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Abstract 

 

I study a principal-agent problem where the principal chooses the signal's 

precision of the agent's action. I use the model to study how the principal's 

monitoring choice depends on each of the three properties of the agent: her 

disutility from performing the task, her probability of succeeding in the task 

and her outside option. 

 

JEL Classification: D81; D82; J33 

Keywords: Principal-agent model; Moral hazard; Monitoring: Costly state 

verification. 

 



1 Introduction

In the canonical principal-agent model, a risk-neutral principal provides to a risk-averse agent a
transfer that depends on a noisy signal of the agent’s action. Because of the agent’s risk aversion,
the spread in possible transfers for a given action implies a cost to the principal.

I contribute to this literature by allowing the principal to choose the signal’s precision of the
agent’s action. More precise signals allow for a reduction of the risk associated with the transfers,
and hence reduce the average transfer to the agent. Since the precision of the signal is costly, this
framework posits a trade-off for the principal’s monitoring decision between the cost of monitoring
and the cost of imposing risk on the agent. This paper uses a simple model to study how the
principal’s monitoring choice depends on each of three characteristics of the agent: her disutility
from performing the task, her probability of succeeding in the task, and her outside option.

First, how does the principal’s monitoring choice depend on the disutility from performing the
task? In a principal-agent problem without monitoring an increase in that disutility compels the
principal to increase the spread between payoffs in order to maintain the incentive-compatibility
constraint that the agent faces. Once monitoring is allowed, the principal is free to mix the two
instruments that contribute to holding the incentive-compatibility constraint: increasing the spread
or increasing the precision of monitoring. I show that an increase in the disutility from performing
the task results in an increase in both instruments. The intuition for this result is that the principal
balances the operational cost of monitoring with the cost of compensating the risk-averse agent
for the spread. When the disutility from performing the task increases the principal continues to
maintain this balance by increasing the marginal cost of both instruments.

Second, how does the principal’s monitoring choice depend on the probability of succeeding in
the task? The result and the intuition for this case is similar to the previous one. An increase in the
probability of succeeding in the task implies a smaller spread in the problem without monitoring.
When monitoring is available the principal maintains the balance between the two instruments by
lowering both the spread and the monitoring precision.

Third, how does the principal’s monitoring choice depend on the agent’s outside option? The
signal’s cost is assumed to be independent of the outside option. The signal’s benefit, however,
depends on the outside option in a nontrivial way. I show the condition under which the cost of
spreading out utilities is increasing in the outside option. When this is the case, the signal’s value

increases with the outside option, leading to the choice of more precise monitoring. In the optimal
contract, the signal’s precision increases (decreases) and the dispersion of utilities faced by the
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agent decreases (increases) with the agent’s outside option if the derivative of the inverse utility is
convex (concave).

Observed heterogeneity in the agent’s characteristics along the three dimensions studied in this
paper rises naturally in various principal-agent settings. Consider, for example, the problem of a
firm that hires a worker to do some task. This firm may face individuals with different disutility
levels of performing the task (e.g., due a to difference in availability constraints), different proba-
bilities of succeeding in the task (e.g., due to a difference in experience) and different levels of the
outside option (e.g., due to a difference in wealth). In this context the model dictates how the firm
that chooses both the worker’s payoff and the quality of monitoring should take into account all
those sources of heterogeneity.

Similarly, those sources of heterogeneity rise in the problem of insuring an agent against some
adverse event. The task in this context is being precautious. The insurer may face individuals with
different disutility of performing the task (e.g., due to a difference in attitudes towards being pre-
cautious), different probabilities of succeeding in the task (e.g., due to a difference in probabilities
of experiencing the adverse event), and different outside options (e.g., due to a difference in access
to alternative insurance schemes).

A few papers study wealth effects in a principal-agent model. Newman (2007) looks at how
occupational choice depends on wealth given two occupations that differ in the amount of risk
borne. In his model, workers who differ in their initial wealth level choose between entrepreneur-
ship that entails a risky payoff and being a worker with a risk-free payoff. Using a condition on
the inverse of marginal utility, Newman concludes that there is a threshold wealth level such that
workers with at most that wealth level choose the riskier occupation and vice versa.1 Thiele and
Wambach (1999) generalize Newman’s result by allowing for any finite number of effort levels
instead of two.2 I show that the condition I use, Newman’s condition and Thiele and Wambach’s
condition are equivalent.

