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Abstract 

  

Saving for a rainy day is driven by precaution. Because, in principle, leisure affects 
utility similarly as consumption, it also should respond to the saving motive.  Here, 
we study the role of precautionary saving for labor supply, and focus on the wage 
elasticity of labor supply.  We study this link in the context of a calibrated quantitative 
model in which households are impatient and use durable goods, thought of as 
including real estate, as a collateral for borrowing.  In this model, households save by 
holding more equity on durable goods than they are required, which is here identical 
to holding interest earning assets.  The buffer stock of assets makes possible to 
smoothen better consumption and leisure,  and this enhances the elasticity of labor 
supply to wage changes  
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1 Introduction

In a recent working paper, Campbell and Hercowitz (2009) document the co-
movement of hours worked and debt using data from the Panel Study of In-
come Dynamics (PSID) data. Denominating debt by the work hours that are
required to repay it, they find that every additional hour of debt corresponds
to between 2.5 and 5 minutes of additional labor every year. To analyze the link
between debt and hours worked, they employ a partial equilibrium model in
which impatient households enjoy consumption, leisure and services from a
durable goods stock which serves as a collateral for borrowing. A persistent
positive wage shock increases the desired stock of durable goods but house-
holds must pay a down payment on new purchases. This drives households to
increase labor supply.

Campbell and Hercowitz (2009) explores the co-movement of debt and
labor supply by studying it under a rolling certainty equivalence setup. This
means that although the environment is stochastic, households make decisions
assuming that the future evolution of the wage is certain at the mean level in
each period. Hence, that setup does not include precautionary saving behavior
that arises when agents incorporate the stochastic nature of the income stream
in to their decisions.

Usually, precautionary saving is studied in the context of consumption as
in the work by Carroll (1997). Here, we focus on labor supply, which, to the
best of our knowledge, was not studied yet in this context. For precautionary
saving, the household should face a borrowing constraint. Otherwise, it can
take a loan when necessary and there is no need for saving.
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For realism, as in Campbell and Hercowitz (2009), we focus on a collateral
constraint on durable goods. In the US, 90% of household debt is collateralized
by houses and vehicles, and the borrowing constraint takes the form of an eq-
uity requirement on those durable goods. In the model, households can save
by holding equity on durable goods at a higher rate than required, or alterna-
tively by saving. Because we assume no interest rate spread, the household is
indifferent between these two saving routes.

In terms of methodology, we calibrate the model to actual U.S. data, and
then simulate it to gauge the quantitative importance of precautionary labor
supply behavior. The questions we wish to address in this project are: (a)How
wage uncertainty affects the elasticity of labor supply and (b) the dynamics
after a wage shock.

2 The Model

This is the problem of an impatient household, in the usual sense that the sub-
jective discount factor is smaller than the financial discount factor. Denoting
0 < β < 1 as the subjective weight households assign to next period util-
ity, and 1/R as the financial discount factor (where R is the gross real interest
rate), then impatience implies that βR < 1.

The household faces a the constant interest rate R, at which can borrow
up to a borrowing constraint specified below. The household also faces an
exogenous wage following the process Wt/χ− 1 = ρ (Wt−1/χ− 1) + εt, 0 <
ρ < 1, εt ∼ N(0, σ), where χ is the long-run wage—or it’s unconditional mean.

We also adopt the following notation:
Ct: nondurable consumption,
St: consumer durable stock (including housing)
Nt: fraction of time working
Bt: debt at the beginning of period t

Budget constraint (always binding):

Bt+1 +WtNt − Ct − St+1 + (1− δ)St − RBt = 0,

where 0 < δ < 1 is the depreciation rate.
Borrowing is collateralized by durable goods, and it cannot exceed a frac-

tion of their value. Specifically, the household faces the following borrowing
constraint, which is occasionally binding:

Bt+1 ≤
(1− δ)(1− π)

R
St+1.

Here, π is the required equity next period from the depreciated stock. The divi-
sion by R turns the expression (1− δ)(1− π)/R into the current loan to value
ratio. Hence 1− (1− δ)(1− π)/R is the minimum required down payment
fraction of durable goods purchases.
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Given the initial stocks of durable goods and debt S0 and B0, the problem
to be solved by the household can be expressed by the Lagrangean:

£ = max E0

∞

∑
t=0

βt

 (1− θ) ln Ct + θ ln St +ω
(1−Nt)

1−η

1−η

+λt (Bt+1 +WtNt − Ct − St+1 + (1− δ)St − RBt)

+Γt

(
(1−δ)(1−π)

R St+1 − Bt+1

)
 ,

where 0 < θ < 1, ω > 0, η > 0, and λt, Γt are the Lagrange multipliers
associated with the budget and the borrowing constraints.

