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Abstract 

 

Information overload is costly to organizations. Limited cognitive resources, multiple 

obligations, and short deadlines can lead a principal to overlook important ideas from 

subordinates. We propose a stylized model to highlight a remedy to this problem that 

should be relevant in many contexts. Since interactions in organizations are often 

repeated over time, there may be ways to incentivize agents to speak up only when they 

have something important to communicate; that is, to be discerning. One of the 

principal's jobs is then to steer the organization in this direction. 

In our model, a principal's attention is repeatedly sought by multiple agents, each eager 

for his ideas to be implemented. An idea's quality stochastically affects the principal's 

profit, and agents' abilities to generate good ideas may be private information. The 

principal is unable to review proposals before choosing one each period. She can provide 

incentives only through her selection rule among proposals, but cannot commit to this 

rule in advance. We show how she may discipline agents to exercise restraint, achieving 

her first-best in an intuitive belief-free equilibrium. Whether first best is achievable 

hinges on the worst possible agent, the organization's `weakest link.' 

Selecting ideas in our model is reminiscent of multi-armed bandit problems, with the new 

feature that an arm's availability is a strategic decision each round. Our analysis also 

shows that such problems admit simple, robust solutions.   

Keywords:  limited attention, organizations, belief-free equilibrium, mechanism design 

without commitment, multi-armed bandit 



1 Introduction

“Blessed is the man who, having nothing to say, abstains from giving us wordy

evidence of the fact.” – George Eliot

Most people repeatedly find themselves engaged in trying to meet the demands for their

own attention by others, or demanding others’ attention themselves. We send emails and

texts expecting a prompt response. At the same time, we are flooded with incoming commu-

nications demanding our immediate attention. Meetings drag on, with too many participants

inclined to make themselves heard. Open source platforms become cluttered with insignifi-

cant updates posted by contributors vying for credit.

Communicating without restraint imposes an externality on decision makers: good ideas

risk getting lost in the clamor for attention. In this paper, we study how a principal can

circumvent this problem in a setting with multiple agents, each of whom is eager to have

his own idea implemented. The nascent literature on attention in organizations studies

optimal communication structures alleviating this cost. We introduce a stylized model to

highlight an alternative remedy that should be relevant in many contexts. Since interactions

in organizations are often repeated over time, there may be ways to incentivize agents to

speak up only when they have something important to communicate; that is, to be discerning.

One of the principal’s jobs is then to steer the organization in this direction.

We study this problem within the following stylized setting. In every period, the prin-

cipal has a problem to solve and seeks proposals from multiple agents, who may be her

subordinates, consultants or independent contributors. Each agent comes up with a new

idea in each period, which is of good quality with probability θ and of bad quality other-

wise. The principal and agents have a conflict of interest. While implementing any idea is

better for the principal than implementing none at all, she prefers to implement the highest

quality idea available. An agent, on the other hand, benefits whenever his idea is the one

selected. Instead of taking the influx of proposals in each period as exogenous, we model

those proposals as originating from strategic agents who can choose whether to propose an

idea at all. An agent knows the quality of his own idea when deciding whether to propose

it. However, quality is only a noisy indicator of the profit the principal would get if she

implements the idea. Profit may be high or low, with good ideas yielding high profit with

probability γ and bad ideas yielding high profit with a smaller probability β. The principal

is unable to spend the time to evaluate whether the proposed ideas are good or bad before

choosing which one of them to implement that period. An idea’s profit is realized only once

it is implemented; the principal cannot know what her profit would have been from unchosen

ideas. The principal seeks to maximize her discounted sum of profits. The only tool at the
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principal’s disposal for providing punishments or rewards to agents is the procedure by which

she selects among proposals in each period. The principal cannot commit to a selection rule

in advance; it must be rational for her to follow her selection rule in equilibrium.

We say that the principal achieves her first best when there is a strategy profile and

threshold patience level such that (i) the strategy profile is a perfect Bayesian Nash equilib-

rium (PBNE) if agents’ discount factors exceed the threshold; and (ii) the strategy profile

leads to the selection of the highest quality idea in every period. Our first main result estab-

lishes the existence of a unique threshold probability θ∗ ≤ 1/2 that characterizes when the

principal can achieve her first best. As it turns out, her ability to do so hinges on the talent

of agents in her organization. If the probability that an agent has a good idea is below this

threshold, then the principal’s first best cannot be achieved. If, however, the probability of

a good quality idea is above θ∗, then the principal can achieve her first best if profits are

sufficiently informative of an idea’s quality.1 In this case, the principal’s first best is achieved

through a simple and intuitive strategy profile that we call the Silent Treatment.

The Silent Treatment strategy profile is defined as follows. In any period, one agent is

designated as the agent of last resort, and all other agents are designated as discerning. The

agent of last resort proposes his idea regardless of its quality. Each discerning agent proposes

his idea if it is good, and remains silent otherwise. The principal selects the idea proposed

by the agent of last resort if it is the only one available. Otherwise, the principal ignores

the proposal of the last resort agent and selects among the discerning agents’ proposals by

randomizing uniformly. The initial agent of last resort is chosen arbitrarily, and remains in

that role until the principal realizes a low profit for the first time. Going forward, the agent

of last resort is the most recent agent whose idea yielded low profit for the principal.

The Silent Treatment strategy profile has a number of desirable properties. First, it

requires players to keep track of very little information: they need only know who was the

last agent whose idea yielded low profit. Second, it does not require the agents to punish the

principal (the mechanism designer) to ensure that she follows the strategy. This can be seen

from the fact that whenever the silent treatment strategy profile is a PBNE, then it remains

a PBNE even when the principal’s discount factor is zero. Third, it is independent of the

probability of a good idea (θ), and is robust to having privately observed heterogeneity in

the ability of agents to generate good ideas. Consequently, the principal need not engage in

complicated inferences about abilities, and the agents need not be concerned with signalling

when deciding whether to propose an idea.

To demonstrate the last point, we enrich our benchmark model by assuming that each

agent i is characterized by an ability θi ∈ [θ, θ], which is the probability that he has a good

1As captured by the likelihood ratio 1−β
1−γ that low profit arises from a bad idea versus a good idea
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idea in a period. Agents’ abilities are not observed by the principal and may or may not be

observed by other agents. Our second main result establishes that if θ > θ∗, then so long as

profits are sufficiently informative of an idea’s quality, the silent treatment strategy profile

attains the principal’s first-best in an ex-post PBNE for any realized vector of abilities. That

is, the silent treatment profile constitutes a belief-free equilibrium.2 If, however, θ < θ∗, then

no belief-free equilibrium can attain the principal’s first best. Thus the organization’s worst

possible agent, its ‘weakest link,’ determines what is achievable. Establishing our result is

complicated by the heterogeneity in agents’ abilities: an agent’s continuation payoff depends

on the ability of the last resort agent, which varies as different agents are relegated to

this role. Our method of proof overcomes this challenge by taking advantage of the special

properties of the matrices emerging from the agents’ value functions and incentive conditions.

Belief-freeness is achieved because there is sufficient slack in the agents’ incentive conditions

(not because of indifference). Discerning agents simply prefer to propose only good ideas in

equilibrium, and this is all the information the principal needs to know to select a proposal.

Our analysis also applies in the limiting case γ = 1, in which a good idea generates high

profit with probability one.3 Indeed, the silent treatment strategy profile remains a belief-free

equilibrium if θ > θ∗ and the agents are sufficiently patient. In this limit case, the principal

will be able to infer that an agent proposed a bad idea upon receiving a low profit. As a

result, the principal will be able to attain her first best in equilibrium for a wider range of

parameters by resorting to harsher punishments than those in the silent treatment strategy

profile. Such punishments, however, would affect the size and/or quality of the principal’s

pool of proposals, and therefore reduce her profits, should cheating actually occur. To put

the matter in context, observe that the literature on mechanism design generally interprets

the principal as having the ability to induce participants to coordinate on her most preferred

equilibrium. In mechanism design without commitment, we suggest that the principal may

be interpreted analogously, as a special player who is able to induce the participants to

coordinate on her most preferred equilibrium at any history, whether on or off the equilibrium

path. With this new notion of credibility in mind, our earlier result can be strengthened:

2In the context of repeated games with imperfect monitoring, see, for instance, Piccione (2002) and Ely
and Välimäki (2002). They look to belief-freeness as a way to generate robustness to the particular structure
of private monitoring in a prisoner’s dilemma, and carefully construct mixed strategies where each player is
indifferent between all his actions, no matter his opponent’s private history. Hörner, Lovo and Tomala (2011)
consider the notion of belief-free equilibrium in games of incomplete information. They examine the existence
of belief-free equilibrium payoffs under certain types of information structures and reward functions, and
also use sophisticated strategies involving randomization to delimit what is achievable. In contrast to these
works, in our simple model, the principal’s first best is attained with agents playing pure strategies; and we
analytically characterize the threshold ability level below which the first best is impossible to attain in a
belief-free way.

3This is true regardless of the probability β that a bad idea generates high profit, so long as 0 ≤ β < 1.
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a belief-free PBNE achieves the principal’s first best in the stage game played after each

history if and only if her first best is achievable via the Silent Treatment strategy profile.

The paper is organized as follows. Section 2 discusses connections to the literature.

Section 3 presents our benchmark model, in which agents all have the same commonly

known ability. Section 4 introduces the silent treatment strategy profile and characterizes

when the principal can achieve her first best. Section 5 studies the case of heterogenous and

privately known agents’ abilities. Section 6 considers the limiting case in which good ideas

surely yield high profit. Section 7 concludes.

2 Related Literature

Our paper relates to several strands of literature. When the qualities of agents’ ideas are

privately drawn, the principal’s problem is reminiscent of a multi-armed bandit problem

(Gittins and Jones, 1974), with the twist that the bandits’ arms respond to incentives and

strategically decide whether to make themselves available in each period.4,5 In the classic

multi-armed bandit problem, a decision maker faces multiple arms, each of which has an

unknown probability of success. The decision maker wants to maximize her discounted

sum of payoffs from pulling the arms, but faces a tradeoff between learning which arms are

best and exploiting those that have succeeded so far. The solution to this classic problem,

based on the Gittins index, does not achieve the decision maker’s first best, and uses a

sophisticated learning strategy requiring commitment and patience. By contrast, in our

setting, the principal achieves her first best by properly incentivizing the arms (the agents)

without having to infer quality levels, without having to commit to a strategy, and for any

level of her patience.