The literature on contingent monitoring systems introduces monitoring into the principal-agent
problem as well. The emphasis in this literature is on how monitoring should depend on the
outcome of the agent’s action rather than the agent’s characteristics. This question is therefore
complimentary to the questions of this paper. Kim and Suh (1992) show that under some conditions
the optimal monitoring investment is decreasing in the outcome. The intuition for this result is

1Newman extends his model to allow for monitoring. He shows that the assignment of workers to monitoring
technologies follow their outside option. His result, however, is restricted to log utility and he leaves the extension to
general utilities for future research.

2Newman’s result appears in an early draft from 1995.
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that the principal is using monitoring more intensively when the outcomes are lower because in
those cases the agent is more likely to exert a low effort. Fagart and Sinclair-Desgagné (2007)
rank contingent monitoring systems. They extend Kim and Suh’s result by showing that when the
derivative of the inverse utility is convex (concave) the principal prefers monitoring systems whose
precision increases (decreases) with respect to the outcome.

2 The model

A risk-neutral principal contracts with a risk-averse agent. The agent’s action a ∈ {0, a} , a > 0

is her private information. This action determines output o ∈ {H,L} (owned by the principal)
as follows: p (H|a) = π, p (H|0) = 0. Denote the value for the principal from high output by V,
and normalize the value of low output to 0. The agent’s utility is u (w) − a, where u (·) is strictly
increasing, strictly concave, three times differentiable and its inverse is three times differentiable
as well; w is the transfer to the agent; and a is normalized such that it is the agent’s utility cost for
exerting effort a.

The principal can acquire a binary signal s ∈ {G,B} on the agent’s action, representing good
and bad outcomes, respectively. The good signal outcome can happen only if the agent’s action
is a = a, i.e., p (G|0) = 0. This means that the accuracy of the signal is determined by p (G|a).
If p (G|a) = 0, the signal carries no information; if p (G|a) = 1, the signal perfectly reveals the
agent’s action. Denote p (G|a) by θ and let θ be a choice variable of the principal. The signal’s
cost is a strictly increasing convex function c (θ).3 The signal and output probabilities, conditional
on effort, are independent.

In general, the contract should include a precision choice for any level of output. However,
since acquiring an informative signal is costly, the principal will always set θ = 0 for an agent with
outcome H . This is because p (H|0) = 0 implies that outcome H reveals the agent’s action. This
simplifies the contract as there are only three possible outcomes in equilibrium: {H,G,B}. The
contract specifies a recommendation on action, the precision choice of the monitoring technology
when low output is realized, and a transfer to the agent for any outcome. The action recommen-
dation must be incentive compatible. In addition, the contract requires that the agent’s expected
utility will be at least U.

3Since the paper focuses on the tradeoff between the spread and the monitoring precision I make the following
assumptions to guarantee an internal solution for θ (except when the signal is non informative): limθ→0c

′(θ) =
0, limθ→1c

′(θ) =∞.
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3 The contract

Denote by wx the principal’s transfer to the agent conditional on outcome x for x ∈ {H,G,B}.
Let Ĉ be the cost for a principal who recommends the action a. In what follows I assume that
the parameters justify creating the costly incentives for the agent to choose action a, e.g., V is
high enough. Otherwise, the problem becomes trivial with a recommendation of a = 0 and full
insurance. The principal’s problem is as follows:

Ĉ = min
wH ,wG,wB ,θ

{
πwH + (1− π) θwG + (1− π) (1− θ)wB + (1− π) c (θ) + πV

}
s.t.

πu
(
wH
)

+ (1− π) θu
(
wG
)

+ (1− π) (1− θ)u
(
wB
)
− a ≥ U

πu
(
wH
)

+ (1− π) θu
(
wG
)

+ (1− π) (1− θ)u
(
wB
)
− a ≥ u

(
wB
)

(1)

The first constraint is the individual-rationality (IR) constraint. The second constraint is the
incentive-compatibility (IC) constraint. The left-hand side of the two constraints is the expected
utility for the agent conditional on a = a. The right-hand side of the IC constraint is the utility for
the agent conditional on a = 0. Notice that since the IC constraint holds, the objective function
assumes the probabilities given action a.

The following claim determines the ranking of the transfers.

