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Abstract

Criminals are embedded in a network of relationships. Social ties among criminals are modeled

by means of a graph where criminals compete for a booty and benefit from local interactions with

their neighbors. Each criminal decides in a non-cooperative way how much crime effort he will

exert. We show that the Nash equilibrium crime effort of each individual is proportional to his

equilibrium Bonacich-centrality in the network, thus establishing a bridge to the sociology literature

on social networks. We then analyze a policy that consists of finding and getting rid of the key

player, that is, the criminal who, once removed, leads to the maximum reduction in aggregate crime.

We provide a geometric characterization of the key player identified with an optimal inter-centrality

measure, which takes into account both a player’s centrality and his contribution to the centrality

of the others. We also provide a geometric characterization of the key group, which generalizes the

key player for a group of criminals of a given size. We finally endogeneize the crime participation

decision, resulting in a key player policy, which effectiveness depends on the outside opportunities

available to criminals.
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1 Introduction

Polls show that people regard crime as the number one social problem. As such, identifying the

root causes of criminal activity and designing efficient policies against crime are two natural scopes

for the economics profession. About thirty years ago, the major breakthrough in the economic

analysis of crime was the work of Gary Becker (1968) in which criminals are rational individuals

acting in their own self-interest. In deciding to commit a crime, criminals weigh the expected costs

against the expected benefits accruing from this activity. The goal of the criminal justice system

is to raise expected costs of crime to criminals above the expected benefits. People will commit

crimes only so long as they are willing to pay the prices society charges.

There is now a large literature on the economics of crime. Both theoretical and empirical

approaches have been developed over the years in order to better understand the costs and benefits

of crime (see, for instance, the literature surveys by Nuno Garoupa, 1997, and Mitchell A. Polinsky

and Steven Shavell, 2000). In particular, the interaction between the “crime market” and the other

markets has important general equilibrium effects that are crucial if one wants to implement the

most effective policies.1 The standard policy tool to reduce aggregate crime that is common to

all these models relies on the deterrence effects of punishment, i.e., the planner should increase

uniformly punishment costs.

It is however well-established that crime is, to some extent, a group phenomenon, and the

source of crime and delinquency is located in the intimate social networks of individuals (see e.g.

Edwin H. Sutherland, 1947, Jerzy Sarnecki, 2001 and Mark Warr, 2002). Indeed, criminals often

have friends who have themselves committed several offences, and social ties among criminals are

seen as a means whereby individuals exert an influence over one another to commit crimes. In

fact, not only friends but also the structure of social networks matters in explaining individual’s

own criminal behavior. In adolescents’ friendship networks, Dana L. Haynie (2001) shows that

individual Bonacich centrality (a standard measure of network centrality) together with the density

of friendship links condition the delinquency-peer association. This suggests that the underlying

structural properties of friendship networks must be taken into account to better understand the

impact of peer influence on criminal behavior and to address adequate and novel crime-reducing

policies.

The aim of this paper is twofold. First, we relate individual crime outcomes to the agents’

network embeddedness. Second, we derive an optimal enforcement policy against crime that exploits

the geometric intricacies of the network structure connecting agents. For this purpose, we build on
1For example, Ken Burdett et al. (2003) and Chien-Chieh Huang et al. (2004) study the interaction between

crime and unemployment, while Thierry Verdier and Yves Zenou (2004) analyze the impact of the land market on

criminal activities. Others have focused on the education market (Lance Lochner, 2003) or on political economy

aspects of crime (Ayse İmrohoroğlu et al., 2004). Most of these models generate multiple equilibria that can explain

why identical areas may end up with different amounts of crime.
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the Beckerian incentives approach to crime behavior but let the cost to commit criminal offenses

to be determined, in part, by one’s network of criminal mates.2 We then describe equilibrium

behavior by resorting to standard network centrality measures in sociology. Finally, we introduce

a new centrality measure that characterizes geometrically the optimal network-based enforcement

policy. Our paper thus wedges a bridge between the economics of crime and the sociology literature

on social networks.

The sociology literature on social networks is well-established and extremely active (see, in

particular, Stanley Wasserman and Katherine Faust, 1994). One of the focus of this literature is to

propose different measures of network centralities and to assert the descriptive and/or prescriptive

suitability of each of these measures to each particular situation.3 While these measures are mainly

geometric in nature, our paper provides a behavioral foundation to the famous Bonacich’s centrality

measure4 that we derive from a non-cooperative game in crime efforts on the network. More

precisely, we show that the Nash equilibrium efforts of the crime-network game are proportional

to the individual Bonacich centrality indexes, and we refer to it from now on as the equilibrium

Bonacich-centrality measure.

In network games, the payoff interdependence is, at least in part, rooted in the network links

across players (see, in particular, the recent literature surveys by Sanjeev Goyal, 2004 and Matthew

O. Jackson, 2004). In general, at the Nash equilibria of a game, players’ strategies subsume the

payoff interdependence in a consistent manner. In the particular case of network games, equilibrium

strategies should thus naturally reflect the players’ network embededdness. For the crime network

game we analyze, this relationship between equilibrium strategic behavior and network topology is

straightforward and captured by the equilibrium Bonacich-centrality measure. This measure is an

index of connectivity that not only takes into account the number of direct links a given criminal

has but also all his indirect connections.5 In our crime game, the network payoff interdependence is

restricted to direct network mates. But, because clusters of direct friends overlap, this local payoff

interdependence spreads all over the network. At equilibrium, individual decisions emanate from

all the existing network chains of direct and indirect contacts stemming from each player, a feature

characteristic of Bonacich centrality.

Because network chains of contacts often overlap, the values of individual centrality indexes

are interrelated, which further translates into the interdependence of individual crime outcomes,

and between individual and group (average) outcomes. This dependence of individual on group

behavior is usually referred to as peer effects in the literature.6 Peer effects are an intragroup
2See Antoni Calvó-Armengol and Yves Zenou (2004) for a first model with these features.
3See Steve P. Borgatti (2003) for a discussion on the lack of a systematic criterium to pick up the “right” network

centrality measure for each particular situation.
4which has been proposed for nearly two decades ago in sociology by Phillip Bonacich (1987).
5There are, of course, other measures of centrality (for example the class of betweenness measures; see Wasserman

and Faust, 2000).
6The empirical evidence collected so far suggests that peer effects are, indeed, quite strong in criminal decisions.
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externality, homogeneous across group members, that captures the average influence that members

exert on each other. In our model, though, the peer effect influence varies across criminals with their

equilibrium-Bonacich centrality measure. The intragroup externality we obtain is heterogeneous

across criminals, and this heterogeneity reflects asymmetries in network locations across group

members.

The standard policy tool to reduce aggregate crime relies on the deterrence effects of punishment.

By uniformly hardening the punishment costs borne by all criminals, the distribution of crime

efforts shifts to the left and the average (and aggregate) crime level decreases. This homogeneous

policy tackles average behavior explicitly and does not discriminate among criminals depending on

their relative contribution to the aggregate crime level. Our previous results, though, associate a

distribution of crime efforts to the network connecting them. In particular, the variance of crime

efforts reflects the variance of network centralities. In this case, a targeted policy that discriminates

among criminals depending on their relative network location, and removes a few suitably selected

targets from this network, alters the whole distribution of crime efforts, not just shifting it. In

many cases, it may yield to a sharper reduction in aggregate crime than standard deterrence

efforts. In practice, the planner may want to identify optimal network targets to concentrate

(scarce) investigatory resources on some particular individuals, or to isolate them from the rest of

the group, either through leniency programs, social assistance programs, or incarceration.

To characterize the network optimal targets, we propose a new measure of network centrality,

the optimal inter-centrality measure, that does not exist in the social network literature. This

measure solves the planner’s problem that consists in finding and getting rid of the key player, i.e.,

the criminal who, once removed, leads to the highest aggregate crime reduction. We show that the

key player is, precisely, the individual with the highest optimal inter-centrality in the network.

Contrary to the equilibrium-Bonacich centrality index, this new centrality measure does not

derive from strategic (individual) considerations, but from the planner’s optimality (collective)

concerns. The equilibrium Bonacich-centrality measure fails to internalize all the network payoff

externalities criminals exert on each other, while the optimal inter-centrality measure internalizes

them all. The optimal inter-centrality measure accounts not only for individual Bonacich cen-

tralities but also for cross-contributions to these equilibrium centralities. As such, the ranking of

criminals according to their individual optimal inter-centrality measures, relevant for the selection

of the optimal network target, need not always coincide with the ranking induced by individual

equilibrium-Bonacich centralities. In other words, the key player is not necessarily the most active

criminal. Indeed, removing a criminal from a network has both a direct and an indirect effect.

First, less criminals contribute to the aggregate crime level. This is the direct effect. Second, the

network topology is modified, and the remaining criminals adopt different crime efforts. This is the

See, for instance, Anne Case and Larry Katz (1991), Jens Ludwig et al. (2001) and Patrick Bayer et al. (2003).

Building on the binary choice model of William Brock and Steve Durlauf (2001), Sibel Sirakaya (2004) identifies

social interactions as the primary source of recidivist behavior in the United States
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indirect effect. The key player is the one with the highest overall effect.

At this point, it is important to note that, to implement the key-player policy, one does not need

to have all the information about the exact structure of the network. Indeed, the planner does not

need to know all the links each individual has but only needs to be able to rank criminals according

to their inter-centrality measure.7 This is less demanding in terms of information and it implies, in

particular, that two different networks can lead to the same policy implication, i.e., the same key

player to remove. Take for example a star-shaped network. Then it does not matter how many

links has the central criminal, or whether some peripheral criminals have some direct link with

each other, or even how large the network is. In all these cases, the planner will remove the central

criminal because this is the key player −the criminal with the highest optimal inter-centrality
measure. This is obviously an extreme case and in other networks one may need more information

to identify the key player. But this simple example highlights the advantages of implementing a

key-player policy.

We extend our characterization of optimal single player network removal for crime reduction

crime, the key player, to optimal group removal, the key group. For this purpose, we generalize

the optimal inter-centrality measure to groups of players. For a given group size, the key group is

precisely the one with the highest value for such centrality measure among groups of exactly this

size. Given that the individual optimal inter-centrality captures both direct and indirect effects

on equilibrium Bonacich-centrality measures, the generalization to a group of the optimal inter-

centrality measure needs to account (once and only once) for all the cross-contributions that arise

both within and outside the group. For this reason, and contrarily to most centrality measures found

in the literature, the group centrality index is not a straightforward aggregation of its members

centrality indexes.

