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Abstract

This paper provides a strategic approach to the model of partition function form games
that is used to analyze coalitional externalities. Two solution concepts are implemented:
the Shapley value defined by Pham Do and Norde (2007) and the consensus value by
Ju (2007). The building block of the approach is the bidding mechanism introduced in
Pérez-Castrillo and Wettstein (2001) and generalized in Ju and Wettstein (2006). Hence,
it presents a consistent non-cooperative benchmark to study and compare cooperative
solution concepts in various situations.

JEL classification codes: C71; C72; D62.
Keywords: externality; implementation; bidding mechanism; Shapley value; consensus
value; partition function form game.



1 Introduction

The economic environment featured by coalitional externalities has been effectively mod-

elled by the game theoretic framework of partition function form games proposed by Thrall

and Lucas (1963). From the normative point of view, values for such games are studied by,

among others, Myerson (1977), Bolger (1989), Feldman (1994), Maskin (2003), de Clippel

and Serrano (2005), Macho-Stadler, et. al. (2007), Pham Do and Norde (2007), and Ju

(2007). Due to the more complicated structure of partition function form games compared

to the standard TU (transferable utility) games, it is generally conceived that to establish

the non-cooperative foundations1 for the associated solution concepts is not straightfor-

ward. Consequently, only few work, e.g. Maskin (2003) and Macho-Stadler, et. al. (2006),

has addressed this issue.

This paper aims to make further investigation in the direction by implementing the

values proposed by Pham Do and Norde (2007) and Ju (2007). The value proposed by

Pham Do and Norde (2007) is a direct extension of the Shapley value (Shapley (1953)) to

partition function form games. Although this solution concept de facto ignores externalities

by construction, it does possess important properties which reflect a certain standpoint over

externalities. For more discussion of this value, we refer to Fujinaka (2004) and de Clippel

and Serrano (2005). Moreover, here we like to note an interesting point: contrary to the

concept’s definition that ignores externalities, the underlying non-cooperative mechanism

introduced in this paper suggests that it does well consider externalities.

Ju (2007) introduced the consensus value for partition function form games based on

a similar idea to define the value (cf. Ju, et. al. (2007)) for TU games. The underlying

procedure to construct the value and the axiomatic characterizations show that it well

balances the tradeoff between coalitional effects and externality effects in the context.

Another desirable feature of the consensus value is that it satisfies individual rationality

under a superadditivity condition, whereas the other values do not satisfy.

In this paper, by extending the generalized bidding approach proposed by Ju and

Wettstein (2006) to partition function form games, we obtain mechanisms to implement

the values proposed by Pham Do and Norde (2007) and Ju (2007), which discovers the

interesting strategic features behind them. This approach does not use the structure of any

specific value to generate a specific mechanism tailored for it, but, through the bidding,

allows players to consider the payoffs and externalities to all possible sub-coalitions. The

emergence of a solution concept, not directly related to the mechanism, serves to highlight

1Here we use the phrase of non-cooperative “foundations” just for convenience. However, we agree with
Serrano (2005) that the normative properties of a solution concept fits better the notion of a “foundation”.
Serrano (2005) provides an excellent survey for the work of implementations of cooperative solutions.
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intriguing features of the solution concept. The consensus value, for example, emerges as

equilibrium outcome when players compete for the right to make a second offer rather than

arbitrarily assigning it to a particular player.

The findings obtained in the paper not only complements the results obtained in Maskin

(2003) and Macho-Stadler, et. al. (2006) but also suggests a unified approach to analyze

such games. The design of a single basic mechanism to implement several solution concepts

can help to make direct and critical comparison among them and highlight the underlying

different non-cooperative rationales. We further show that the approach can serve as a

toolkit for analyzing partition function form games, both in implementation itself and in

the direction of looking for new solution concepts.

The next section presents the environment and the values to be implemented. In section

3, we formally describe the bidding mechanisms and show that bearing the same bidding

stage in all mechanisms, different protocols of renegotiation result in completely different

value concepts as equilibrium outcomes. The final section provides concluding remarks.

2 Partition function form games and two values

We now formally present the model of partition function form games. Let N be the set of

players. A coalition S is a subset of N . A partition κ of N , a so-called coalition structure,

is a set of mutually disjoint coalitions, κ = {S1, ..., Sm}, so that their union is N . Let

P(N) denote the set of all partitions of N . For any coalition S ⊆ N , P(S) denotes the

set of all partitions of S. A typical element of P(S) is denoted by κS. Note that two

partitions will be considered equal if they differ only by the insertion or deletion of ∅. That

is, {{1, 2}, {3}} = {{1, 2}, {3}, ∅}. A pair (S, κ) consisting of a coalition S and a partition

κ ∈ P(N) to which S belongs is called an embedded coalition, and is nontrivial if S �= ∅.

Let E(N) denote the set of embedded coalitions, i.e.

E(N) =
{
(S, κ) ∈ 2N × P(N)|S ∈ κ

}
.