Claim 1 In the optimal solution u(wH) = u(wG) > u(wB) = U.

All proofs are relegated to the appendix.
This claim is based on several properties of the problem: both the IR and the IC constraints

are tight, and wB must be lower than {wH , wG} to satisfy the IC constraint (see the appendix for
details). Notice that u(wH) = u(wG) because the two outcomes have identical informtaion content
(high effort for sure).

Rewrite the problem as follows. In the IC, substitute u(wB) with U and derive u
(
wH
)

= U +
a

π+(1−π)θ . Using the values for {wH , wG, wB} in the objective function and omitting the term πV ,
which is independent of the choice variable, leads to the following convex optimization problem,
whose solution for θ is identical to that of Problem (1):

C = min
θ

{
α(θ)u−1

(
U +

a

α(θ)

)
+ (1− α(θ))u−1 (U) + (1− π) c (θ)

}
(2)

where α ≡ π + (1− π) θ.
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To understand the role of monitoring precision in this problem, consider the solution to the first
best. In the first best, the principal observes the agent’s effort, so no monitoring is required. The
first-best allocation is then a fixed transfer (independent of output) that is equal to u−1 (U + a). In
this case the principal compensates the agent only for her effort.

The principal’s cost in (2) differs from the principal’s cost in the first best in two aspects. First,
in the constrained problem, monitoring may be used upon low output with a cost of (1− π) c (θ).
Second, in the constrained problem, the principal is required to create a spread in transfers con-
ditional on outcomes. Therefore, the principal delivers to the agent utility as a lottery between
u−1

(
U + a

α

)
with probability α and u−1 (U) with probability (1 − α). I refer to the difference

between the two utilities
(
U + a

α
, U
)

as the spread.
The average utility delivered through the lottery is U + a. This is, by construction, equal to the

utility delivered in the first best. Therefore, the only role of the signal in this problem is to reduce
the risk associated with the spread and thus reduce the cost of delivering utility as a lottery rather
than as a certainty equivalent. Indeed, if the signal was without cost, the principal would set θ = 1,
and both the allocation and the principal’s cost would be identical to those of the first best. (To see
this, substitute θ = 1 and c(θ) = 0 in Problem (2) and get the first-best cost.)

4 Optimal monitoring

In this section I analyze how optimal monitoring is affected by each of the three characteristics of
the agent: the disutility from performing the task ā, the probability of succeeding in the task π, and
the outside option U .

Theorem 1 characterizes the contract w.r.t. the disutility from performing the task ā.

Theorem 1 The solution to Problem (2) has the following characteristics:

(i) the optimal signal’s precision (θ) increases with the task’s disutility (ā);

(ii) the utility spread
(

a
π+(1−π)θ

)
increases with the task’s disutility (ā).

To gain intuition on Theorem 1 consider the principal-agent problem presented here except
that monitoring is unavailable. In this environment an increase in the disutility from performing
the task compels the principal to increase the spread between payoffs in order to maintain the
incentive-compatibility constraint that the agent faces. Once monitoring is allowed the principal
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is free to mix the two instruments that contribute to holding the incentive-compatibility constraint:
increasing the spread or increasing the precision of monitoring. In this case the principal balances
the operational cost of monitoring with the cost of compensating the risk-averse agent for the
spread. When the disutility from performing the task increases the principal continues to maintain
this balance by increasing the marginal cost of both instruments.

Theorem 2 deals with the effect of the probability of succeeding in the task (π) on optimal
monitoring:

Theorem 2 The solution to Problem (2) has the following characteristics:

(i) the optimal signal’s precision (θ) decreases with the success probability (π);

(ii) the utility spread
(

a
π+(1−π)θ

)
decreases with the success probability (π).

The result and the intuition for this case is similar to the previous case. An increase in the
probability of succeeding in the task implies a smaller spread in the problem without monitoring.
When monitoring is available the principal decreases both the spread and the monitoring precision
maintaining the balance between the two instruments.

Theorem 3 characterizes the contract w.r.t. the outside option U . This requires an additional
condition on the concavity of (u−1)

′
(·).

Theorem 3 The solution to Problem (2) has the following characteristics if (u−1)
′
(·) is convex:

(i) the optimal signal’s precision (θ) increases with the outside option (U);

(ii) the utility spread
(

a
π+(1−π)θ

)
decreases with the outside option (U);

(iii) the cost of spreading out utility increases with the outside option (U);

(iv) the converse version of (i)− (iii) holds when (u−1)
′
(·) is concave.