Because the geometric intricacies of the crime network are explicitly taken into account in the

characterization of optimal network targets, the implications of our policy prescriptions are quite

different from the standard deterrence-based policies, where both the apprehension probability

and punishment are increased uniformly. We show that the key player (group) policy displays

amplifying effects, and the gains following the judicious choice of the key player (group) go beyond

the differences in optimal inter-centrality measures between the selected targets and any other

criminals in the network. We also show that the relative gains from targeting the key player

(group) instead of operating a selection at random of a criminal in the crime network increase

with the variability in optimal inter-centrality measures across criminals. In other words, the
7Note that an undirected unweighted network is fully characterized by n(n−1)/2 values −the list of actual network

links. We show that two n− dimensional vectors aggregate this information in an enough informative manner for

our purposes: first, to identify crime behavior − equilibrium-Bonacich centrality− and second, to identify optimal

policy targets −optimal inter-centality. We further show that the only valuable information to identify the optimal
target provided by the vector of optimal-inter-centralities is of ordinal nature, which further reduces the informational

requirements on the network structure to effectively implement this policy.
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key player (group) prescription is particularly well-suited for networks that display stark location

asymmetries across nodes. Also, our policy prescriptions rely on centrality measures particularly

robust to mispecifications in network data, and thus open the door to relatively accurate estimations

of these measures with small samples of network data.

In the last part of the paper, we endogeneize the network connecting criminals by allowing

players to join the labor market instead of committing criminal offenses. The model is now richer

since, apart from punishment, the outside wage is an additional crime-reducing policy tool available

to the planner. We show that the key player policy prescription now depends both on network

features and on the wage level.

2 Crime network outcomes

2.1 The crime network game

The network There are n criminals. Some criminals know each other, and some do not. The

collection of interpersonal relationships among criminals constitutes a crime network g. When i

and j are directly connected, we set gij = gji = 1. When there is no direct connection between

them, then gij = gji = 0. By convention, gii = 0.

The crime decision game Consider some crime network g. Criminals in the network decide

how much effort to exert. We denote by ei the crime effort level of criminal i, and by e = (e1, ..., en)

the population crime profile.

Following Becker (1968), we assume that criminals trade off the costs and benefits of criminal

activities to take their crime effort decision. The expected crime gains to criminal i are given by:

ui(e,g) = yi(e)| {z }
proceeds

− pi(e, g)| {z }
apprehension

f|{z}
fine

(1)

The individual proceeds yi(e) correspond to the gross crime payoffs of criminal i. Individual

i gross payoff positively depends on i’s crime involvement ei, and on the whole population crime

effort e. The sign of the global8 payoff interdependence may reflect either complementarities or

substitutabilities in individual efforts. Substitutabilities may arise, for instance, in the case of

property crime where individual criminals compete against each other for the same victims and

booty. Complementarities are to be expected in conspiracy or terrorist activities, where individual

criminals are part of a network organization pursuing a common goal.

The cost of committing crime pi(e, g)f is also positively related to ei as the apprehension

probability increases with one’s involvement in crime, hitherto, with one’s exposure to deterrence.

Moreover, and consistent with standard criminology theories (see e.g. Sutherland, 1947, Sarnecki,
8That is, across all criminals in the network.
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2001, Warr, 2002), we assume that criminals improve illegal practice while interacting with their

direct criminal mates. In words, pi(e, g) reflects local complementarities in crime efforts across

criminals directly connected through g.9

For sake of tractability, we restrict to the following simple expressions. More precisely, we set: yi (e) = ei

h
1− γ

Pn
j=1 ej

i
pi(e,g) = p0ei

h
1− λ

Pn
j=1 gijej

i (2)

With these expression, we have:

∂2yi
∂ei∂ej

= −γ and − ∂2pif

∂ei∂ej
= πλgij ,

where π = p0f is the the marginal expected punishment cost for an isolated criminal.

The parameter −γ < 0 measures the intensity of the global interdependence on gross crime

payoffs. Here, individual crime efforts are global strategic substitutes. The optimal crime effort of

a given criminal thus decreases with the crime involvement of any other criminal in the network.

The expression πλ > 0 captures the local strategic complementarity of efforts on the apprehension

probability. This expression is non-zero only when gij = 1, that is, when criminals i and j are

directly linked to each other.

Criminals choose their crime effort in [0, e], where nemax {λ, γ} = 1. This last technical

condition on the parameters guarantees that yi (e) and pi(e,g) are well-defined quantities.

2.2 Equilibrium and network centrality

The network adjacency matrix To any network g we can associate its adjacency matrix,

that we denote by G. The adjacency matrix is simply a matrix representation of a network. The

coefficients of the matrix G are the gijs, 1 ≤ i, j ≤ n. By definition, each cell in G takes on values

zero or one, and the cell with coordinates (i, j) is equal to one if and only if i and j are directly

linked in g, that is, gij = 1. Given our convention that gii = 0, the diagonal of G consists on zeros.

Since gij = gji, the matrix G is symmetric.

The matrix G keeps track of the direct connections on the network g. Denote by Gk =

G(k times)... G the kth power of the adjacency matrix G, where k is some non-zero integer, and let

g
[k]
ij be the (i, j) cell of this matrix. The matrix G

k keeps track of the indirect connections on the

network g. We say that there is an indirect connection, also denominated a path, between i and j

9See also William Brock and Stephen Durlauf (2001) for a global/local dichotomy in capturing social interactions

and Yannis Ioannides (2002) for an exhaustive analysis of the effects of network topology in the Brock and Durlauf

setting. Observe that all our results remain unchanged if the local network externalities enter the benefit function

instead of the cost function in (2) as long as network payoffs reflect net strategic substituability. See our discussion

in section 5.
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on the network g if there exists a sequence of direct links on g connecting i to j.10 The number of

links in the sequence determines the length of the path between i and j. The coefficient g[k]ij in the

(i, j) cell of Gk gives the number of paths of length k on the network g between i and j. Note that,

by definition, a path between i and j needs not follow the shortest possible route between those

agents. For instance, suppose that i and j are directly linked in g. Then, the sequence of direct

links ij → ji→ ij constitutes a path of length three between i and j.

Characterization of the equilibrium Denote by I the n−identity matrix, by 1 the n−dimensional
column vector of ones, and by 1T its transpose. Then, J = 1 · 1T is the n−dimensional matrix of
ones.

Define φ = πλ/γ. This ratio measures the relative strength of the local strategic complemen-

tarity of efforts with respect to the global strategic substitutability on criminals’ payoffs.11

Proposition 1 The interior Nash equilibria in pure strategies of the crime network game e∗ are
the solutions to the following system of n linear equations with n unknowns in matrix form:

[J+ I−φG] · e =1− π

γ
1 (3)

There exists a unique 0 < φ ≤ 1 and a finite set Z ∈ IR such that, for all 0 ≤ φ < φ and φ /∈ Z, the
set of interior Nash equilibria in pure strategies of the crime network game exists and is unique.

The previous result characterizes the Nash equilibria in pure strategies of the crime network

game, and provides conditions for their existence and uniqueness. Recall that network payoffs

reflect substitutability at the global level with intensity γ, and complementarity at the local level

with intensity πλ. When φ = πλ/γ ≤ 1, network payoffs thus reflect net strategic substitutability,
that is, ∂2ui/∂ei∂ej ≤ 0, for all pair of players i and j, with a strict inequality when φ < 1. Yet,

the intensity of this effect varies across pairs of players i and j, from a lowest value equal to −γ for
indirectly connected players such that gij = 0, to a highest value equal to −γ(1 − φ) for directly

connected players such that gij = 1. The interior Nash equilibrium reflects these differences in the

relative intensities of the network payoff strategic substitutability across different pairs of players,

and the balance of these differences as a function of the network geometry.

At equilibrium, the marginal gross crime gains equal the marginal punishment cost for each

criminal, that is,

1− γ
nX

j=1

ej − γei = π

1− λ
nX

j=1

gijej

 , for all i = 1, ..., n.
10Formally, a path between i and j is a sequence i0, ..., ik, k ≥ 1 such that i0 = i, ik = j, and gipip+1 = 1, for all

0 ≤ p ≤ k − 1.
11All proofs of propositions and lemmata are given in the Appendix.
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This is equivalent to the following vectorial equality:

1−γ [J+ I] · e =π1−πλG · e,

which, in turn, corresponds to (3). The matrix J captures the global payoff interdependencies,

while the matrix G stands for the local network synergies.

The condition φ /∈ Z guarantees that the system (3) has a unique solution. We refer to the

situations in which φ /∈ Z as generic situations. Since Z is a finite set, the whole set of nongeneric
situations has Lebesgue measure of zero. From now on, we restrict to generic situations.

Comparative statics In Proposition 1, the individual and aggregate crime levels depend on

the underlying network g connecting them through the adjacency matrix G in (3). The next result

establishes a positive relationship between the equilibrium aggregate crime level and the network

pattern of connections.

Proposition 2 Let g and g0 such that g ⊂ g0. At equilibrium, the total crime level under g0 is
strictly higher than that under g.

Consider two nested networks g and g0 such that g ⊂ g0. Then, either g and g0 connect the
same number of criminals but there are more direct links between them in g0 than in g, or g0 brings
additional individuals into the pool of criminals already connected by g, or both. Proposition

2 shows that the density of network links and the network size (or boundaries) affect positively

aggregate crime, a feature often referred to as the social multiplier effect.12

The intuition for this result is as follows. Consider two nested networks g and g0, where g ⊂ g0.
Then, any pair of players not directly connected in g0 is not directly connected in g, and the

total number of pairs of directly connected players in g0 is higher than that in g. We know that

crime efforts are strategic substitutes for any pair of players i and j, and that the strength of

this relationship is lower when players are directly connected with each other.13 Indeed, direct

connections are the source of local complementarities that counter, at least in part, the global

payoff substitutability. When g ⊂ g0 then, necessarily, the payoff cross-derivative between i and

j is higher or equal in g0 than in g for all players i and j, and it is strictly higher for some pairs

of players (those directly connected in g0 but not in g). As a result, players can rip more local

complementarities in g0 than in g, and equilibrium aggregate crime is higher in g0 than in g.
12See, for instance, Edward Glaeser, Bruce Sacerdote and José Scheinkman (2003), and references therein.
13Recall from the discussion above that:

∂2ui(e)

∂ei∂ej
=

−γ, when gij = 0

−γ(1− φ), when gij = 1

where 0 ≤ −γ ≤ −γ(1− φ) ≤ 0, when 0 ≤ φ ≤ 1.
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A network centrality measure In a game setting, payoffs are interdependent, and the indi-

vidual equilibrium strategies adopted at any equilibrium of such game subsume this interdependence

in a consistent manner.

In the crime network game, the payoff interdependence is, in part, rooted in the network links

through which know-how is being shared. We should thus expect the individual equilibrium crime

levels to reflect the criminals’ network embededdness. To clarify this relationship between network

location and equilibrium outcomes,14 we first define a useful network centrality measure.