The first-order conditions to this problem are:

0 =
∂£
∂Ct

=
1− θ

Ct
− λt, (1)

0 =
∂£

∂St+1
=

{
−λt +

(1− δ)(1− π)

R
Γt + β

θ

St+1
+ β(1− δ)Et [λt+1]

}
, (2)

0 =
∂£

∂Bt+1
= λt − Γt − βREt [λt+1] , (3)

0 =
∂£

∂Nt
= −ω (1− Nt)

−η + λtWt, (4)

and the constraints are:

0 =
∂£
∂λt

= Bt+1 +WtNt − Ct − St+1 + (1− δ)St − RBt, (5)

0 ≤ ∂£
∂Γt

=
(1− δ)(1− π)

R
St+1 − Bt+1. (6)

In any period t, the state variables are stocks of durable goods and wage St
and Bt, and the current wage Wt.

For convenience of the analysis, let us define Ft to be the excess collateral
the borrower chooses to hold:

Ft+1 =
(1− δ)(1− π)

R
St+1 − Bt+1.

Then the borrowing constraint can be expressed as:

Bt+1 =
(1− δ)(1− π)

R
St+1 − Ft+1.

The first-order conditions are not affected by this definition, but the budget
constraint now becomes:

0 = −
[

1− (1− δ)(1− π)

R

]
St+1 − Ft+1 +WtNt − Ct + π(1− δ)St + RFt,

and the borrowing constraint is now:

Ft+1 ≥ 0.
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3 Calibration

The calibration is based on Cambpell and Hercowitz (2009). The unit of time is
chosen to be one year.

The financial parameters are: Required equity share π is 0.16 and the gross
interest rate R is 1.04.

The values chosen for parameters of the utility function are the following.
First, the subjective discount rate is β = 1/1.06, i.e., the rate of impatience
is about 2 percent per year. The weight of durable goods in utility θ = 0.37,
which is derived from the expenditure share of durable goods. The parameters
of leisure in utility are η = 0.9 and 1.93. Note that η = 1 corresponds to the
logarithmic form, i.e., we adopt a slightly more elastic response of labor supply
to the wage relative to the logarithmic form. These parameter values are set so
that hours worked are 0.3 of the household’s available time in steady state.

The depreciation rate of the durable stock δ = 0.04. The wage process is
determined as follows. The autoregressive coefficient is ρ = 0.9, the standard
deviation is σ = 0.185, and the steady-state wage value is normalized to χ = 1.
Note that the standard deviation is much higher than used in macro models
because here they are based on individual households data—the Panel Study
of Economy Dynamics (PSID). The volatility of wages at the aggregate level is
significantly lower because much of the individual variation averages out.

4 Results

Precautionary saving affects the response in ways that are absent in the usual
labor supply model. To understand the implications of precautionary savings
for labor supply we analyze the responses of labor supply and other variables
to wage shocks along three aspects: (1) perfect foresight versus stochastic se-
tups, i.e., a certainty equivalent approach and incorporating uncertainty into
the household’s decisions, (2) positive versus negative shocks, (2) small ver-
sus large shocks. To provide an insight on the results, we address the interac-
tion between these dimensions. The key aspect is, or course, the perfect fore-
sight/stochastic setups. The interaction between these aspects is important, for
example, because the buffer stock can be depleted with a negative shock that
is sufficiently large. Then, the borrowing constraint becomes binding.

Consider a transitory negative wage shock of one percent as in Figure 1.
In the "F" panel, we can see that assets do not change in the perfect foresight
setup, i.e., the borrowing constraint keeps binding following the shock. How-
ever, assets decline in the stochastic setup. Hence, because assets are used to
mitigate the effects of the negative shock, nondurable consumption declines
less and labor supply declines more in the stochastic setup than under perfect
foresight. This means that the elasticity of labor supply is higher with uncer-
tainty than under prefect foresight. Once most of the shock had passed, labor
supply with uncertainty is slightly higher in order to rebuild the buffer stock
of assets. The stock of durable goods declines less than under perfect foresight
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Figure 1: The dynamic response to a 1% negative wage shock. Solid Blue -
prefect foresight; Dashed Red - full stochastic solution. Y axis units are log
differences from respective steady states. Note that the full stochastic steady
state includes a buffer stock in F so it is possible for it to become negative (in
relation to its steady state).

in the first periods following the shock, similarly as nondurable consumption,
but, then, rebuilding the stock is delayed given the household’s desire to re-
build the buffer stock of assets.

Figure 2 shows the responses to a positive one percent shock, which are in
general quite symmetric to those under a negative shock. As long as there is
still some buffer stock left the response to a negative shock mirrors the response
to a positive shock.