The problem we study may be thought of as dynamic mechanism design without transfers

when the planner is a player (and therefore, cannot commit). In our model, there is no

institutional device that enables the principal to credibly commit to a policy, and the agents’

payoffs cannot be made contingent on the payoff to the principal. This could be due to the

fact that the principal’s payoff cannot be verified by an outside party (e.g., it may include

intangible elements such as perceived reputation), or because of institutional constraints that

4Bergemann and Välimäki (2008) offer a nice survey of applications of multi-armed bandit problems to
economics. The problem of a one-armed bandit has been studied in economics as well, for instance, in
the setting of a buyer facing a monopolist selling a good of unknown quality. Bar-Isaac (2003) introduces
endogenous participation in this case, allowing the monopolist to choose if to sell on the market each period.

5Some recent work in computer science considers a different generalization allowing for strategic bandits,
whereby the bandits make a one-time decision of whether to be available and with what probability of
success, in response to the algorithm determining how arms will get pulled in the future. Algorithms are
then compared based on the criterion of minimal regret. See Ghosh and Hummel (2012).
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preclude such contracts, as in most public organizations where subordinates may suggest

ideas and improvements to an executive decision-maker. A recent paper in this literature

on dynamic mechanism design with neither transfers nor commitment is Li, Matouschek

and Powell (2016) who study the dynamics of power in an infinitely repeated game between

a principal and one agent. In each period, the principal decides whether to entrust the

choice of a project to the agent, who privately observes which projects are available and

whose preferred project differs from that of the principal. The authors characterize the

public perfect equilibrium that maximizes the principal’s expected payoff, and show that

eventually, the principal will not be able to make effective use of the agent’s information:

either the principal will end up relying on the agent to make all choices, or ignore the agent’s

recommendations entirely. Which extreme occurs depends on random outcomes early in the

game. An opposite dynamic is shown by Lipnowski and Ramos (2015), who analyze an

infinitely repeated game between a principal and one agent. In their model, the principal

decides each period whether to delegate the choice of a project, the quality of which is

observed only by the agent. While the agent cares only about the project’s quality, the

principal also cares whether the quality exceeds a fixed cost. They show delegation occurs

often at the start of the relationship, but that eventually, it will rarely occur. Among other

modeling differences with these papers, we consider a multi-agent setting. The competition

between agents in our model is a driving factor in the results: if there were only one agent,

the principal could achieve no better than having him proposes all his ideas, both good and

bad. The principal’s best equilibrium in our model achieves her unconstrained first best, and

does not exhibit nonstationary dynamics (indeed, the equilibrium is Markovian with respect

to the identity of the agent of last resort).

Our paper contributes to the emerging literature on allocation dynamics in repeated

games. Two recent papers, Board (2011) and Andrews and Barron (2016), study how a

principal (firm) chooses each period among multiple agents (contractors or suppliers) whose

characteristics are perfectly observed by the principal, but whose post-selection action is

subject to moral hazard. Both papers consider relational contracts and thus allow for players

to make transfers in the repeated game. Board (2011) considers a hold-up problem, where the

chosen contractor each period decides how much to repay the principal for her investment.

Assuming that the principal can commit to the selection rule, Board shows that it is optimal

to be loyal to a subset of ‘insider’ contractors, because the rents the principal must promise

to entice the contractor to repay act as an endogenous switching cost. He shows that this

bias towards loyalty extends when the principal cannot commit, so long as she is sufficiently

patient. Relaxing the assumption of commitment and introducing imperfect monitoring in

the moral hazard problem, Andrews and Barron (2016) consider a firm who repeatedly faces
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multiple possible, ex-ante symmetric suppliers. A supplier’s productivity level is redrawn

each period but is observable to the principal. The principal approaches a supplier and,

upon agreeing to the relationship, the supplier makes a hidden, binary effort choice yielding

a stochastic profit for the principal. Under the assumption of private monitoring (that each

agent observes only his own history with the principal), they show that the principal’s first

best can be achieved for the widest possible range of discount factors by a ‘favored supplier’

allocation rule. Each period, the principal must choose a supplier from among those with the

highest observed productivity level, but breaks ties in favor of the agent who most recently

yielded high profit. There are several interesting differences with our paper. First, we study

a problem without transfers. Furthermore, we study a problem of adverse selection: the

principal’s problem is precisely that she cannot observe the distinguishing characteristic –

the quality – of the agents’ ideas. In our model, an aim of the principal’s selection rule is to

influence her set of proposers; thus the set of possible agents in each period is endogenous

to the problem. Another interesting difference with Andrews and Barron (2016) is that

our results rely on the history being at least partially public: the identity of the current

agent of last resort must be known to all players. By contrast, Andrews and Barron point

out that if they were to relax private monitoring, then the agents could collectively punish

the principal and the optimal allocation rule would become stationary (independent of past

performance). As discussed earlier, the Silent Treatment strategy profile does not rely on

punishing the principal. Whenever it is an equilibrium, it remains so for any discount factor

of the principal, even if she is fully myopic.

Finally, our paper joins a growing literature on attention and other cognitive constraints

in organizations. Halac and Prat (2015), for instance, consider a different problem of man-

agerial attention. In their model, the worker enjoys receiving recognition from the manager,

and there is a two-sided dynamic moral hazard problem, both in how much attention the

manager is paying to the worker’s progress and how much effort the worker is making. Des-

sein, Galeotti and Santos (2015) model attention as the time a team spends communicating

in meetings. Each team member is in charge of a task that should be both adapted to

a privately observed shock and coordinated with other tasks. They show that when at-

tention is scarce, it is optimal for the organization to discuss only a subset of tasks (their

‘core competencies’). Miller and Rozen (2014) consider a team setting without transfers, in

which agents allocate their limited capacity between monitoring and production and may

be stochastically unable to complete their tasks. They show that in the optimal contract,

monitoring is concentrated in the hands of one or two agents (‘supervisors’) despite the sym-

metry and separability of tasks. Garicano and Prat (2013) offer a thorough survey of earlier

works and a detailed history of the field. Our work brings a new aspect to this literature,
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pointing out that because interactions in organizations are often repeated, it may be possible

to compensate for a lack of attention by using intertemporal incentives to minimize super-

fluous communication. In our model, the principal is able to filter agents’ ideas without

paying attention to their quality, without considering what agents’ abilities may be, and

while remembering very little information from the past.

3 Benchmark Model

There is one principal and a set A = {1, . . . , n} of n ≥ 2 agents who individually and

independently come up with a new idea for the principal at each period t = 1, 2, 3, . . .. An

idea’s profit to the principal is either high (H) or low (L), where H > L ≥ 0. Her profit

depends stochastically on the quality of the idea that she implements. An idea’s quality is

either good or bad. A good idea has probability γ ∈ (0, 1) of generating high profit for the

principal; while a bad idea generates high profit with a strictly smaller probability β.6 There

is a commonly known probability θ that an agent’s idea in any given period is good.

In every period, the stage game unfolds as follows. Knowing the quality of his idea,

each agent decides whether to propose it to the principal. The principal then decides which

idea, if any, to implement among these proposals. Figuring out an idea’s quality prior to its

implementation requires the principal’s attention. This is costly, which can be modeled, for

instance, via an explicit cost of reviewing ideas, or by introducing a capacity constraint which

induces an implicit cost. The next section shows how the principal may take advantage of

the repeated nature of her interactions with the agents to reach her first best, even when

her attention is fully constrained and she cannot review any ideas at all. There is thus no

need to explicitly model costs to make this point.

Agent i gets a positive payoff ui in period t if the principal picks his idea at t. Agent i’s

objective is to maximize the expectation of the discounted sum
∑∞

t=0 δ
t
iui1{xt = i}, where δi

is agent i’s discount factor, 1{·} is the indicator function and xt ∈ A∪ {∅} is the identity of

the agent whose idea the principal picks in period t, if any. The principal’s profit in a period

is zero if she does not implement any idea, and is otherwise equal to the realized profit of the

idea that she implements. Her objective is to maximize the expectation of the discounted

sum
∑∞

t=0 δ
t
0yt, where δ0 is the principal’s discount factor and yt ∈ {0, L,H} is her period-t

profit.

The players observe which agent’s idea is chosen by the principal and the realized value

6Note that β may be zero. We discuss the case γ = 1 in Section 6.

7



of that idea.7 We define a history at any period t as the sequence

ht = ((x0, y0, S0), . . . , (xt−1, yt−1, St−1)),

where Sτ ⊆ A is the set of agents who proposed their ideas in each period τ < t and, as

defined above, xτ and yτ denote the implemented idea’s proposer and its realized profit, if

any.

A strategy for agent i determines, for each period t, the probability with which he reports

his idea to the principal as a function of his current idea’s quality and the history of the

game. A strategy for the principal determines, for each period t, a lottery over whose idea

to select (if any) from among the set of agents currently proposing an idea, given that set

of proposers and the history of the game. We apply the notion of perfect Bayesian Nash

equilibrium. We view an equilibrium as a mechanism selected by a principal who is unable

to commit. The principal cannot influence nature (the probability of good ideas, and the

stochasticity of profit), but would ideally like to overcome the incentive problem of agents.

The first-best outcome from the principal’s point of view is to be able to implement, in every

period, a good idea whenever one exists and a bad idea otherwise.

4 Analysis of the Benchmark Model

We think of this game as a mechanism design problem without commitment. The principal

wants to design a selection rule to maximize her payoff, but cannot commit to any set of rule.

Instead, her rule must be justified endogenously, as an optimal response to that of the agents

in equilibrium. Can the principal can reach her first best in this circumstance? It turns out

that the answer to this question hinges on the ability of the agents in her organization.

A strategy profile achieves the principal’s first best if a good idea is implemented in all

rounds where at least one agent has a good idea, and a bad idea is implemented in all other

rounds.8 We say that the principal’s first best is achievable at equilibrium if there exists

δ < 1 and a strategy profile that achieves the principal’s first best and that forms a PBNE

whenever δi ≥ δ, for all i ∈ A.

Our first result provides a characterization of the range of θ’s for which the principal can

achieve her first-best when agents are patient enough, provided that profits are sufficiently

informative of quality.

7Our results would not change if players could observe more, nor would they change if they only observed
the identity of the last agent whose idea yielded low profit for the principal.

8Of course, the principal would prefer picking only high-profit ideas when possible, but no one knows at
the selection stage which ideas will turn out successful.
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Proposition 1. Define the threshold ability level θ∗ = 1− n−1

√
1
n

. Then:

(i) If θ < θ∗, then the principal’s first best cannot be achieved at equilibrium.

(ii) If θ > θ∗, then the principal’s first best is achievable at equilibrium provided that profits

are sufficiently informative of quality, meaning that 1−β
1−γ is large enough.