Let G be the adjacency matrix of a crime network g. Recall that the coefficients of Gk give the

number of paths of length k in g between any two pair of criminals connected by g. For all k ≥ 0,
define:

βk(g) = Gk · 1.
By definition, the ith coordinate of βk(g) is equal to βki (g) =

Pn
j=1 g

[k]
ij , and counts the number

of direct and indirect paths of length k in g starting from i.

For sufficiently low values of φ, we can define the following vector:

β(g, φ) =
+∞X
k=0

φkβk(g) =
+∞X
k=0

φkGk · 1 = [I−φG]−1 · 1, (4)

Now, the ith coordinate of β(g, φ) is equal to βi(g, φ) =
P+∞

k=0 φ
kβki (g), and counts the total number

of direct and indirect paths in g starting from i for all possible paths lengths. In this expression,

the paths of length k are weighted by the geometrically decreasing factor φk.

The vector β(g, φ) is a variation of the network centrality measure due to Philipp Bonacich

(1987).15 Because it is derived from a Nash equilibrium, it is referred to as the equilibrium Bonacich-

centrality measure. Over the past years, social network theorists have proposed a number of

centrality measures to account for the variability across network locations.16 Roughly, these indices

encompass two dimensions of network centrality: connectivity and betweenness. The simplest

index of connectivity is the number of direct links stemming from each node in a network, while

betweenness centrality keeps track of the number of optimal paths across (or from) every node.17

14Recall that the network geometry is explicitly present in the system of equations (3) that characterize the

equilibria of the crime network game through the adjacency matrix G of the crime network g.
15 In fact, β(g, φ) is obtained from Bonacich’s measure by an affine transformation. More precisely, Bonacich defines

the following network centrality measure:

ψ(g, a, b) = a [I− bG]−1G · 1.

Therefore, β(g, φ) = 1+φψ(g, 1, φ) = 1+ κ(g, φ), where κ(g, φ) is an early measure of network status introduced

by Leo Katz (1953). See also Roger Guimerà et al. (2001) and Mark Newman (2003) for related network centrality

measures.
16See Wasserman and Faust (1994) and references therein.
17See Linton Freeman (1979) for an example of betweenness centrality, equal to the mean of the shortest-path

distance between some given node and all the other nodes that can be reached in the network. Different concepts of

path optimality (shortest-path, maximal-flow, etc.) lead to different betweenness measures.
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Our centrality measure β(g, φ) is an index of connectivity (and not betweenness). It counts the

number of any path stemming from a given node, not just optimal paths. These numbers are then

weighted by a factor φk that decays geometrically with the path length. If φ is low enough, the

infinite sum in (4) takes on a finite value. For very small values of φ, the coordinates of β(g, φ)

are an affine function of the number of direct links of every criminal in the network. The higher

the value of φ, the higher the contribution of indirect and distant links to the centrality measure

of any criminal in the network.

From network structure to crime outcomes The following result establishes that the

equilibrium individual effort levels of the crime network game are proportional to the equilibrium

Bonacich-centrality measure of each criminal. It thus relates strategic equilibrium behavior to

network topology.

Define β(g, φ) = 1T · β(g, φ). This is the sum of the centrality measures for all criminals

connected through g.

Proposition 3 There exists a unique 0 < bφ ≤ 1 such that, for all 0 ≤ φ < bφ, the unique Nash
equilibrium strategies of the crime network game are given by:

e∗i =
1− π

γ

βi(g, φ)

1 + β(g, φ)
, for all i = 1, ..., n. (5)

The equilibrium Bonacich-centrality measure β(g, φ) is thus the relevant network characteristic

that shapes equilibrium behavior. This measure of centrality reflects both the direct and the indirect

network links stemming from each criminal. In (1), though, the local payoff interdependence

is restricted to direct network mates, and equilibrium behavior should only integrate this local

interdependencies. Yet, because clusters of direct friends overlap, the local payoff interdependence

spreads all over the network.18 As a result, at equilibrium, individual decisions emanate from all

the existing network chains of direct and indirect contacts. Because individual decisions feed into

each other along any network path, every such path (not only shortest-paths, for instance) shapes

the equilibrium behavior of criminals.

The condition φ < bφ relates the payoff function to the network topology. This is not surprising,
as this condition allows us to characterize Nash outcomes, which depend on the payoff structure,

in terms of centrality measures, which reflect the network topology. When this condition holds, the

ratio of the local to the global payoff interdependence φ = πλ/γ is lower than the inverse of the

highest eigenvalue of the adjacency matrix G of the network g. In this case (and only then), the

matrix [I−φG]−1 can be developed into the infinite sum P
k≥0 φ

kGk, which brings the Bonacich-

centrality measure into the picture. We provide in the appendix an analytical expression for the
18At equilibrium, i0s effort decision depends on j’s effort decision, for all j such that gij = 1. But j’s effort decision

depends, in turn, on k’s effort decision, for all k such that gjk = 1. Therefore, i’s decision depends (indirectly) on k’s

decision, for all k such that g[2]ik = 1. And so on.
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upper bound bφ as a function only of the total number of direct links in g and the number of direct

links of the least connected node in g. In particular, it is readily checked that bφ ≥ 1/k for the whole
class of regular networks where all players have exactly k direct links, independent of the size n of

the population connected by these networks.

Observe that, when criminals hold different location in the network, they will exert different

crime efforts. Equation (5) then implies that the ranking of equilibrium crime efforts across crimi-

nals reflects exactly the ranking of their network centrality measures. Network structure is thus a

determinant of criminal outcomes.

Denote by e∗ = 1T · e∗ the equilibrium aggregate crime level. Together with (5), we get:

e∗i =
βi(g, φ)

β(g, φ)
e∗.

In words, the individual contribution of each player to aggregate crime is proportional to his

network centrality measure. The dependence of individual outcomes on group behavior is usually

referred to as peer effects.19 In a standard peer effect model, though, the dependence of individual

to group outcomes is the same for all individuals. The intragroup externality is homogeneous

across group members, and corresponds to a group average influence that members exert on each

other. Here, the strength of the peer effect influence varies across criminals according to their

location in the network, where the relevant index for network position is (a variation of) the

Bonacich centrality measure. More central players have higher exposure to the rest of the group

and experience a higher involvement in crime, and vice-versa. The intragroup externality is thus

heterogeneous across criminals, and this heterogeneity reflects asymmetries in network locations

across group members. Network centrality indicates how peer effects are distributed within the

group and thus captures the variance of this intragroup externality.

Consistent with the predictions of our model, a recent empirical study by Haynie (2001) shows

that structural properties of friendship networks indeed condition the association between friends’

delinquency and an individual’s own delinquent behavior. More precisely, she finds that Bonacich

centrality, net of other individual effects, accounts for 21 percent of the observed differences in ado-

lescents delinquency-peer association.20 Also, by analyzing the network organization of conspiracy,

Wayne Baker and Robert Faulkner (1993) show that a measure of network centrality based on di-

rect links predicts the individual probability to be apprehended and convicted, and the magnitude

of the fine.
19The empirical evidence collected so far suggests that peer effects are, indeed, very strong in criminal decisions.

See, for instance, Anne Case and Larry Katz (1991), Jens Ludwig et al. (2001) and Patrick Bayer et al. (2003).
20Data from the National Longitudinal Study of Adolescent Health, United States, 1994-1995.
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Example To illustrate the previous results, consider the following crime network g with three

criminals, where agent 1 holds a central position whereas agents 2 and 3 are peripherals.

t t t
2 1 3

Figure 1

The adjacency matrix for this crime network is the following:

G =

 0 1 1

1 0 0

1 0 0

 .
Its is a straightforward algebra exercise to compute the powers of this matrix, which are:

G2k =

 2
k 0 0

0 2k−1 2k−1

0 2k−1 2k−1

 and G2k+1 =

 0 2k 2k

2k 0 0

2k 0 0

 , k ≥ 1.
For instance, we deduce fromG3 that there are exactly two paths of length three between criminals

1 and 2, namely, 12 → 21 → 12 and 12 → 23 → 32. Obviously, there is no path of this length

(and, in general, of odd length) from any criminal to himself. We can now compute the criminals’

centrality measures using (4). We obtain:21

β1(g, φ) =
+∞X
k=0

h
φ2k2k + φ2k+12k+1

i
=
1 + 2φ

1− 2φ2

β2(g, φ) = β3(g, φ) =
+∞X
k=0

h
φ2k2k + φ2k+12k

i
=

1 + φ

1− 2φ2

According to intuition, criminal 1 has the highest centrality measure. All centrality measures βis

increase with φ, and so does the ratio β1/β2 of agent 1’s centrality with respect to any other criminal,

as the contribution of indirect paths to centrality increases with φ. Then, using expressions (5) in

Proposition 3, we obtain the following crime efforts at equilibrium:

e∗1 =
1− π

4γ

1 + 2φ

1 + φ
and e∗2 = e∗3 =

1− π

4γ
.

As expected, the crime effort exerted by criminal 1, the most central player, is the highest one.
21Note that this centrality measures are only well-defined when φ < 1/

√
2. This upper bound, which guarantees

that the infinite sums converge, can be obtained by inspection and, more generally, can be deduced from the general

expression in the proof of Proposition 3.

13



3 Crime network policies

3.1 Finding the key player

A network-based policy The standard policy tool to reduce aggregate crime relies on the

deterrence effects of punishment (see for example Becker, 1968). Formally, an increase in π, which

translates into an increase in φ, amounts to hardening punishment costs borne by criminals. Our

previous results associate a distribution of crime efforts across criminals to any crime network

connecting them. In this case, an increase in φ affects all criminal decisions simultaneously and

shifts the whole crime efforts distribution to the left, thus reducing the average (and the aggregate)

crime level.

In our model, though, crime behavior is tightly rooted in the network structure. When all

criminals hold homogeneous positions in the crime network, they all exert a similar crime effort.

In this case, the above-mentioned policy, that tackles average behavior and does not discriminate

among criminals depending on their relative contribution to the aggregate crime level, may be

appropriate. However, if criminals hold very heterogeneous positions in the crime network, they

contribute very differently to the aggregate crime level. The variance of efforts is higher. In this

case, we could expect a sharp reduction in average crime by directly removing a criminal from the

network and thus altering the whole distribution of crime efforts, not just shifting it. A targeted

policy that discriminates among criminals depending on their location in the network may then be

more appropriate.22

In what follows, we first provide a simple geometric criterium to identify the optimal target,

and then compare the new policy with the more standard one.

The planner’s problem Denote by e∗(g, φ) = 1T · e∗ the equilibrium aggregate crime level

corresponding to a network g. The planner’s problem is to reduce the overall equilibrium crime level

e∗(g, φ) with the policy tools available. Standard policy tools consist on increasing the deterrence
effort φ.

