v2s,t+1 = (1− ϕv,s)v + ϕv,sv
2
s,t + σsws,t+1 (16)

If I consider an endowment economy with Epstein and Zin (1989) - Weil (1990) preferences,

then the log stochastic discount factor innovations are:

mt,t+1 − Et[mt,t+1] =

(
− θ
ψ

+ θ − 1

)√
dv2p,t + (1− d)v2s,tηt+1 + . . .

+ (θ − 1)κ1bσ,pσp,wwp,t+1 + (θ − 1)κ1bσ,sσs,wws,t+1 (17)

and the stock market innovation is

rt+1 − Et[rt+1] = µd + ϕd

√
cv2p,t + (1− c)v2s,tut+1 + . . .

+ κ1,mb
m
σ,p︸ ︷︷ ︸

βp,mw

σp,wwp,t+1 + κ1,mb
m
σ,s︸ ︷︷ ︸

βs,mw

σs,wws,t+1 (18)

Equation 18 shows that the implied stock return process must also have the same two

volatility factors.

Plugging (17) and (18) into (4) I finally obtain:

Et[rt+1 − rf,t] = γ(dv2p,t + (1− d)v2s,t) + λp,wβp,mwσ
2
p,w + λs,wβs,mwσ

2
s,w − 0.5Vart(rt+1)

where λi,w ≡ (1− θ)κ1bσ,i for i = {p, s}. Note that once again I obtain a relation similar to

(7) where risk premia is a linear affine function of consumption volatility. The interesting

question now is to see what role do the two volatility components play in our new model?

Can the superposition model given by 16 replicate the risk-return empirical pattern reported

in Figure 2 ?

To answer these questions I simulate from an economy calibrated following the model of Zhou

and Zhu (2010), which extend the Bansal and Yaron (2004) and Bansal et al. (2009) models

by introducing both a long-run and a short-run volatility component into the consumption

and dividend processes. Figure 1 shows that the superposition model cannot reconcile the
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findings of a weak short-run and a sizable long-run risk-return trade-off, and has indeed the

same problem facing the one-factor volatility model presented in Section 2.

Conventional time series analysis, focusing exclusively on a time series at a given scale, lacks

the ability to explain the nature of the data-generating process. The problem of aggregation

arises: the properties of long-horizon risk-return cannot be covered by a model equation

that focuses on a series of volatility and returns at the highest frequency of observation. The

new challenge to theoreticians is the development of consistent models that successfully and

simultaneously characterize both the short and long-term behaviors of a time series.

Since fixed time-scale are not adequate for capturing the perception of risk and return, I

argue that a better insight into the dynamics of financial markets can be achieved with a

time-adaptive framework that simultaneously takes all time-scales of the statistical process

into account, the Multiresolution analysis.

In the next section I thus quickly introduce the Multiresolution Approximation framework to

analyze a time series on different scales, with different degree of resolution, simultaneously. I

then re-investigate the dynamics of returns using a new asset pricing model that incorporates

the multiresolution technique and show that the incorporation of multiple time-scales into

the analysis should improve the interpretation of the empirical evidence just presented.

4 The concept of a time series with more than one time scale.

Multiresolution decomposition. A time series could contain one characteristic time scale, or it

could contain processes at several different resolutions or time-scales. Using multiresolution

analysis I can separate the different time-scales in a given time series.

There are a number of reasons why we might want to decompose a time series into its

component scales. First, the signal being investigated may possess features and significant

dynamics at several different scales. Second, the process may live at one scale and the noise

another. If the signal can be separated from the noise at a particular time scale, the hope is

to arrive at a more predictable representation of the signal (see for instance Ortu, Tamoni

and Tebaldi (2011b) for an application to long-run risk in consumption).
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4.1 An insight into the time series decomposition

The concept of a multiresolution analysis (MRA) is that a given time series, with finite vari-

ance, may be decomposed into different approximations associated with unique resolutions

(or time horizons). Next I briefly explain this idea since I shall use it for the new asset pricing

model throughout the paper. For a complete and formal treatment of the multiresolution

analysis, I refer to Mallat (1989), Dijkerman and Mazumdar (1994) and Levan and Kubrusly

(2006).

A multiresolution representation provides a simple hierarchical framework for interpreting

the time series information, see Ortu, Tamoni and Tebaldi (2011a). Given a sequence of

increasing resolutions {rj}j∈Z , I wish to build a multiresolution representation based on the

differences of information available at two successive resolutions rJ and rJ+1. The details

of a time series at the resolution rj are defined as the difference of information between

its approximation at the resolution rj and its approximation at the lower resolution rj−1.

Following the approach of Burt et al. (1983) and Crowley (1987) I choose to work with

dyadic (or pyramidal) scales so that our resolution levels will be given by rj = 2j where

j ∈ Z.

More formally let A2j , be the operator which approximates a stochastic process with paths in

L2 at a resolution 2j. Here, I characterize A2j , from the intuitive properties that one would

expect from such an approximation operator. I state each property in words, and then give

the equivalent mathematical formulation.

1. A2j is a linear operator. If A2jx is the approximation of some signal x at the resolution

2j, then A2jx is not modified if I approximate it again at the resolution 2j. This

principle shows that A2j ◦ A2j = A2j . The operator A, is thus a projection operator

on a particular vector space V2j ∈ L2, i.e. A2j = projV
2j

. The vector space V2j , can be

interpreted as the set of all possible approximations at the resolution 2j of signals in

L2.

2. Among all the approximated functions at the resolution 2j, A2jx is the function which

is the most similar to x.

∀y ∈ V2j , ‖y − x‖ ≥ ‖A2jx− x‖

Hence the operator A2j is an orthogonal projection on the vector space V2j .
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3. The approximation of a signal at a resolution 2j contains all the necessary information

to compute the same signal at a coarse resolution 2j+1. This is a causality property.

Since A2j , is a projection operator on V2j , this principle is equivalent to

∀j ∈ Z V2j ⊂ V2j−1

I call any set of spaces {V2j}j∈mZ which satisfies the properties (2)-(3) (additionally also

certain self-similarity relations in time and scale must be satisfied, see Mallat (1989)) a

multiresolution approximation of L2. The associated set of operators A2j , satisfying (l)-(3)

give the approximation of any L2 signal at a resolution 2j. We saw that the approximation

operator A2j is an orthogonal projection on the vector space V2j . In practice, any stochastic

signal can be observed only at a finite resolution. For normalization purposes, I suppose

that this resolution is equal to 1.

In order to numerically characterize this operator, I must find an orthonormal basis of V2j .

Meyer (1988) shows the existence of such a basis (or multiresolution filter) and that these

bases generalize the Haar basis. Let’s call this orthonormal basis h.

Let A1x be the discrete approximation at the resolution 1 that is measured. The causality

principle says that from A2jx I can compute all the discrete approximations A2jx for j ≥ 1.

I now describe a simple iterative algorithm for calculating these discrete approximations.

Let’s call π
(j)
t the approximated signal obtained from A2jx. The next coefficients π

(j)
t are

generated from the scale coefficients π
(j−1)
t by convolving the latter with the low-pass filter

h:

π
(j+1)
t =

+∞∑
l=−∞

h(l)π
(j)

t+2j l
(19)

Since V2j ⊂ V2j−1 , π
(j+1)
t is a coarser approximation of x than is π

(j+1)
t . Therefore, the key idea

of MRA consists in studying a signal by examining its coarser and coarser approximations

by canceling more and more details from the data.

MRA allows now to build a representation of the series based on the differences of information

available at two successive resolutions 2j and 2j+1. I now explain how to extract the difference

of information between successive resolutions. The information that is removed when going

from one approximation to the next coarser one is called the detail. The detail coefficients

at scale j + 1 (i.e. those coefficients whose information content is the difference between
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consecutive approximations, say at levels j and j + 1 in the decomposition) are defined

formally as:13

x
(j+1)
t = π

(j)
t − π

(j+1)
t

Hence the detail coefficients can also be viewed as differences between weighted averages

where the weights are determined by a given multiresolution filter.

A multiresolution analysis thus allows to rewrite the information in the original series gt as

a collection of details at different resolutions and a low-resolution approximation:14

xt =
J∑
j=1

x
(j)
t + π

(J)
t (20)

Therefore, the time series should be viewed as a cumulative sum of the detail variations x
(j)
t

and will become smoother as j increases. The detail coefficients {x(j)t }Jj=0 decompose the

information from the original time series into pieces associated with both time and scales.

In particular the level j detail coefficients {x(j)t }t are associated with changes on a scale of

length λj = 2j−1 and the scaling coefficients {π(J)
t }t are associated with averages on a scale of

length 2J . Since the detail coefficients capture the variation of the time series at a given scale

and interval of time, our approach is to model the detail coefficients directly. Importantly,

at any time point, t, I never use information (time-wise) after k in calculating the wavelet

coefficient, thus the algorithm produces an adapted (non anticipative) decomposition.

I propose multiresolution stochastic models on the discrete wavelet coefficients as approxi-

mations to the original time process.

4.2 Haar multiresolution and temporal aggregation

Infinitely many MRAs exist (see for example Aldroubi and Unser, 1993; Abry and Aldroubi,

1995). In the following I select the Haar only to underline the possibility of exactly refor-

mulating the aggregation procedure as an MRA.15 Aggregating the data means averaging

13Note that x
(j+1)
t (ω) is a random variable. A sample x

(j+1)
t (ω) is the detail coefficient at (j, t) of a sample

trajectory xt(ω).
14Reconstruction of the process from its discrete detail coefficients is understood in the L2 sense. See also Ortu et

al. (2011a).
15More generally any MRA can therefore be understood as an aggregation procedure. See Abry, Veitch and Flandrin

(1998).
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them over a time duration T ; in other words, it means filtering the data a low-pass function

whose characteristic time support is of length T .