We denote by (N,w) a game in partition function form (or a partition function form

game) where w : E(N) −→ R is called a partition function that assigns a real value, w(S, κ),

to each embedded coalition (S, κ). The value w(S, κ) represents the payoff of coalition S,

given the coalition structure κ forms. By convention, w(∅, κ) = 0 for all κ ∈ P(N). The

set of partition function form games with player set N is denoted by PGN .

For a given partition κ = {S1, ..., Sm} and a partition function w, let w̄(S1, ..., Sm)

denote the m-vector (w(Si, κ))
m

i=1. For any S ⊆ N we denote by [S] the partition of S

which consists of singleton coalitions only, [S] = {{j}|j ∈ S}, and by {S} the partition of

S consisting of the coalition S only.
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A solution concept on PGN is a function f , which associates with each game (N,w) in

PGN a vector f(N,w) of individual payoffs in RN , i.e. f(N,w) = (fi(N,w))i∈N ∈ RN .

Given a partition function form game (N,w) and a subset S ⊆ N , we define the sub-

game (S,w|S) by assigning the value w|S(T, κS) ≡ w(T, κS ∪ [N\S]) for all (T, κS) ∈ E(S).

We first recall the Shapley value defined by Pham Do and Norde (2007). Let Π(N) be

the set of all bijections σ : {1, ..., |N |} −→ N . For a given σ ∈ Π(N) and k ∈ {1, ..., |N |},

we define the partition κσk associated with σ and k, by κσk = {S
σ
k} ∪ [N\S

σ
k ] where S

σ
k :=

{σ(1), ..., σ(k)}, and κσ0 = [N ]. So, in κ
σ
k the coalition Sσk has already formed, whereas all

other players still form singleton coalitions. For a game w ∈ PGN , define the marginal

vectormσ(w) as the vector in RN bymσ
σ(k)(w) = w(S

σ
k , κ

σ
k)−w(S

σ
k−1, κ

σ
k−1) for all σ ∈ Π(N)

and k ∈ {1, ..., |N |}. The Shapley value (Pham Do and Norde (2007)) φ(w) of the partition

function form game (N,w) is defined as the average, over the set Π(N) of all bijections, of

the marginal vectors, i.e.

φ(w) =
1

|N |!

∑

σ∈Π(N)

mσ(w).

It is the unique value satisfying efficiency, additivity, symmetry and the null player property.

Ju (2007) introduces the consensus value for partition function form games by taking a

bilateral perspective and considering both coalitional effects and externality effects when

sharing the gains of cooperation. The consensus value is the unique solution that satisfies

efficiency, complete symmetry, additivity and the quasi-null player property. It is shown

that the consensus value for partition function form games γ equals the average of the

Shapley value (Pham Do and Norde (2007)) and the expected stand-alone value. That is,

γ(w) = 1
2
φ(w) + 1

2
e(w), where e(w) denotes the expected stand-alone value of a partition

function form game w and defined by

ei(w) =
w(N, {N})

|N |

+
∑

S⊆N\{i}:S �=∅

|S|!(|N | − |S| − 1)!

|N |!
w({i}, {S} ∪ [N\(S ∪ {i})] ∪ {{i}})

−
∑

j∈N\{i}

∑

S⊆N\{i,j}

|S|!(|N | − |S| − 2)!

|N |!
w({j}, [N\(S ∪ {i})] ∪ {S ∪ {i}}).

for all i ∈ N . The expected stand-alone value takes players’ stand-alone situations as the

only decisive input to determine their final payoffs. Hence, it purely measures the exter-

nality effects in a partition function form game, compared to the coalitional effects by the

Shapley value. For more details of these values, we refer to Ju (2007).
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3 The bidding mechanisms

In this section, we construct bidding mechanisms that implement the above two coopera-

tive solutions for partition function form games. These mechanisms provide a convenient

benchmark to evaluate and compare these values from a non-cooperative perspective.

The basic bidding mechanism can be described informally as follows: At stage 1 the

players bid to choose a proposer. Each player bids by submitting an (n − 1)-tuple of

numbers (positive or negative), one number for each player (excluding herself). The player

for whom the net bid (the difference between the sum of bids made by the player and the

sum of bids the other players made to her, measuring the player’s willingness to become the

proposer) is the highest, is chosen as the proposer. Before moving to stage 2, the proposer

pays to each player the bid she made. As a reward to the chosen proposer for her effort

(represented by her net bid), she is granted with the right to make a scheme how to split

the total payoffs w(N, {N}) among all the players at the next stage.

At stage 2 the proposer offers a vector of payments to all other players in exchange

for joining her to form the grand coalition. The offer is accepted if all the other players

agree. In case of acceptance the grand coalition indeed forms and the proposer receives

w(N, {N}) out of which she pays out the offers made. In case of rejection the proposer

“waits” while all the other players go again through the same game.