Proof. We start with the negative result when θ < θ∗. Suppose that there is a strategy

profile that forms a PBNE for δi = δ, for all i ∈ A, and that achieves the principal’s first

best. Achieving the principal’s first best implies that, at each history h, there is an agent

i(h) ∈ A such that agents other than i(h) propose good ideas only, i(h) proposes his idea

whatever its quality, the principal picks i(h) only when he is the sole proposer, and otherwise

picks an agent other than i(h).

An agent j could follow the strategy of proposing his idea in each round, whatever its

quality. By doing this, the agent gets picked with probability (1 − θ)n−1 at any history h

with j = i(h), and he gets picked with probability at least (1− θ)n−2 at any history h with

j 6= i(h). Each agent can thus secure himself a discounted likelihood of being picked which

is larger than or equal to (1− θ)n−1/(1− δ).
To achieve her first best at equilibrium, the principal picks exactly one agent in each

round. So, in total, the aggregate discounted likelihood of being picked is 1/(1 − δ). The

equilibrium could not exist if 1/(1 − δ) were strictly smaller than the aggregate discounted

likelihood of being picked that agents can secure, that is, n times (1− θ)n−1/(1− δ). That

relationship holds if and only if θ < θ∗, thereby proving the first part of the result.

The proof of the positive result for θ > θ∗ is constructive, and will follow from Proposition

2. Indeed, we will define shortly a strategy profile that achieves the principal’s first best,

and characterize under which conditions on β, γ, and δ it forms a PBNE. The positive result

for θ > θ∗ will follow at once.

The threshold ability θ∗ in Proposition 1 depends on the number of agents, n. As Figure

1 shows, θ∗ decreases in n, and tends to 0 as n tends to infinity. For instance, θ∗ is 0.5 when

n equals two, and approximately 0.42 and 0.37 for n equal to three and four, respectively.

We next show that, regardless of the number of agents, the principal’s first best can achieved

through the following strategy profile when θ > θ∗.

Definition 1 (The Silent Treatment Strategy Profile). At each history, one agent is desig-

nated as the agent of last resort, and all other agents are designated as discerning. The agent

of last resort proposes his idea independently of its quality, while each discerning agent pro-

poses his idea if and only if it is good. The principal selects the idea proposed by the agent

9
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Figure 1: The threshold ability θ∗ as a function of the number of agents n.

of last resort if it is the only one available. Otherwise, the principal ignores the proposal

of the last resort agent and selects among the discerning agents’ proposals by randomizing

uniformly. The initial agent of last resort is chosen arbitrarily, and remains in that role so

long as all the principal’s past profits were high. Otherwise, the agent of last resort is the

most recent agent whose idea yielded low profit for the principal.

Under the Silent Treatment strategy profile, the principal is sure to implement an idea

each period, and will select a good idea whenever one exists. Indeed, if none of the discerning

agents have a good idea, then there is always a proposal available from the agent of last

resort. This begs the question, when does the silent treatment strategy profile constitute an

equilibrium? To this end, it will be important to define the following quantities. At the very

beginning of a period – before ideas’ qualities are realized – we have:

• the ex ante probability that the last resort agent is chosen is ρ = (1− θ)n−1;

• the ex ante probability of being selected as a discerning agent is 1−ρ
n−1

,

• the premium (in terms of the increased ex ante probability of selection) from being a

discerning agent, instead of the agent of last resort, is π = 1−ρ
n−1
− ρ = 1−nρ

n−1
.

We are now ready to characterize when the Silent Treatment strategy profile forms a

PBNE.

Proposition 2. The Silent Treatment strategy profile forms a PBNE if and only if for every

agent i,

δi ≥
1

γ + (γ − β)π
.
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Proof. Assume that players follow the Silent Treatment strategy profile. It is easy to see

that neither the agent of last resort, nor the principal, have profitable unilateral deviations.

We need to check that a discerning agent wants to propose good ideas, and refrain from

proposing bad ideas.

Let σ be the probability that a discerning agent is picked conditional on him proposing

his idea, that is, σ = 1−ρ
(n−1)θ

. A discerning agent i will refrain from proposing a bad idea if

δiV
D
i ≥ σ︸︷︷︸

i selected

(
(1− δi)ui + βδiV

D
i︸ ︷︷ ︸

high profit

+ (1− β)δiV
LR
i︸ ︷︷ ︸

low profit, i becomes
last resort agent

)
+ (1− σ)δiV

D
i︸ ︷︷ ︸

i not selected

, (1)

where V D
i and V LR

i , represent i’s average discounted payoff (before learning his idea’s quality)

under the Silent Treatment strategy profile when he is discerning and when he is the agent

of last resort, respectively. Similarly, a discerning agent i will propose a good idea if

σ︸︷︷︸
i selected

(
(1− δi)ui + γδiV

D
i︸ ︷︷ ︸

high profit

+ (1− γ)δiV
LR
i︸ ︷︷ ︸

low profit, i becomes
last resort agent

)
+ (1− σ)δiV

D
i︸ ︷︷ ︸

i not selected

≥ δiV
D
i . (2)

Let us first examine incentive condition (1). We subtract δiV
LR
i from both sides of the

inequality (1), and let ∆i represent V D
i −V LR

i . Then incentive condition (1) is equivalent to

δi∆i ≥ σ(1− δi)ui + σβδi∆i + (1− σ)δi∆i,

which can be rearranged to obtain the inequality

∆i ≥
(1− δi)ui
(1− β)δi

. (3)

Similar computations show that inequality (2) is equivalent to

∆i ≤
(1− δi)ui
(1− γ)δi

. (4)

The payoff difference ∆i from being a discerning agent instead of the last resort agent can be

computed through the recursive equations defining V D
i and V LR

i . Since a discerning agent

proposes only good ideas under the Silent Treatment strategy profile, while a last resort agent
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proposes all ideas but is chosen only when his is the only one available, these equations are:

V D
i =

good idea,
selected︷︸︸︷
θσ

(
(1− δi)ui + γδiV

D
i + (1− γ)δiV

LR
i

)
+

bad idea, or
not selected︷ ︸︸ ︷
(1− θσ) δiV

D
i ,

V LR
i = ρ︸︷︷︸

selected

(
(1− δi)ui + δiV

LR
i

)
+ (1− ρ)︸ ︷︷ ︸

not selected

(
γδiV

LR
i + (1− γ)δiV

D
i︸ ︷︷ ︸

low profit, switch
to discerning

)
.

(5)

Replacing V D
i by V LR

i + ∆i, notice that the expression for V LR
i can be rewritten as

V LR
i = ρ(1− δi)ui + δiV

LR
i + (1− ρ)(1− γ)δi∆i.

Subtracting this new expression for V LR
i from that for V D

i in (5), we get:

∆i = π(1− δi)ui + θσγδi∆i + (1− θσ)δi∆i − (1− ρ)(1− γ)δi∆i,

or

∆i =
π(1− δi)ui

1− δi + δi(1− γ)(1 + π)
.

Using this expression for ∆i, we conclude that the incentive condition (4) for proposing

good ideas is always satisfied, and that the incentive condition (3) for withholding bad ideas

is satisfied if and only if δi ≥ 1/ (γ + (γ − β)π) , as claimed.

From Proposition 2, we see that the Silent Treatment strategy profile forms a PBNE

when agents are patient enough if and only if γ + (γ − β)π > 1, or

π >
1− γ
γ − β

=
1

τ − 1
,

where τ is the likelihood ratio 1−β
1−γ that a low profit realization arises from a bad idea versus

a good idea. Thus, as soon as π is strictly positive, the principal’s first best is achievable

at equilibrium provided that profits are sufficiently informative of quality. Moreover, π is

strictly positive if and only if θ > θ∗ (as can be seen using π = 1−nρ
n−1

and ρ = (1 − θ)n−1).

This proves the positive result in Proposition 1.

The Silent Treatment strategy profile has several desirable properties. First, the princi-

pal and the agents need not observe, nor remember, much information about past behavior.

It suffices for them to know at all histories the identity of the current agent of last resort.

Second, the principal’s selection rule is optimal for her (thereby providing endogenous com-

mitment) without relying on the agents to punish her if she deviates from it. While efficient

12



equilibria in repeated games oftentimes rely on any deviator to be punished by others, we

would find it unnatural if the principal were to follow her part of the equilibrium that achieves

her first best only because of the fear of having the agents punish her otherwise. It is diffi-

cult to provide a simple definition of what it means for a strategy profile not to rely on the

agents to punish the principal. Even so, we can be certain that the Silent Treatment strategy

profile does have this feature, since the profile remains a PBNE even when the principal’s

discount factor is set to zero. Indeed, notice that the principal’s discount factor does not

enter Proposition 2; only the discount factors of the agents matter. Third, as we will now

argue in the second main part of the paper, the Silent Treatment strategy profile achieves

the principal’s first best in a belief-free way when there is uncertainty about the ability of

different agents to have good ideas.

5 Uncertain Abilities

Remember that θ represents the probability of having a good idea in any period. Thus, it

measures an agent’s ability. So far, agents’ abilities were commonly known and identical.

More realistically, suppose that agents may differ in their ability. Each agent i knows his

own ability θi, but the principal cannot observe it. Agents may or may not know each others’

abilities either. It is only common knowledge that every agent’s ability belongs to an interval

[θ, θ̄] ⊆ [0, 1].9 What can the principal do in this case?

This scenario is reminiscent of a multi-armed bandit problem, where pulling an arm in

a period is a metaphor for picking an agent’s idea. The new feature, however, is that arms

are strategic: they can choose whether to be available in a period. Following the lessons

from the multi-armed bandit literature, the first thought might be to study the principal’s

optimal tradeoff between ‘experimentation’ to learn about agents’ abilities and ‘exploitation’

by giving priority to the most promising agents. In the classic bandit problem, the Gittins

index offers an elegant (but typically not closed-form) solution for which arm to choose each

period.

Applied to our setting, the classic solution falls short of the principal’s first best: experi-

mentation necessarily implies efficiency losses. In this section, we show that the principal can

still achieve her first best under incomplete information. As before, using the Silent Treat-

ment strategy profile, she has a simple way to use the repeated nature of her interactions

to incentivize the agents. The equilibrium is robust, in the sense that it forms an ex-post

PBNE for any realized vector ~θ = (θ1, . . . , θn) of agents’ abilities; that is, it constitutes a

belief-free equilibrium. To show this, we must first consider the scenario in which abilities

9This strictly generalizes our benchmark model, which can be seen as the special case θ = θ̄ = θ.
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are heterogenous but commonly known.