Here, we examine an alternative policy that consists on manipulating the network g that con-

nects criminals. We first consider the simple case where the planner can eliminate only one criminal

i from the crime network. By eliminating criminal i, the network g changes its shape as all the

direct links in g stemming from i also disappear. We denote by g−i the resulting network, where
g−ijk = 1 if and only if both gjk = 1 and j 6= i 6= k. When i is eliminated, the resulting overall crime

level is e∗(g−i, φ).
22See Réka Albert et al. (2000) for a heuristical and numerical analysis of the relative network disruption effects of

a coordinated attack versus random failures in large systems networks, such as the World Wide Web or the internet

network, as a function of the underlying network topology. Béla Bollobás and Oliver Riordan (2003) provide a

thorough mathematical account of these results.
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The planner’s objective is to generate the highest possible reduction in aggregate crime level by

picking the appropriate criminal. Formally, the planner’s problem is the following:

max{e∗(g, φ)− e∗(g−i, φ) | i = 1, ..., n},

which, when the original crime network g is fixed, is equivalent to:

min{e∗(g−i, φ) | i = 1, ..., n} (6)

This is a finite optimization problem, that admits at least one solution. Let i∗ be a solution
to (6). We call criminal i∗ the key player. Removing criminal i∗ from the initial crime network g,

instead of picking any other criminal, has the highest overall impact on the aggregate crime level.

Identifying the key player requires the comparison of the maximal aggregate equilibrium outcomes

across n different crime network games, where the games differ in that a different criminal is removed

each time from the initial network, each removal leading, in turn, to a different network setting.

In what follows, we provide a simple geometric characterization of the key player in the original

crime network g.

A geometric characterization of the key player When criminal i is removed from g, the

new crime network is g−i. By (5), the aggregate crime level becomes:

e∗(g−i, φ) =
1− π

γ

β(g−i, φ)
1 + β(g−i, φ)

Given that the function f(x) = x/(1 + x) is increasing in x, the planner’s problem (6) can be

reformulated as:

min{β(g−i, φ) | i = 1, ..., n} (7)

Thanks to Proposition 3 that relates network structure to crime outcomes, the planner’s original

objective of reducing crime translates into a geometric problem of decreasing the network aggregate

centrality measure β(g−i, φ).
When one criminal is eliminated from the current crime pool, the impact on the overall crime

level is twofold. First, aggregate crime decreases as one criminal −the one being eliminated− does
not contribute anymore to the group outcome. This is a direct effect. Second, with the removal of

this criminal, the topology of the network connecting the remaining set of criminals is altered. As a

result, the centrality measure accruing to each of them is modified, and their individual involvement

in crime changes accordingly. This is an indirect effect.

The key player is the one inducing the highest aggregate crime reduction. Given that criminal

removal has both a direct and an indirect on the group outcome, the choice of the key player results

from a compromise between both effects. In particular, the key player need not necessarily be the

one exerting the highest crime effort or, equivalently, the one with the highest centrality measure.
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We now define a new network centrality measure θ(g, φ) that will happen to solve this compro-

mise. This measure of centrality, that we refer to as optimal inter-centrality measure, reflects both

one’s centrality and one’s contribution to the others’ centrality.

For all i 6= j and non-zero integer k define:

βkij(g, φ) =
kX

p=1

g
[p]
ij β

k−p
j (g, φ).

Recall that βk−pj (g) is equal to the number of paths in g of length k − p starting from j. Also,

g
[p]
ij ≥ 1 if and only if there exists at least one path in g of length p between i and j. Altogether,

g
[p]
ij β

k−p
j (g, φ) is equal to the number of paths of length k that start from i and cross through j

after p links. Therefore, βkij(g, φ) is the total number of paths of length k that start at i and

cross through j (at least once) or end at j. Summing across all weighted path lengths leads to the

following expression:

βij(g, φ) =
+∞X
k=1

φkβkij(g, φ).

By definition, it is readily checked that:

βij(g, φ) = βi(g, φ)− βi(g
−j , φ). (8)

In words, the contribution of criminal j to criminal i’s centrality in g is equal to the difference of

criminal i’s centrality in g and in g−j , where criminal j has been removed.

Definition 1 For all network g and for all i, let θi(g, φ) = βi(g, φ)| {z }
direct

+
P

j 6=i βji(g, φ)| {z }
indirect

.

The inter-centrality measure θi(g) of criminal i is the sum of i’s centrality measures in g, and

i’s contribution to the centrality measure of every other criminal j 6= i also in g. It accounts both

for one’s exposure to the rest of the group and for one’s contribution to every other exposure.

The following result establishes that inter-centrality captures, in an meaningful way, the two

dimensions of the removal of a criminal from a network, namely, the direct effect on crime and the

indirect effect on others’ crime involvement.

Proposition 4 A player i∗ is the key player that solves (7) if and only if i∗ is a criminal with the
highest inter-centrality in g, that is, θi∗(g, φ) ≥ θi(g, φ), for all i = 1, ..., n.23

The previous result provides a geometric characterization of the key player.
23Note that there may be more than one key player as different criminals may display the same value for their

inter-centrality measure.
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Example Consider the network g in Figure 2 with eleven criminals.
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Figure 2

We distinguish three different types of equivalent actors in this network, which are the following:

Type Players

1 1

2 2, 6, 7 and 11

3 3, 4, 5, 8, 9 and 10

From a macro-structural perspective, type−1 and type−3 criminals are identical: they all have four
direct links, while type−2 criminals have five direct links each. From a micro-structural perspective,
though, criminal 1 plays a critical role by bridging together two closed-knit (fully intraconnected)

communities of five criminals each. By removing criminal 1, the network is maximally disrupted as

these two communities become totally disconnected, while by removing any of the type−2 criminals,
the resulting network has the lowest aggregate number of network links.

We identify the key player in this network of criminals. If the choice of the key player were solely

governed by the direct effect of criminal removal on aggregate crime, type−2 criminals would be the
natural candidates. Indeed, these are the ones with the highest number of direct connections. But

the choice of the key player needs also to take into account the indirect effect on aggregate crime

reduction induced by the network restructuring that follows the removal of one criminal from the

original network. Because of his communities’ bridging role, criminal 1 is also a possible candidate

for the preferred policy target.

Table 1 computes, for criminals of types 1, 2 and 3 the value of crime efforts e∗i , centrality
measures βi(g, φ) and inter-centrality measures θi(g, φ) for different values of φ and with γ = λ = 1.
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In each column, a star identifies the highest value.24

φ 0.1 0.2

Player Type e∗i βi θi e∗i βi θi

1 0.077 1.75 2.92 0.072 8.33 41.67∗

2 0.082∗ 1.88∗ 3.28∗ 0.079∗ 9.17∗ 40.33

3 0.075 1.72 2.79 0.067 7.78 32.67

First note that type−2 criminals always display the highest β−centrality measure. These crim-
inals have the highest number of direct connections. Besides, they are directly connected to the

bridge criminal 1, which gives them access to a very wide and diversified span of indirect connec-

tions. Altogether, they are the most β−central criminals.
For low values of φ, the direct effect on crime reduction prevails, and type−2 criminals are the

key players −those with highest optimal inter-centrality measure θ. When φ is higher, though,

the most active criminals are not anymore the key players. Now, indirect effects matter a lot, and

eliminating criminal 1 has the highest joint direct and indirect effect on aggregate crime reduction.

When the punishment cost φ is low, criminals transfer their know-how only at a very local

level, with their direct criminal mates. When φ increases, criminals counter the higher deterrence

they face by spreading their know-how further away in the network and establishing synergies with

criminals located in distant parts of the social setting. In this latter case, the optimal targeted

policy is the one that maximally disrupts the crime network, thus harming the most its know-how

transferring ability.

Note that the network g−1 has twenty different links, while g−2 has nineteen links. In fact, when
φ is small enough, the key player problem minimizes the number of remaining links in a network,

which explains why type−2 criminals are the key player when φ = 0.1 in this example.

Formally, let ni(g) =
P

j gij . This is the number of direct contacts of criminal i in the network

g. Let n(g) = 1
2

P
i ni(g). This is the total number of links in g. We denote by o(x) a function that

converges to zero when x tend to zero at a rate faster than x. Formally, limx→0 o(x)/x = 0.

Lemma 1 When φ → 0, we have βi(g, φ) = 1 + φni(g) + o(φ). Then, the key player i∗ solves
mini∈N n(g−i).

Optimal-intercentrality versus equilibrium-Bonacich centrality The individual Nash

equilibrium efforts of the crime-network game are proportional to the equilibrium Bonacich-centrality

network measures, while the key player is the criminal with the highest optimal inter-centrality mea-

sure. As the previous example illustrates, these two measures need not coincide. This is not surpris-

ing, as both measures differ substantially in their foundation. Whereas the equilibrium-Bonacich
24From the proof of Proposition 3, we can compute the highest possible value for φ compatible with our definition

of centrality measures, equal to φ = 2

3+
√
41
' 0, 213.
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centrality index derives from strategic individual considerations, the optimal inter-centrality mea-

sure solves the planner’s optimality collective concerns. In particular, the equilibrium Bonacich-

centrality measure fails to internalize all the network payoff externalities criminals exert on each

other, while the optimal inter-centrality measure internalizes them all. More formally, the measure

θ(g, φ) goes beyond the measure β(g, φ) by keeping track of all the cross-contributions that arise

between its coordinates β1(g, φ), ..., βn(g, φ).

We now clarify the relationship between θ(g, φ) and β(g, φ).

Define the following matrix:

M(g, φ) = [I−φG]−1 =
+∞X
k=0

φkGk.

The elements of this matrix, denoted by mij(g, φ) and given by mij(g, φ) =
P+∞

k=0 φ
kg
[k]
ij count the

weighted number of paths in g starting at i and ending at j, for all 1 ≤ i, j ≤ n.

The equilibrium-Bonacich centrality of player i counts the total number of direct and indirect

paths in g starting from i for all possible paths lengths.25 Recall from (4) that β(g, φ) =M(g, φ) ·1.
Therefore:

βi(g, φ) = mii(g, φ)| {z }
self−loops

+
X
j 6=i

mij(g, φ)| {z }
out−paths

.

In words, we can distinguish between two different types of paths that start from i in g. One one

hand, self-loops that start from i and end up at the same starting point i; these paths account for

a proportion mii(g, φ)/βi(g, φ) of the total Bonacich centrality of player i. On the other hand, out-

paths that start from i but end up at some other node j 6= i; they account for a (complementary)

share 1−mii(g, φ)/βi(g, φ) of i’s Bonacich centrality.