What are the possible consequences following this rejection? In general, there can be

two different scenarios. One is that all the remaining players fail to reach any agreement

among themselves again. Then it is not difficult to imagine a natural outcome: the hope of

forming the grand coalition collapses and the initial proposer will be indeed left alone. The

other scenario might be that the remaining players do agree on a proposal within them,

which means that a coalition of all players apart from the initial proposer is formed. In

this case, the option of “re-entering” the game for the initial proposer becomes realistic.

Since now it is a two-party issue, given the potential benefit from cooperation, it is very

reasonable for them to come back to the table and negotiate again. The following stages

will be associated with this renegotiation. That is, in these additional stages the first

proposer (in fact, the rejected proposer) and the proposer chosen among the remaining

players (when an agreement is reached within themselves) bid and accept further offers

(note that these stages are also present in the game played by any remaining group of

players).

The first variant implementing the Shapley value has the first proposer (denoted for

simplicity by a) make an offer to the proposer chosen among the remaining players (denoted

for simplicity by b). The offer is for a to form the grand coalition rather than b. If the offer

is accepted the grand coalition forms, a receives w(N, {N}) and pays the offer, b receives
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the offer from a and pays all the commitments made by him, and all the other players

receive what they were promised. In this variant a retains the right to make offers.

The second variant implementing the expected stand-alone value has b make an offer

to a. If the offer is accepted the grand coalition forms, a receives the offer, b receives

w(N, {N}) and pays the offer to a as well as what he owes to the remaining players. In

this variant a loses the right to make offers.

In the third variant implementing the consensus value a and b bid for the right to make

an offer. If a wins the game proceeds as in the first variant and if b wins the second variant

goes into effect.

Below we formally describe the bidding mechanisms, which will explicitly explain how

these bargaining protocols deal with coalitional externalities.

Mechanism A. If there is only one player {i}, she simply receives w(i, {i}). When there

are two or more players, the mechanism is defined recursively. Given the rules of the mech-

anism for at most n− 1 players, the mechanism for N = {1, . . . , n} proceeds in five stages.

Stage 1: Each player i ∈ N makes n− 1 bids bij ∈ R with j �= i.

For each i ∈ N , define the net bid to player i by Bi =
∑

j �=i b
i
j −

∑
j �=i b

j
i . Let i∗ =

argmaxi(B
i) where an arbitrary tie-breaking rule is used in case of a non-unique maxi-

mizer. Once the winner i∗ has been chosen, player i∗ pays every player j ∈ N\{i∗}, bi
∗

j .

Stage 2: Player i∗ makes a vector of offers xi
∗

j ∈ R to every player j ∈ N\{i∗}.

Stage 3: The players other than i∗, sequentially, either accept or reject the offer. If at least

one player rejects it, then the offer is rejected. Otherwise, the offer is accepted.

If the offer is accepted, which means that all players agree with the proposer on the scheme

of sharing w(N, {N}), then each player j ∈ N\{i∗} receives xi
∗

j at this stage, and player i∗

receives w(N, {N})−
∑

j �=i∗ x
i∗

j . Hence, the final payoff to player j �= i∗ is xi
∗

j + b
i∗

j while

player i∗ receives w(N, {N})−
∑

j �=i∗ x
i∗

j −
∑

j �=i∗ b
i∗

j .

If the offer made by the proposer i∗ is rejected, all players other than i∗ proceed to play

a similar game with one player less, i.e., with the set of players N\{i∗}. By the same

bidding stage, the newly chosen proposer among N\{i∗}, denoted j∗, will make an offer to

players in N\{i∗, j∗}. If accepted, j∗ pays the offer and coalition N\{i∗} forms. However,

the payoff of j∗ relies on the final coalition structure of all players N , which is further

dependent upon how the renegotiation between i∗ and j∗ proceeds at stages 4 and 5 and

whether or not they can make an agreement.
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If the offer made by j∗ to N\{i∗, j∗} is rejected, there is one more chance for N\{i∗, j∗}

and j∗ to be reunited into N\{i∗} by renegotiation following the same rule specified below

at stages 4 and 5 (but with the player set N\{i∗}). Then, as long as coalition N\{i∗}

emerges, either due to the immediate acceptance of the offer made by j∗ or by agreement

on renegotiation between N\{i∗, j∗} and j∗, the game moves to stage 4 and the renegotia-

tion between i∗ and j∗ (who is also representing N\{i∗}) takes place. In case no agreement

is reached by N\{i∗} and thereby coalition N\{i∗} does not emerge, player i∗ loses the

option of renegotiating with N\{i∗} and is indeed left alone and gets a stand-alone payoff

that depends on the coalition structure of N\{i∗} at this stage.

Stage 4: Player i∗ makes an offer x̃i
∗

j∗ in R, to the proposer j∗ chosen among the set of

players N\{i∗}. (The offer is to let i∗ form the grand coalition instead of player j∗.)