5.1 Commonly Known Heterogenous Abilities

Consider the ex-post game in which the vector of agents’ abilities is commonly known to

be ~θ. Is the Silent Treatment strategy profile still an equilibrium? The behavior prescribed

for the principal and agent of last resort are clearly best responses to others’ strategies. It

remains to check that a discerning agent is willing to propose good ideas and refrain from

proposing bad ideas.

To do this, we must consider an agent’s payoffs and incentives when he is a discerning

agent and when he is the agent of last resort, conditional on all players following the Silent

Treatment strategy profile. The difficulty here is that unlike in Section 4, an agent’s average

discounted payoff depends not only on the different ability levels of agents, but also on the

identity of the agent of last resort. Indeed, a discerning agent’s payoff depends on how

often other discerning agents propose their ideas, which in turn depends on their ability. A

discerning agent’s payoff is thus impacted by which of the n − 1 other agents is removed

from the discerning pool in order to serve as the agent of last resort. Moreover, the agent of

last resort will vary over time as low profits are realized.

We will use V LR
i (~θ) to denote i’s average discounted payoff under the Silent Treatment

strategy profile when he is the current agent of last resort; and use V D
i (~θ, `) to denote i’s

average discounted payoff under the Silent Treatment strategy profile when he is discerning

and agent ` ∈ A \ {i} is the current agent of last resort.

Important probabilities. To understand agents’ payoffs and incentives, we must under-

stand the probability with which an agent’s idea is selected by the principal, assuming that

the other agents and the principal all follow the Silent Treatment strategy profile. There are

different possible circumstances to consider. We let the probability that i is picked when he

is the agent of last resort be denoted by ρi(~θ). When ` is the agent of last resort, we let the

probability that a discerning agent i is picked, conditional on his proposing an idea, be de-

noted by σi(~θ, `). When ` is the agent of last resort, we let the probability that a discerning

agent j is picked, conditional on another discerning agent i proposing but not being picked,

be denoted by pj(~θ, i, `). Finally, when ` is the agent of last resort, we let the probability

that a discerning agent j is picked, conditional on another discerning agent i not proposing,
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be denoted by qj(~θ, i, `). These probabilities are given as follows:

ρi(~θ) =
∏
k 6=i

(1− θk),

σi(~θ, `) =

∑
S⊆A\{`}:i∈S

1
|S|
∏

k∈S θk
∏

k 6∈S,k 6=`(1− θk)
θi

,

pj(~θ, i, `) =

∑
S⊆A\{`}:i,j∈S

1
|S|
∏

k∈S θk
∏

k 6∈S,k 6=`(1− θk)

θi(1− σi(~θ, `))
,

qj(~θ, i, `) =

∑
S⊆A\{i,`}:j∈S

1
|S|
∏

k∈S θk
∏

k 6∈S,k 6=`(1− θk)
1− θi

.

The expression for ρi(~θ) follows because a last resort agent is selected under the Silent Treat-

ment strategy profile if and only if his is the only proposal, which occurs if and only all dis-

cerning agents have bad ideas. To understand the expression for σi(~θ, `), observe that while

agent i’s proposal is selected uniformly from among any set of discerning agents’ proposals,

we must consider all different possible sets of proposers and their probabilities. The probabil-

ities ρi(~θ) and σi(~θ, `) are needed to characterize the equilibrium value functions of agents.

The final two probabilities pj(~θ, i, `) and qj(~θ, i, `), whose expressions follow from similar

reasoning, will be needed to capture incentive conditions. We begin by studying the latter.

Incentive conditions in terms of equilibrium payoffs. With these probabilities in

mind, if ` is the agent of last resort, then the incentive condition for a discerning agent i not

to propose a bad idea is given by:

last resort
agent chosen︷ ︸︸ ︷
ρ`(~θ)

1− θi
δiV

D
i (~θ, `) +

∑
j 6=i,`

discerning
j chosen︷ ︸︸ ︷
qj(~θ, i, `)

(
γδiV

D
i (~θ, `) +

low profit, j
becomes last resort︷ ︸︸ ︷

(1− γ)δiV
D
i (~θ, j)

)

≥

i chosen︷ ︸︸ ︷
σi(~θ, `)

(
(1− δi)ui + βδiV

D
i (~θ, `) +

low profit, i
becomes last resort︷ ︸︸ ︷

(1− β)δiV
LR
i (~θ)

)
+ (1− σi(~θ, `))

∑
j 6=i,`

pj(~θ, i, `)︸ ︷︷ ︸
discerning j

chosen instead

(
γδiV

D
i (~θ, `) + (1− γ)δiV

D
i (~θ, j)︸ ︷︷ ︸

low profit, j
becomes last resort

)
.

(ICb)
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Similarly, the incentive condition for i to report a good idea when he is discerning and ` is

the agent of last resort, is:

σi(~θ, `)
(

(1− δi)ui + γδiV
D
i (~θ, `) + (1− γ)δiV

LR
i (~θ)

)
+ (1− σi(~θ, `))

∑
j 6=i,`

pj(~θ, i, `)
(
γδiV

D
i (~θ, `) + (1− γ)δiV

D
i (~θ, j)

)
≥ ρ`(~θ)

1− θi
δiV

D
i (~θ, `) +

∑
j 6=i,`

qj(~θ, i, `)
(
γδiV

D
i (~θ, `) + (1− γ)δiV

D
i (~θ, j)

)
,

(ICg)

which differs from Condition ICb both in the direction of the inequality and because the

probability that agent i’s idea generates low profit is γ instead of β.

Incentive conditions ICb and ICg are linear in the equilibrium payoffs. It turns out that

they depend on these payoffs only through the difference in average discounted payoffs from

being discerning instead of being the agent of last resort, as the preliminary result below

highlights. Because agents are heterogenous, the payoff difference depends on the identity

of the agent of last resort. For each agent i ∈ A and each possible agent of last resort ` 6= i,

we define the payoff difference

∆Vi(~θ, `) = V D
i (~θ, `)− V LR

i (~θ).

Let ∆~Vi(~θ) denote the (n− 1)-column vector obtained by varying the agent of last resort in

A \ {i}. We next define two matrices to help state the result. For each i and ~θ, let M g
i (~θ)

be the (n− 1)-square matrix whose ``′ entry, for all `, `′ ∈ A \ {i}, is given by

[M g
i (~θ)]``′ =

{
q`′(~θ, i, `)− p`′(~θ, i, `)(1− σi(~θ, `)) if ` 6= `′,

ρ`(~θ)/(1− θi) if ` = `′.

The diagonal entries of M g
i (~θ) capture the probability that all agents other than i and `

have bad ideas; while the off-diagonal entries capture the increased probability with which

another discerning agent is selected when agent i does not propose his idea, as compared to

when i does propose. Next, define M b
i (
~θ) to be the (n− 1)-square matrix constructed from

M g
i (~θ) by adding to it the diagonal matrix whose ``-entry is γ−β

1−γ σi(
~θ, `). Finally, ~σi(~θ) is the

(n−1)-column vector whose `-th entry, for all ` 6= i, is σi(~θ, `). The following lemma, proved

in the appendix, characterizes the equilibrium conditions in terms of payoff differences.

Lemma 1. The Silent Treatment strategy profile constitutes a PBNE of the ex-post game
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with abilities ~θ if and only if

δi(1− γ)

ui(1− δi)
M g

i (~θ)∆~Vi(~θ) ≤ ~σi(~θ) ≤
δi(1− γ)

ui(1− δi)
M b

i ∆~Vi(~θ)(~θ).

Equilibrium Payoffs and Payoff Differences. The above result provides a preliminary

characterization of the equilibrium conditions as a function of the average discounted payoff

differences between being discerning and being the agent of last resort. We now delve

further into agents’ payoffs, with the goal of characterizing the payoff differences in terms

of exogenous variables only. An agent i’s average discounted payoff V D
i (~θ, `) when he is

discerning and agent ` is the agent of last resort, and his average discounted payoff V LR
i (~θ)

when he is the agent of last resort himself, are jointly determined by the following, recursive

system of equations for all possible agents ` 6= i:

V LR
i (~θ) =

i is
chosen︷︸︸︷
ρi(~θ)

(
(1− δi)ui + δiV

LR
i (~θ)

)
+
∑
j 6=i

j chosen when
i is last resort︷ ︸︸ ︷
θjσj(~θ, i)

(
γδiV

LR
i (~θ) +

low profit,
j becomes last resort︷ ︸︸ ︷

(1− γ)δiV
D
i (~θ, j)

)
,

V D
i (~θ, `) =

i chosen when
` is last resort︷ ︸︸ ︷
θiσi(~θ, `)

(
(1− δi)ui + γδiV

D
i (~θ, `) +

low profit,
i becomes last resort︷ ︸︸ ︷
(1− γ)δiV

LR
i (~θ)

)
+
∑
j 6=i,`

θjσj(~θ, `)︸ ︷︷ ︸
j chosen when
` is last resort

(
γδiV

D
i (~θ, `) + (1− γ)δiV

D
i (~θ, j)︸ ︷︷ ︸

low profit,
j becomes last resort

)
+ ρ`(~θ)︸ ︷︷ ︸

` is
chosen

δiV
D
i (~θ, `).

(6)

In the appendix, we manipulate the system of equations (6) to derive the average discounted

payoff differences. It turns out that the payoff differences depend on the vector of abilities
~θ only through the likelihood premiums of being picked when discerning versus when the

agent of last resort. By contrast to Section 4, under heterogenous abilities there are many

such premiums to consider, as the probability of being picked when discerning depends on

the vector of abilities ~θ as well as the identity of the agent of last resort. Formally, for each

` and i in A, let

π`i(~θ) = θiσi(~θ, `)− ρi(~θ)

be agent i’s likelihood premium when ` would be the agent of last resort. For each i and

each ~θ, let ~πi(~θ) be the (n− 1)-column vector whose `-component is π`i(~θ). This vector thus

lists the likelihood premiums that are relevant for i, as a function of the agent of last resort.

Using the likelihood premiums, define Bi(~θ) to be the (n− 1)-square matrix whose ``′-entry,
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for any `, `′ in A \ {i}, is given by

[Bi(~θ)]``′ =

{
πi`′(~θ)− π``′(~θ) if ` 6= `′,

1 + πi`(~θ) + (1− δi)/(δi(1− γ)) if ` = `′.

The next lemma, which is proved in the appendix, shows how the likelihood premiums

characterize the payoff differences through the matrix Bi(~θ).

Lemma 2. For all i and ~θ, the average discounted payoff differences ∆~Vi(~θ) satisfy the

following equation:

Bi(~θ)∆~Vi(~θ) =
ui(1− δi)
δi(1− γ)

~πi(~θ).

