W

THE PINHAS SAPIR CENTER FOR DEVELOPMENT
TEL AVIV UNIVERSITY

Placebo Reforms
Ran Spiegler!

Discussion Paper No. 3-11

May 2011

The paper can be downloaded from: http://econ.tau.ac.il/sapir

I thank Ayala Arad, Eddie Dekel, Kfir Eliaz, Erik Eyster, David Shanks, Eilon Solan and seminar
participants at Tel Aviv University, Hebrew University and the LSE, for their helpful comments.
Financial support from The Pinhas Sapir Center for Development and the ESRC (UK) is gratefully
acknowledged

* Tel Aviv University and University College London. Email: r.spiegler@ucl.ac.uk.
URL:http://www.tau.ac.il/-rani



Abstract

| study a dynamic model of strategic reform decisions that may affect the
stochastic evolution of a publicly observed economic variable. Policy makers

try to maximize their public evaluation, which follows a boundedly rational rule
for attributing observed outcomes to observed actions. Specifically, the public
attributes recent changes to the most recent intervention. | analyze subgame
perfect equilibrium in this model for a variety of stochastic processes. In
particular, when the economic variable follows a (history-dependent) linear growth
trend with noise, equilibrium is essentially unique and stationary, bearing a subtle
formal relation to optimal search models. In equilibrium, policy makers tend

to act during temporary crises, display risk aversion conditional on acting, and
prefer that the random shocks associated with reforms be permanent rather than

transient.



1 Introduction

I present a model of strategic policy making, in which policy makers (PMs henceforth)
care about the perceived outcomes of their actions, and public perception is based on
a boundedly rational rule for attributing outcomes to actions. I use this model to
generate theoretical insights into aspects of PMs’ reform decisions, such as the timing
of reforms and the risk attitudes exhibited by choices between various policies.

To motivate our discussion, consider the following hypothetical scenario. You have
been appointed as Chief of Police in a certain district. You want the public to remember
you as someone who brought down crime levels. As you enter the role, you face
a decision whether to implement a large-scale police reform. Although you believe
that the reform will lower crime in the long run, you realize that due to short-run
fluctuations, things might get worse before they get better. You are concerned that
the good effects will be noticeable only after you step down and thus attributed to your
successor, while you will take the blame for the short-run downturn.

The Chief of Police’s predicament is shared by many expert decision makers who
care about the perceived outcome of their actions. A surgeon benefits when a patient
attributes his recovery to operations the surgeon himself performed. CEOs and sports
managers get credit when performance improves shortly after a major recruiting de-
cision. And politicians benefit when GDP growth is perceived as a consequence of
their own economic reforms. How do such concerns affect decision makers’ actions,
particularly when they realize that their successors will face a similar dilemma?

To address this question, I construct a stylized dynamic model of strategic reform
choices, in which an infinite sequence of PMs monitor the stochastic evolution of an
economic variable . Fach PM moves once, and chooses an action (from a possibly
history-dependent feasible set) that may or may not affect the continuation of the
process that governs x. There is one action, denoted 0 and interpreted as a “default”
or “inaction” option, which is always feasible. I will often refer to all other actions as
“active reforms” or “interventions”.

The sole objective of each PM is to maximize the outcome of his evaluation by the
public. Specifically, PMs would like the public to attribute good outcomes to their
own actions and bad outcomes to other PMs’ actions. Public evaluation takes place
at any period, and each PM employs a constant discount factor  to weigh all future
evaluation periods. A PM with a large § cares mostly about evaluations in the distant
future - his “legacy” - while a PM with a small ¢ has short-term career concerns and

therefore cares mostly about proximate evaluations.



The public’s attribution rule is a crucial component of the model. Here I introduce
a modeling innovation and assume that the rule departs from conventional “rational
expectations”. The motivation is that in the class of situations I am interested in - from
evaluation of sports managers by fans to evaluation of politicians by voters - it makes
sense to assume that evaluators lack the decision makers’ degree of sophistication.
This is not an informational asymmetry in the usual sense, but rather an asymmetry
in the quality of understanding of the underlying stochastic model. In these settings,
assuming that non-experts rely on an intuitive heuristic for drawing links between
actions and outcomes has considerable appeal.

Of course, there is a variety of boundedly rational attribution rules that one could
assume. I impose the following: changes in x are always attributed to the most recent
intervention. That is, at any period ¢, the public considers the latest period s < t in
which a PM chose an action a # 0, and attributes the entire difference z* — z* to the
PM who moved at period s.

This attribution rule captures a common intuition about causality: events that are
both salient and recent are intuitively perceived to be causes of an observed outcome.’
An active intervention is intuitively more salient as a failure to act, and therefore
more likely to be perceived as a cause. Thus, for example, when a patient’s medical
condition improves, we tend to attribute the recovery to the latest medical treatment
he received. Similarly, when a sports team’s performance improves shortly after its
manager has been replaced, fans tend to attribute the recovery to the change. Finally,
in a bargaining situation, when one concession immediately follows another after a long
stalemate, we tend to guess that there is a causal link between the two concessions. I
basically assume that the public attributes changes in  to PMs’ actions along similar
lines.

Because the public’s attribution rule is not based on a thorough understanding of
the underlying stochastic process, it can generate systematic errors, such as giving a
PM credit for a recovery that was purely due to chance. Psychologists (notably Kah-
neman and Tversky (1973)) have demonstrated that when people identify an intuitive
casual link between an observed outcome and a preceding event, they display a strong
tendency to embrace it, even when it overrides sound statistical reasoning. In our
context, intuitive attribution of recent changes in the economic variable to recent in-
terventions can be fallacious, partly because it ignores the fact that the timing of the

intervention is endogenous and reflects a selection bias.