Self-loops correspond to the n diagonal terms (m11(g, φ), ...,m11(g, φ)) of the matrix M(g, φ),

and each self-loop is associated to only one coordinate of the n−dimensional vector β(g, φ) with
coordinates (β1(g, φ), ..., βn(g, φ)). Out-paths correspond to the out-of-diagonal terms of M(g, φ),

collected row by row. Given the symmetry of the matrix M(g, φ), the out-paths components

of βi(g, φ) and βj(g, φ) share a common factor mij(g, φ) = mji(g, φ), for all i 6= j. Out-paths

thus reflect the cross-contributions in the individual equilibrium-Bonacich centralities and, as such,

should also enter the calculation of individual optimal-intercentralities which, precisely, subsume

all such cross-contributions.

The following result relates optimal-intercentrality, self-loops and equilibrium-Bonacich central-

ity.

Proposition 5 For all network g we have θi(g, φ) = βi(g, φ)
2/mii(g, φ), for all i = 1, ..., n.

25Where paths of length k are weighted by the geometrically decreasing factor φk.
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Holding βi(g, φ) fixed, the intercentrality θi(g, φ) of player i decreases with the proportion

mii(g, φ)/βi(g, φ) of i’s Bonacich centrality due to self-loops, and increases with the fraction of i’s

centrality amenable to out-paths.

3.2 Comparing policies

The cost of finding the key player Given a crime network g and a punishment cost φ,

the ranking of criminals according to their individual inter-centrality measure θi(g, φ)s provides a

criterium for the selection of an optimal target in the network. Implementing such a network-based

policy has obviously its costs. Indeed, the computation of the inter-centrality measures relies on the

knowledge of the adjacency matrix of the crime network. This matrix is obtained from sociometric

data that identifies the network links between criminals. It is important to note that sociometric

data on crime is available in many cases. For instance, Haynie (2001) uses friendship data to

identify delinquent peer networks for adolescents in 134 schools in the U.S. that participated in

an in-school survey in the 1990’s. Sarnecki (2001) provides a comprehensive study of co-offending

relations and corresponding network structure for football hooligans and right-wing extremists in

Stockholm. Baker and Faulkner (1993) reconstruct the structure of conspiracy networks for three

well-known cases of collusion in the heavy electrical equipment industry in the U.S. Finally, Valdis

Krebs (2002) maps the network of terrorist cells behind the tragic event of September 11th, 2001. In

all these cases, one may directly use the available data to compute the inter-centrality measures.26

In some other cases, though, ad hoc information gathering programs have to be implemented.

Interestingly, Elizabeth Costebander and Thomas Valente (2003) show that centrality measures

based on connectivity (rather than betweenness), such as β and θ, are robust to mispecifications

in sociometric data, and thus open the door to estimations of centrality measures with (relatively

small) samples of network data.27 This, obviously, reduces the cost of identifying the key player.

Key player versus random target To fully assess the relevance of the key player crime

policy, we also need to evaluate the relative returns from following this network targeted policy.

For this purpose, we compare the reduction in aggregate crime following the elimination of the key

player with respect to the expected consequences when the target is selected randomly.

For each criminal i in the crime network, define:

ηi(g, φ) = n
e∗(g, φ)− e∗(g−i, φ)Pn

j=1 [e
∗(g, φ)− e∗(g−j , φ)]

.

This is the ratio of returns (in crime reduction) when i is the selected target versus a random

selection with uniform probability for all criminals in the network.
26 In fact, Haynie (2001) conducts regressions where the Bonacich centrality measure is taken as an explanatory

variable for delinquent crime decisions.
27See, also, Tami Carpenter, George Karakostas and David Shallcross (2002) for a discussion on algorithms that

deals with data uncertainty in terrorist networks.
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Denote by θ(g, φ) the average of the inter-centrality measures in network g, and by σθ(g, φ)

the standard deviation of the distribution of this inter-centrality measures. The following result

establishes a lower bound on the ratio of returns in crime reduction when the key player is removed.

Proposition 6 Let i∗ be the key player in g for a given φ. Then,

ηi∗(g, φ) ≥ 1 +
σθ(g, φ)

θ(g, θ)
.

The relative gains from targeting the key player instead of operating a selection at random

in the crime network increase with the variability in inter-centrality measures across criminals as

captured by σθ(g, φ). In other words, the key player prescription is particularly well-suited for

networks that display stark location asymmetries across nodes. In these cases, it is more likely

than the relative gains from implementing such a policy compensate for its relative costs.

Key player versus standard deterrence policy Of course, the planner can also reduce

aggregate crime by implementing a standard deterrence policy, that is, increasing punishment costs

φ. The impact on aggregate crime following an increase in φ, though, results from the combination

of two effects that work in opposite directions as can be seen in (5). First, the individual probability

to be apprehended, and thus the punishment costs borne by each criminal, increase with φ. This

is a direct negative effect. Second, when φ increases, criminals react strategically by acquiring a

better crime technology to thwart the higher deterrence they now face. The improvement in crime

technology stems from more intense know-how inflows and transfers in the crime network. Each

criminal centrality measure βi(g, φ) increases, which translates into a higher crime involvement

for each criminal. This is an indirect positive effect on aggregate crime that mitigates the direct

negative effect.

On the contrary, the key player removal policy has a straightforward effect on crime reduction,

with no countervailing effect. Indeed, when a criminal is removed from the network, the inter-

centrality measures of all the criminals that remain active are reduced, that is, θj(g−i
∗
, φ) ≤ θj(g, φ),

for all j 6= i∗, which triggers a decrease in crime involvement for all of them. Moreover, when
criminal i∗ is removed from the crime network, the corresponding ratio of aggregate crime reduction
with respect to the network centrality reduction is an increasing function of the inter-centrality

measure θi(g, φ) of this criminal. Formally,

∂

∂θi(g, φ)

·
e∗(g, φ)− e∗(g−i, φ)
β(g, φ)− β(g−i, φ)

¸
> 0.

In words, the target policy displays amplifying effects, and the gains following the judicious choice

of the key player (the one with highest inter-centrality measure) go beyond the differences in inter-

centrality measures between this player and any other criminal in the network.
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3.3 From individual key player to key group

So far, we have characterized optimal single player removal from the network to reduce crime, a

key player. We now characterize optimal group removal from the network, a key group.

The general planner’s problem Given a group size 1 ≤ s ≤ n−1, the planner’s objective is
to generate the highest possible reduction in aggregate crime level by picking a subset of criminals

of exactly this size.

Let N = {1, ..., n}. Formally, the planner’s problem is the following:

max{e∗(g, φ)− e∗(g−S , φ) | S ⊂ N, |S| = s}.
Of course, this is equivalent to minimizing the aggregate crime in the network g−S that results
from the removal of a set S of criminals. Given that aggregate crime increases with the aggregate

network Bonacich centrality, the planner’s problem becomes:

min{β(g−S , φ) | S ⊂ N, |S| = s}. (9)

When s = 1, the planner’s problem (9) is equivalent to maximizing θi(g), i ∈ N . Indeed, β(g−i, φ) =
β(g, φ) − θi(g). Suppose now that s = 2. Reiterating this formula, it is plain to check that (9) is

equivalent to solving:28

max{θi1(g) + θi2(g
−i1) + θi3(g

−i1−i2) + ...+ θis(g
−i1−...−is−1) | {i1, ..., is} ⊆ N}, (10)

where i1, ..., is are different two by two. In words, the key group maximizes the sum of the individual

inter-centrality measures of its members across the networks obtained through sequential removal

of these members.29 The idea behind this expression is the following. We must eliminate a set of

players S = {i1, ..., is} in order to minimize the total number of (weighted) walks in the network,
β(g−S , φ). After deleting player i1, the resulting number of paths is β(g, φ) − θi1(g). Now, the

expression θi2(g
−i1) counts the number of walks that touch i2 once player i1 has been eliminated,

so that we are not counting the same path twice. Thus, β(g, φ)−θi1(g)−θi2(g−i1) is the remaining
set of walks after eliminating players i1 and i2, keeping in mind that we only want to count each

walk once. By the previous argument, also note that the remaining set of weighted paths is the

same if we change the order of deletion of these two players, that is:

β(g, φ)− θi1(g)− θi2(g
−i1) = β(g, φ)− θi2(g)− θi1(g

−i2)

Extending this argument to the rest of the players in S, we obtain the expression for the number

of paths after deleting all players in S:

β(g−S , φ) = β(g, φ)− θi1(g)− θi2(g
−i1)− θi3(g

−i1−i2)− ...− θis(g
−i1−...−is−1)

so that, minimizing β(g−S, φ) is equivalent to (10).
28As shown in the proof of Proposition 7. A heuristic argument follows after the proposition is stated.
29Note that this sum is independent of the order in which nodes are removed.
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Group inter-centrality In what follows, we provide a direct characterization of the key

group on the original network g that dispends with computing the nested sequence of networks

resulting from sequential node removal. The key group characterization relies on a generalization

of the inter-centrality network measure for groups. Given that individual inter-centrality captures

both direct and indirect Bonacich-centrality measures, the generalization to a group of the inter-

centrality measure needs to account for all the cross-countributions that arise both within and

outside the group.

Consider some subset S ⊂ N of criminals, S 6= ∅. Denote by βi,S(g, φ) the contribution of this
subset S to the centrality of any individual player i /∈ S outside this set in the network g. This is

equal to:

βi,S(g, φ) =
X
k≥|S|

φkβki,S(g),

where βki,S(g) counts the number of paths in g of length k starting from i and that go through all

elements in S at least once. Note that this quantity is well-defined for low enough values of φ. We

define βki,S(g) recursively as follows:

βki,{j}(g) = βkij(g), for all i 6= j,

and

βki,S(g) =
X
j∈S

kX
p=1

g
[p]
ij β

k−p
j,S\{j}(g), for all |S| > 1 and i /∈ S.

By convention, we set βi,∅(g, φ) = βi(g, φ).

Consider now the following expression:

ξS(g, φ) =
X
i∈S

βi,S\{i}(g, φ) +
X
i/∈S

βi,S(g, φ).

This formula counts the number of weighted walks in the network g that go through all the elements

in S at least once. The expression adds up the walks stemming from nodes outside the set and those

starting from nodes inside the set. In particular, specializing to singletons, we get ξi(g, φ) = θi(g, φ),

that is, the individual inter-centrality measure of player i.

We now define the inter-centrality of a set S of players.

Definition 2 For all S ⊂ N , S 6= ∅, let θS(g, φ) =
P

Ω⊆S(−1)|Ω|+1ξΩ(g, φ).

Note that, when S is a singleton, this definition coincides with the individual inter-centrality

measure θi(g, φ). More generally, when |S| > 1, the intercentrality of S is equal to:

θS(g, φ) = θi1(g) + θi2(g
−i1) + θi3(g

−i1−i2) + ...+ θis(g
−i1−...−is−1),

for any given labelling {i1, ..., is} of elements in the subset S.
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A geometric characterization of the key group The following result now characterizes

key groups of a given size s.