Stage 5: Player j∗ accepts or rejects the offer. If the offer is accepted then at this stage

player j∗ receives x̃i
∗

j∗ minus the bids and offer he made to the players in N\{i∗, j∗},

while player i∗ receives w(N, {N}) − x̃i
∗

j∗ . Hence, the final payoff to player j∗ is x̃i
∗

j∗ + b
i∗

j∗

minus the bids and offer he made to the players in N\{i∗, j∗}, and player i∗ receives

w(N, {N}) − x̃i
∗

j∗ −
∑

j �=i∗ b
i∗

j , whereas each player k ∈ N\{i∗, j∗} receives the payoff of

the outcome in the subgame played by N\{i∗} plus the bid bi
∗

k . If the offer is rejected, it

implies that two different coalitions form, i.e., coalition N\{i∗} and the singleton coalition

{i∗} so that the final coalition structure of N is {N\{i∗}} ∪ {{i∗}}. Then, each player

k �= N\{i∗, j∗} finally receives the payoff resulting from the subgame played by N\{i∗}

in addition to bi
∗

k , the final payoff of player j∗ is w(N\{i∗}, {N\{i∗}} ∪ {{i∗}}) minus the

bids and offers that he made to all players in N\{i∗, j∗} and plus the bid from i∗, bi
∗

j∗, and

player i∗ receives w({i∗}, {N\{i∗}} ∪ {{i∗}})−
∑

j �=i∗ b
i∗

j .

The following theorem shows that for any partition function form game (N,w) satisfying

zero-monotonicity, i.e.,

w(S, {S}∪ [N\S]) ≥ w(S\{i}, {S\{i}}∪ [N\(S\{i})])+w({i}, {S\{i}}∪ [N\(S\{i})])

for all S ⊆ N and i ∈ S, the subgame perfect equilibrium (SPE) outcomes of Mechanism

A coincide with the payoff vector φ(N,w) as prescribed by the Shapley value defined by

Pham Do and Norde (2007).

Theorem 3.1 Mechanism A implements the Shapley value defined by Pham Do and Norde

(2007) of a zero-monotonic partition function form game (N,w) in SPE.
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Proof. Let (N,w) be a zero-monotonic partition function form game. The proof proceeds

by induction on the number of players n. It is easy to see that the theorem holds for n = 1.

We assume that it holds for all m ≤ n− 1 and show that it is satisfied for n.

First we show that the Shapley value is an SPE outcome. We explicitly construct an SPE

that yields the Shapley value as an SPE outcome. Consider the following strategies, which

the players would follow in any game they participate in (we describe it for the whole set

of players, N , but these are also the strategies followed by any player in a subset S that is

called upon to play the game, with S replacing N):

At stage 1, each player i ∈ N , announces bij = φj(N,w)− φj(N\{i}, w|N\{i}) for every

j ∈ N\{i}.

At stage 2, a proposer, player i∗, offers xi
∗

j = φj(N\{i
∗}, w|N\{i∗}) to every j ∈ N\{i

∗}.

At stage 3, any player j ∈ N\{i∗} accepts any offer which is greater than or equal to

φj(N\{i
∗}, w|N\{i∗}) and rejects any offer strictly less than φj(N\{i

∗}, w|N\{i∗}).

At stage 4, player i∗ makes an offer x̃i
∗

j∗ = w(N\{i
∗}, {N\{i∗}}∪{{i∗}}) to any selected

proposer j∗ ∈ N\{i∗}.

At stage 5, player j∗, the proposer of the set of players N\{i∗}, accepts any offer greater

than or equal to w(N\{i∗}, {N\{i∗}} ∪ {{i∗}}) and rejects any offer strictly less than it.

Clearly these strategies yield the Shapley value for any player who is not the proposer,

since the game ends at stage 3 and bi
∗

j + x
i∗

j = φj(N,w), for all j �= i
∗. Moreover, given

that following the strategies the offer is accepted by all players, the proposer also obtains

her Shapley value.

Note that all net bids equal zero by the balanced contribution property for the Shapley

value (Myerson (1980)).

To show that the previous strategies constitute an SPE, note first that the strategies at

stages 2, 3, 4, and 5 are best responses: In case of rejection at stage 3 proposer i∗ can

obtain w(N, {N})−w(N\{i∗}, {N\{i∗}}∪{{i∗}}) in the end (it pays her to make an offer

that is accepted at stage 4, by zero-monotonicity), and all other players play the bidding

mechanism with player set N\{i∗} and payoff w(N\{i∗}, {N\{i∗}} ∪ {{i∗}}). By the in-

duction hypothesis, we have the Shapley value as the outcome of this game. That is, each

player j ∈ N\{i∗} gets φj(N\{i
∗}, w|N\{i∗}). Consider now the strategies at stage 1. If

player i∗ increases her total bid, then she will be chosen as the proposer with certainty,

but her payoff will decrease. If she decreases her total bid another player will propose and

player i∗’s payoff would still equal her Shapley value. Finally, any change in her bids that
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leaves the total bid constant will influence the identity of the proposer but will not affect

player i∗’s payoff.