Equilibrium conditions in terms of exogenous variables. If we could solve for ∆~Vi(~θ)

above, then we could combine the previous two lemmas to characterize under which circum-

stances our strategy profile forms an equilibrium of the ex-post game with abilities ~θ. We

show in the appendix that the matrix Bi(~θ) is strictly diagonally dominant, and therefore

invertible.

Proposition 3. The Silent Treatment strategy profile constitutes a PBNE of the ex-post

game with abilities ~θ if and only if

M g
i (~θ)Bi(~θ)

−1~πi(~θ) ≤ ~σi(~θ) ≤M b
i (
~θ)Bi(~θ)

−1~πi(~θ).

As can be seen from our analysis, the equilibrium conditions are independent of the prin-

cipal’s discount factor δ0, which means that they would hold even if the principal were fully

myopic. The equilibrium thus doesn’t require that the principal’s behavior be enforced by

the threat of punishments from agents, which we consider a natural property in a mechanism

design context where the principal is the authority. Note, in addition, that the equilibrium

conditions are also independent of the payoff ui each agent i gets when selected. We next

turn to the question of whether the Silent Treatment strategy profile forms an equilibrium

for all possible ability levels.

5.2 The Silent Treatment as a Belief-Free Equilibrium

The principal may have little information about agents’ abilities and would like to guarantee

her first-best outcome in all cases. The notion of belief-free equilibrium directly addresses

the question of equilibrium robustness. The Silent Treatment strategy profile is a belief-free

equilibrium if it forms a PBNE for any realized vector of abilities ~θ in the set [θ, θ]A of all
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possible abilities. The principal’s first best is achievable by a belief-free equilibrium if there

exists δ < 1 and a strategy profile that achieves the principal’s first best and that forms a

belief-free equilibrium whenever δi ≥ δ, for all i ∈ A. Proposition 3 can then be used to

prove a belief-free extension of our first main result.

Proposition 4. Consider the ability threshold θ∗ defined in Proposition 1. We have:

(i) If θ < θ∗, then the principal’s first-best cannot be achieved in any belief-free equilibrium.

(ii) If θ > θ∗, then there exists an informativeness threshold τ > 0 such that, for all (β, γ)

with 1−β
1−γ ≥ τ , the principal’s first best is achievable by a belief-free equilibrium, namely,

the Silent Treatment strategy profile.

The principal’s ability to achieve her first best in this setting thus hinges on her worst

possible agent, the organization’s ‘weakest link.’ Only when she is certain that the agents all

have abilities greater than θ∗ can she incentivize them to be discerning. A principal may or

may not be able to screen agents to ensure a minimal standard for entry to the organization.

The threshold θ∗ decreases in the number of agents n, and is always smaller than 1/2, so it

would suffice that agents are simply more likely to have good ideas than bad ones.

Part (i) of Proposition 4, the negative result, follows from the corresponding part of

Proposition 1. Indeed, it is more difficult to form an equilibrium for every possible vector ~θ

of ability levels than it is to form an equilibrium for some common ability level θ. By contrast,

heterogeneity in abilities makes part (ii) of the result quite challenging to prove. Even though

Proposition 3 provides a helpful characterization of equilibrium conditions for the Silent

Treatment strategy profile for a given ~θ, it is not obvious a priori whether these inequalities

can be satisfied when abilities are heterogenous. As an illustration of the difficulties involved,

it is not straightforward to check whether the payoff differences ∆Vi(~θ) are positive, because

the solution to a linear system may be nonpositive even when all the parameters in the

system are positive themselves. In the appendix, we overcome this and other challenges by

using special properties of the matrices M g
i (~θ), M b

i (
~θ) and Bi(~θ). Importantly, the likelihood

premiums must be strictly positive to make the equilibrium possible, which we show holds

if and only if θ > θ∗. Belief-freeness is achieved because the conditions in Proposition 3 hold

strictly, and uniformly across all ~θ, when profits are sufficiently informative and agents are

sufficiently patient. That is, the agents have strict incentives to follow the Silent Treatment

strategy profile when it constitutes an equilibrium.
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6 When Good Ideas Give High Profit for Sure

Our analysis so far has restricted attention to γ < 1, that is, settings in which the principal

cannot conclude an idea was bad when low profit is realized. We now consider the special

case γ = 1 in which good ideas surely deliver high profit when implemented. As before, we

permit any β ∈ [0, γ). Indeed, so long as we have β < γ to maintain the distinction that

‘good’ ideas are better for the principal than ‘bad’ ones, the probability β with which bad

ideas deliver high profit does not affect our results.

The analysis in Section 4 determining when the Silent Treatment strategy profile forms a

belief-free equilibrium also applies when γ = 1. Because the matrices Lemmas 1 and 2 take

a diagonal form when γ = 1, it becomes possible to find a closed-form characterization of

the range of parameters for which the silent-treatment strategies form an equilibrium of the

ex-post game with abilities ~θ. The ratio 1−β
1−γ is infinitely large when β < 1 and γ = 1, and

so one would expect part (ii) of Proposition 4 to hold. The following proposition, which is

proved in the appendix, confirms this intuition.

Proposition 5. Suppose γ = 1. The silent-treatment strategy profile is an equilibrium of

the ex-post game with abilities ~θ if and only if the following inequality holds for all i:

δi ≥
1

1 + (1− β) min` 6=i π`i(~θ)
.

There exists a patience threshold δ such that the silent-treatment strategy profile forms a

belief-free PBNE when δi ≥ δ for all agents i if and only if θ > θ∗.

Unlike part (ii) of Proposition 4, part (i) does not continue to hold when γ = 1. The

principal’s first-best can be achieved by other belief-free equilibria that coincide with the

Silent Treatment strategy profile on the equilibrium path (i.e., so long as the principal has

always received high profits) but impose harsher punishments off path.10 For instance,

suppose players start by following the Silent Treatment strategy with an arbitrary agent i

as last resort. However, as soon as a low profit occurs by implementing the idea of some

discerning agent j, the following strategy profile is played forever after: agent i proposes

his idea regardless of its quality, agents other than i report only low-quality ideas, and the

principal picks i’s ideas when he proposes and otherwise picks uniformly among proposed

ideas. The principal’s profit by following this strategy is clearly suboptimal should cheating

actually occur.

10Such considerations did not emerge for γ < 1 since no relevant history falls off the equilibrium path
when implementing the Silent Treatment strategy profile in that case.
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In the context of mechanism design without commitment, one could think of the principal

as a special player who can make any equilibrium focal. If the principal’s first best can be

achieved on path, then why would she adhere to an inefficient off-path payoff if she could

make the on-path equilibrium strategies salient once again?

We say that the principal’s first best is achievable in a credible way if there exists δ < 1

and a strategy profile that achieves the principal’s first best in the stage game played after

each history, and that forms an equilibrium whenever δi ≥ δ, for all i ∈ A. Notice that the

Silent Treatment strategy profile does achieve the principal’s first best in this sense, (indeed,

for any γ ≤ 1). In addition, the first part of Proposition 4 does hold for γ = 1 when adding

this requirement of credibility.

Proposition 6. If θ < θ∗, then the principal’s first best cannot be achieved by a belief-free

equilibrium in a credible way.

Propositions 5 and 6 then allow us to conclude that when γ = 1 (and independently of

β), a belief-free equilibrium achieves the principal’s first best in a credible way if and only if

her first best is achieved by the Silent Treatment strategy profile.

7 Concluding Remarks

In many organizations, decision makers are faced with the difficult task of choosing among

many proposals without having the time or resources to analyze each and every one of them.

A similar issue arises, for instance, in the case of a manager flooded with requests to approve

expenditures, but who does not have the time to scrutinize the contribution of each request.

This paper argues that when these situations are frequently repeated, it may be possible for

the decision maker to provide dynamic incentives to her subordinates or colleagues to ensure

they exercise self-restraint in their proposals. This alleviates the burden of scrutinizing each

one, helping the decision maker achieve the first-best outcome. We believe this insight could

be applied to other related settings.

To demonstrate our point, we analyze a simple, stylized model that allows us to lay out

our arguments transparently. Our framework suggests that, even in the absence of com-

mitment and monetary incentives, the optimal outcome can be achieved with a very simple

and intuitive strategy that does not require complex probabilistic inferences. Thus, we con-

tribute to applications of the belief-free equilibrium notion, offering a setting in which it can

be achieved using a simple strategy profile and strict incentives. Our analysis also suggests

a new approach to multi-armed bandit problems when the “bandit’s arms” strategically

decide whether to make themselves available in each period. In the literature on dynamic

21



mechanism design without commitment, we introduce an interpretation of the principal as

a special player who can at any history induce agents to coordinate on her most preferred

equilibrium.

Appendix

A. Preliminaries

We collect here several useful definitions and observations. Remember that

ρi(~θ) =
∏
k 6=i

(1− θk),

σi(~θ, `) =

∑
S⊆A\{`}:i∈S

1
|S|
∏

k∈S θk
∏

k 6∈S,k 6=`(1− θk)
θi

,

pj(~θ, i, `) =

∑
S⊆A\{`}:i,j∈S

1
|S|
∏

k∈S θk
∏

k 6∈S,k 6=`(1− θk)

θi(1− σi(~θ, `))
,

qj(~θ, i, `) =

∑
S⊆A\{i,`}:j∈S

1
|S|
∏

k∈S θk
∏

k 6∈S,k 6=`(1− θk)
1− θi

.

Remark 1. Observe that
∑

j 6=` θjσj(
~θ, `)+ρ`(~θ) = 1, since the principal always selects some

agent, resorting to the last resort agent if no discerning agent proposes. Moreover, note that∑
j 6=i,` pj(

~θ, i, `) = 1, since the fact that player i has proposed means that the selected agent

will come from the discerning pool. On the other hand,
∑

j 6=i,` qj(
~θ, i, `) + ρ`(

~θ)
1−θi = 1, since it

is possible that no discerning agent will propose.

For each agent i ∈ A, and agent of last resort ` 6= i, the aggregate discounted payoff

difference under the Silent Treatment strategy profile is

∆Vi(~θ, `) = V D
i (~θ, `)− V LR

i (~θ).

We let ∆~Vi(~θ) denote the (n− 1)-column vector obtained by varying the agent of last resort

in A \ {i}. Let ~σi(~θ) be the (n − 1)-column vector whose `-th entry, for all ` 6= i, equals

σi(~θ, `). For each ` and i in A, we define

π`i(~θ) = θiσi(~θ, `)− ρi(~θ)

as agent i’s likelihood premium, capturing the additional probability with which i is selected

as a discerning agent when ` would be the agent of last resort versus when i himself is the

agent of last resort.