Proposition 7 Let 1 ≤ s ≤ n−1. A group S∗ of size s is the key group that solves (9) if and only
if S∗ is a group with the highest group inter-centrality in g, that is, S∗ ∈ argmax{θS(g, φ) | S ⊂
N, |S| = s}.

This proposition provides a geometric characterization of the solution to (9) that generalizes

the geometric characterization of the key player (see Proposition 4) to key groups of arbitrary size.

We now illustrate this result with an example.

Consider the network with eleven players in Figure 2, and consider the case where the key group

size is s = 2. The next table shows the values of θS(g, φ) for each possible subset S of size two when

φ = 0.2. For the sake of simplicity, subsets that yield the same network when they are removed are

considered as equivalent:
Removed Group S θS(g, φ)

{2, 7}∗ 67.22

{2, 8} 64.01

{3, 8} 59.39

{1, 2} 56.66

{2, 6} 50.41

{2, 3} 46.96

{3, 4} 42.15

The key group is {2, 7}, that is, a set of two maximally connected nodes (with five direct contacts
each), both connected to the central player 1, and each at a different side of this central player.

This subset solves the following optimization problem:

max
i,j

θ{i,j}(g) = max
i,j
[θi(g) + θj(g

−i)]

Suppose that we were to approximate the solution to this optimization problem with some greedy

heuristics that pick up sequentially the player that maximizes the individual inter-centrality at each

step. Formally, let

i∗1 = argmax
i∈N

θi(g)

and then, at each step t ≤ s, choose the player i∗t with maximum inter-centrality in the network

where the previous players have been deleted, that is,

i∗t ∈ arg max
i∈N\{i∗1,...,i∗t−1}

θi(g
−{i∗1,...,i∗t−1})

breaking possible ties arbitrarily. This greedy algorithm first eliminates player 1, and then any

other remaining player. Thus, the algorithm returns a group which is far from being optimal: there
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are many other groups that are better candidates than {1, 2}. Indeed, in this example, player 1
is not only very central, but also its contribution to the inter-centrality of others is large. Hence,

being greedy and eliminating it at the first stage reduces the chance of finding highly central players

at further stages. And, in fact, player 1 is not part of the key group when φ = 0.2.

A straightforward generalization of Lemma 1 establishes that the key group S∗ solves argmin{n(g−S) |
|S| = s} when φ is small enough. That is, for low values of φ, the key group minimizes the

total number of remaining links (when the key group has been removed). Note, here, that

n(g−{2,7}) ≤ n(g−{i,j}), for all i, j, and this alternative characterization thus applies for φ = 0.2.30

4 Joining crime networks

4.1 Equilibrium networks

The endogenous crime network game So far, we have assumed that the crime network

was given. In some cases, though, criminals may have opportunities outside the crime network. For

instance, petty delinquents may consider to enter the labor market and give up criminal activities.

Here, we expand the model and endogeneize the crime network by allowing criminals to take a

binary decision on whether to stay in the crime network or to drop out of it.31 Formally, we

consider the following two-stage game.

Fix an initial network g connecting agents.

In the first stage, each agent i = 1, ..., n decides to enter the labor market or to become a

criminal. This is a simple binary decision. These decisions are simultaneous. Let ci ∈ {0, 1} denote
i’s decision, where ci = 1 (resp. ci = 0) stands for becoming a criminal (resp. entering the labor

market), and denote by c = (c1, ..., cn) the corresponding population binary decision profile. We

assume that agents entering the labor market earn a fixed wage w > 0. The payoff for criminals is

determined in the second stage of the game.

In the second stage, criminals in C(c) = {i ∈ {1, ..., n} | ci = 1} decide their crime effort level
ei(c) > 0 that depends on the first-stage outcome c. Given a crime effort profile e(c) = [ei(c)]i∈C(c),
the individual expected crime gains are equal to:

ui(e(c), g) = yi(e(c))− pi(e(c), g)f

Equilibrium networks Let c = (c1, ..., cn) ∈ {0, 1}n be a population binary decision profile,
and C(c) the corresponding set of active criminals, with cardinality c(c). Assume that C(c) 6= ∅.
30Recall that, for the case of a single player removal, this alternative characterization of the key player (namely,

minimizing the total number of remaining links) applies when φ = 0.1 but not anymore when φ = 0.2.
31See Antoni Calvó-Armengol and Matthew O. Jackson (2004) for a similar endogenous game of network formation

in the context of the labor market, where the binary decision for agents is to enter the labor market network or to

drop out.
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The network that connects active criminals is determined by the collection of individual drop in

decisions c. We denote this network by g(c). This is the network induced by the original network

g on the set of active criminals C(c). Two criminals i, j ∈ C(c) are directly linked in g(c) if and

only if a direct link between them pre-exists in g. Formally, gij(c) = gijcicj .

We denote by G(c) = [gij(c)]i,j∈C(c) the reduced adjacency matrix corresponding to this net-
work. By definition, this is a c(c)−dimensional matrix.32

Denote by I(c) the identity matrix of size c(c), by 1(c) the c(c)−dimensional column vector of
ones, and by J(c) = 1(c) · 1T (c) the c(c)−dimensional square matrix of ones. From Proposition

1, the Nash equilibrium e∗(c) of the second-stage game following the first-stage decision c is the
unique solution to the following matrix equation:

[J(c) + I(c)−φG(c)] · e(c) =1− π

γ
1(c)

Following Proposition 3, this unique Nash equilibrium is given by:33

e∗(c) =
1− π

γ

1

1 + β(g(c),φ)
β(g(c),φ). (11)

We now provide a general characterization of the subgame perfect equilibria of the full game.

We first introduce some useful notations.

For all c, c0 ∈ {0, 1}n, the join of c and c0, denoted by c ∨ c0, is the binary population profile
defined by (c ∨ c0)i = max{ci, c0i}, for all i = 1, ..., n. In words, c ∨ c0 “adds up” the criminal
decisions in c and c0. In particular, C(c ∨ c0) = C(c) ∪ C(c0).

Let ν1, ....,νn be the canonical base of {0, 1}n, where the coordinates of νi are all zeros except
a one in the ith position. For instance, ν1 = (1, 0, ..., 0)T , ν2 = (0, 1, 0, ..., 0)T and νn = (0, ...0, 1)T .

Then, C(c ∨ νi) = C(c)∪ {i}. In words, the set of criminals in c ∨ νi is deduced from that in c by

adding agent i to the active crime pool.

At the subgame perfect equilibria (c∗, e∗(·)) of the full game, the payoffs to workers are equal
to w while the payoffs accruing to criminals are given by the Nash equilibrium strategies of the

second-stage game as in (11). It is readily checked that the Nash equilibrium payoffs for active

criminals at the second-stage game are equal to the square of their crime efforts, that is,34

ui(e
∗(c∗), g) = γe∗2i (c), for all i ∈ C(c).

32The adjacency matrix [gij(c)]1≤i,j≤n is a square matrix of size n. G(c) is obtained from this matrix by eliminating

n− c(c) rows and columns of 0s. It is thus of reduced size c(c).
33Whenever φ is smaller or equal than the reciprocal of the highest eigenvalue of G(c).
34 Indeed, we deduce from ∂ui(e

∗(c∗))/∂ei = 0 that γe∗i (c) = 1− π − γ j∈C(c)[1− ρgij(c)]e
∗
j (c), for all i ∈ C(c).

After some manipulation,

ui(e
∗(c∗), g) = e∗i (c)[1− π − γ

j∈C(c)
[1− ρgij(c)]e

∗
j (c)] = γe∗2i (c).
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At the equilibria of the full game, no unilateral deviation is profitable, that is, no worker gains

by becoming a criminal, nor does any criminal gain by becoming a worker.

Proposition 8 There exists a unique 0 < eφ ≤ 1 such that, for all 0 ≤ φ < eφ, the binary decision
profile c∗∈{0, 1}n, c∗ 6= 0 is part of a subgame perfect equilibrium of the full game if and only if:35

βi(g(c
∗), φ)

1 + β(g(c∗), φ)
≥
√
γw

1− π
, for all i ∈ C(c)

βi(g(c
∗∨νi), φ)

1 + β(g(c∗∨νi), φ) <

√
γw

1− π
, for all i /∈ C(c)

The endogenous crime networks are thus characterized by a set of inequalities.

Existence of multiple equilibrium crime pools is illustrated in Figure 3 that draws the corre-

spondence between w and the total crime e∗ for all corresponding subgame perfect equilibria for
the network in Figure 2 when φ = 0.2. Note that, as the wage rate w increases, the set of active

criminals tends to shrink, producing a decreasing trend in the total crime effort. For instance,

when w = 0.004, there are three possible equilibria. The first is “large” and consists of the whole

network with eleven players, with a resulting total crime equal to 0.7914. The second and the third

are two equivalent “small” equilibria where either the fully connected five players on the left side,

or the ones on the right side, are the active criminals, with a total amount of crime equal to 0.7785

in either cases.

Figure 3: Equilibrium correspondence of the two-stage game when φ = 0.2.

35Note that this characterization implies that, when a player is indifferent between becoming a criminal or a worker,

we assume that he becomes a criminal. This is without loss of generality.
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4.2 Finding the key player

Given that this game usually displays multiple subgame perfect equilibria in the endogenous crime

network game, we define e∗(g, w, φ) to be the maximum aggregate equilibrium crime level when the
initial population network is g, the labor market wage is w and the deterrence effort is φ. That is,

this is equal to the total amount of crime in the worst case scenario of maximum deliquency.

Consider some binary decision profile c. Let i be an active criminal, that is ci = 1. Suppose

that criminal i switches his current decision to ci = 0, that is, criminal i drops out from the crime

pool and enters the labor market instead. The binary decision profile then becomes c− νi, and the
new set of active criminals is C(c− νi) = C(c)\{i}. The drop out of criminal i from the crime pool
also alters the network structure connecting active criminals, as any existing direct link between i

and any other criminal in C(c) is removed. The new network connecting active criminals is then

g(c)−i = g(c− νi), and the aggregate crime level becomes:

e∗(c− νi) = 1− π

γ

β(g(c− νi), φ)
1 + β(g(c− νi), φ)

The key player problem acquires a different shape in the setting with endogenous formation

of crime pools. Initially, the planner must choose a player to remove from the network. Then,

players play the two-stage crime game. First, they decide whether to enter the crime pool or not.

Second, criminals choose how much effort to exert. In this context, there is an added difficulty to

the planner’s decision. The removal of a player from the network affects the rest of the players’

decisions to become active criminals. And this fact should be taken into account by the planner

in order to attain an equilibrium with minimum total crime. The right choice of the key player

should be based upon the resulting crime pool that will result from that decision, that is, what the

remaining players will decide regarding their criminal activities.