What is the intuition behind this Theorem? The decision maker who solves problem (2) has
a utility function given by −(u)−1. When this utility is that of a prudent individual (i.e. (u−1)

′ is
concave), the principal is more concerned about spreads at low utility levels so he invests relatively
more in monitoring at low levels of U to reduce the spread.4

Since the decision maker’s utility is linked to the agent’s utility it is also possible to see the
intuition through the agent’s perspective. For any level of outside option (utility), the principal
weighs the cost of the signal against its benefit of reducing the risk associated with the spread.

4Menezes, Geiss, and Tressler (1980) show that a decision maker whose utility function has a positive third deriva-
tive is downside risk averse.
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The signal’s cost does not depend on the outside option. When (u−1)
′
(·) is convex, the cost of

spreading out utilities increases with the outside option. In this case, the value of monitoring
increases and the principal increases her investment in the signal. This, in turn, results in a smaller
spread between utilities.

5 An equivalence result

The condition that (u−1)
′
(·) is convex is related to other conditions that can be found in the litera-

ture. I make the following observation:

Proposition 1 The following conditions are equivalent:

1: (u−1)
′
(·) is convex

2: u′′′(w)u′(w)

u′′(w)2
≤ 3

3: There is a convex function h : < → <+ such that 1
u′(w)

= h (u (w)) .

4: ( 1
u′ )
′′

( 1
u′ )
′ ≥ u′′

u′

Condition 1 is the one used in this paper. Condition 2 is used in Thiele and Wambach (1999).
Condition 3 is used in Newman (2007). Condition 4 implies that u is more risk averse than 1

u′
in

the sense of Pratt (1964). Examples of utility functions that satisfy those conditions are IARA,
CARA, and CRRA with a coefficient of relative risk aversion of at least 1

2
.

As explained in the introduction, Thiele and Wambach generalize Newman’s result by allow-
ing any finite number of effort levels instead of two. They also interpret Newman’s condition as
implying that u′′′(w)u′(w)

u′′(w)2
≤ 2, making their condition weaker than his. However, as Proposition 1

shows, Newman’s condition is equivalent to theirs.5

5Thiele and Wambach describe Newman’s condition as ”requir[ing] that the inverse of marginal utility is convex
in income.”, which indeed implies that u

′u′′′

(u′′)2
≤ 2. However, requiring the inverse of marginal utility to be convex in

income is a stricter condition than what Newman requires. In fact 1
u′ may even be concave as long as it is more convex

than u(x), as is the case of CRRA with a coefficient of risk aversion in [ 12 , 1]. Instead, Newman’s condition is that 1
u′

is convex in utility (rather than in income). This condition is equivalent, as Proposition 1 shows, to u′u′′′

(u′′)2
≤ 3.
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APPENDIX

Proof of claim 1

Lemma 1 In the optimal solution either wH > wB or wG > wB, or both.

Proof. Rewrite the IC as:

πu
(
wH
)

+ (1− π) θu
(
wG
)
≥ [π + (1− π) θ]u

(
wB
)

+ a. (3)

Since a > 0 and since the sum of the coefficients of
{
u
(
wH
)
, u
(
wG
)}

is equal to the co-
efficient of u

(
wB
)

(and positive), if both wH ≤ wB and wG ≤ wB then the IC cannot hold.

Lemma 2 In the optimal solution the IR holds with equality.

Proof. The solution with a slack IR can be improved by decreasing wB by ε. For a small ε, the
IR is still slack. The IC remains slack or becomes slack (see (3)). The objective function increases
by ε, which is a contradiction to the solution being optimal.

Lemma 3 In the optimal solution wH = wG.