The Haar multiresolution is designed from the following simple filter h =
(
1
2
, 1
2

)
. In this case

equation (19) becomes

π
(j+1)
t =

1

2
[π

(j)
t + π

(j)

t−2j ]

I now study the decomposition (20) for level j = 1. First consider convolving the input data

xt with the filter h. This yields

π
(1)
t =

1

2
[π

(0)
t + π

(0)
t−1]

=
xt + xt−1

2

x
(1)
t = π

(0)
t − π

(1)
t

=
xt − xt−1

2

where I define π
(0)
t = xt.

From this definition, it is straightforward to check that the aggregated process {xt,t+H}t
where xt−H,t =

∑H−1
k=0 xt−k/H with aggregation level H = 2h, can be rewritten as an approx-

imation of x:

xt−2(h−1),t = π
(h)
t

=
J∑
j=h

x
(j)
t + π

(J)
t (21)

This relation answer the question: what is happening at different scales in the series (scale

behavior of a series). Moreover it shows that there is an exact, obvious and natural iden-

tity between the aggregation procedure and Haar MRA: studying x over longer and longer

observation periods T simply translates in the MRA vocabulary to increasing the scale of

analysis 2j, or equivalently to lowering the resolution.

4.3 Inspecting the Mechanism

Before introducing the full-blown asset pricing model built on the multiresolution analysis

presented, I now sketch a multi-scale time series model that can be used to interpret the

results in Figure 2.
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Based on the multiresolution framework presented in the previous section and using the

decomposition (20) and the aggregation relation (21) I build the dynamics of the volatility

process from coarse to fine level of resolution:

vt,t+h = v
(p)
t+h at coarse scale h� 1

vt,t+1 = v
(p)
t+1 + v

(s)
t+1 at the finest scale

and similarly for the returns

rt,t+h = r
(p)
t+h at coarse scale h� 1

rt,t+1 = r
(p)
t+1 + r

(s)
t+1 at the finest scale

Consider again the regression(s) in (11):

rt,t+1︸ ︷︷ ︸
r
(p)
t+1+r

(s)
t+1

= α1 + β1 v2t−1,t︸ ︷︷ ︸
v
(p)
t +v

(s)
t

+εt+1

rt,t+h︸ ︷︷ ︸
r
(p)
t+h

= αh + βh v
2
t−h,t︸ ︷︷ ︸
v
(p)
t

+εt+h

It is now easy to see that if I interpret the decomposition of both the volatility and the

return as the sum of an information component, captured by the long-run processes r
(p)
t+1

and v
(p)
t+1, and a noisy one, captured by r

(s)
t+1 and v

(s)
t+1, then an error-in-variable problem will

lower, under certain conditions,16 the R2 at short horizon compared to the (true) one at long

horizon. Thus the proposed method that decomposes a given time series on a scale-by-scale

basis, based on multiresolution approach, can allow to interpret the fact that relationship

between the return and risk becomes stronger as the scale increases. In the next section I

extend the simple set-up above to a model which consider the multi-scale nature of risk and

return at all possible horizons.

5 A new multi-horizon asset pricing model

Following the approach discussed in Section 4, I incorporate in the standard long-run risk

model the decomposition of time series into components realized over different time horizons,

16See Lancaster (1963).
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see (20), so that the log consumption growth, gt takes the following form:

gt =
J∑
j=1

g
(j)
t

where {g(j)t }j are meant to capture the behavior of the original time series over time-scale

of length 2j−1 periods. In fact the aggregation relation (21) assures that, for sufficiently

high h = 2J−1 the dynamics of consumption growth at horizon h are fully determined by its

persistent component:

gt,t+h ≡ log
Ct+h
Ct

=
h−1∑
k=0

gt+h−k/h

= g
(J)
t+h

This says that a process equation that successfully explains the horizon h, 10 year consump-

tion changes, for example, is unable to characterize the nature of yearly consumption changes

gt,t+1.

Now, I closely follow the approach of Bollerslev, Tauchen and Zhou (2009) and Zhou (2010)

and suppose that the growth rate of consumption in the economy is not predictable. The

novelty is to assume that each component of consumption growth, gj,t is driven by its own

stochastic volatility, vj,t, i.e.:

g
(j)

t+2j
= vj,t e

g
j,t+2j

(22)

eg
j,t+2j

∼ N (0, 1)

with the shocks eg
j,t+2j

being uncorrelated. To close the dynamics of the model I assume

that each of the stochastic variance components
{
v2j,t
}J
j=1

is observed over time intervals of

different sizes and follows its own autoregressive process, i.e.

v2j,t+2j = ρjv
2
j,t + εj,t+2j (23)

εj,t+2j ∼ N
(

0,
(
σ(j)
)2)

This statistical description of volatility is called multi-scale autoregressive process, for it has

an autoregressive process occurring on all scales j = 1, . . . , J . Moreover using equations (22)
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together with the decomposition (D.2) I can compute the volatilities realized over different

time horizons:

Vart[gt+1] = v2p,t + v2s,t

Vart[gt,t+h] = v2p,t (24)

This show that at each time-scale the variance is described by a different autoregressive

structure. This is the key difference between the superposition model suggested by Barndorff-

Nielsen and Shephard (2001) and the multiresolution approach. In the superposition model,

volatility at the lowest scale is the sum of independent autoregressive processes, each with

a different persistence level. The multiresolution approach takes instead advantage of the

persistence across scales. My model has heterogeneity derived from the fact that different

autoregressive structures are present at each time scale allowing volatility components to

decay at different rates. With this regard I sometimes refer to j as the level of persistence

of the j-th components. Importantly, equations (22) to (23) represent a natural way to

incorporate persistence heterogeneity in the macroeconomic uncertainty framework while

retaining its pedagogical simplicity.

Finally note that in this simple specification of the model variance can go negative. To ensure

the positivity of the variance process, one can pursue the approach of Barndorff-Nielsen and

Shephard (2001) and assume that the innovations in the components of variance processes

follow a Gamma distribution. This would just slightly complicate the algebra without adding

much to the intuition to the model. In the following I therefore assume that consumption

variance shocks are Gaussian to explain the major implications of the model. However

when I estimate the consumption variance components I impose positivity by estimating the

log-variance.

To give economic and structural meaning to the parameters I assume, as in BY04, a pure

exchange economy with a representative agent with Epstein-Zin recursive preferences. The

well known Euler condition for such an agent is:

Et

[
emt+1+rit+1

]
= 1 (25)

where mt+1 is the log stochastic discount factor given by

mt+1 = θ log β − θ

ψ
gt+1 + (θ − 1)rat+1 , (26)
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rat+1 is the log return of the claim which distributes a dividend equals to aggregate con-

sumption.17 The parameter β is the preference discount factor. The preference parameter

ψ measures the intertemporal elasticity of substitution, γ measures the risk aversion and

θ = (1− γ) / (1− 1/ψ).

In what follows I provide the basic steps to determine the pricing kernel and risk premia on

the market portfolio in my long-run risk model with persistence heterogeneity.18 Recall first

that by the standard Campbell and Shiller (1988) log-linear approximation for returns one

obtains:

ra,t+1 = κ0 + κ1z
a
t+1 − zat + gt+1 (27)

where zat denotes the log price-consumption and the log price-dividend ratio respectively. Re-

calling the decomposition of consumption into components with different levels of persistence,

and denoting with z
(j)
a,t the components with persistence j of the (log) price-consumption ra-

tio, it is natural to conjecture that there exists component by component a linear relation

between the financial ratios and the state variables v2j,t, i.e.

z
(j)
a,t = A0,j + Ajv

2
j,t (28)

As long as Aj these relations tells us that the variation in valuation ratios can be attributed

to fluctuations in economic uncertainty. These relations together with equation 23 imply

that measures of economic uncertainty (conditional variance of consumption) are predicted

by components of valuation ratios.

The values of A0,j, Aj in terms of the parameters of the model are obtained from the Euler

condition (25) after the log stochastic discount factors and the returns are all expressed in

terms of the factors {v2j,t}Jj=1 and of the innovations {eg
j,t+2j

}j and {εj,t+2j}j. In Appendix D

I show that plugging these expressions for the stochastic discount factor and for the returns

into the Euler equation and using the method of undetermined coefficients one obtains a

set of equations for the coefficients A0,j, Aj, the solution of which are given by the following

vectors of sensitivities:

A = 0.5

(
θ − θ

ψ

)2
θ

(IJ − κ1M)−1 1

17To make my point and keep the discussion brief I will focus on the asset valuation associated with the claim
to the consumption stream. In the previous version of this paper we show how to price a claim to dividends which
is modeled as a levered claim on the consumption components processes containing additional independent shocks.
Nonetheless, the general structure for the asset risk premium and its valuation ratio is analogous to the one presented
in this section.

18All details behind our calculations are given in the Appendix D.

22



where

M = diag (ρ1, . . . , ρJ)

and A denotes the column vectors with entries, A1, . . . , AJ . Two features of this model

specification are noteworthy. First, if the IES and risk aversion are larger than 1, then θ is

negative, and a rise in volatility lowers the price-consumption ratio. Similarly, an increase in

economic uncertainty will make consumption more volatile, which lowers asset valuations and

increases the risk premia on all assets. This highlights that an IES larger than 1 is critical for

capturing the negative correlation between price-dividend ratios and consumption variance.

Second, an increase in the permanence of variance shocks, that is M, magnifies the effects

of volatility shocks on valuation ratios, as changes in economic uncertainty are perceived as

being long-lasting.