The proof that any SPE yields the Shapley value proceeds in the same line as in the proof

of Theorem 3.1 in Ju and Wettstein (2006) and therefore skipped.

The key feature of Mechanism A in implementing the Shapley value is that it allows the

proposer chosen from the first bidding stage to have the power of making another offer at

stage 4 in case she has been rejected at stage 3.2 One might argue that the right to make

a second offer should be awarded to the new proposer who is chosen from the remaining

players rather than the original proposer whose offer has been rejected. Such an argument

would lead to a new mechanism, which implements the expected stand-alone value.

Mechanism B. Stages 1, 2 and 3 are the same as in Mechanism A. Note that in case of

rejection at stage 3, the game played by N\{i∗} will follow, when renegotiations within

N\{i∗} are called for, the rules specified at stages 4 and 5 of the current mechanism.

Stage 4: Player j∗, the proposer chosen among the set of players N\{i∗} makes an offer

x̃
j∗

i∗ in R, to player i∗. (The offer is to pay i∗ this amount for joining in to form the grand

coalition).

Stage 5: Player i∗ accepts or rejects the offer. If the offer is accepted then at this stage

each player k ∈ N\{i∗, j∗} receives the payoff of the outcome in the subgame played by

N\{i∗}, player j∗ receives w(N, {N})− x̃j
∗

i∗ minus the bids and offer he made to the players

in N\{i∗, j∗}, and player i∗ receives x̃j
∗

i∗ . Hence, the final payoff to player k ∈ N\{i∗, j∗}

is the payoff of the outcome in the subgame played by N\{i∗} plus bi
∗

k ; player j
∗ finally

receives w(N, {N})−x̃j
∗

i∗+b
i∗

j∗ minus the bids and offer he made to the players in N\{i∗, j∗},

and player i∗ finally receives x̃j
∗

i∗ −
∑

j �=i∗ b
i∗

j . If the offer is rejected, we then have the final

coalition structure of N as {N\{i∗}} ∪ {{i∗}}. Then, each player k �= N\{i∗, j∗} finally

receives the payoff resulting from the subgame played by N\{i∗} in addition to bi
∗

k , the

final payoff of player j∗ is w(N\{i∗}, {N\{i∗}}∪ {{i∗}}) minus the bids and offers that he

made to all players in N\{i∗, j∗} and plus the bid from i∗, bi
∗

j∗ , and player i∗ finally receives

w({i∗}, {N\{i∗}} ∪ {{i∗}})−
∑

j �=i∗ b
i∗

j .

2Hence, one can readily think of an alternative mechanism with no renegotiation that still implements
the Shapley value. Such a mechanism will only involve stages 1, 2, and 3 in which a rejected proposer
has no option of renegotiation and is left alone with payoff dependent upon the coalition structure of the
remaining players.
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Before stating the main result about Mechanism B, we show the following lemma. Let

us first define the subgame (N\{i}, w−i) of (N,w) by

w−i(N\{i}, {N\{i}}) = w(N, {N})− w({i}, {N\{i}} ∪ {{i}})

and

w−i(S, κN\{i}) = w(S, κN\{i} ∪ {{i}})

for all (S, κN\{i}) ∈ E(N\{i})\(N\{i}, N\{i}).

Lemma 3.2 For any game w ∈ PGN we have

∑

j∈N\{i}

(
ej(N,w)− ej(N\{i}, w

−i)
)
−

∑

j∈N\{i}

(
ei(N,w)− ei(N\{j}, w

−j)
)
= 0

for all i, j ∈ N .

Proof.

By the definition of the expected stand-alone value, it suffices to show that

−|N |ei(N,w) + w({i}, {N\{i}} ∪ {{i}}) +
∑

j∈N\{i}

ei(N\{j}, w
−j) = 0

for all i, j ∈ N and i �= j. Obviously,

|N |ei(N,w) = w(N, {N})

+
∑

S⊆N\{i}:S �=∅

|S|!(|N | − |S| − 1)!

(|N | − 1)!
w({i}, {S} ∪ [N\(S ∪ {i})] ∪ {{i}})

−
∑

k∈N\{i}

∑

S⊆N\{i,k}

|S|!(|N | − |S| − 2)!

(|N | − 1)!
w({k}, [N\(S ∪ {i})] ∪ {S ∪ {i}}).

and

∑

j∈N\{i}

ei(N\{j}, w
−j)

= w(N, {N})−
∑

j∈N\{i}

1

|N | − 1
w({j}, {N\{j}} ∪ {{j}})

+
∑

j∈N\{i}

∑

S⊆N\{i,j}:S �=∅

|S|!(|N | − |S| − 2)!

(|N | − 1)!
w({i}, {S} ∪ [N\(S ∪ {i})] ∪ {{i}} ∪ {{j}})

−
∑

j∈N\{i}

∑

k∈N\{i,j}

∑

S⊆N\{i,j,k}

|S|!(|N | − |S| − 3)!