Proof. Assume that wH > wG. The optimal solution can be improved as follows. Decrease wH
by ε and increase wG by πε

(1−π)θ . By construction this change does not affect the objective function

because π
(
wH − ε

)
+ (1− π) θ

(
wG + π

(1−π)θ

)
= πwH + (1− π) θwG. To study the effect on the

IR, consider the part of the IR composed of πu
(
wH
)

+ (1− π) θu
(
wG
)
. The change makes the

IR slack because it is a lottery with the same certainty equivalent but with less risk. Formally, the
claim is that:

πu
(
wH − ε

)
+ (1− π) θu

(
wG +

επ

(1− π) θ

)
> πu

(
wH
)

+ (1− π) θu
(
wG
)

(1− π) θ

(
u

(
wG +

επ

(1− π) θ

)
− u

(
wG
))

> π
(
u
(
wH
)
− u

(
wH − ε

))
(4)

Divide both sides by ε and rearrange to get:

u
(
wH
)
− u

(
wH − ε

)
ε

<
u
(
wG + επ

(1−π)θ

)
− u

(
wG
)

επ
(1−π)θ

(5)

In the limit this is u′
(
wH
)
< u′

(
wG
)
,which is true by the negation assumption thatwH > wG.

Thus the IR (and similarly the IC) become slack, which is a contradiction to Lemma 2. Therefore
it is impossible for wH to be strictly greater than wG in the optimal solution.

The same line of proof eliminates the possibility of wG > wH by showing that increasing wH

by ε and decreasing wG by πε
(1−π)θ violates Lemma 2.
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Lemma 4 In the optimal solution the IC holds with equality.

Proof. By Lemmata 1 and 3 wH > wB. If the IC is slack then the objective function can be
improved. Decrease wH by ε and increase wB by επ

(1−π)(1−θ) . By construction this change does
not affect the objective function. The IC still holds. Consider the part of the IR composed of
πu
(
wH
)

+ (1− π) (1− θ)u
(
wB
)
. Those changes make the IR slack because it is a lottery with

the same certainty equivalent but with less risk. Formally, the claim is that:

πu
(
wH − ε

)
+ (1− π) (1− θ)u

(
wB +

επ

(1− π) (1− θ)

)
> πu

(
wH
)

+ (1− π) (1− θ)u
(
wB
)

π
(
u
(
wH
)
− u

(
wH − ε

))
< (1− π) (1− θ)

(
u

(
wB +

επ

(1− π) (1− θ)

)
− u

(
wB
))

. (6)

Divide both sides by ε and rearrange to get:

u
(
wH
)
− u

(
wH − ε

)
ε

<
u
(
wB + επ

(1−π)(1−θ)

)
− u

(
wB
)

επ
(1−π)(1−θ)

. (7)

In the limit this is u′
(
wH
)
< u′

(
wB
)
, which is true because wB < wH . Now decrease wH by

δ in order to improve the objective function without damaging any of the constraints.

Lemma 5 In the optimal solution u
(
wB
)

= U.

Proof. Since both the IR and the IC are tight, and since the LHS of both constraints is identical,
the RHS of both constraints is equal and u

(
wB
)

= U.
Claim 1 is then a combination of Lemmata 1, 3, and 5.

Proof of Theorem 1

Theorem 1 The solution to Problem (2) has the following characteristics:
(i) the optimal signal’s precision (θ) increases with the task’s disutility (ā);
(ii) the utility spread

(
a

π+(1−π)θ

)
increases with the task’s disutility (ā).

Proof. The two parts of the theorem are proved sequentially.

Proof of (i)
The proof is based on monotone comparative statics (Milgrom and Shannon, 1994). .

∂w

∂a
=

(
u−1

)′(
U +

a

α

)
(8)

∂2w

∂a∂θ
= − (1− π) a

α2

(
u−1

)′′(
U +

a

α

)
< 0
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According to the monotone comparative statics theorem, θ∗ (weakly) increases with a if ∂2w
∂a∂θ
≤ 0.6

Proof of (ii)

Inspection of the spread ( a
α

= a
π+(1−π)θ ) shows that the effect of an increase in both a and θ

on the spread is ambiguous. A further inspection into the FOC shows, however, that this is not the
case. The FOC is:

c′(θ) =
ā

α

(
u−1

)′(
U +

a

α

)
−
(
u−1

)(
U +

a

α

)
−
(
u−1

)
(U) (9)

As θ increases the LHS increases because c(·) is convex in θ. By differentiating the RHS w.r.t. the
spread it can be verified that the RHS is increasing in the spread. Therefore an increase in θ must
be accompanied by an increase in the spread.

Proof of Theorem 2

Theorem 2 The solution to Problem (2) has the following characteristics:
(i) the optimal signal’s precision (θ) decreases with the success probability (π);
(ii) the utility spread

(
a

π+(1−π)θ

)
decreases with the success probability (π).