To study the scale-dependent consequences of my model for the equity premium in Appendix

I show that innovation in the returns’ component at level of persistence j are given by:

r
(j)

a,t+2j
− Et[r(j)a,t+2j

] = vj,te
g
j,t+2j

+ κ1
(
Ajεj,t+2j

)
and that the innovations of the stochastic discount factor’s components are given by

m
(j)

t+2j
− Et[m(j)

t+2j
] = −λgvj,tegj,t+2j

− λjεj,t+2j j = 1, . . . , J (29)

Recall that the risk premium on any asset i satisfy, in this set-up, Et[ri,t,t+h − rf,t+h] +

0.5σ2
ri,t,t+h

= −covt(mt,t+h, ri,t,t+h) where ri,t,t+h and mt,t+h are the stock return and stochastic

discount factor aggregated over h-period. With the innovations to the equilibrium returns

at hand and using (29) together with (21) one finally can compute the risk premia for the

consumption claim asset, ra,t+2h−1 and for the market portfolio, rm,t+2h−1 for any horizon

2h−1:

Et[ra,t,t+2h−1 − rf,t+2h−1 ] + 0.5σ2
r
a,t,t+2h−1

= −covt

(
J∑
j=h

m
(j)

t+2j
,

J∑
j=h

r
(j)

a,t+2j

)

= λg

J∑
j=h

v2j,t + κ1λεQA
′ (30)

where λg ≡
(
θ
ψ
− θ + 1

)
, λε ≡ κ1(1− θ)A and Q = Et

[
εt+1ε

′
t+1

]
.

This model, however simple, provides a natural platform on which to investigate the risk

behavior at different time horizons. This is done by accounting for changes in the covariance
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at different scales. Intuitively, equity markets price not only high-frequency but also diverse

lower-frequency fundamentals such as demographics (Abel, 2003), technological innovation

(Pastor and Veronesi, 2005), and variations in cash-flows and macroeconomic uncertainty

(Bansal and Yaron, 2004; Lettau, Ludvigson, and Wachter, 2004) as in my specific case.

6 Empirical evidence

In this section I provide new evidence that relates asset prices to consumption and stock

market variance. Appendix A contains a detailed description of the data.

Along this section I extract consumption variance using an AR(1)-HARCH(5). Importantly

this estimation technique accounts for changes in the volatility dynamics at different scales.

The filtered time-varying consumption growth volatility is persistent with an autocorrelation

coefficient of about 0.75. Nevertheless as I have argued in the previous sections, the volatility

itself can be interpreted as the sum of different components each one realized over different

time horizons indexed by j. I extract such components using the Haar MRA, see equations

(19) and (20). I instead measure stock market risk by the realized variance obtained using

high-frequency (i.e. daily in this case) return data and then I decompose it using the Haar

MRA, see equations (19) and (20). For an interpretation of the cycle durations corresponding

to the time-scale level j in the case of annual times series see Table 2.

6.1 Long-run Risk and Return Trade-off

In this Section I discuss the risk-return trade-off implied by my model. Whereas the body

of empirical evidence on the risk-return relation is mixed and inconclusive, as discussed in

the introduction, here I argue that the disagreement in the empirical literature on the risk-

return relation is likely to be attributable to not properly considering the different volatility

components associated with different horizons.

Equation (30) yields a set of relation at a fixed level of persistence j between the component

of expected market returns and the component of macroeconomic uncertainty, v2j,t:
19

Et[r
(j)

m,t+2j
− r(j)

f,t+2j
] = λgv

2
j,t + const (31)

19If one sums over j the relation (31) and applies the forward decomposition (D.2) to the right-hand side then (30)
is retrieved.
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Applying the persistence based decomposition described in Section 4 to the realized ex-

cess returns20 and to the consumption variance, I can finally estimate the following set of

regressions:

r
(j)

t+2j
− r(j)

f,t+2j
= αj + βjv

2
j,t + εj,t+2j j = 1, . . . , J

The results are reported in Table 4. Although all regressions are run with an intercept, I do

not report their point estimate since I always find insignificance of the intercept coefficients.21

Note that the relation is not statistically significant at medium horizons, i.e. j = 2, 3.

However the results suggest that the (macroeconomic) risk-return relation holds true for the

components at very high time-scales, in particular for j = 4, 5 corresponding to horizons of

8− 16 and 16− 32 years, respectively.

To further illustrate the behavior of the common cyclical components between stock market

returns and consumption variance I plot in Figure 3 the medium-frequency variation in

returns and consumption variance. The medium-term frequency are obtained as the sum of

the components of the respective series at time-scales j = 4, 5. The comovement is visibly

striking. The coefficient of determination from a regression of the (medium-term cycle) in

returns on the (medium-term cycle in) consumption variance is R2 = 0.71 and the corrected

t-statistics of the coefficient loading on the risk measure is 4.43. In Section 6.4 I show that

these consumption variance components indeed proxy for real economic uncertainty such as

long-run unemployment and/or productivity risk. Since in my model stock market volatility

is proportional to consumption volatility, see equation (D.8), I should expect market returns

to comove at the medium frequency not only with consumption risk but also with market

risk. This is indeed the case as shown in Figure 3 where I also plot the medium-frequency

variation in stock market variance. The coefficient of determination from a regression of the

(medium-term cycle) in returns on the (medium-term cycle in) market variance is R2 = 0.41

and the corrected t-statistics of the coefficient loading on the risk measure is 2.83. It is

important to stress that the common feature of these oscillations is that they occur over

a longer time frame than is typically considered in conventional business cycle analysis.

The results in Schwert (1989), Schwert (1989) and Corradi, Mele and Distaso (2008) show

how difficult it is to explain low frequency fluctuations in stock market volatility through

low frequency variations in the volatility of other macroeconomic variables. This is not

20Although the theoretical risk-return relation is based on the expected (components of) excess return, following
many empirical studies I employ (components of) realized excess returns to proxy for the latent variables.

21I did not consider regressions for which the intercept αj is constrained to be 0 although from a statistical
standpoint, provided the restriction is true, the slope estimator is still estimated consistently but with increased
precision.
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surprising since these works focus on business cycle frequency and therefore tend to sweep

these oscillations into the trend, thereby removing them from the analysis. My new empirical

evidence, and theoretical model, support the view that stock market volatility is related to

the volatility of macroeconomic variables, such as consumption and productivity as shown

in Section 6.4, although not precisely related to the business cycle.

[Insert Table 4 about here.]

[Insert Figure 3 about here.]

Some remarks are in order. First of all the above evidence supports a strong relation of

future long-run excess market returns with past long-run market variance. This is not in

contrast with the existing literature which documents a hard-to-detect risk-return trade-off.

In fact consistent with this findings the risk-return dependence is statistically mild at short

horizons. Moreover these results are in line with those in Bandi and Perron (2008) who

find a strongly significant correlation between rt,t+h and v2t−h,t for values of h between 6

and 10 years. Importantly I provide a long-run model which support these results. In fact

as noted in Bandi and Perron (2008) simple aggregation of short-term risk-return models

under a classical (autoregressive) process for variance cannot imply these results. Therefore

whereas traditional short-term risk-return models yield counter factual long-run implications

my long-run risk model with persistence heterogeneity is free of this unsupported empirical

implication. This is due to the fact that I do not impose a single autoregressive process for

the aggregate variance observed at the highest frequency of observation but instead I use a

multiscale autoregressive process to describe the variance components at each different level

of persistence.

Second my methodology used to study the (long-run) risk-return trade-off can be compared

to the MIDAS framework of Ghysels et al. (2005), Ghysels, Sinko and Valkanov (2007) and to

the Heterogeneous Autoregressive (HAR) model proposed by Corsi (2009). In fact all these

methodology share the common idea to construct regressions combining data with different

sampling frequencies. However my approach differs in many respects. First MIDAS22 exploits

22MIDAS come in different form, e.g. MIDAS regressions with polynomials (Ghysels, Santa-Clara and Valkanov,
2003a) and MIDAS with stepfunctions (Forsberg and Ghysels, 2004) whose HAR Model is a special case. However
the basic ideas stay the same.

26



high frequency (financial) data to predict low frequency (macro) data whereas my approach

uses time series sampled at the same frequency, for instance quarterly. Second whereas

the MIDAS approach estimates the variance using a weighted average of past daily squared

returns I instead allow the variance to have components with different decay rates. I then

run regressions of the components of the regressand with a specific decay rate onto the

components of regressors with the very same decay. This allows us to investigate whether or

not one volatility component is more important than total volatility in driving the dynamics

of the equity premium. My work is therefore closer to the component-GARCH approach of

Engle and Lee (1993) and its extension in Maheu and McCurdy (2007).

Finally the risk-return relation is involving conditional expected return and conditional ex-

pected risk. Previous research takes diverse approaches in measuring the expected return

(e.g. Campello, Chen and Zhang (2008) and Pastor, Sinha and Swaminathan (2008)) and

conditional variance (e.g., French et al. (1987) and Ghysels et al. (2005)). Importantly

Ludvigson and Ng (2007) note that the estimated risk-return relation is likely to be highly

dependent on the particular conditioning variables analyzed in any given empirical study.23

Here I adopt a simple approach and use average realized excess returns as a proxy for ex-

pected equity returns24 and then extract their components using the forward decomposition.

I do so because I want to stress the importance of using persistence-consistent measures of

returns and variance in investigating the intertemporal risk-return relation. My results has

highlighted that in order to detect a positive risk-return it is important to make sure that

the measures of both the expected return and conditional variance of returns have the same

level of persistence.25

6.2 The risk aversion

In Appendix D I show that the following relation at a fixed level of persistence j between the

component of expected market returns on the aggregate consumption claim and conditional
23Ludvigson and Ng (2007) discuss one potential remedy to this problem based on the methodology of dynamic

factor analysis for large data sets, whereby a large amount of economic information can be summarized by a few
estimated factors.

24This practice is justified on grounds that for sufficiently long horizons, the average return will “catch up and
match” expected return on equity securities and relies on a belief that information surprises tend to cancel out over
the period of the study. Thus ex post average excess equity returns provide for an easy-to-implement, seemingly
unbiased estimate of expected equity risk premium.