22



We now define three matrices. For each i and ~θ, let M g
i (~θ) be the (n− 1)-square matrix

whose ``′-entry, for all `, `′ ∈ A \ {i}, is given by

[M g
i (~θ)]``′ =

{
q`′(~θ, i, `)− p`′(~θ, i, `)(1− σi(~θ, `)) if ` 6= `′,
ρ`(
~θ)

1−θi if ` = `′.

For each i and ~θ, let M b
i (
~θ) be the (n−1)-square matrix whose ``′-entry, for all `, `′ ∈ A\{i},

is given by

[M b
i (
~θ)]``′ =

{
q`′(~θ, i, `)− p`′(~θ, i, `)(1− σi(~θ, `)) if ` 6= `′,
ρ`(
~θ)

1−θi + γ−β
1−γ σi(

~θ, `) if ` = `′.

Remark 2. Note M b
i (
~θ) can be derived from M g

i (~θ) by adding γ−β
1−γ σi(

~θ, `) on each ``-entry.

Finally, for each i and ~θ, define Bi(~θ) to be the (n − 1)-square matrix whose ``′-entry,

for any `, `′ in A \ {i}, is given by

[Bi(~θ)]``′ =

{
πi`′(~θ)− π``′(~θ) if ` 6= `′,

1 + πi`(~θ) + (1− δi)/(δi(1− γ)) if ` = `′.

B. Proof of Proposition 3

The proof proceeds through a series of lemmas. Lemmas 1 and 2 have already been stated,

but not proved, in the text.

Proof of Lemma 1. First note that the Silent Treatment strategy of the principal is first

best for him, regardless of his discount factor and agents’ types, so long as agents follow

their strategies. Moreover, given that the principal follows this strategy, a last resort agent

cannot change his probability of going back into the discerning pool of agents by his own

actions. The last resort agent thus finds it optimal to propose any idea with probability

one, regardless of his discount factor and agents’ types. It remains to check the incentive

conditions for discerning agents.

Subtracting δiV
LR
i (~θ) from both sides of the incentive condition (ICb) for i to withhold
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a bad idea when ` is the last resort agent, we find that

ρ`(~θ)

1− θi
δi∆V

D
i (~θ, `) +

∑
j 6=i,`

qj(~θ, i, `)
(
γδi∆V

D
i (~θ, `) + (1− γ)δi∆V

D
i (~θ, j)

)
≥ σi(~θ, `)

(
(1− δi)ui + βδi∆V

D
i (~θ, `)

)
+ (1− σi(~θ, `))

∑
j 6=i,`

pj(~θ, i, `)
(
γδi∆V

D
i (~θ, `) + (1− γ)δi∆V

D
i (~θ, j)

)
.

Collect all ∆V D
i terms on the left-hand side, and multiply the inequality through by 1

(1−δi)ui .

Then, for each j 6= `, the coefficient multiplying (1−γ)δi
(1−δi)ui∆V

D
i (~θ, j) is easily seen to be

[M b
i (
~θ)]`j. The coefficient multiplying (1−γ)δi

(1−δi)ui∆V
D
i (~θ, `) is

1

1− γ

(
ρ`(~θ)

1− θi
+ γ

∑
j 6=i,`

qj(~θ, i, `)− βσi(~θ, `)− γ(1− σi(~θ, `))
∑
j 6=i,`

pj(~θ, i, `)

)

=
1

1− γ

(
ρ`(~θ)

1− θi
+ γ(1− ρ`(~θ)

1− θi
)− βσi(~θ, `)− γ(1− σi(~θ, `))

)
= [M b

i (
~θ)]``,

where the first equality follows from Remark 1. Stacking the inequalities for ` 6= i yields the

matrix inequality with M b
i (
~θ).

Next, subtracting δiV
LR
i (~θ) from both sides of the incentive condition (ICg) for agent i

to propose a good idea when ` is the last resort agent, we find that

σi(~θ, `)
(

(1− δi)ui + γδi∆V
D
i (~θ, `)

)
+ (1− σi(~θ, `))

∑
j 6=i,`

pj(~θ, i, `)
(
γδi∆V

D
i (~θ, `) + (1− γ)δi∆V

D
i (~θ, j)

)
≥
∑
j 6=i,`

qj(~θ, i, `)
(
γδi∆V

D
i (~θ, `) + (1− γ)δi∆V

D
i (~θ, j)

)
+

ρ`(~θ)

1− θi
δi∆V

D
i (`, θ, δi, γ).

Collect all ∆V D
i -terms on the right-hand side, and multiply the inequality through by 1

(1−δi)ui .

Then the coefficient multiplying (1−γ)δi
(1−δi)ui∆V

D
i (~θ, j) is easily seen to be [M g

i (~θ)]`j. The coeffi-

cient multiplying (1−γ)δi
(1−δi)ui∆V

D
i (~θ, `) reduces to

1

1− γ

(
γ
∑
j 6=i,`

qj(~θ, i, `) +
ρ`(~θ)

1− θi
− γ

)
= [M g

i (~θ)]``,

where the equality follows from Remark 1. Stacking the inequalities for ` 6= i yields the
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matrix inequality with M g
i (~θ).

Proof of Lemma 2. The value function V D
i is defined by the equation

V D
i (~θ, `) = θiσi(~θ, `)

(
(1− δi)ui + γδiV

D
i (~θ, `) + (1− γ)δiV

LR
i (~θ)

)
+
∑
j 6=i,`

θjσj(~θ, `)
(
γδiV

D
i (~θ, `) + (1− γ)δiV

D
i (~θ, j)

)
+ ρ`(~θ)δiV

D
i (~θ, `),

(7)

while the value function V LR
i is defined by

V LR
i (~θ) = ρi(~θ)

(
(1− δi)ui + δiV

LR
i (~θ)

)
+
∑
j 6=i

θjσj(~θ, i)
(
γδiV

LR
i (~θ) + (1− γ)δiV

D
i (~θ, j)

)
.

(8)

Subtracting δiV
LR
i (~θ) from both sides of Equation (7), we find that

V D
i (~θ, `)− δiV LR

i (~θ) = θiσi(~θ, `)
(

(1− δi)ui + γδi∆V
D
i (~θ, `)

)
+
∑
j 6=i,`

θjσj(~θ, `)
(
γδi∆V

D
i (~θ, `) + (1− γ)δi∆V

D
i (~θ, j)

)
+ ρ`(~θ)δi∆V

D
i (~θ, `),

(9)

In view of Remark 1, Equation (7) simplifies to

V D
i (~θ, `)− δiV LR

i (~θ) = θiσi(~θ, `)(1− δi)ui + (1− γ)δi
∑
j 6=i,`

θjσj(~θ, `)∆V
D
i (~θ, j)

+ δi∆V
D
i (~θ, `)

(
γ + (1− γ)ρ`(~θ)

)
.

(10)

Similarly, subtracting δiV
LR
i (~θ) from both sides of Equation (8), we find that

V LR
i (~θ)− δiV LR

i (~θ) = ρi(~θ)(1− δi)ui + (1− γ)δi
∑
j 6=i

θjσj(~θ, i)∆V
D
i (~θ, j). (11)

Subtracting Equation (11) from Equation (10), and using the definition of π``′(~θ), we find

that:

∆V D
i (~θ, `) = π`i(~θ)(1− δi)ui + δi∆V

D
i (~θ, j)

(
γ + (1− γ)πi`(~θ)

)
+ (1− γ)δi

∑
j 6=i,`

(
θjσj(~θ, `)− θjσj(~θ, i)

)
∆V D

i (~θ, j).
(12)

Note that θjσj(~θ, `)− θjσj(~θ, i) = π`j(~θ)− πij(~θ). We can thus rearrange Equation (12) and
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divide through by (1− γ)δi to find that Bi(~θ)∆~Vi(~θ) = (1−δi)ui
(1−γ)δi

~πi(~θ), as claimed.

Clearly, likelihood premiums must be smaller than one. We next show that they are

strictly positive if and only if agents’ abilities are all higher than θ∗.

Lemma 3. π``′(~θ) > 0 for all ~θ ∈ [θ, θ̄] and any two distinct `, `′ in A, if and only if θ > θ∗.

Proof. Notice that π``′(~θ) > 0 if and only if

θ`′ >
ρ`′(~θ)

σ`′(~θ, `)
.

We now show that the expression on the right-hand side is decreasing in θk, for all k ∈ A.

To this end, observe that

ρ`′(~θ)

σ`′(~θ, `)
=

∏
j 6=`′ (1−θj)∑n−2

k=0
1
k+1

∑
S⊆A\{`,`′},|S|=k

∏
j∈S θj

∏
j∈A\S,j 6=`,`′ 1−θj

= 1−θ`∑n−2
k=0

1
k+1

∑
S⊆A\{`,`′},|S|=k

∏
j∈S

θj
1−θj

∏
j∈A\S,j 6=`,`′

1−θj
1−θj

= 1−θ`∑n−2
k=0

1
k+1

∑
S⊆A\{`,`′},|S|=k

∏
j∈S

θj
1−θj

.

This function is indeed decreasing in θk, for all k ∈ A, and thus takes its highest value at
~θ = (θ, . . . , θ). Recalling the analysis of Section 4 when abilities are identical, we have that

π``′(~θ) > 0 for all ~θ ∈ [θ, θ̄] and any two distinct `, `′ in A, if and only if

θ > θ(n− 1)
(1− θ)n−1

1− (1− θ)n−1
,

or equivalently, θ > θ∗ = n−1

√
1
n
.

Lemma 4. The matrix Bi(~θ) is strictly diagonally dominant if θ > θ∗.

Proof. Showing strict diagonal dominance requires checking for every ` 6= i that

|[Bi(~θ)]``| >
∑
`′ 6=`

|[Bi(~θ)]``′|.

Observe that all the diagonal entries of Bi(~θ) are positive, and that within any given row `,

all the off-diagonal entries have the same sign: positive if θi > θ`, negative if θi < θ` and
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zero if θi = θ`. Using Remark 1 and the definition of π``′(~θ), we have∑
`′ 6=`

[Bi(~θ)]``′ =
∑
`′ 6=`

(
θ`′σ`′(~θ, i)− θ`′σ`′(~θ, `)

)
= ρ`(~θ)− ρi(~θ) + θiσi(θ, `)− θ`σ`(θ, i)

= π`i(~θ)− πi`(~θ).