Proof. The two parts of the theorem are proved sequentially.

Proof of (i)
The proof follows the same line of proof as in theorem 1.

∂w

∂π
= (1− θ)

((
u−1

)(
U +

a

α

)
− ā

α

(
u−1

)′(
U +

a

α

)
−
(
u−1

)′
(U)

)
− c(θ) (10)

∂2w

∂π∂θ
=

(1− π) (1− θ) a2

α3

(
u−1

)′′(
U +

a

α

)
> 0,

where the derivation of ∂2w
∂π∂θ

uses the fact that the FOC w.r.t. θ is zero at the optimum. This
establishes by the monotone comparative statics theorem that as the parameter π increases, the
monitoring precision θ decreases.

Proof of (ii)

Inspection of the spread’s denominator (π + (1 − π)θ) shows that the effect of a decrease in
both π and θ on the spread is ambiguous. However, as directly given by the proof of Theorem 1

6In the case of a maximization problem supermodularity is required between {a, θ}. Here the sign of the cross
derivative is opposite because it is a minimization problem (as minw = −max−w).
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(ii) a decrease in θ must be accompanied by a decrease in the spread to keep the FOC.

Proof of Theorem 3

Theorem 3 The solution to Problem (2) has the following characteristics if (u−1)
′
(·) is convex:

(i) the optimal signal’s precision (θ) increases with the outside option (U);
(ii) the utility spread

(
a

π+(1−π)θ

)
decreases with the outside option (U);

(iii) the cost of spreading out utility increases with the outside option (U);
(iv) the converse version of (i)− (iii) holds when (u−1)

′
(·) is concave.

Proof. The three parts of the theorem are proved sequentially.

Proof of (i)

The proof follows the same line of proof as in Theorem 1 (i).

∂w

∂U
= α

((
u−1

)′(
U +

a

α

)
−
(
u−1

)′
(U)

)
+
(
u−1

)′
(U) (11)

∂2w

∂U∂θ
= (1− π)

((
u−1

)′(
U +

a

α

)
−
(
u−1

)′
(U)

)
− a (1− π)

α

(
u−1

)′′(
U +

a

α

)

According to the monotone comparative statics theorem, θ∗ (weakly) increases with U if
∂2w
∂U∂θ

≤ 0. This is satisfied if (u−1)
′
(·) is convex. To see this, rewrite ∂2w

∂U∂θ
as:

a (1− π)

α

{(
u−1

)′ (
U + a

α

)
−
(
u−1

)′
(U)

a
α

−
(
u−1

)′′(
U +

a

α

)}
, (12)

and notice that
(
(u−1)

′
(U+ a

α)−(u−1)
′
(U)

)
a
α

is the average slope of (u−1)
′
(·) between

{
U,U + a

α

}
,

where a
α
> 0, and (u−1)

′′ (
U + a

α

)
is the slope of (u−1)

′
(·) at

(
U + a

α

)
. If (u−1)

′
(·) is convex

then the slope of (u−1)
′
(·) at

(
U + a

α

)
is higher than the average slope at

{
U,U + a

α

}
⇒ (12) is

negative⇒ ∂2w
∂U∂θ

≤ 0.

Proof of (ii)
By (i), θ increases with U if (u−1)

′
(·) is convex. The spread is a

π+(1−π)θ , so the spread de-
creases as θ increases.

Proof of (iii)
The principal’s cost in problem (2) is composed out of the cost of providing a transfer, equal

to: αu−1
(
U + a

α

)
+ (1− α)u−1 (U) and the monitoring cost (1− π) c (θ).
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The first-best cost for the principal is u−1 (U + a). Therefore, the difference between the prin-
cipal’s cost of providing a transfer in the first best and in (2) is a result of the requirement of
spreading out utilities. Define the cost of spreading out utilities

{
U,U + a

α

}
at utility U as the

difference between the costs:

D(U) =

{
αu−1

(
U +

a

α

)
+ (1− α)u−1 (U)

}
− u−1 (U + a) , (13)

and notice that the curly brackets include a lottery with prizes
{
U + a

α
, U
}

with probabilities
{α, 1− α}, whose expected prize is U + a. This means that D (U) is the difference between a
lottery and a certainty equivalent (U + a), valued by the function of u−1 (·) . Since u (·) is concave
D (U) > 0 ∀u (·) .