25Alternatively in Merton’s theoretical specification it is implicitly embedded that measures of both the expected
excess return and conditional variance of returns are based on the same information set. Basically my procedure
define “common information set” as “the information set where all the variables have the same level of persistence”
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consumption variance holds true:

Et[r
(j)

a,t+2j
− rf,t+2j ] = λgv

2
j,t + κ1[λεQ]jAj j = 1, . . . , J

This is a constrained set of relations where the parameter γ, that links the information

content of the excess return components to the consumption growth variance ones, is common

across persistence levels.

Since in my model consumption variance drives market risk, see equation (D.8), I can obtain

a more familiar risk-return relation. Indeed in my model

σ2
a,j,t = v2j,t (32)

Substituting (32) into (31) one finally obtains the risk-returns trade-off disaggregated across

levels of persistence:26

Et[r
(j)

m,t+2j
− r(j)

f,t+2j
] = γσ2

a,j,t + const (33)

In this special case where the parameter to be estimated is equal at all levels of persistence,

one can solve the overlapping problem by adopting the technique suggested in Fadili and

Bullmore (2002). In particular Fadili and Bullmore (2002) suggest to (sub)sample the com-

ponents at level of persistence j with frequency 2j27 in order to get rid of the autocorrelation

problem and then to apply to the so obtained sampled time series the generalized least

squares estimator (GLS). 28

To study the risk-return relation I need to proxy for the sample path variation in observed

market returns. Based on Corollary 1 of Andersen, Bollerslev, Diebold and Labys (2003b), I

assume that the conditional expectation of annual quadratic variation (QVt) is equal to the

conditional variance of annual returns, that is σ2
a,t = Et[QVt+1].

29 Assuming that the realized

26If one sums over j the relation (33) and applies the forward decomposition (D.2) to the right-hand side then one
obtains back (30).

27Note that if I apply the decomposition to a time series with T = 2J elements I then obtain J components with
T elements. If I subsample the components I obtain a new time series with T/2 + T/4 + ... + T/2J = T elements,
that is the new sampled series has the same length of the original one.

28More precisely this estimator makes use of the decimated (not-redundant) Haar transform which yields a diago-
nalized covariance matrix of the regression errors, i.e. the off-diagonal elements can be set to zero. Diagonalization
simplifies numerical identification of parameter estimates and implies that the WLS estimator is theoretically ap-
proximate to the best linear unbiased (BLU) estimator and can provide maximum likelihood estimates of both signal
and noise parameters, namely γ and ση.

29Given a process X(t) and the partition T = {t0, . . . , tn} of [0, t], the quantity V 2(T ) =
∑n
k=1 (Xtk −Xtk−1)2

is computed and, if ‖T‖ = max1≤k≤n |tk − tk−1| → 0 the limit is the quadratic variation (QV) of X(t), i.e.
lim‖T‖→0 V

2(T ) = 〈X〉t.
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variance is a unbiased estimator of quadratic variation it follows that σ2
a,t = Et[RVt+1]. In

the following I both use the realized variance RVt as a proxy for σ2
a,t following the approach of

Bandi and Perron (2008) and Sizova (2010) and the forecast Et[RVt+1] from an ARMA(1,1)

process following approaches used in early studies of variation.30

I report the results obtained using this approach in Table 5

[Insert Table 5 about here.]

The estimated ICAPM coefficient γ is 2.08 in the full sample, with a significant t-statistic.

Most important, the magnitude of γ lines up well with the theory. According to the ICAPM,

γ is the coefficient of relative risk aversion of the representative investor and a risk aversion

coefficient of 4.08 matches a variety of empirical studies (see Hall (1988), and references

therein). The significance of γ is robust in the subsamples, with t-statistics always higher

than 2. Importantly when the returns and (consumption) risk are disaggregated across

levels of persistence, the intercept α is always insignificant. The estimated magnitude and

significance of the risk aversion coefficient are remarkable in light of the ambiguity of previous

results.

6.3 Consumption Risk and Asset Prices

In this section I highlight additional empirical predictions of the model. In particular I

analyze the underlying sources of risks that are driving asset prices by testing the relations

in (28) which tell us that the component of economic uncertainty at level of persistence j

should explain the corresponding component of the asset valuation ratios. I thus run the

following projections:31

pdj,t = β0 + βjv
2
j,t + εj,t j = 1, . . . , J

where βj should provide an estimate of Amj according to relations (28). Table 6 provides the

estimates, t-statistics, and R2 from the above componentwise regressions where the columns

stand for different levels of persistence j = 1, . . . , J = 7. I observe that the estimates for

30Drechsler and Yaron (2011) find that a parsimonious projection on the lagged VIX and index realized variance
achieves better performance compared to a simple ARMA(1,1). I do not pursue this approach due to the short sample
for which we have VIX data.

31Using the components of consumption volatility instead of variance does not qualitatively affect any of the
empirical results.
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j = 5, 6, 7 have significant robust t-statistics at the 5% level and the R2 rises to 50% and

59% at level of persistence of j = 6 and j = 7 respectively. Hence the three components

of consumption variance responsible for explaining the fluctuations in the price-dividend

are very persistent with an half-life of 4, 8, 16 years, respectively. These results endorse the

argument of Lettau, Ludvigson and Wachter (2008) where the authors argue that the increase

in asset valuation ratios is not well described as a sudden jump upward, but instead occurs

gradually over several years due to (close to) permanent fluctuations in macroeconomic

volatility of the order of up to 30 years. Whereas the 7-th component of consumption

variance has a similar half-life,32 my estimation technique uncovers other fluctuations in

volatility, namely the ones at level j = 5 and j = 6 which will turn out to be important both

for the risk-return trade-off and for the real risk-free rate variation. Importantly the signs of

these relations are, as predicted by my economic model, negative. This evidence thus shows

that a rise in economic uncertainty leads to a fall in asset prices. This is important because

it highlights an often discussed but not verified view that aggregate economic uncertainty

(i.e., real aggregate consumption volatility) has sizable effects on asset valuations and that

financial markets dislike economic uncertainty.

[Insert Table 6 about here.]

In all the results in Tables 6 lead to the conclusion that the long-run components at levels

of persistence j = 6, 7 of the current price-dividend ratio embody useful information reflect-

ing the macroeconomic uncertainty which in turn is useful for predicting the future stock

market volatility. Overall this evidence suggests that fundamental measure of macroeco-

nomic uncertainty, as captured by the persistent components of consumption variance, play

an important role in determining asset prices, especially if the perceived macroeconomic

uncertainty unravels slowly.

6.4 Identification of long-run macroeconomic uncertainty

In this section I argue that those components of consumption variance that in the previous

section I found to influence asset prices are indeed proxying for macroeconomic risks.

32In Lettau et al. (2008) the estimated low volatility state reached in the 1990s is expected to last about 125
quarters, over 30 years. The estimated 7-th component has an half-life of 16 years and therefore the full cycle can
last up to 32 years.
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A natural question is now what the consumption variance really stands for. Empirically, this

is a latent variables to be estimated, and it is difficult to link them to known macroeconomic

risks. I therefore try to give single name to the long-run economic uncertainty by linking it to

macroeconomic variables. In particular I follow the lead of Malkhozov and Shamloo (2010)

and Benigno, Ricci and Surico (2010). Malkhozov and Shamloo (2010) show that shocks

to variance of productivity create movements in consumption variance and Benigno et al.

(2010) in turn show that, in a model of the labor market with asymmetric real-wage rigidities,

movements in the variance of productivity growth influence the trend of unemployment.

I therefore investigate whether consumption variance is reflecting movements in long-run

unemployment and/or the variance of productivity.

I obtain the time-series for the U.S. long-run mean of unemployment and the variance of

productivity by computing averages and variances over h-year rolling windows, where the

window length has been chosen in such a way to match the persistence of the consumption

variance series. I then plot in Figures 4 the series of consumption variance along with the

variance of productivity growth for the long sample 1930-2010 of U.S. data. The comovement

between the two series is striking. Analogous patterns of comovement is found between

consumption variance and the trend in unemployment. The correlation between long-run

unemployment and consumption variance is ρ = 0.84 and the correlation between long-run

productivity variance and consumption variance ρ = 0.86 (which increases to 0.88 in the the

postwar period 1946-2010). Important low frequencies movements emerges in these series.

In particular it is apparent the Great Moderation in the variance of productivity growth

which coincides with a sharp fall in the unemployment trend and a decrease in consumption

variance. This evidence confirm the very interesting feature of the data that there is a strong

positive association between long-run unemployment, the variance of productivity growth

and the consumption variance.

[Insert Figure 4 about here.]

In this section I have argued that the components of consumption variance that are reflected

in the financial ratios do indeed proxy for macroeconomic uncertainty. Moreover I suggest the

variance of productivity growth and the long-run mean of U.S. unemployment as significant

determinants of this uncertainty. Combining these results with those in Section 66.3, we can

conclude that financial market dislikes economic uncertainty and, given that such uncertainty
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comoves positively with long-run productivity uncertainty, a shift to higher productivity

variance coincides with a fall in the level of share prices.

6.5 Risk-Free Rate and Macroeconomic Uncertainty

In this Section I show that my multi-horizon asset pricing model has important implications

for the relation between macroeconomic uncertainty and the risk-free rate. In Appendix D.3

I derive the following expression for the risk-free rate

rf,t+1 = β0 + λ2η +
(1− θ)
θ

(λη)
J∑
j=1

v2j,t (34)

The above relation entails that real interest rates reflect consumption variance. This is in

line with the simple general equilibrium model of Barsky (1989) where increased risk, proxied

by consumption variability, lowers the riskless interest rate.

In order to bring the above relation (34) to the data, I first apply the decomposition (20) to

the right-hand side and then I run a set of regressions of the components of the real short-

term rate onto the components of consumption variance. Importantly, as suggested by the

model, I restrict the coefficients loading on the variance components to be the same across

levels of persistence. The results are reported in Table 7 and suggest that the risk-free rate

compensates for fluctuations in risk. In the following I am going to argue that these results

are mainly driven by the comovement between the very same components of consumption

variance that are reflected in asset prices, i.e. those at levels of persistence the j = 4, 5 and

the corresponding ones in the risk-free rate.