(|N | − 1)!
w({k}, [N\(S ∪ {i})] ∪ {S ∪ {i}} ∪ {{j}}).
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Moreover, we know that

∑

S⊆N\{i}:S �=∅

|S|!(|N | − |S| − 1)!

(|N | − 1)!
w({i}, {S} ∪ [N\(S ∪ {i})] ∪ {{i}})

=
∑

S=N\{i}:S �=∅

|S|!(|N | − |S| − 1)!

(|N | − 1)!
w({i}, {S} ∪ [N\(S ∪ {i})] ∪ {{i}})

+
∑

S�N\{i}:S �=∅

|S|!(|N | − |S| − 1)!

(|N | − 1)!
w({i}, {S} ∪ [N\(S ∪ {i})] ∪ {{i}})

= w({i}, {N\{i}} ∪ {{i}})

+
∑

j∈N\{i}

∑

S⊆N\{i,j}:S �=∅

|S|!(|N | − |S| − 2)!

(|N | − 1)!
w({i}, {S} ∪ [N\(S ∪ {i})] ∪ {{i}} ∪ {{j}})

and similarly,

∑

j∈N\{i}

∑

k∈N\{i,j}

∑

S⊆N\{i,j,k}

|S|!(|N | − |S| − 3)!

(|N | − 1)!
w({k}, [N\(S ∪ {i})] ∪ {S ∪ {i}} ∪ {{j}})

=
∑

k∈N\{i}

∑

S�N\{i,k}

|S|!(|N | − |S| − 2)!

(|N | − 1)!
w({k}, [N\(S ∪ {i})] ∪ {S ∪ {i}}).

What remain is clear because

∑

S=N\{i,j}

|S|!(|N | − |S| − 2)!

(|N | − 1)!
w({j}, [N\(S ∪ {i})] ∪ {S ∪ {i}})

=
1

|N | − 1
w({j}, {N\{j}} ∪ {{j}}).

Theorem 3.3 Mechanism B implements the expected stand-alone value of a zero-monotonic

partition function form game (N,w) in SPE.

Proof. The proof is analogous to that of Theorem 3.1. The differences are in the construc-

tion of the SPE strategies and in showing that in any SPE, the final payment received by

each of the players coincides with each player’s expected stand-alone value. Hence, we first

explicitly construct an SPE that yields the expected stand-alone value as an SPE outcome.

To constuct an SPE, consider the following strategies.

At stage 1, each player i ∈ N , announces bij = ej(N,w) − ej(N\{i}, w−i), for every

j ∈ N\{i}.

10



At stage 2, a proposer, player i∗, offers xi
∗

j = ej(N\{i
∗}, w−i

∗

) to every j ∈ N\{i∗}.

At stage 3, any player j ∈ N\{i∗} accepts any offer which is greater than or equal to

ej(N\{i∗}, w−i
∗

) and rejects any offer strictly less than ej(N\{i∗}, w−i
∗

).

At stage 4, a proposer withinN\{i∗}, player j∗ makes an offer x̃j
∗

i∗ = w({i
∗}, {N\{i∗}}∪

{{i∗}}) to i∗.

At stage 5, player i∗, the “waiting” proposer for the set of players N , accepts any offer

greater than or equal to w({i∗}, {N\{i∗}}∪{{i∗}}) and rejects any offer strictly less than it.

One can readily verify that these strategies yield the equal surplus value for any player and

constitute an SPE.

Next we show that in any SPE the final payment received by each of the players coincides

with each player’s expected stand-alone value. We note that if i is the proposer, her final

payoff will be w(N, {N})− (w(N, {N})− w({i∗}, {N\{i∗}} ∪ {{i∗}}))−
∑

j �=i b
i
j, whereas

if j �= i is the proposer, i will get final payoff ei(N\{j}, w−j) + b
j
i . Hence the sum of the

payoffs to player i over all possible choices is (note that all net bids are zero)

w(N, {N})− (w(N, {N})− w({i∗}, {N\{i∗}} ∪ {{i∗}}))−
∑

j �=i

bij

+
∑

j �=i

(
ei(N\{j}, w

−j) + bji
)

= w({i∗}, {N\{i∗}} ∪ {{i∗}}) +
∑

j �=i

ei(N\{j}, w
−j),

which, by Lemma 3.2, equals n · ei(N, v). Since the payoffs are the same regardless of who

is the proposer we see that the payoff of each player in any equilibrium must coincide with

the expected stand-alone value.

The above mechanisms A and B take extreme and contrastive treatments in case an

offer is rejected, which give a priori full power to either the initial proposer or the proposer

chosen from the set of remaining players to make a second offer. A less biased option

would be giving equal power to the two proposers to make a second offer. That is, let the

two compete (by bidding) for the role of being the proposer to make a further offer when

they engage in renegotiation. This mechanism as formally described below implements the

consensus value.