We show, with the help of an example, that there is no trivial geometric recipe for the key

player problem in this case.

Consider again the network in Figure 2 with eleven players. Recall that, when φ = 0.2 and

the network of criminals is exogenously fixed (or, equivalently, the outside option is w = 0), the

key player was the player acting as a bridge, player 1. If we consider endogenous crime network

formation in the two-stage game, the results may differ from the previous case. For low wages, player

1 is also the key player and the resulting equilibrium network is the whole remaining network, that

is, an equilibrium with ten criminals split into two fully connected cliques of five criminals. When

w is higher, though, type−2 criminals become the key player36 and the equilibrium network now

encompasses six different players. It consists of a clique of five fully intraconnected players together

with player 1.

These results are summarized in the following table, that gives, for two different values of w,

the key player, the highest aggregate crime that results from eliminating this key player, and the
36 In fact, any player except player 1 is the key player for w = 0.003.
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equilibrium crime network.

w = 0.001 w = 0.003

e∗(g−1, w, φ) 0.7843 0.7843

e∗(g−2, w, φ) 0.7847 0.7785

Key Player 1 2

Final Crime pool
rr r rrH­­³³©JJPPA¢r r rrr¢A³³PPH­­JJ© r©Hr r rrr¢A³³PPH­­JJ©

Intuitively, when outside opportunities are high enough, all players from the same side of the

player being removed do not have enough incentives to enter the crime pool at the first stage of

the game. Hence, we do not get a “large” equilibrium with many players, and this constitutes an

advantage for the planner, that will choose to delete node 2. This example implicitly explains how

one policy (providing a higher w) increases the effectiveness of another policy (choosing the key

player) in order to reduce crime. These policies are complementary from the point of view of their

effects on total crime, although we are aware that they may be substitutes from the natural point

of view of a budget restricted planner who has to implement costly policies.

5 Concluding discussion

Although we focus in this paper on crime outcomes, our analysis sheds light on a more general

non-cooperative exploration of the network structure of local externalities or peer effects, and on

the optimal design of network-based policies in this context. Two examples where our methodology

could be applied are models of local public goods, as in Yann Bramoullé and Rachel Kranton (2004),

and bilateral firm collaborations in research and development activities, as in Sanjeev Goyal and

José-Luis Moraga (2001). We now sketch the general features of our methodology.

Consider a finite population game on a network where players take their decisions on one segment

of the real line. Suppose that individual best responses are linear in players’ actions, and can be

additively decomposed into a global and a local component. The global component is common to

all players’ best responses. The local component varies across players with their available set of

contacts, and reflects the network embeddedness of each player.

Suppose further that individual decisions are strategic substitutes. Here, strategic substitutabil-

ity is equivalent to a negative net effect of the marginal global and local components of the best

response. In particular, if the partial derivatives of both effects are negative, strategic substitutabil-

ity follows trivially. If these partial derivatives have, instead, different signs, as in the crime decision

game analyzed here, strategic substitutability only holds when the relative values of the global and

the local marginal effects are suitably ranked.

For this type of games, it is a straightforward extension of Propositions 1 and 3 to establish

(generic) uniqueness of an interior Nash equilibrium characterized by a Bonacich-type index. In

29



words, for a whole class of non-cooperative games with local externalities or peer effects, and

for arbitrary network structures for these local externalities or peer effects, equilibrium outcomes

boil down to a closed-form network centrality measure. This is true for a rich variety of network

structures, including directed networks, for which gij = gji does not necessarily hold, and weighted

networks with arbitrary link intensities, for which gij can take any value on the real line.37 These

results hold under a simple condition relating the payoff structure to the network topology, namely,

the ratio of the global versus local marginal effects be lower (in absolute value) than the inverse of

the highest eigenvalue of the network adjacency matrix.

The equilibrium analysis described above opens the door to a more general policy analysis of the

key player problem. Consider a population of n+1 agents indexed by i = 0, 1, ..., n and connected

by a network g. Suppose that the planner holds the outcome of some targeted player to some fixed

exogenous value s ∈ IR. The case s > 0 (resp. s < 0) can be interpreted as a subsidy (resp. tax),

while s = 0 corresponds to the key player problem solved above. Suppose, without loss of generality,

that the targeted player is i = 0. The remaining players i = 1, ..., n play an n−player game on
the network g−0. We denote by e∗−0(g, s) the Nash equilibrium of this game, and by e∗−0(g, s) the
corresponding aggregate outcome. We keep the same notations for the payoff function than in the

crime decision game.

Given an n−dimensional vector v = (v1, ..., vn), define the weighted Bonacich centrality measure
on a network g with weights v1, ..., vn by βv(g, φ) = [I−φG]−1·v. The standard Bonacich centrality
measure corresponds to uniform unitary weights 1. Denote by g0 the n−dimensional column vector
with coordinates g01, ..., g0n that keeps track of player 0’s direct contacts in g, and let τ = (1−π)/γ.
Then, the total population output at equilibrium is s+ e∗−0(g, s), where:

e∗−0(g, s) =
1

1 + β(g−0, φ)
[(τ − s)β(g−0, φ) + φsβg0(g

−0, φ)].

Given an objective function related to the total population output s + e∗−0(g, s), and a set of
constraints, the planner’s problem is to fix optimally the value of s of the subsidy and the identity

i of the optimal target for this subsidy. Holding s constant, the choice of the optimal target is

a simple finite optimization problem. In particular, when s = 0, the solution to this problem is

i∗ ∈ argmax θi(g), that is, the player with the highest inter-centrality measure.
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Appendix

Proof of Proposition 1: First, note that ∂2ui(e)/∂e2i = −2γ < 0. Therefore, if an interior

equilibrium exists, it is given by the unique solution to:

∂ui(e)

∂ei
= 1− π − γei − γ

X
j

ej + πλ
X
j

gijej = 0.

This is an n−dimensional linear system that we can write in matrix form:

[J+ I−φG] · e =1− π

γ
1.

Define M (g, φ) = J+ I−φG, and denote by det[M (g, φ)] its determinant. We show that there

exists some finite set Z ∈ IR such that det[M (g, φ)] 6= 0, for all φ /∈ Z and for all g on {1, ..., n}.
Consider some network g. It is readily checked that det[M (g, φ)] is a polynomial in φ of degree

smaller than n.38 Therefore, det[M (g, φ)] has at most n different roots
neφ1 (g) , . . . , eφm (g)o,

m ≤ n, such that det[M(g, eφi (g))] = 0 for all 1 ≤ i ≤ m. Given that there are exactly 2
n(n−1)

2

different networks g on {1, ..., n}, the set of values Z of φ such that det[M (g, φ)] = 0 for some g is

finite, with |Z| ≤ n2
n(n−1)

2 .

Next, when π = 0, the unique solution to (3) is (n + 1)e∗i γ = 1. Suppose that γ ≥ λ. Then,

neγ = 1, implying that e∗i ∈ (0, e). By continuity, there exists 0 < ε(g) ≤ 1 such that the solutions
to this system of equations are non-negative for all π ∈ (0, ε(g)). Let gN such that gNij = 1, for all

i 6= j. Let π = min
©
ε(g) | g ⊆ gN

ª
. Let φ = πλ/γ. Then, 0 < φ ≤ 1, and for all 0 ≤ φ < φ, the

solutions to (3) are all non-negative for all g on N .

Proof of Proposition 2. Given that I,J,G are all symmetric matrices,M(g, φ) = I+J−φG
is also symmetric. Denote by e∗(g) the unique solution to (3), that is,M(g, φ) · e∗(g) =(1−π)/γ1.

Suppose that g and g0 are adjacent networks with g ⊂ g0. Without loss of generality, let

g0 = g ∪ {12}. Then,

M(g, φ) =M(g0, φ)+φ



0 1 0 . . . 0

1 0 0 . . . 0

0 0 0 . . . 0
...
...
...
. . .

...

0 0 0 . . . 0


.

Premultiplying (3) by e∗T (g0) and noting that e∗T (g0) ·M(g0) =(1− π)/γ1T , we have:

e∗T (g0) ·M(g) · e∗(g) = (1− π)/γe∗T (g0) · 1
= (1− π)/γ1T ·e∗(g)+φ[e∗2(g0)e∗1(g) + e∗1(g

0)e∗2(g)]
38 Indeed, det[M (ρ, g)] is a polynomial of highest degree in ρ when gij = 1 for all i 6= j, in which case det[M (ρ, g)] =

(1 + ρ)n + n (1− ρ) (1 + ρ)n−1, which is a polynomial in ρ of degree exactly n.
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Hence, the total crime level under g0, is higher than the total crime level under g, that is,

e∗T (g0) · 1 > 1T · e∗(g)

when g and g0 are adjacent networks. The inequality extends to any two nested networks by

iterative application of the inequality along any chain of adjacent networks between them.

Proof of Proposition 3. Given a crime effort profile e, denote by e = 1T · e the total crime
effort exerted by criminals. Noting that J = 1 · 1T , (3) can be written as:

[I−φG] · e =(1− π

γ
− e)1.

Suppose now that I−φG is invertible. Then, we get:

e = (
1− π

γ
− e)[I−φG]−1 · 1 = (1− π

γ
− e)β(g, φ).

Premultiplying by 1T and manipulating terms, we get:

e =
1− π

γ

β(g, φ)

1 + β(g, φ)
.

Plugging back into the first equality, we deduce the result.

Now, when φ is smaller or equal than the reciprocal of the largest eigenvalue of the adjacency

matrix G of the network g, I−φG is invertible and can be written as a Taylor expansion. Let

n(g) =
P

i,j gij denote the number of links in g (counted twice), δ(g) = min
nPn

j=1 gij | i = 1, ..., n
o

be the minimum degree or number of direct links for the nodes of g, and µ0(g) be the largest

eigenvalue of G. Then, we have (Kunfu Fang et al. 2001):

µ0(g) ≤
1

2
[δ(g)− 1 +

p
(δ(g) + 1)2 + 4 [n(g)− nδ(g)]],

and this upper bound, denoted by µ(g), is sharp as equality is obtained, e.g., when either g is a

regular network, that is,
Pn

j=1 gij = δ(g), for all i, or when g is a network where degrees take on

only two possible values. Then, β(g, φ) is well-defined whenever 0 ≤ φ ≤ 1/µ(g).
Proof of Proposition 4. We compute β(g−i, φ). For all j 6= i, (8) implies that:

βj(g
−i, φ) = βj(g, φ)− βji(g, φ).