[Insert Table 7 about here.]

To start with I plot in Figure 5 the (aggregate) real risk-free rate and (minus) the approx-

imation of consumption variance at level of persistence j = 4, i.e. the h = 24−1 = 8 years

fluctuations in consumption variance. The correlation between these two series is 0.20. This

figure already highlights important comovements in postwar U.S. data between the (aggre-

gate) interest rates and those components of consumption variance that, in Section 6.4, I

argued to proxy for macroeconomic risk.
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[Insert Figures 5, 6 about here.]

However I recall that the (constrained) component-by-component relation between the risk-

free rate and the consumption variance, see (34), suggests to look not at the aggregate

series but instead at the risk-free rate components that correspond to the same levels of

persistence as the ones that proxy for the macroeconomic risk, i.e. j = 4, 5. With this

regard my approach complements the one of Atkeson and Kehoe (2008) where the authors

decompose the observed postwar U.S. history of nominal interest rates into a secular and

a business cycle component. These components of the short-rate are intended to capture,

respectively, the random walk movements in the Fed’s inflation target and (response to)

exogenous changes in real risk. Their model in particular suggest that the business cycle

component of the interest rates should move one for one with risk. Instead my approach

says that the components with persistence of 4 years of the interest rate should reflect, not

the aggregate, but instead the corresponding component of macroeconomic risk. I therefore

undertake the following exercise. I plot in Figure 6 the business cycle component of the risk-

free rate suggested by Atkeson and Kehoe (2008) together with approximation of (minus)

consumption variance at level of persistence j = 4. I use their approximation of the risk-free

rate business cycle component (extracted using principal components analysis) because by

doing so I am able to test both the fact that the comovements between the two series should

become more apparent once they are filtered at the same time scale and also the robustness

of my technique to alternative filtering choice. Indeed I observe that the correlation now

rises to 0.30 which bring further support to the thesis that over horizon of 8 years, great

part of the movements in the short-rate come from movements in conditional variances.

The above results are particularly important for two reasons. First they potentially explain

the findings of Canzoneri, Cumby and Diba (2007) who document that in those models

imposing that the conditional variances of the variables that enter the Euler equation are

constant, the Euler equation itself does a poor job of capturing the link between the short-

rate and the economy at business cycle frequencies. Since I just document that all of the

movements in the short-rate come from movements in conditional variances and not from

conditional means, the failure of the Euler equation is not surprising. Second they suggest

to view the central bank’s policy changes, namely the short-rate, as primarily intended to

compensate for exogenous business cycle fluctuations in risk. Clearly as noted also in Atkeson

and Kehoe (2008), this view differs substantially from the standard view, often summarized

by a Taylor rule, where risk plays no role and, instead, the Fed’s policy is a function of its
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forecasts of economic variables such as expected real growth and expected inflation.

7 Conclusion

In this paper, I show that standard economic models specified at one time-scale have a hard

time in explaining the behavior of the risk-return trade-offs across different time horizons.

Therefore there is the need to allow models for representing returns dynamics on multiple

time horizons simultaneously.

To explain the observed pattern of the risk-return trade-off across investment horizons, i.e.

consumption risk appears in the long-run to be a major contributing factor with a much

smaller role when adopting a short-run perspective, I design and solve a consumption-based

asset pricing model whereat each time-scale the components of consumption variance are de-

scribed by a different autoregressive structure. Our disaggregated economic models delivers

the interesting empirical finding of a positive and significant long-run dependence between

expected excess market returns and past variance without necessarily implying a positive

short-horizon risk-return. Moreover I find a positive and significant estimate of the risk

aversion coefficient once I explicitly account for the behavior of both risk and returns across

different frequencies of observation.

I also obtain new results about the link between asset prices and macroeconomic uncertainty.

I show that long horizons components of economic uncertainty, as measured by the persistent

components of consumption variance, sharply explain valuation ratios. In particular asset

valuations drop as economic uncertainty rises that is, financial markets dislike economic

uncertainty. Finally I show that long-run macroeconomic volatility exerts a significant effect

on the short-term interest rate. In all I conclude that once the channels associated with

fluctuating economic uncertainty and economic growth are disaggregated across levels of

persistence, they become important for a reasonable interpretation of asset markets.

The paper offers several possible directions for further research. First, our results have im-

portant implications regarding the scaling behavior of volatility, and also for the calculation

of risk at different time horizons. Intuitively one would expect the incorporation of multiple

time-scales into the analysis to improve the efficiency of risk management which requires

scaling a risk measure (standard deviation, say) of one time-scale to another. Second it
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would be interesting and extremely informative to apply the theoretical environment of the

model to the cross section of returns to explain the findings of Parker and Julliard (2005) and

Bandi, Garcia, Lioui and Perron (2010) that the contemporaneous consumption or market

risk explains little of the variation in average returns across the 25 Fama-French portfolios,

but that a measure of consumption or market risk at a horizon of three to five years explains

a large fraction of this variation.
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Figure 1: The Figure shows the R2 attained at different horizons from a regression of the equity
premium on the consumption variance. Dashed and solid lines denote the results obtained for the
fixed time-scale model as calibrated by Bansal and Yaron (2004) and Bansal, Kiku, and Yaron
(2007a). The two volatility components model is calibrated following Zhou and Zhu (2010).

Figure 2: Multi-country Risk-Return Trade-Off. We run linear regressions (with an intercept) of
h-period continuously compounded excess market returns rt,t+h =

∑h
i=1 rt+i−1,t+i on h-period past

consumption variances v2t−h,t. The Figure shows the R2 for such a regression for different countries.
The sample period spans from 1930 to 2009 for Canada and the UK, and from 1930 to 2010 for the
US.
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Figure 3: The Figure plots the medium-frequency component (corresponding to time-scales j = 5, 6,
i.e. cycles of length 8-32 years) of the future compounded log returns (solid line) and the fitted
value from a regression of the medium-frequency returns components on the medium-frequency
past consumption variance (dashed line) and realized stock market variance (dot-dashed line). The
timing is as follows: if you invested one dollar on a given date, it tells you how much total return
you would have made over the following eight years. Returns are annualized. The sample spans
the period 1930-2010.

Figure 4: Approximation at level of persistence j = 4 of log consumption growth variance σt and
long-run variance of productivity growth computed using eight-year rolling windows. Both series
are demeaned and divided by their standard deviation.
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Figure 5: Short-rate and consumption variance approximated to level of persistence j = 4. The
real return to short-term nominal investments is the 1-year treasury yield minus actual realized
inflation. Both series are demeaned and divided by their standard deviation. The sample spans
the period 1930-2010.

Figure 6: Business cycle component of the short-rate and consumption variance approximated to
level of persistence j = 4. Both series are demeaned and divided by their standard deviation. The
sample spans the period 1947-2010.
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Panel A: h-year rolling window

Horizon h (in years)
1 2 3 4 5 6 7 8 9 10

v2t 1.64 0.56 0.89 0.48 1.35 2.78 2.81 3.75 4.75
(-) (1.07) (0.49) (0.74) (0.29) (0.89) (2.13) (1.98) (2.92) (4.24)
{-} {0.14} {0.06} {0.12} {0.07} {0.21} {0.47} {0.45} {0.60*} {0.82**}

R2(%) [-0.00] [2.03] [0.42] [1.58] [0.52] [4.50] [18.56] [17.04] [27.32] [41.19]

Panel B: sum of absolute residuals from an AR(1) model of consumption growth

Horizon h (in years)
1 2 3 4 5 6 7 8 9 10

v2t -0.11 2.77 2.11 1.12 0.50 1.92 3.96 4.46 5.52 6.49
(-0.05) (2.86) (1.50) (0.73) (0.25) (1.02) (2.70) (2.84) (4.30) (5.94)
{-0.01} {0.26} {0.23} {0.13} {0.06} {0.24} {0.55*} {0.61*} {0.80**} {1.04**}

R2(%) [0.01] [6.39] [5.05] [1.66] [0.34] [5.61] [23.56] [28.02] [39.77] [52.73]

Panel C: heterogeneous ARCH model

Horizon h (in years)
1 2 3 4 5 6 7 8 9 10

v2t 1.29 1.40 0.58 0.40 0.35 1.29 2.32 2.61 3.43 4.22
(1.05) (1.63) (0.72) (0.44) (0.31) (1.21) (2.55) (2.60) (3.63) (4.91)
{0.12} {0.19} {0.10} {0.08} {0.07} {0.26} {0.52*} {0.58*} {0.80**} {1.08**}

R2(%) [1.52] [3.47] [0.98] [0.58] [0.47] [6.65] [21.92] [25.48] [39.57] [54.87]

Table 1: We run linear regressions (with an intercept) of h-period continuously compounded market
returns on the CRSP value-weighted index in excess of a 1-year Treasury bill rate on h-period past
consumption variance vt−h,t. We consider values of h equal to 1 − 10 years. For each regression,
the table reports OLS estimates of the regressors, Hansen and Hodrick corrected t-statistics in
parentheses, the t/

√
T test suggested in Valkanov (2001) in curly brackets, and R2 statistics in

square brackets. Significance at the 5% and 2.5% level of the t/
√
T test using Valkanovs (2001)

critical values is indicated by * and **, respectively. In panel A we use an h-year rolling windows
as the proxy for conditional consumption variance v2t . In panel B we instead measure consumption
volatility vt−h,t ≡ log

∑h−1
i=0 (|ηt−i|), where consumption residuals, ηt−i are obtained from gt =

µ + βgt−1 + ηt See also Bansal, Khatchatrian and Yaron (2005). In panel C the consumption
volatility measure is estimated by an HARCH(5) process. The sample is annual and spans the
period 1930-2010.
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Percentiles 1% 5% 10% median 90% 95% 99%

Case 1: ρ = −0.2

R2(%) 0.0 0.0 0.2 5.5 27.9 37.8 53.9

Case 2: ρ = 0.0

R2(%) 0.0 0.0 0.2 4.7 25.1 33.9 51.5

Table 2: The table reports the percentiles for R2 in regression (11). The percentiles are calculated
based on formula (12) using 100,000 simulations. Integrals are calculated using 1,000 steps per
unit interval. It is assumed that the sample consists of 81 yearly observations, and the forecasting
horizon is 10 years.
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Time scale Frequency resolution

j = 1 1− 2 years
j = 2 2− 4 years
j = 3 4− 8 years
j = 4 8− 16 years
j = 5 16− 32 years
π5t > 32 years

Table 3: Interpretation in terms of cycle’s duration of the persistence level (or time scales) j in the
case of annual time series.