Figure 3 shows the responses to a negative shock of 18 percent, i.e., one stan-
dard deviation of the wage shocks. The response of the buffer stock of assets—
the "F" panel—displays strikingly different behavior under perfect foresight
and with uncertainty. A negative shock brings the buffer stock all the way
down to zero for a number of periods, which correspond to the horizontal
straight portion of the dashed line. Given that the borrowing constraint binds
during these periods, there is then no more buffer to cushion additional wage
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Figure 2: The dynamic response to a 1% positive wage shock. Solid Blue -
prefect foresight; Dashed Red - full stochastic solution.
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shocks. Under perfect foresight, in contrast, the buffer stock of assets increase,
although slightly. Hence, the negative shock relaxes the borrowing constraint.
This can be seen as a quite surprising result, given the basic intuition is that
assets decline in bad times. However, this result is part of the mechanism gen-
erated by the realistic borrowing constraint based on durable goods as collat-
eral for debt accompanied by a down payment. The reason for this is that the
sharp decline of the affordable durable goods stock releases funds from the re-
quired equity which was held on those durable goods. Hence, assets including
durable goods do decline in bad times, but the composition of assets change.

Figure 4 displays the reaction to a positive shock of 18 percent. Let us com-
pare these responses to those to a negative shock in Figure 3. In the stochastic
setup, the stock of assets responds in general symmetrically the reaction in Fig-
ure 3. They increase, consistently with the basic intuition about an optimizing
consumer when the borrowing constraint does not bind. However, unlike the
reaction of assets to a negative shock in Figure 3, where the borrowing con-
straint binds for a while, here the household moves further away from that
situation. Under perfect foresight, the basic intuition that assets respond posi-
tively to a wage shock does not apply because the borrowing constraint plays
an important role. The reaction to a positive shock is not symmetric to the
reaction to a negative shock in Figure 3. There, the constraint is relaxed be-
cause required equity funds are released. Here, the large increase in the stock
of durable goods generates a shortage of funds to finance the down payments;
hence, the borrowing constraint keeps binding.

5 Conclusion

In this paper we added an explicit treatment of uncertainty to the model that
Campbell and Hercowitz (2009) explore in a rolling certainty equivalent envi-
ronment. That is, there is uncertainty in that model, but households’ decisions
are made ignoring it. In that model, the borrowing constraint binds in a large
range around the steady state. Movements in labor supply are affected by eq-
uity requirements on durable goods. Persistent wage shocks affect the desired
stock of durable goods, and hence a positive wage shock generates a shortage
of funds to finance the down payment on the additional durable goods. This
shortage of funds motivates the household to increase hours worked.

Here, the incorporation of uncertainty in households’ decisions generates
demand for a buffer stock of assets, or excess equity above the required amount
as precautionary saving. This paper addresses the case of persistent but not
permanent shocks. The borrowing constraint binds only in the case of nega-
tive shocks. The effects of uncertainty on labor supply behavior compared to
the behavior under perfect foresight are small, specially for negative shocks.
Negative shocks drive the borrowing constraint to bind in several periods dur-
ing the response, and this makes the reactions in the two setups similar. For
positive shocks the effect of uncertainty is larger, but the labor supply response
is still similar.
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Figure 3: The dynamic response to a 18% negative wage shock. Solid Blue -
prefect foresight; Dashed Red - full stochastic solution.
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Figure 4: The dynamic response to a 18% positive wage shock. Solid Blue -
prefect foresight; Dashed Red - full stochastic solution.
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We suspect that the small effect of uncertainty is related to the logarithmic
utility used. We hypothesize that a CRRA utility with a risk aversion parame-
ter grater than 1 would provide results of grater quantitative significance, but
qualitatively similar. Our attempts to numerically solve such models have so
far failed.
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Appendix

A Grid-Based Solution to the Borrower’s Problem

A.1 Policy Notation

Let say that Xt = {Wt, St, Ft} is the state of the world and that there is a policy
function g (Xt) that gives {Ct, Nt, St+1, Ft+1}. Denote the different outputs of
the policy function by gC (Xt), gN (Xt), gS (Xt) and gF (Xt) respectively.

A.2 Discretization

We discretize the state space by a grid Xm,n,l =
{

Wm, Sn, Fl
}

where m, n and
l denote discrete levels of this period wage, durable stock, debt to borrow-
ing value and borrowing value to housing value respectively. Let Xk,j,o ={

Wk, Sj, Fo
}

denote the next period state in the same way. Define pm,k to be
the transition probability of the Markov process approximating the process
Wt/Wss − 1 = ρ (Wt−1/Wss − 1) + εt, 0 < ρ < 1, εt ∼ N(0, σ):

pm,k = P
(

Wt+1 = Wk|Wt = Wm
)

For brevity note the policy on the grid point Xm,n,l as gm,n,l
C , gm,n,l

N , gm,n,l
S and

gm,n,l
F and assume the policy is solved only for such points.