Mechanism C. The rules of stages 1, 2 and 3 are the same as before. Of course, in case

of rejection at stage 3, the game played by N\{i∗} will follow, when renegotiations within

N\{i∗} are called for, the rules specified at stages 4 and 5 of this mechanism.

11



Stage 4: Player i∗, the proposer chosen among N , and player j∗, the proposer chosen

among the set of players N\{i∗}, bid for the right to take the role of the proposer (the

game played, in fact, coincides with the stage 1 game with n = 2). Both i∗ and j∗ simulta-

neously submit bids b̃i
∗

j∗ and b̃
j∗

i∗ in R. The player with the larger net bid pays the bid to the

other player and assumes the role of the proposer. In case of identical bids the proposer is

chosen randomly.

Stage 5: Depending on whether the proposer is i∗ or j∗, the game proceeds as in Mechanism

C1 (when i∗ is the proposer) or Mechanism C2 (when j∗ is the proposer). The payoffs are

adjusted to take into account the bidding at stage 4.

Lemma 3.4 For any game w ∈ PGN we have

|N |ei(N,w)

= w({i}, {N\{i}} ∪ {{i}})

+
∑

j∈N\{i}

w(N, {N})− w(N\{j}, {N\{j}} ∪ {{j}})− w({j}, {N\{j}} ∪ {{j}})

|N | − 1

+
∑

j∈N\{i}

ei(N\{j}, w|N\{j})

for all i ∈ N .

Proof. The proof can be constructed along the same line as that for Lemma 3.2.

Theorem 3.5 Mechanism C implements the consensus value of a zero-monotonic partition

function form game (N,w) in SPE.

Proof. The proof is again similar to that of Theorem 3.1. The differences are once more in

the construction of the SPE strategies and in claiming that payoffs must coincide with the

consensus value. To explicitly construct an SPE that yields the consensus value, consider

the following strategies.

At stage 1, each player i ∈ N announces bij = γj(N, v) − γj(N\{i}, ŵ
−i),3 for every

j ∈ N\{i}.

At stage 2, a proposer, player i∗, offers xi
∗

j = γj(N\{i
∗}, ŵ−i) to every j ∈ N\{i∗}.

3The game (N\{i}, ŵ−i) is formally defined by ŵ−i(N\{i}, {N\{i}}) = w(N\{i}, {N\{i}} ∪ {{i}}) +
w(N,{N})−w(N\{i},{N\{i}}∪{{i}})−w({i},{N\{i}}∪{{i}})

2 and ŵ−i(S, κN\{i}) = w(S,κN\{i} ∪ {{i}}), for all
(S, κN\{i}) ∈ E(N\{i})\(N\{i}, N\{i}).
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At stage 3, any player j ∈ N\{i∗} accepts any offer which is greater than or equal to

γj(N\{i
∗}, ŵ−i

∗

) and rejects any offer strictly less than γj(N\{i
∗}, ŵ−i

∗

).

At stage 4, player i∗ announces

b̃i
∗

j∗ = w(N\{i∗}, {N\{i∗}} ∪ {{i∗}})

+
w(N, {N})− w(N\{i∗}, {N\{i∗}} ∪ {{i∗}})− w({i∗}, {N\{i∗}} ∪ {{i∗}})

2
− w(N\{i∗}, {N\{i∗}} ∪ {{i∗}})

=
v(N)− w(N\{i∗}, {N\{i∗}} ∪ {{i∗}})− w({i∗}, {N\{i∗}} ∪ {{i∗}})

2

while player j∗ announces

b̃
j∗

i∗ = w({i∗}, {N\{i∗}} ∪ {{i∗}})

+
w(N, {N})− w({i∗}, {N\{i∗}} ∪ {{i∗}})− w(N\{i∗}, {N\{i∗}} ∪ {{i∗}})

2
− w({i∗}, {N\{i∗}} ∪ {{i∗}})

=
v(N)− w({i∗}, {N\{i∗}} ∪ {{i∗}})− w(N\{i∗}, {N\{i∗}} ∪ {{i∗}})

2
.

At stage 5, player i∗ makes an offer x̃i
∗

j∗ = w(N\{i
∗}, {N\{i∗}}∪{{i∗}}) to j∗ and player

j∗ makes an offer x̃j
∗

i∗ = w({i
∗}, {N\{i∗}} ∪ {{i∗}}) to i∗. Moreover, i∗ accepts any offer

greater than or equal to w({i∗}, {N\{i∗}} ∪ {{i∗}}) and rejects any offer strictly less than

it. Similarly, j∗ accepts any offer greater than or equal to w(N\{i∗}, {N\{i∗}} ∪ {{i∗}})

and rejects any offer strictly less than it.

One can readily verify that these strategies yield the consensus value for any player and

constitute an SPE.

To show that in any SPE each player’s final payoff coincides with her consensus value, we

note that if i is the proposer her final payoff is given by

w(N, {N})− w(N\{i}, {N\{i}} ∪ {{i}})

−
w(N, {N})− w(N\{i}, {N\{i}} ∪ {{i}})− w({i}, {N\{i}} ∪ {{i}})

2
−
∑

j �=i

bij

whereas if j �= i is the proposer, the final payoff of i is γi(N\{j}, ŵ
−j) + bji .