Thus, given that all off-diagonal elements have the same sign within a given row, we have to

check that |π`i(~θ)− πi`(~θ)| < πi`(~θ) + 1 + 1−δi
(1−γ)δi

. This is clearly true when θi = θ`. Suppose

now θ` > θi. In this case, we have to check that

πi`(~θ)− π`i(~θ) < πi`(~θ) + 1 +
1− δi

(1− γ)δi

which is satisfied since π`i(~θ) > 0 by Lemma 3. Suppose next that θ` < θi. In this case, we

have to check that

π`i(~θ)− 2πi`(~θ) < 1 +
1− δi

(1− γ)δi
.

The right-hand side of the inequality is lowest when δi = 1. This holds since π`i(~θ) < 1 and

πi`(~θ) > 0 by Lemma 3.

Proof of Proposition 4

The proof proceeds through a series of lemmas. As is well-known, if A~x >> 0 for some

M -matrix11 A, then ~x >> 0, since M -matrices admit positive inverses. The matrices we

encounter in the characterization of the ∆~V ’s are diagonally dominant, but not M-matrices

since they may have rows with positive entries. In that case, A~x >> 0 need not imply that

~x >> 0. However, the next lemma shows that if ~x has a non-positive component, then there

exists ` such that x` ≤ 0 and the `th row of A has only positive entries.

Lemma 5. Let A = (aij)1≤i,j≤n be a square matrix that is strictly diagonally dominant, with

positive elements on the diagonal, and such that any two off-diagonal entries in the same

row have the same sign. If A~x >> 0 and ~x has a non-positive component, then there exists

` such that x` ≤ 0 and all the entries in row ` of A are positive.

Proof. Suppose, on the contrary, that the set J of components j such that xj ≤ 0 is

nonempty, and that row j of A has non-positive entries off-diagonal, for all j ∈ J . Let

` be the element of J such that x` ≤ xj, for all j ∈ J .

11An M -matrix has positive diagonal entries and negative off-diagonal entries.
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We have
n∑
k=1

a`kxk > 0,

which is equivalent to ∑
k∈J

a`kxk +
∑
k 6∈J

a`kxk > 0. (13)

Notice that a`kxk ≤ −|a`k|x`, for all k ∈ J \{`}. Hence
∑

k∈J ajkxk ≤ (a``−
∑

k∈J\{`} |a`k|)x`,
which is non-positive since the coefficient of x` is nonnegative by diagonal dominance of A.

All the coefficients of the second term in (13) fall off the diagonal of A and are thus non-

positive, while the corresponding components of x are positive since k 6∈ J . Hence the second

term is non-positive, reaching a contradiction.

The next lemma states a well-known fact in algebra, which will prove useful to establish

the subsequent lemma.

Lemma 6. A square matrix that is strictly diagonally dominant and has positive entries on

the diagonal admits a positive determinant.

Proof. See, for instance, Carnicer et al (1999).

The linear system characterizing equilibrium payoff gains in Proposition 2 can be rewrit-

ten as
δi(1− γ)

ui(1− δi)
Bi(~θ)∆~Vi(~θ) = ~πi(~θ),

where δi(1−γ)
ui(1−δi)∆

~Vi(~θ) is the expression that appears in the equilibrium constraints. Thus we

are interested in better understanding the system Bi(~θ)~x = ~πi(θ). We start with the case

δi = 1, where the matrix Bi(~θ) takes a simpler form. Let thus B∗i (
~θ) be the (n − 1)-square

matrix whose ``′-entry is 1 + πi`(~θ) when ` = `′, and πi`′(~θ)− π``′(~θ) when ` 6= `′.

Lemma 7. Consider n ≥ 3. Then, (i) defining σ∗ = σi(θ
∗, . . . , θ∗, `) for some i, `, we have

(1− θ∗)σ∗ < 1/2. Moreover, (ii) if θi ≥ θ` and θ > θ∗ then π`i(~θ)− πi`(~θ) < 1/2.

Proof. For (i), first note that the definition of σ∗ is independent of the choice of i, ` since σ

is evaluated when all abilities are equal to θ∗. Then observe (1− θ∗)σ∗ < 1/2 if and only if

2

n
n−1

√
1

n
< 1− n−1

√
1

n
,

since, by construction, θ∗σ∗ = ρ∗ := ρi(θ
∗, . . . , θ∗) and θ∗ = 1− n−1

√
1
n
. The desired inequality

is thus equivalent to
1

n
<

(
n

n+ 2

)n−1

.
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The LHS above is decreasing in n, while the RHS is increasing in n, and the inequality is

satisfied for n = 3. For (ii), note that θi ≥ θ` implies that

π`i(~θ)− πi`(~θ) = θiσi(~θ, `)− ρi(~θ)− θ`σ`(~θ, i) + ρ`(~θ)

= (θi − θ`)

(
σi(~θ, `)−

∏
j 6=i,`

(1− θj)

)
≤ (θi − θ`)σi(~θ, `)

≤ (1− θ∗)σ∗.

The proof concludes by applying the inequality from part (i).

Lemma 8. If B∗i (
~θ)~x = ~πi(θ) and θ > θ∗, then ~x >> 0.

Proof. This is evident in the case n = 2, since B∗i (
~θ) is a positive scalar. The rest of the

proof pertains to n ≥ 3, where B∗i (
~θ) is a matrix.

Suppose that ~x has some non-positive component. By Lemma 5, we can pick j such that

xj ≤ 0 and all entries of B∗i (
~θ) are positive. By Cramer’s rule, xj = det(Mj)/det(B

∗
i (
~θ)),

where Mj is the matrix obtained by replacing the j-column of B∗i (
~θ) by ~πi(θ). By Lemma

4 and Lemma 6, B∗i (
~θ) has a positive determinant, since it is strictly diagonally dominant,

and has positive entries on the diagonal. We finish the proof of this lemma by showing that

Mj has a positive determinant as well, which contradicts xj ≤ 0. We do this by showing

that Mj also satisfies the conditions of Lemma 6.

Consider first the case of row j, where the diagonal entry is πji(~θ), while the off-diagonal

entries come from B∗i (
~θ), and are positive by the lemma. Thus, we have to show that

πji(~θ) >
∑

k 6=i,j(πik(
~θ)− πjk(~θ)). The sum on the right-hand side is equal to(

1− ρi(~θ)− θjσj(~θ, i)
)
−
(

1− ρj(~θ)− θiσi(~θ, j)
)

= πji(~θ)− πij(~θ).

This is indeed strictly less than πji(~θ), since πij(~θ) > 0 by Lemma 3.

Next, consider a row ` 6= j, and suppose first that θi ≤ θ`. Then, all the off-diagonal

entries on row ` of B∗i (
~θ) are non-positive. A similar computation to that from the previous

paragraph tells that the sum of the absolute value of the off-diagonal entries of B∗i (
~θ) is

πi`(~θ) − π`i(~θ). The difference between B∗i (
~θ) and Mj on row ` is that the `j-entry of Mj

is πji(~θ) instead of πij(~θ) − π`j(~θ). Thus, the sum of the absolute value of the off-diagonal

entries of Mj is

πi`(~θ)− π`i(~θ)−
(
π`j(~θ)− πij(~θ)

)
+ πji(~θ),

which has to be strictly inferior to the diagonal entry 1 + πi`(~θ), in view of Lemma 3 and
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that π`j(~θ) ≥ πij(~θ) when θ` ≥ θi. This concludes the subcase for row ` 6= j when θi ≤ θ`.

Finally, consider the case of row ` where θi ≥ θ`. Similar computations tell us that strict

diagonal dominance is satisfied on such a row if and only if

πji(~θ) + π`i(~θ) + π`j(~θ) < 1 + 2πi`(~θ) + πij(~θ),

which requires the following function of ~θ to be everywhere positive on the domain [θ∗, 1]A:

1 + 2πi`(~θ) + πij(~θ)− πji(~θ)− π`i(~θ)− π`j(~θ). (14)

Note that the function in Equation (14) is multi-linear in ~θ, as each π``′ is multil-inear in ~θ.

Hence it is larger or equal to its minimal value when replacing each of (θi, θj, θ`) with one

of the two boundary points, 1 or θ∗. In the four cases where θi = θ`, that is, (θi, θj, θ`) is

either (1, 1, 1), (θ∗, θ∗, θ∗), (1, θ∗, 1) or (θ∗, θ∗, θ∗), the function in Equation (14) is positive

since πij(~θ) = π`j(~θ) and πi`(~θ) = π`i(~θ). In the two cases where θ` > θi, that is, (θi, θj, θ`)

is either (θ∗, 1, 1) or (θ∗, θ∗, 1), note that we have θj ≥ θi. The desired positivity follows

since πij(~θ) ≥ πji(~θ) and πi`(~θ) ≥ π`i(~θ). Finally, we consider the two cases where θ` < θi,

that is, (θi, θj, θ`) is either (1, 1, θ∗) or (1, θ∗, θ∗). Since in this case πij(~θ) ≥ πji(~θ) and

π`j(~θ) ≥ π`i(~θ), it suffices to show 2
(
π`i(~θ)− πi`(~θ)

)
< 1. This follows from Lemma 7.

The next lemma shows that the right-hand side inequality in Proposition 3 can be uni-

formly satisfied with slack when δi = 1 provided that profits are sufficiently informative of

ideas’ qualities.

Lemma 9. Let θ > θ∗. There exists an informativeness threshold τ and an η > 0 such that

~σi(~θ) + η~1 ≤M b
i (
~θ)B∗i (

~θ)−1~πi(~θ),

for all ~θ ∈ [θ, θ̄]A, and all (β, γ) with an informativeness likelihood ratio 1−β
1−γ ≥ τ .

Proof. Notice that both ~σi(~θ) and B∗i (
~θ)−1~πi(~θ) are independent of β and γ. The vector

~σi(~θ) << ~1 for all θ, and there exists ε > 0 such that B∗i (
~θ)−1~πi(~θ) ≥ ε~1 by Lemma 8 (the

expression being continuous in ~θ, its infimum for ~θ ∈ [θ, θ̄]A will be attained on the domain).

Finally, the matrix M b
i (
~θ) has diagonal entries larger than γ−β

1−γ min~θ∈[θ,θ̄]A min`6=i σi(~θ, `), and

off-diagonal entries in [0, 1], for all ~θ ∈ [θ, θ̄]A. The result then follows after observing that

min~θ∈[θ,θ̄]A min 6̀=i σi(~θ, `) > 0, and that γ−β
1−γ = 1−β

1−γ − 1.

We continue our exploration of the system Bi(~θ)~x = ~πi(θ). Lemma 8 focused on the case

δi = 1. The next lemma shows that, for any sequence of discount factors that converges to
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1, the corresponding solutions to the system uniformly (in ~θ) converge to the solution when

δi = 1. To emphasize the dependence of Bi on δi, we write Bi(~θ, δi) in the next Lemma.