Level of persistence j
zt = 1 2 3 4 5

-2.18 1.06 0.27 0.87 1.09
v2j,t (-2.34) (-1.47) (0.55) (2.24) (1.94)

[0.05] [0.03] [0.00] [0.22] [0.36]

Table 4: This table reports the results of componentwise predictive regressions of the components of
excess stock market returns on the components of consumption variance v2j,t. For each regression,
the table reports OLS estimates of the regressors, Hansen and Hodrick corrected t-statistics in
parentheses and adjusted R2 statistics in square brackets. The sample is annual and spans the
period 1930-2010.

Regression: r
(j)

j,t+2j
= α+ γσ2a,j,t j = 1, . . . , J

Sample α̂ γ̂

1928M1-2010M12 -0.10 2.84
(-0.12) (3.91)

1969M1-2010M12 -0.08 2.52
(0.14) (2.96)

1928M1-1968M12 0.63 2.68
(1.85) (2.26)

Table 5: This table displays the risk aversion estimates based on the persistence heterogeneity
tests of the risk-return trade-off. The estimate are based on not-redundant Haar decomposition as
suggested in Fadili and Bullmore (2002) based on 512 data points for the first row and 256 data
points for the second and third rows.
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Scale j
zt = 1 2 3 4 5

-0.00 -0.01 -0.01 -0.01 -0.01
pdt (-0.90) (-5.56) (-5.23) (-6.45) (-2.94)

[0.00] [0.16] [0.20] [0.07] [0.10]

Table 6: This table reports the results of regressions of the components of (log) price-dividend
ratio pdj,t on the components of consumption growth variance v2c,j,t. For each regression, the table
reports OLS estimates of the regressors, Hansen and Hodrick corrected t-statistics in parentheses
and adjusted R2 statistics in square brackets. The sample is annual and spans the period 1930-2010.

Regression: rf,j,t+1 = β0 + β1v
2
j,t j = 1, . . . , J

Sample β̂1 R2

1930-2010 -1.42 [0.71]
(-3.72)

1947-2010 -1.83 [0.65]
(-4.77)

Table 7: This table reports the result of componentwise regression of the real short-rate (in percent-
age) on the components of consumption volatility v2j,t, where the loading coefficient β1 is restricted
to be the same across all levels of persistence. The table reports OLS estimates of the regressors,
t-statistics in parentheses and adjusted R2 statistics in square brackets. The sample is annual and
spans the period 1930-2010.
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Panel A: h-year rolling window

Horizon h (in years)
1 2 3 5 7 10

v2t 0.86 3.50 6.66 8.76 9.54
(-) (0.42) (1.94) (4.78) (5.35) (7.27)
{-} {0.05} {0.25} {0.52**} {0.78**} {0.71*}

R2(%) [] [0.26] [5.92] [21.53] [38.82] [34.33]

Panel B: sum of absolute residuals from an AR(1) model

Horizon h (in years)
1 2 3 5 7 10

v2t -0.79 1.28 4.91 8.64 11.46 12.69
(-0.38) (0.43) (1.82) (3.85) (4.77) (5.71)
{-0.04} {0.06} {0.27} {0.47*} {0.65**} {0.55}

R2(%) [0.15] [0.36] [7.03] [18.68] [30.53] [23.68]

Panel C: heterogeneous ARCH model

Horizon h (in years)
1 2 3 5 7 10

v2t 1.24 2.45 2.57 5.08 6.25 7.55
(0.71) (1.36) (1.38) (3.10) (5.45) (6.48)
{0.07} {0.17} {0.22} {0.52**} {0.80**} {1.12**}

R2(%) [0.52] [3.06] [4.94] [22.01] [39.79] [56.76]

Table 8: We run linear regressions (with an intercept) of h-period continuously compounded market
returns rt,t+h on the CRSP value-weighted index in excess of a h-year constant maturity yield on
h-period past consumption variance vt−h,t. We consider values of h equal to 1-10 years. For
each regression, the table reports OLS estimates of the regressors, Hansen and Hodrick corrected
t-statistics in parentheses, the t/

√
T test suggested in Valkanov (2001) in curly brackets, and

R2 statistics in square brackets. Significance at the 5% and 2.5% level of the t/
√
T test using

Valkanovs (2001) critical values is indicated by * and **, respectively. In panel A we use an h-
year rolling windows as the proxy for conditional consumption variance vt. In panel B we instead
measure consumption volatility vt−h,t ≡ log

∑h−1
i=0 (|ηt−i|), where consumption residuals, ηc,t−i are

obtained from gt = µ+βgt−1 + ηt See also Bansal, Khatchatrian and Yaron (2005). In panel C the
consumption volatility measure is estimated by an HARCH(5) process. The sample is annual and
spans the period 1930-2010.
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A Data

We use data on consumption and asset prices for the time period from 1930 till 2010. We

take the view that this sample better represents the overall variation in asset and macro

economic data. Importantly, the long span of the data helps in achieving more reliable

statistical inference. We work with the data sampled on an annual frequency as they are less

prone to errors that arise from seasonalities and other measurement problems highlighted in

Wilcox (1992).

The data are constructed as follows. For our measure of aggregate consumption we use

aggregate consumption of nondurables and services taken from the national income and

product accounts (NIPA) tables available from the Bureau of Economic Analysis. This

measure is annual from 1929 to 2010, is in real terms, and is seasonally adjusted. The

consumption data for UK and Canada are taken from the Barro and Ursua’s (2008) cross-

country dataset.33 Growth rates of consumption is constructed by taking the first difference

of the corresponding log series.

Stock market returns are computed using the NYSE/AMEX/NASDAQ value-weighted index

as market portfolio.34 These data are provided by CRSP/WRDS and cover the period from

January 1926 to December 2010. To compute annual continuously compounded market

returns we aggregate monthly continuously compounded return (including dividends) during

the t-th month of the year. Price and dividend series are constructed on the per-share basis

as in Campbell and Shiller (1988) and Hansen, Heaton, and Li (2008).

The one-year real interest rate series has been obtained from the Shiller data set.35 Alter-

natively I follow Bansal et al. (2009) and I construct the ex-ante annual real risk-free rate

as the annualized predicted value from a projection of the ex-post real rate on the current

three-month nominal yield and inflation over the previous year. The results are robust with

regard to this choice.

Since stock returns are measured more frequently than consumption, I obtain a measure of

volatility by starting with daily data. In particular to obtain a measure of variance for the

33This new dataset is described in Ursua (2011).
34Bandi and Perron (2008) and Sizova (2010) use the NYSE/AMEX value-weighted index with dividends as the

market proxy. Our results are robust to this choice of the index.
35Downloadable at Robert Shiller’s homepage http://www.econ.yale.edu/ shiller/

44



return on the CRSP-VW index, we use the time-series of daily returns:

σ2
m,t,t+1 =

nt∑
j=1

r2
m,t+ j

nt

where σ2
m,t,t+1 is the monthly realized variances of the market return in period t and rm,k is

the daily CRSP-VW return where k represents a day and nt is the number of trading days

in month t. h-period variance can then be obtained using the data on past realized market

variances:

σ2
m,t−h,t =

h∑
j=1

σ2
m,t−i,t−i+1

B Inferential issues and asymptotic approximation

In this section we use a near-unit root specification to derive accurate asymptotic approxi-

mations. We rewrite equations (8) and (9) as

ret+1 = βv2t + εt+1 (B.1)

(1−
(

1 +
c

T

)
)b(L)v2t = wt+1 (B.2)

where the error term εt+1 captures the fact that the realized excess returns ret+1 are a noisy

measure of the true unobserved equity premium Et[rt+1 − rf,t]. We define ϕv = 1 + c
T

. The

parameter c is a constant measuring deviations from unity that are decreasing in T . Thus

the process v2t is defined as a nearly integrated process, as in Valkanov (2003). Assume

the vector (εt+1, wt+1) is a vector martingale difference sequence with covariance matrix

Σ ≡ [σ2
ε , σε,w; ·, σ2

w]. Note that we allow for processes εt+1 and wt+1 to be (negatively)

correlated.

Consider again the regressions in (11). I am interested in the behavior of the R2 when

β1 = β 6= 0. Under standard OLS assumptions, it is possible to show that

R̂2
h =

(
1

T−2h
∑T−h

t=h (ret,t+h − ret,t+h)(v2t−h,t − v2t−h,t)
)2

1
T−2h

(∑T−h
h (ret,t+h − ret,t+h)2

)
1

T−2h

(∑T−h
t=h v

2
t−h,t − v2t−h,t

) (B.3)
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is a consistent estimate of R2
h. The R̂2 in regressions (11) have a non-standard distribution for

this model because v2t behaves as a unit-root process for T →∞. The standard assumption in

the literature on overlapping observations36 is that the portion of the overlap h is a constant

fraction of the sample size T . Formally, it is captured by the condition limT→∞ h/T = λ.

Under this assumption I show that R̂2 in regression (11) converges to a nondegenerate random

variable.