Therefore,

β(g−i, φ) =
X
j 6=i

βj(g
−i, φ) =

X
j 6=i

βj(g, φ)−
X
j 6=i

βji(g, φ)

=
X
j 6=i

βj(g, φ) + βi(g, φ)− θi(g, φ) = β(g, φ)− θi(g, φ),
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and the result follows.

Proof of Lemma 1. The Bonacich’s centrality measure vector is defined as:

ψ(g, α, β) = α(I− βG)−1G · 1

Given the relation between ψ(g, α, β) and our variation β(g, φ):

β(g, φ) = 1+ φψ(g, 1, φ)

it is obvious that the total centrality β(g, φ) is given by

β(g, φ) = n+ φ
nX
i=1

ψi(g, 1, φ)

Given the fact, that ψi(g, 1, φ)→ ni(g) as φ→ 0, the result follows.

Proof of Proposition 5. By definition ofM(g, φ), we have [I−φG] ·M(g, φ)· νi = νi, where:

M(g, φ) · νi =



m1i(g, φ)
...

mii(g, φ)
...

mni(g, φ)


.

The i’s row of the previous vectorial equality leads to:

mii(g, φ) = 1 + φ
X
j

gijmij(g, φ). (12)

Throughout we use the symmetry of M(g, φ), inherited from that of G.

For all k 6= i, define ski (g, φ) =
P

j gkjmij(g, φ). Given that mij(g, φ) counts the number of

weighted paths in g that start from i and that end at j, and given that gkj = 1 if and only if k and

j are directly linked to one another, ski (g, φ) can be interpreted as the number of weighted paths

in g that start from i and that end up in the direct neighborhood of player k. Similarly, defineeski (g−k, φ) = Pj gkjmij(g
−k, φ). This is the number of weighted paths in g that start from i and

that end up in the direct neighborhood of player k but that do not include k. In particular, it is

clear that:

mij(g, φ) = mij(g
−k, φ) + φeski (g−k, φ)mkj(g, φ).

Summing over the neighborhood of player k leads to:X
j

gjkmij(g
−k, φ) =

X
j

gjkmij(g, φ)− φeski (g−k, φ)X
j

gjkmkj(g, φ),
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equivalent to:

eski (g−k, φ) = ski (g, φ)− φeski (g−k, φ)skk(g, φ)⇔ eski (g−k, φ) = ski (g, φ)

1 + φskk(g, φ)
.

But (12) implies that 1 + φskk(g, φ) = mkk(g, φ). Therefore,

eski (g−k, φ) = ski (g, φ)

mkk(g, φ)
.

Plugging back into the expression for mij(g, φ) above gives:

mij(g
−k, φ) = mij(g, φ)− φ

mkj(g, φ)

mkk(g, φ)
ski (g, φ)

= mij(g, φ)− φ
mkj(g, φ)

mkk(g, φ)

X
j

gkjmij(g, φ).

Now, if we sum over all j we obtain:

βi(g
−k, φ) = βi(g, φ)− φ

βk(g, φ)

mkk(g, φ)

X
j

gkjmij(g, φ),

and summing again over all i 6= k we get:

β(g−k, φ) = β(g, φ)− βk(g, φ)− φ
βk(g, φ)

mkk(g, φ)

X
j

gkj
X
i6=k

mij(g, φ).

But

φ
X
j

gkj
X
i6=k

mij(g, φ) = φ
X
j

gkj(βj(g, φ)−mkj(g, φ))

= φ
X
j

gkjβj(g, φ)− φ
X
j

gkjmkj(g, φ).

From [I− φG] · β = 1 we conclude that φPj gkjβj(g, φ) = 1 + βk(g, φ). Then, using (12) we get:

φ
X
j

gkj
X
i6=k

mij(g, φ) = βk(g, φ)−mkk(g, φ).

Plugging this back into the expression for β(g−k, φ) gives:

β(g−k, φ) = β(g, φ)− βk(g, φ)−
βk(g, φ)

mkk(g, φ)
(βk(g, φ)−mkk(g, φ))

= β(g, φ)− βk(g, φ)
2

mkk(g, φ)
.

Now, recall from the previous proof that the intercentrality index of player k is given by θk(g, φ) =

β(g, φ)− β(g−k, φ), and the result follows.

37



Proof of Proposition 6. Simple algebra leads to:

ηi(g, φ) =

θi(g,φ)
1+β(g,φ)−θi(g,φ)

1
n

Pn
j=1

θj(g,φ)
1+β(g,φ)−θj(g,φ)

, for all i = 1, ..., n.

By definition, θi∗(g, φ) ≥ θi(g, φ), for all i = 1, ..., n. This implies that:

1 + β(g, φ)− θi∗(g, φ)

1 + β(g, φ)− θj(g, φ)
≤ 1, for all j = 1, ..., n,

and, thus ηi∗(g, φ) ≥ θi∗(g, φ)/θ(g, θ). Noting that θi∗(g, φ) ≥ θ(g, θ) + σθ(g, φ), we can conclude.

Proof of Proposition 7. We first establish two useful Lemmata.

Lemma 2 Suppose that n ≥ 2. For all S ⊂ N and for all i, j /∈ S, βj,S(g
−i, φ) = βj,S(g, φ) −

βj,S∪{i}(g, φ).

Proof. For all i ∈ N and c ≥ 1, let:

P c
i (g) = {{i0, ..., ic} | i0 = i, ip+1 ∈ N, gipip+1 = 1,∀0 ≤ p ≤ c− 1}.

This is the set of paths of length c in g that start at i. We denote by ( a generic element of P c
i (g).

This is an ordered list of (at least two) nodes in g where each node (except the first one) is directly

linked to its predecessor. For all S ⊂ N , S 6= ∅, i /∈ S and k ≥ |S|, where |S| denotes the cardinality
of S, we have:

βki,S(g) =
¯̄̄
{( ∈ P k

i (g) | j ∈ S ⇒ j ∈ (}
¯̄̄
.

Let i, j /∈ S and k ≥ |S|. We have, P k
j (g

−i) = P k
j (g)\{( ∈ P k

j (g) | i ∈ (}. Therefore,

βkj,S(g
−i) = βkj,S(g)−

¯̄̄
{( ∈ P k

j (g) | i ∈ (, j0 ∈ S ⇒ j0 ∈ (}
¯̄̄
.

But,

{( ∈ P k
j (g) | i ∈ (, j0 ∈ S ⇒ j0 ∈ (} = {( ∈ P k

j (g) | j0 ∈ S ∪ {i}⇒ j0 ∈ (},
implying that βkj,S(g

−i) = βkj,S(g)− βkj,S∪{i}(g). The result follows. Q .E .D.

Lemma 3 ξS(g
−i, φ) = ξS(g, φ)− ξS∪{i}(g, φ), for all S ⊂ N and all i /∈ S.

Proof. Let S ⊂ N and i /∈ S. By definition,

ξS∪{i}(g) =
X

j∈S∪{i}
βj,S∪{i}\{j}(g, φ) +

X
j /∈S∪{i}

βj,S∪{i}(g, φ).
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By the Lemma above, this can be written as:

ξS∪{i}(g) =
X
j∈S
[βj,S\{j}(g, φ)− βj,S\{j}(g

−i, φ)] + βi,S(g, φ)

+
X
j /∈S
[βj,S(g, φ)− βj,S(g

−i, φ)]− βi,S∪{i}(g, φ)

= ξS(g)− ξS(g
−i) + βi,S(g, φ)− βi,S∪{i}(g, φ).

But, by definition, βi,S(g, φ) = βi,S∪{i}(g, φ). The result follows Q .E .D.

To establish the proposition, we show that

β(g−S, φ) = β(g, φ)− θS(g, φ) = β(g, φ)−
X
Ω⊆S

(−1)|Ω|+1ξΩ(g, φ).

We establish the result by induction on the size of S. The case where |S| = 1 is clear. Let S ⊂ N

such that |S| ≥ 2, and suppose that the result is true for all S0 such that |S0| < |S|.
Let i ∈ S. Note that S\{i} 6= ∅. We have

β(g−S) = β(g−S\{i}−i) = β(g−S\{i})− θi(g
−S\{i}).

By the induction hypothesis, this becomes:

β(g−S) = β(g, φ)−
X

Ω⊆S\{i}
(−1)|Ω|+1ξΩ(g, φ)− θi(g

−S\{i}). (13)

We now compute θi(g−S\{i}). Recall that, by definition, θi(g−S\{i}) = ξi(g
−S\{i}). Consider one

ordered labelling of elements in S, that is, S = {i1, ..., is}, where i1 = i. The previous Lemma

implies that:

ξi(g
−S\{i}) = ξi(g

−S\{i,i2})− ξ{i,i2}(g
−S\{i,i2})

= ξi(g
−S\{i,i2,i3})− ξ{i,i3}(g

−S\{i,i2,i3})− ξ{i,i2}(g
−S\{i,i2})

= ξi(g
−S\{i,i2,i3,i4})− ξ{i,i4}(g

−S\{i,i2,i3,i4})− ξ{i,i3}(g
−S\{i,i2,i3})− ξ{i,i2}(g

−S\{i,i2})

= ...

= ξi(g)−
sX

k=2

ξ{i,ik}(g
−S\{i,i2...,ik}).

Reiterating this process for ξ{i,ik}(g
−S\{i,i2...,ik}), we get, for all 2 ≤ k ≤ s− 1:

ξ{i,ik}(g
−S\{i,i2...,ik}) = ξ{i,ik}(g)−

sX
l=k+1

ξ{i,ik,il}(g
−S\{i,i2...,il}),

and, more generally, for all 2 ≤ k1 < k2 < ... < kq ≤ s− 1, we have:

ξ{i,ik1 ,ik2 ,...,ikq}(g
−S\{i,i2...,ikq}) = ξ{i,ik1 ,ik2 ,...,ikq}(g)−

sX
l=kq+1

ξ{i,ik1 ,...,ikq ,il}(g
−S\{i,i2...,il}).
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Gathering all expressions together gives:

ξi(g
−S\{i}) = ξi(g)−

X
j∈S\{i}

ξ{i,j}(g) +
X

{j,k}⊆S\{i}
ξ{i,j,k}(g)− ...+ (−1)|S|ξS(g)

=
X

Ω⊆S\{i}
(−1)|Ω|ξΩ∪{i}(g, φ).

Plugging back into (13), we finally obtain:

β(g−S) = β(g, φ)−
X

Ω⊆S\{i}
(−1)|Ω|+1ξΩ(g, φ)−

X
Ω⊆S\{i}

(−1)|Ω|ξΩ∪{i}(g, φ)

= β(g, φ)−
X
Ω⊆S

(−1)|Ω|+1ξΩ(g, φ),

which concludes the proof.

Proof of Proposition 8. From Proposition 1 and (11) with eφ = min{bφ(c) | c ∈ {0, 1}n, c 6= 0}.
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