Lemma 10. Let ~x(~θ, δi) = Bi(~θ, δi)
−1~πi(~θ). Consider a sequence (δmi )m≥1 of positive dis-

count factors that converge to 1. Then for all ε > 0, there exists an integer m̄ such that for

all m ≥ m̄ and all ~θ ∈ [θ, θ̄]A, we have ||~x(~θ, δmi )− ~x(~θ, 1)|| ≤ ε.

Proof. Notice that Bi(~θ, δi) = B∗i (
~θ) + 1−δi

(1−γ)δi
Id. So Bi is differentiable with respect to δi,

and its derivative is equal to −1
(1−γ)δ2i

. Hence Bi(~θ, δi)
−1 is differentiable with respect to δi,

and its derivative is equal to −1
(1−γ)δ2i

Bi(~θ, δi)
−1Bi(~θ, δi)

−1. We have:

||~x(~θ, 1)− ~x(~θ, δi)||∞ ≤ |1− δi| sup
δ∈[δi,1]

||∂~x
∂δ

(~θ, δ)||∞ ≤ |1− δi| sup
δ∈[δi,1]

||Bi(~θ, δ)
−1||2∞

(1− γ)δ2 ||~πi(~θ)||∞.

Thus,

sup
~θ∈[θ,θ̄]A

||~x(~θ, 1)− ~x(~θ, δi)||∞ ≤ |1− δi| sup
δ∈[δi,1],~θ∈[θ,θ̄]A

||Bi(~θ, δ)
−1||2∞

(1− γ)δ2 .

The result then follows from the fact that the supremum on the right-hand side of the

inequality is bounded.

We are now ready to prove Proposition 4. The negative result when θ < θ∗ follows from

Proposition 1, since achieving the principal’s first best in a belief-free way is more demanding

than achieving it for commonly known symmetric vectors of abilities. The positive result

when θ > θ∗ is proved by showing that the Silent Treatment strategy profile constitutes a

belief-free PBNE in the right range of parameters. The following lemma pertains to discern-

ing agents not reporting bad ideas, while the next focuses on discerning agents reporting

good ideas.

Lemma 11. There exists an informativeness threshold τ > 0 such that, for all (β, γ) with
1−β
1−γ ≥ τ , there exists δ ∈ (0, 1) so that the inequality

~σi(~θ) ≤M b
i (
~θ)Bi(~θ, δi)

−1~πi(~θ),

is satisfied for all δ ≥ δ and all ~θ ∈ [θ, θ̄]A.

Proof. Pick τ as in Lemma 9, and let (β, γ) be such that 1−β
1−γ ≥ τ . If this lemma were not

true, then there would exist a sequence (δmi )m≥1 in (0, 1) that converges to 1 and a sequence

(~θ
m

)m≥1 in [θ, θ̄]A that converges to some ~θ ∈ [θ, θ̄]A such that

~σi( ~θ
m) > M b

i (
~θm)Bi( ~θ

m, δmi )−1~πi( ~θ
m),
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for all m. By Lemma 10, for each ε > 0, there exists m̄ such that

~σi( ~θ
m) + ε||M b

i (
~θ
m

)||∞~1 > M b
i (
~θm)B∗i (

~θm)−1~πi( ~θ
m),

for all m ≥ m̄. This contradicts Lemma 9, as seen when taking m to infinity while selecting

ε < η/max~θ∈[θ,θ̄]A ||M b
i (
~θ)||∞.

We now conclude the proof of Proposition 4 by checking that the Silent Treatment strat-

egy profile forms a belief-free PBNE when δi is close enough to one, which holds indepen-

dently of the informativeness level 1−β
1−γ .

Lemma 12. Suppose that θ > θ∗. Then there exists a δ < 1 such that the inequality

M g
i (~θ)Bi(~θ, δi)

−1~πi(~θ) ≤ ~σi(~θ),

is satisfied for all δ ≥ δ and all ~θ ∈ [θ, θ̄]A.

Proof. The inequality to be checked can be rewritten as

M̂ g
i (~θ)Bi(~θ, δi)

−1~πi(~θ) ≤ ~1,

where M̂ g
i (~θ) be the matrix obtained by dividing each row ` of M g

i (~θ) by σi(~θ, `).

We now show that the inequality holds, and uniformly with slack, when δi = 1, that is,

there exists η > 0 such that

M̂ g
i (~θ)B∗i (

~θ)−1~πi(~θ) ≤ (1− η)~1, (15)

for all ~θ ∈ [θ, θ̄]A. The expression being continuous in ~θ and [θ, θ̄]A being compact, it is

sufficient to check that for all ~θ ∈ [θ, θ̄]A,

||M̂ g
i (~θ)B∗i (

~θ)−1~πi(~θ)||∞ < 1.

To see this, note that we have:

||M̂ g
i (~θ)B∗i (

~θ)−1~πi(~θ)||∞ ≤ ||M̂ g
i (~θ)||∞||B∗i (~θ)−1||∞||~πi(~θ)||∞

= ||B∗i (~θ)−1||∞||~πi(~θ)||∞

≤ maxk 6=i πki(~θ)

min`6=i 1 + πi`(~θ)−
∑

j 6=i,` |πij(~θ)− π`j(~θ)|
,

where the first inequality follows from properties of matrix norms, the equality follows from
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the fact that elements on each row of M̂ g
i (~θ) sum up to 1, and the second inequality follows

from the definition of ~πi(θ) and the Ahlberg-Nilson-Varah bound (see e.g. Varah (1975))

since B∗i (θ) is diagonally dominant. In the case that n = 2, we immediately see that the

right-hand side is strictly smaller than one, as πi`(~θ), π`i(~θ) ∈ (0, 1) and the summation over

j 6= i, ` vanishes. The rest of the proof considers the case n ≥ 3.

Let k be the index at which the maximum in the numerator of the last expression is

reached and let ` be the index at which the minimum in the denominator is reached. Suppose

first that θ` ≥ θi. Then the denominator becomes 1 + π`i(~θ) (see similar computations

when showing that Bi(~θ) is diagonally dominant). The fact that πki(~θ) is strictly inferior

follows at once since it is strictly inferior to 1 and π`i(~θ) is nonnegative (which follows from

θi ≥ θ∗, for all i). Suppose now that θ` ≤ θi. Now the denominator in the last expression

becomes 1−π`i(~θ)+2πi`(~θ) (see similar computations when showing that Bi(~θ) is diagonally

dominant), and we have to show that πki(~θ) is strictly inferior to it. For this, suppose first

that k = `. The inequality to check becomes π`i(~θ)−πi`(~θ) < 1/2, which was already shown

in Lemma 7. Finally, suppose that k 6= `. We need to check that

θiσi(~θ, k)− θ`σi(~θ, `)− 2(θi − θ`)Πj 6=i,`(1− θj) + (θi − θ`)σi(~θ, `) < 1.

It is sufficient to check that θiσi(~θ, k) − θ`σi(~θ, `) + (θi − θ`)σi(~θ, `) < 1. Notice that the

expression on the LHS is increasing in θi. Thus it is no larger than the same expression

evaluated at θi = 1. Next, it is linear in θ`, and it is thus maximized by taking θ` = 1 or

θ∗. The inequality is obvious if θ` = 1, so let’s assume that θ` = θ∗. Thus it is sufficient to

prove that σi((θ
∗,~θ−`), k)− θ∗σi(~θ, `) + (1− 2θ∗)σi(~θ, `) < 1. Remember that θ∗ is less than

1/2 when n ≥ 2. Thus the coefficient of πi(θ−`) is positive, and the expression on the LHS is

lower or equal to (2− 2θ∗)π∗. The desired inequality then follows from Lemma 7 for n ≥ 3.

Now that equation (15) has been proved, we are ready to conclude the proof of this

lemma. If the result is not true, then there exists a sequence (δmi )m≥1 in (0, 1) that converges

to 1 and a sequence (~θ
m

)m≥1 in [θ, θ̄]A that converges to some ~θ ∈ [θ, θ̄]A such that

M g
i ( ~θm)Bi( ~θ

m, δmi )−1~πi( ~θ
m) > ~σi( ~θ

m),

for all m. By Lemma 10, for each ε > 0, there exists m̄ such that

M g
i ( ~θm)B∗i (

~θm)−1~πi( ~θ
m) + ε||M g

i (~θ
m

)||∞~1 > ~σi( ~θ
m),

for all m ≥ m̄. This contradicts Equation (15), as seen when taking m to infinity while

selecting ε < η/max~θ∈[θ,θ̄]A ||M
g
i (~θ)||∞.
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Proof of Proposition 5

The incentive constraint for an agent i to propose a good idea when ` 6= i is the agent of

last resort is:

σi(~θ, `)(1− δi)ui + δiV
D
i (~θ, `) ≥ δiV

D
i (~θ, `),

which is thus always satisfied. The incentive constraint for an agent i not to propose a bad

idea when ` 6= i is the agent of last resort is:

δiV
D
i (~θ, `) ≥ σi(~θ, `)

(
(1− δi)ui + βδiV

D
i (~θ, `) + (1− β)δiV

LR
i (~θ)

)
+ (1−σi(~θ, `))δiV D

i (~θ, `).

Subtracting δiV
LR
i (~θ) on both sides, and rearranging terms, we get:

∆Vi(~θ, `) ≥
ui(1− δi)
δi(1− β)

(16)

The average discounted payoffs V D
i (~θ, `) and V LR

i (~θ) are given by the following recursive

equations, as can also been seen by using γ = 1 in (7) and (8):

V D
i (~θ, `) = θiσi(~θ, `)(1− δi)ui + δiV

D
i (~θ, `)),

V LR
i (~θ) = ρi(~θ)(1− δi)ui + δiV

LR
i (~θ),

which gives

∆Vi(~θ, `) = π`i(~θ)ui.

Thus, refraining from reporting bad ideas when ` is the agent of last resort imposes the

following restriction:

π`i(~θ) ≥
(1− δi)
δi(1− β)

,

or equivalently,

δi ≥
1

1 + (1− β)π`i(~θ)
.

Varying the agent of last resort, the highest lower-bound on δi is obtained when π`i is the

smallest, which gives us the desired inequality.

Thus, the silent-treatment strategy forms a belief-free PBNE if and only if πi(
~θ) > 0 for

all i and all ~θ ∈ [θ, θ̄]n. The last part of this proposition then follows from Lemma 3.

Proof of Proposition 6

The proof is analogous to that given for Proposition 1(i) in the text.
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