Proof of Theorem 1. The dynamics of the vector (v2t , εt+1) is described by the system

I −
(
I +

C

T
L

)(
v2t ,

t∑
i=1

εi

)ᵀ

= (ut, εt).

where I is the identity matrix, ut ≡ b(L)−1wt satisfies some technical assumptions (see

Phillips, 1987). εt is a martingale difference and C is a diagonal matrix with the elements c

and 0. Consider the transformation (
v2[sT ]

ω
√
T
,

∑[sT ]
i=1 εi√
Tσε

)

defined on s ∈ [0, 1] where sT denotes the closest integer that is less than or equal to s× T
and ω2 = σ2

w

b(1)2
. As follows from Phillips (1987, Lemma 1, p. 539 and 1988, Lemma 3.1, p.

1026), this vector process converges to (J(s),W1(s)) where J(s) is an Ornstein-Uhlenbeck

process,

dJ(s) = cJ(s) + dW2(s)

with J(0) = 0 and where dW1(s) and dW2(s) are two standard Weiner processes with

covariance σε,w/(σεσw) and such that
∑[sT ]
i=1 wi√
Tσw

weakly converges to W2(s).

Define t = τT and h = λT in the original parametrization. The asymptotic distribution of

the first (predictable) part of the multi-period return β
∑h

i=1 v
2
t+i−1 follows from the contin-

uous mapping theorem (CMT),

β

∑[(τ+λ)T ]
i=[τT ] v2i

ωT 3/2
= β

∫ τ+λ
τ

v2[sT ]ds

ω
√
T

⇒ β

∫ τ+λ

τ

J(s)ds (B.4)

36Differently from Valkanov’s framework and standard literature on spurious regressions, however, regressor and
regressand are aggregated over non-overlapping periods.
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which requires normalization by T 3/2, in contrast to T , which is a normalization coefficient

for the unpredictable part. Therefore, as T →∞ the first (predictable) part dominates the

second one, and the limit of the multi-period return is the same as the limit in equation

(B.4), i.e.

ret,t+h
ωT 3/2

⇒ β

∫ τ+λ

τ

J(s)ds

The rest of the steps are also based on the CMT. The demeaned returns converge to the

demeaned version of the above integral,

ret,t+h − 1
T−2h

∑T−h
t=h (ret,t+h)

ωT 3/2
⇒ β

∫ τ+λ

τ

J(s)ds− 1

1− 2λ

∫ 1−λ

λ

∫ r+λ

r

J(s)dsdr︸ ︷︷ ︸
A(τ)

(B.5)

The asymptotic behavior of the past multi-period variance follows from (B.4)∑[τT ]
i=[(τ−λ)T ] v

2
i

ωT 3/2
= β

∫ τ
τ−λ v

2
[sT ]ds

ω
√
T

⇒ β

∫ τ

τ−λ
J(s)ds

The limit for its demeaned version again follows from the CMT,

v2t−h,t − 1
T−2h

∑T−h
t=h (v2t−h,t)

ωT 3/2
⇒ β

∫ τ

τ−λ
J(s)ds− 1

1− 2λ

∫ 1−λ

λ

∫ r

r−λ
J(s)dsdr︸ ︷︷ ︸

B(τ)

(B.6)

Finally note that R̂2
h can be represented as R̂2

h = FR2(AT , BT ) where

AT (τ) =
re[τT ],[(τ+λ)T ] −

1
T−2h

∑T−[λT ]
i=[λT ] (rei,i+h)

ωT 3/2

BT (τ) =
v2[(τ−λ)T ],[τT ] −

1
T−2h

∑T−[λT ]
i=[λT ] (v2i−h,h)

ωT 3/2

FR2(X, Y ) =

(∫ 1−λ
λ

X(τ)Y (τ)dτ
)2(∫ 1−λ

λ
X2(τ)dτ

)(∫ 1−λ
λ

Y 2(τ)dτ
)

By applying the CMT once more, we have R̂2
h ⇒ FR2(A,B).

Using the expressions for A(τ) and B(τ) and formula (12) I construct the distribution for

the R̂2
h. The coefficients are chosen as follows. c = (0.75.1)T , which corresponds to the ob-

served first autocorrelation of 0.75 annual consumption volatility. The correlation coefficient

σε,w/(σεσw), is fixed at −0.2. For comparison, we also report the case with no leverage.

47



C Robustness

In this Appendix, we report some of the robustness checks that we have conducted.

First we check whether the use of one-year (real) interest rate compounded over horizon h

as a proxy for the risk-free rate at horizon h can possibly drive our results. In fact we would

like to possibly use a risk-free rate with maturity equal to that of the h-year holding period

returns. We thus repeat the exercise in Table 1 where we use the yield-to-maturity on a real

h-year US Treasury bond37 as the the risk-free rate used to compute the excess returns at

horizon h.

[Insert Table 8 about here.]

The general pattern of results using this method is very similar to those using the com-

pounded one-year risk-free rate.

Next we consider a potential econometric hazard with interpreting the long-horizon regres-

sion results. In particular the use of overlapping data in long-horizon regressions can skew

statistical inference in finite samples. It is possible to show that the standard t-statistic

of long-horizon regression coefficients diverges with the sample size T , thereby determining

likely over-rejections in the classical asymptotic framework. However we can address this

potential inference problem by noting that the rescaled t/
√
T statistic has a well-defined

limiting distribution and can be used to test the null of no dependence. This is similar

to Valkanov (2003) although we use a different aggregation method where regressor and

regressand are aggregated over non-overlapping periods.

The distribution of this rescaled statistic is nonstandard, however, and depends on two

nuisance parameters, δ and c. The parameter δ measures the covariance between innovations

in the variable to be forecast, and innovations in some forecasting variable, call it Xt. The

parameter c measures deviations from unity in the highest autoregressive root for Xt, in

a decreasing (at rate T ) neighborhood of 1. We assume the parameters are known: c =

(ρ1 − 1)T with ρ1 = 0.75 and delta = −0.2. In the relevant region of the parameter space,

however, we find that the distribution is not very sensitive to these values. With these

37real yield = (nominal yield) - (inflation rate).
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parameters in hand, the rescaled t-statistic, t/
√
T , I can generate critical values. Tables

1 and 8 contains inference based on the t/
√
T statistic. The rescaled t-statistics for our

application are reported in curly brackets. The tables report both the statistic itself and

whether its value implies that the predictive coefficient in each regression is statistically

significant at the 5% and 2.5% levels. The dependence between excess returns and past

variance is still very significant at the 5% level over 7, 8, 9, and 10 years. According to these

statistics, the forecasting power of past consumption volatility for long-horizon excess stock

market returns is robust to accounting for biases arising from the use of overlapping data in

finite samples.

Finally we re-run the regressions in Tables 1 and 8 using variance instead of volatility. This

matters little to our results.

D The Valuation Approach: the details of the derivation

In this Section we show the steps to obtain the values of the financial ratios coefficients

A0,j, Aj, A
m
0,j, A

m
j in terms of the parameters of the model. We then compute the equity

premia on both the consumption claim asset and the market return. Finally we derive the

risk-free rate. In what follows, we make use of the decomposition of time series into layers

with different levels of persistence described in Section 4 and reported here for the reader’s

convenience:

xt =
J∑
j=1

x
(j)
t + πJt (D.1)

Alternatively, to reconstruct the realization of xt+1 from the effect that this realization will

have at different horizons we use

xt+1 =
J∑
j=1

x
(j)

t+2j
+ π

(J)

t+2J
(D.2)

D.1 The Financial Ratios

We solve first for the price-consumption coefficients A0,j, Aj and hence for the consumption

return ra,t+1. This determines the pricing kernel.
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To obtain the values of the coefficients A0,j, Aj we exploit the Euler condition

Et

[
exp

(
θ log β − θ

ψ
gt+1 + (θ − 1)ra,t+1 + ri,t+1

)]
=Et

[
exp

(
θ log β − θ

ψ
gt+1 + θra,t+1

)]
= 1

which is derived from (25) for the special case where the asset being priced is the aggregate

consumption claim, i.e. ri,t+1 = ra,t+1. We then express the log consumption growth gt+1

and the return ra,t+1 in terms of the factors {xj,t}j and of the innovations {eg
j,t+2j

}j and

{εj,t+2j}j. To do so we plug first the Campbell and Shiller (1988) approximation for log

returns, see equation (27), into the above expression to obtain:

Et

exp

θ log β − θ

ψ
gt+1 + θ (κ0 + κ1z

a
t+1 − zat + gt+1)︸ ︷︷ ︸
ra,t+1


 = 1

By the backward decomposition (D.1) applied to the (demeaned) price-consumption ratio

at time t and by the forward decomposition (D.2) applied to the (demeaned) consumption

growth and price-consumption processes at time t+ 1 we have:

za,t =
J∑
j=1

z
(j)
a,t (D.3)

za,t+1 =
J∑
j=1

z
(j)

a,t+2j
(D.4)

gt+1 =
J∑
j=1

g
(j)

t+2j
(D.5)

We now show that the variance of the consumption component at level j, σ2
j,t, coincides with

the component at level j of the consumption variance. In fact we have that:

σ2
t = V art(gt+1) = V art

(
J∑
j=1

g
(j)

t+2j

)
= V art

(
J∑
j=1

σj,t e
g
j,t+2j

)
=

J∑
j=1

σ2
j,t

where we use the fact that the shocks ej,t and ej′,t are uncorrelated for all j 6= j′.