The dependence of this cost on U is the following derivative:

D′(U) =

{
α
(
u−1

)′(
U +

a

α

)
+ (1− α)

(
u−1

)′
(U)

}
−
(
u−1

)′
(U + a) . (14)

Since under Condition 1 (u−1)
′ is convex, Jensen’s inequality implies that:

α
(
u−1

)′(
U +

a

α

)
+ (1− α)

(
u−1

)′
(U) >

(
u−1

)′{
α

(
U +

a

α

)
+ (1− α) (U)

}
=

(
u−1

)′ {U + a}
⇒ D′(U) > 0

Proof of (iv)
The proof follows the same arguments as in the proof for parts (i) − (iv) above for (u−1)

′
(·)

concave.
Proof of Proposition 1

Proposition 1 The following conditions are equivalent:
1: (u−1)

′
(·) is convex

2: u′′′(w)u′(w)

u′′(w)2
≤ 3

3: There is a convex function h : < → <+ such that 1
u′(w)

= h (u (w)) .

4: ( 1
u′ )
′′

( 1
u′ )
′ ≥ u′′

u′

Proof. The proof goes as follows: Condition 1⇒ Condition 3⇒ Condition 4⇒ Condition 2
⇒ Condition 1.

Condition 1⇒ Condition 3
Let h(·) be (u−1′(·)). Then h(u(x)) = u−1′(u(x)) = 1

u′(u−1(u(x)))
= 1

u′(x)
. By Condition 1

u−1(·)′ is convex, and therefore there exists a convex function h(·) such that: 1
u′(x)

= h (u (x)) .

14



Condition 3⇒ Condition 4
Denote: f ≡ 1

u′(x)
, g ≡ u. By Condition 3 ∃h(·) such that f = h (g). Then:

f ′ = h′ (g) g′

f ′′ = h′′
(
g′
)2

+ g′′h′ = h′′g′
f ′

h′
+ g′′

f ′

g′

f ′′

f ′
=

h′′g′

h′
+
g′′

g′
(15)

u is increasing⇒ g′ > 0,
h is increasing (because h′ = f ′

g′
= −u′′

u′
> 0)⇒ h′ > 0,

h is convex⇒ h′′ > 0,
⇒ h′′g′

h′
≥ 0

⇒ f ′′

f ′
≥ g′′

g′
.

Condition 4⇒ Condition 2
Using that

(
(u′)−1

)′
= − (u′)−2 u′′ and that

(
(u′)−1

)′′
= 2 (u′)−3 (u′′)2 − (u′)−2 u′′′ rewrite

( 1
u′ )
′′

( 1
u′ )
′ as u′′′−2(u′)−1(u′′)2

u′′
. By Condition 4 ( 1

u′ )
′′

( 1
u′ )
′ ≥ u′′

u′
so we get that:

u′′′ − 2 (u′)−1 (u′′)2

u′′
≥ u′′

u′

u′′′u′ − 2
(
u′
)−1 (

u′′
)2
u′ ≤

(
u′′
)2

u′′′u′ ≤ 3
(
u′′
)2

u′′′ (w)u′ (w)

u′′ (w)2
≤ 3 (16)

Condition 2⇒ Condition 1
Using the implicit function theorem and differentiating both sides of w = u−1(u(w)) gives the

equality (u−1)′ (u (w)) = 1
u′

. Differentiate 1
u′

twice with respect to utility gives:

d((u′)−1)

dU
= −

(
u′
)−2

u′′
dc

dU
= −

(
u′
)−3

u′′

d2((u′)−1)

dU2
=

d
(
− (u′)−3 u′′

)
dU

= 3
(
u′
)−4 (

u′′
)2 dc
dU
−
(
u′
)−3

u′′′
dc

dU

= 3
(
u′
)−5 (

u′′
)2 − (u′)−4 u′′′ (17)
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To prove that Condition 2⇒ Condition 1, show that not Condition 1⇒ not Condition 2. Not
condition 1⇒ ∃w s.t. (u−1)′ (u (w)) = 1

u′
is concave: By (17) and using that u′(w) is positive:

3u′′ (w)2 − u′′′ (w)u′ (w) < 0,

u′′′ (w)u′ (w) > 3u′′ (w)2

u′′′ (w)u′ (w)

u′′ (w)2
> 3
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