A.3 Approximating the Expectation

Define
λm,n,l (g) =

1− θ

gm,n,l
C

(7)

Summing over all next-period wage levels k we can approximate the ex-
pected next-period marginal utility of consumption depending on this period
wage level m and the next-period state levels j and o:

λ̃
m,j,o
+1 (g) = ∑

k
pm,kλk,j,o (g)

Next, we use this to compute the expected marginal utility of consumption
depending on the current state levels n and l. The connection between the cur-
rent state and the future state is governed by the policy function g. However,
the decisions from the policy function g on the grid point Xm,n,l need not lay
also on a grid point. Namely, there is no reason to expect that there are integers
j and o such that gm,n,l

S = Sj, gm,n,l
F = Fo.

Generally, as long as gm,n,l
S and gm,n,l

F fall within the range of the grid, there
will be integers j and o such that Sj ≤ gm,n,l

S < Sj+1 and Fo ≤ gm,n,l
F < Fo+1 .
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Once we find those j and o we can approximate the expected marginal utility of
consumption by interpolating the grid points λ̃

m,j+a,o+a
+1 (g)|a = 0, 1. Denote the

interpolation of λ̃+1(g) values by the future state g directs us to as λ̄
m,n,l
+1 (g) .

A.4 Discretized and Interpolated System

Define
Γm,n,l (g) = λm,n,l (g)− βRλ̄

m,n,l
+1 (g) (8)

Restating the first order conditions and constraints in the terms of the grid,
we are looking for a policy g such that for every grid point state Xm,n,l we will
have:

0 =

 −λm,n,l (g) + (1−δ)(1−π)
R Γm,n,l (g)

+β θ

gm,n,l
S

+ β(1− δ)λ̄
m,n,l
+1 (g)


0 = −ω

(
1− gm,n.l

N

)−η
+ λm,n.l (g)Wm

0 = gm,n.l
F Γm,n,l (g)

0 =

{
−
[
1− (1−δ)(1−π)

R

]
gm,n.l

S − gm,n.l
F +Wmgm,n,l

N

−gm,n,l
C + π(1− δ)Sn + RFl

}

Note that the time index is now unnecessary.

A.5 Policy Improvement

The first guess for the policy is generated by solving the convergence path from
each point on the grid using certainty equivalence and taking the decisions
from the first period. We need to make sure all policy grid points we will be
solving for have a policy that directs us to a state inside the grid range. To do
that we run a simulation using the above certainty equivalence grid and mark
off the 0.5% least used grid points. If the grid is chosen to be large enough then
this means we mark most of the grid points as points not to updated and are
left with a subset of policy grid points that share the property that they direct
us to states within the range of the grid.

We would now like a numeric search procedure to find values for g that
minimizes the deviation from the model’s equations. The input to the numeric
search procedure is a function from the four element vector(

gm,n,l
C , gm,n,l

N , gm,n,l
S , gm,n,l

F

)
to a four element vector of deviations(

dm,n,l
1 , dm,n,l

2 , dm,n,l
3 , dm,n,l

4

)
.
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We define the following function to serve as an input to the numeric search:

dm,n,l
1 =


(

gm,n.l
F < 0

)
gm,n.l

F +
(

Γm,n,l (g) < 0
)

Γm,n,l (g)

+
(

gm,n.l
F ≥ 0∧ Γm,n,l (g) ≥ 0

)
gm,n.l

F Γm,n,l (g)


dm,n,l

2 =

{
−λm,n,l (g) + (1−δ)(1−π)

R Γm,n,l (g)
+βθ/gm,n,l

S + β(1− δ)λ̄
m,n,l
+1 (g)

}

dm,n,l
3 = −ω

(
1− gm,n.l

N

)−η
+ λm,n.l (g)Wm

dm,n,l
4 =

{
−
[
1− (1−δ)(1−π)

R

]
gm,n.l

S − gm,n.l
F +Wmgm,n,l

N

−gm,n,l
C + π(1− δ)Sn + RFl

}

B The Deterministic Steady State

At the deterministic steady state the Euler equation is not satisfied. (Substitut-
ing Ct+1 = Ct = C yields 0 ≤ 1− βR while βR < 1 by assumption). Hence,
the Euler equation is replaced with the binding liquidity constraint. The deter-
ministic steady state has:

F = 0,

Rearranging the first-order conditions we can obtain λ (C) , Γ (C) , S (C) and
N (C):

λ (C) =
1− θ

C
Γ (C) = λ (C) (1− βR)

S (C) = βθ/
{
[1− β(1− δ)] λ (C)− (1− δ)(1− π)

R
Γ (C)

}
N (C) = 1−

(
ω

1− θ

C
χ

) 1
η

We can now numerically search for a C value such that the budget con-
straint holds:

C = χN (C)−
[

1− (1− δ)

(
1
R
(1− π) + π

)]
S (C) (9)

Arbitrarily we start the numeric search from C = 1.
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