Plugging the above expressions into the Euler condition yields:

Et

[
exp

(
θ log β − θ

ψ

(
J∑
j=1

g
(j)

t+2j

)
+ θ

(
κ0 + κ1

(
J∑
j=1

z
(j)

t+2j

)
−

(
J∑
j=1

z
(j)
t

)
+

(
J∑
j=1

g
(j)

t+2j

)))]
= 1
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Finally using the dynamics for the components of log consumption growth given in equation

(22) together with our guess for the components of price-consumption ratio solution given

in equation (28), rearranging terms and using the log normal properties of the shocks we

obtain:

Et

[
exp

(
θ log β + θ

(
1− 1

ψ

)( J∑
j=1

g
(j)

t+2j

)
+ θ

(
κ0 + κ1

(
J∑
j=1

z
(j)

t+2j

)
−

(
J∑
j=1

z
(j)
t

)))]

= Et

[
exp

(
θ log β + θ

(
1− 1

ψ

)( J∑
j=1

σj,te
g
j,t+2j

)
+

θ

(
κ0 + κ1

(
J∑
j=1

A0,j +
J∑
j=1

Ajσ
2
j,t+2j

)
−

(
J∑
j=1

A0,j +
J∑
j=1

Ajσ
2
j,t

) ) ]

= Et

[
exp

(
θ(log β + κ0 + (κ1 − 1)

J∑
j=1

A0,j) + . . .

θ

(
1− 1

ψ

)( J∑
j=1

σj,te
g
j,t+2j

)
+ θ

(
κ1

J∑
j=1

Ajσ
2
j,t+2j −

J∑
j=1

Ajσ
2
j,t

) ) ]

= Et

[
exp

(
θ(log β + κ0 + (κ1 − 1)

J∑
j=1

A0,j) + . . .

θ

(
1− 1

ψ

)( J∑
j=1

σj,te
g
j,t+2j

)
+ θ

κ1 J∑
j=1

Aj (ejMΣ̃t + ejεt+2J )︸ ︷︷ ︸
σ2
j,t+2j

−
J∑
j=1

Ajσ
2
j,t

 ) ]
= 1

where we defined Σ̃t ≡ [σ2
1,t, . . . , σ

2
J,t]

ᵀ. Collecting terms in Σ̃t yields eventually a system of

equations

ej

(
0.5

(
θ − θ

ψ

)2

+ θAj(κ1M − IJ)

)
= 0

for all j = 1, . . . , J . If we introduce the following column vectors

A ≡ [A1, . . . , AJ ]ᵀ

the solution to these equations is given by the following vectors of sensitivities:

A = 0.5

(
θ − θ

ψ

)2
θ

(IJ − κ1M)−1 1
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D.2 The Risk Premium and Return Volatility

The risk premium for any asset is determined by the conditional covariance between the

return and the SDF. For instance we can compute the risk premium on any asset i as

Et[ri,t+1 − rf,t] + 0.5σ2
ri,t

= −covt(mt+1, ri,t+1)

We therefore need to compute first the innovations in the stochastic discount factor and in

the returns.

Given the solution above for z
(j)
a,t it is possible to derive the innovation to the return ra,t+1 as a

function of the evolution of the state variables and the parameters of the model. In particular

the equilibrium return innovations can be found by plugging the expressions (D.3), (D.4)

and (D.5) into the Campbell and Shiller (1988) approximation for log returns, see equation

(27) to obtain

ra,t+1 − Et[ra,t+1] =

(
J∑
j=1

g
(j)

t+2j

)
+ κ0 + κ1

(
J∑
j=1

z
(j)

t+2j

)
−

(
J∑
j=1

z
(j)
t

)
− Et[ra,t+1]

=
J∑
j=1

σj,te
g
j,t+2j

+ κ1

(
J∑
j=1

Aj(ejεt+2J )

)
= σj,t � egj,t+1 + κ1Aεt+1 (D.6)

where we define

εᵀt+1 ≡ [ε1,t+21 , . . . , εJ,t+2J ]

σj,t � egj,t+1 ≡
J∑
j=1

σj,te
g
j,t+2j

The innovation in the return component at level of persistence j is given by:

r
(j)

a,t+2j
− Et[r(j)a,t+2j

] = σj,te
g
j,t+2j

+ κ1
(
Ajεj,t+2j

)
(D.7)

It is trivial to show that

ra,t+1 − Et[ra,t+1] =
J∑
j=1

r
(j)

a,t+2j
− Et[r(j)a,t+2j

]
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which allows us to decompose the innovation in aggregate return into the sum of the inno-

vation in the market return components. Further, it follows that the conditional variance of

ra,t+1 is:

V art(ra,t+1) =
J∑
j=1

σ2
j,t + κ21AQA′ (D.8)

where we define

Q ≡ Et

[
εt+1ε

′
t+1

]
To find the innovations in the stochastic discount factor, we plug the expressions (D.3), (D.4)

and (D.5), together with the dynamics for the components of log consumption growth given

in equation (22) and our guess for the components of price-consumption ratio solution given

in equation (28) into equation (26) to obtain:

mt+1 = θ log β − θ

ψ
gt+1 + (θ − 1)ra,t+1

= θ log β − θ

ψ
gt+1 + (θ − 1)(κ0 + κ1z

a
t+1 − zat + gt+1)

= θ log β − θ

ψ

J∑
j=1

g
(j)

t+2j
+ (θ − 1)

(
κ0 + κ1

J∑
j=1

z
(j)

t+2j
−

J∑
j=1

z
(j)
t +

J∑
j=1

g
(j)

t+2j

)

= θlog(β)−
(

1− θ +
θ

ψ

) J∑
j=1

g
(j)

t+2j
+ (θ − 1)

(
κ0 + κ1

J∑
j=1

z
(j)

t+2j
−

J∑
j=1

z
(j)
t

)

= θlog(β)−
(

1− θ +
θ

ψ

) J∑
j=1

g
(j)

t+2j
+ (θ − 1)

(
κ0 + κ1

J∑
j=1

z
(j)

t+2j
−

J∑
j=1

z
(j)
t

)

= θlog(β)−
(

1− θ +
θ

ψ

) J∑
j=1

g
(j)

t+2j
+ (θ − 1)

(
κ0 + κ1

J∑
j=1

A0,j + Ajσ
2
j,t+2j −

J∑
j=1

A0,j − Ajσ2
j,t

)

Finally using the dynamics for our latent factors (23) we obtain

mt+1 = θlog(β) + (θ − 1)

(
κ0 + κ1

J∑
j=1

A0,j + Ajρjσ
2
j,t −

J∑
j=1

A0,j − Ajσ2
j,t

)

−
(

1− θ +
θ

ψ

) J∑
j=1

σj,te
g
j,t+2j

+ (θ − 1)κ1

(
J∑
j=1

Ajεj,t+2j

)
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which implies

mt+1 − Et[mt+1] = −
(

1− θ +
θ

ψ

) J∑
j=1

σj,te
g
j,t+2j

+ (θ − 1)κ1

(
J∑
j=1

Ajεj,t+2j

)

= −λg
J∑
j=1

σj,te
g
j,t+2j

−
J∑
j=1

λjεj,t+2j

= −λgσj,t � egj,t+1 − λεεt+1 (D.9)

where

λg ≡
(
θ

ψ
− θ + 1

)
= γ

λε ≡ κ1(1− θ)A

Using the formula (D.7) and the innovation in the SDF (D.9) we obtain the risk premium

for the components of consumption claim asset

Et[ra,t+2j − rf,t+2j ] + 0.5σ2
ra,t,j

= λgσ
2
j,t + κ1[λεQ]jAj

and using the formula for the return on aggregate wealth (D.6) and the innovation in the

SDF (D.9) we obtain the risk premium for the consumption claim asset,

Et[ra,t+1 − rf,t] + 0.5σ2
ra,t = λg

J∑
j=1

σ2
j,t + κ1λεQA

′

where σ2
ra,t is defined in equation (D.8).

D.3 Risk-Free Rate Dynamics

To obtain our expression for the risk-free rate we start by plugging the log short-term real

interest rate rf,t+1 for rit+1 into the Euler equation (25). Then by applying the forward

decomposition (D.2) to the (demeaned) consumption growth and to the log returns processes

at time t+1 we observe that the risk-free rate between t and t+1, rf,t+1 satisfies the following

condition:

Et

[
exp

(
θ log β −

(
θ

ψ

) J∑
j=1

g
(j)

t+2j
+ (θ − 1)

J∑
j=1

ra,j,t+2j

)]
= exp(−rf,t+1)
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where once again ra,t+1 is the return on the asset that pays consumption as dividend. Taking

logs on both sides and using the log normal properties of the shocks we can rewrite it as

follows

rf,t+1 = −θ log β +
θ

ψ
Et

[
J∑
j=1

g
(j)

t+2j

]
+ (1− θ)Et

[
J∑
j=1

ra,j,t+2j

]

− 1

2
vart

[
θ

ψ

J∑
j=1

g
(j)

t+2j
+ (1− θ)

J∑
j=1

ra,j,t+2j

]

= − log β +
1

ψ
Et

[
J∑
j=1

g
(j)

t+2j

]
+

(1− θ)
θ

Et

[
J∑
j=1

ra,j,t+2j − rf

]

− 1

2θ
vart

[
θ

ψ

J∑
j=1

g
(j)

t+2j
+ (1− θ)

J∑
j=1

ra,j,t+2j

]
(D.10)

where in the last line we subtract (1 − θ)rf,t from both sides and divide by θ, where it is

assumed that θ 6= 0. Further to solve the above expression, note that

vart

[
θ

ψ

h∑
j=1

gj,t+h + (1− θ)
h∑
j=1

ra,j,t+h

]
= vart(mt+1)

Recall from (D.9) that

mt+1 − Et[mt+1] = −λgσj,t � egj,t+1 − λεεt+1

and therefore

vart(mt+1) = λ2g

J∑
j=1

σ2
j,t + κ21(1− θ)2AQA′

Note that given the dynamics for log consumption growth (see equation (22)) we have that

Et

[∑J
j=1 g

(j)

t+2j

]
= 0. Eventually, using the expression for the equity premium of return on

aggregate wealth we obtain:

rf,t+1 = − log β + λ2g

J∑
j=1

σ2
j,t + κ21(1− θ)2AQA′ +

(1− θ)
θ

(
λg

J∑
j=1

σ2
j,t + κ1λεQA

′

)
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