Hence the sum of payoffs to player i over all possible choices of the proposer is (again note

13



that all net bids are zero)

w(N, {N})− w(N\{i}, {N\{i}} ∪ {{i}})

−
w(N, {N})− w(N\{i}, {N\{i}} ∪ {{i}})− w({i}, {N\{i}} ∪ {{i}})

2
−
∑

j �=i

bij

+
∑

j �=i

(
γi(N\{j}, ŵ

−j) + bji
)

=
w(N, {N})− w(N\{i}, {N\{i}} ∪ {{i}}) + w({i}, {N\{i}} ∪ {{i}})

2

+
∑

j �=i

(
1

2
φi(N\{j}, ŵ

−j) +
1

2
ei(N\{j}, ŵ

−j)

)

=
w(N, {N})− w(N\{i}, {N\{i}} ∪ {{i}}) + w({i}, {N\{i}} ∪ {{i}})

2

+
1

2

∑

j �=i

(
φi(N\{j}, w|N\{j}) +

w(N,{N})−w(N\{j},{N\{j}}∪{{j}})−w({j},{N\{j}}∪{{j}})
2

n− 1

)

+
1

2

∑

j �=i

(
ei(N\{j}, w|N\{j}) +

w(N,{N})−w(N\{j},{N\{j}}∪{{j}})−w({j},{N\{j}}∪{{j}})
2

n− 1

)

=
1

2

(
w(N, {N})− w(N\{i}, {N\{i}} ∪ {{i}}) +

∑

j �=i

φi(N\{j}, w|N\{j})

)

+
1

2
w({i}, {N\{i}} ∪ {{i}})

+
1

2

∑

j �=i

(
w(N, {N})− w(N\{j}, {N\{j}} ∪ {{j}})− w({j}, {N\{j}} ∪ {{j}})

n− 1

)

+
1

2

∑

j �=i

ei(N\{j}, w|N\{j}),

which, sincew(N, {N})−w(N\{i}, {N\{i}}∪{{i}})+
∑

j �=i φi(N\{j}, w|N\{j}) = nφi(N,w)

and by Lemma 3.4, equals n
(
1
2
φi(N,w) +

1
2
ei(N,w)

)
, and then yields nγi(N,w). Since the

payoffs are the same regardless of who is the proposer, the payoff of each player in any

equilibrium must coincide with the consensus value.

Mechanism C can be generalized in a natural way by treating the players asymmet-

rically: bids made by one player are “worth more” than those made by the other. Such

a mechanism implements the generalized consensus value of a zero-monotonic partition

function form game.
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4 Concluding remarks

By using a class of bidding mechanisms that differ in the power awarded to the proposer

chosen through a bidding process, this paper provided a strategic approach to several coop-

erative solution concepts for partition function form games, which highlights the different

non-cooperative rationales of the normative standards over externalities. It should be noted

that the mechanisms introduced in this paper yield the actual values implemented rather

than implementing them in expected terms.

As we see, introducing the option of renegotiation can result in different equilibrium

outcomes and therefore implement various values. Throughout the paper we require a

renegotiation between a coalition S and a singleton player i to happen only when S has

already reached an agreement. If the players in S do not form a coalition, no renegotiation

will happen between any of them and i. Thus, in each of the above mechanisms, when the

game reaches a level that only involves a sub-coalition of players in N , the other players

(i.e., all previously rejected proposers) cannot negotiate among themselves. Without such

a restriction, one usually get to a situation where no equilibrium may exist. However,

this restriction can be weakened to a certain degree by imposing alternative rules (except

for the completely laissez-faire case) on renegotiation. Then it might lead to alternative

equilibrium outcomes, hence new values for partition function form games.

The only condition we imposed thus far on the partition function form games is zero-

monotonicity, which implies that the grand coalition is the efficient coalition structure.

Naturally, one may ask how to deal with arbitrary cooperative environments. Here we

like to conclude the paper by suggesting an answer, which is in the same spirit of Pérez-

Castrillo and Wettstein (2001). Take the mechanism to implement the Shapley value for

example. Given an arbitrary partition function form game, we require a proposer to make

a proposal in two aspects: a coalition structure and a vector of offers. Then, if the proposal

is accepted, all players will form a coalition structure as specified by the proposer, and the

proposer will pay every other player the promised offer. As a reward to the proposer, she

will collect all the payoffs generated by each coalition in the coalition structure. Such a

modified mechanism generates an efficient coalition structure, and implements the Shapley

value of the superadditive cover of the game.

Finally, we note that the results obtained in this paper can shed light on many concrete

economic and political situations featured by externalities and cooperative interests and

conflicts, ranging from reaching environmental agreement, coordinating market behavior

of firms, to the provision of public goods, and resolving the compensation disputes.
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