'For psychological research on intuitive causality judgments, see Shanks et al. (1989), Sloman
(2005) and Lagnado and Speekenbrink (2010).



For example, consider a GP’s decision whether to prescribe antibiotics to a patient
who displays symptoms that fit both viral and bacterial infection. The timing of the
GP’s decision is not entirely random - the patient is most likely to turn to the doctor
after his health has taken a downturn. If the GP decides to prescribe antibiotics, naive
before/after comparison is likely to show recovery and attribute it to the doctor’s
intervention. This is essentially a “statistical Placebo effect” (to be distinguished from
a truly physiological effect; it may be exhibited by other observers than the patient
himself). In fact, it is often argued (see Goldacre (2009, pp. 38-39)) that pressure from
patients guided by this type of naive inference is one of the factors that have led to the
growing abuse of antibiotics.

A similar statistical Placebo effect is at play in the context of our model, where naive
public inferences distort PMs’ incentives as they contemplate their reform strategies.
In particular, when the stochastic process is mean reverting, PMs have an incentive to
implement an active reform following a negative shock, even when the reform has no
real impact on economic performance, anticipating that public evaluation will neglect
the mean reversion. I refer to interventions that do not affect the continuation of z, and
whose sole purpose is to take advantage of the public’s boundedly rational attribution
rule, as “Placebo reforms”.

This observation has interesting implications for the PMs’ strategic considerations.
The attribution rule implies that if the PM who moves at period ¢ chooses to intervene,
he will not get credit for any changes in x that take place after the next intervention.
This means that the PM will never get credit for developments that follow the next
intervention. However, we have just observed that the next intervention is endogenous
and exhibits “adverse selection”, in the sense that it tends to follow negative shocks.
Therefore, the expected credit that the PM will get for changes in x is lower than if
he did not face any successors. In other words, there is a “strategic multiplier” of the

incentive to choose the default.

An illustrative example
Suppose that the value of x evolves according to an entirely deterministic cyclical
process that is independent of the PMs actions. All that PMs choose is whether or not
to act. For simplicity, assume that x! # 2° for every two periods ¢, s that belong to
the same cycle. Then, if the PMs’ discount factor is sufficiently close to one, subgame
perfect equilibrium has a simple structure: every player ¢ chooses to intervene if and
only if 2! attains the minimal level in the cycle.

The reasoning behind this result is simple. First, player ¢ acts whenever x! hits the

minimal level, because regardless of the future PMs’ strategies, the average change in
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the value of x is strictly positive. Now, let * be the maximal value of x for which
PMs sometimes choose to act, and suppose that x* is above the minimal level. Since
we have already established that PMs act at least once per cycle, the PM’s payoff is
primarily determined by the time of the next intervention. This means that if player ¢
acts when 2! = z*, the expected change in the value of x until the time of the player’s
evaluation is negative, contradicting the assumption that the player chooses to act.

This result crucially relies on the strategic aspect of the model, namely the endo-
geneity of the timing of the next intervention. Consider an alternative model, in which
player ¢ is the last PM to move, such that all future developments are attributed to
the player if he intervenes. Then, when the discount factor is sufficiently close to one,
player ¢t will act whenever ! falls below the average value of z over the cycle. Thus,
the PM’s realization that his payoff will be determined by the strategic considerations
of future PMs implies a significantly weaker incentive to act.

The reasoning in this example is reminiscent of “unraveling” arguments in adverse-
selection models (e.g., Milgrom (1981)). And indeed, the model of this paper introduces
a novel adverse selection effect. When a PM chooses whether to implement an active
reform, he realizes that subsequent PMs tend to act following relatively low realizations
of x. As aresult, the value of x conditional on the event of a future intervention is biased
downward (relative to the unconditional discounted expected value of ). This means
that the PM’s payoff from acting suffers a downward bias, and this effect is analogous to
adverse-selection effects in models of trade under asymmetric information. Of course,
the adverse selection in the present model is entirely endogenous and has nothing to
do with asymmetric information. Nevertheless, the adverse selection analogy is useful

for understanding how the model works.

Overview of the results

After presenting the model in Section 2, I turn to equilibrium characterizations for
classes of stochastic processes that are of interest from the point of view of economic
applications.

In Section 3, I assume that x follows a growth process with a linear trend and
independently distributed noise. Both the trend slope and noise distribution are deter-
mined by the most recent active reform decision. Subgame perfect equilibrium turns
out to be subtly related to stationary search models. In equilibrium, each PM chooses
to intervene if and only if the noise realization drops below a unique, stationary cutoff.
Conditional on implementing a reform, the PM chooses from the set of actions that
maximizes a very simple target function that exhibits risk aversion, as it trades off the

expected return from an action and the riskiness of its noise distribution. When this



set is a singleton, subgame perfect equilibrium is unique and stationary, and all inter-
ventions along the equilibrium path, except possibly the first one, are Placebo reforms.
When the noise associated with each action may have a permanent component, the
PMs’ equilibrium behavior displays a taste for permanent shocks. Both this “perma-
nence seeking” and the risk aversion highlighted above are features that crucially rely
on the strategic nature of the model; they disappear in a model with a single PM who
acts once and faces no successors.

In Section 4, I analyze a simple example of crisis dynamics, and show how PMs’
career/legacy concerns can exacerbate a deterioration and make it irreversible. In
Section 5, I focus on environments in which player 0’s action determines an irreversible
stochastic process, such that all subsequent interventions are by definition Placebo
reforms. I show that subgame perfect equilibrium payoffs are unique and possess a
simple recursive characterization, which I then employ to highlight the intertemporal
trade-offs that player 0 face when contemplating reforms that induce growth processes
with ¢.7.d noise and a time-varying trend. I show that the PM’s equilibrium behavior
displays a non-trivial, partial form of myopia. The concluding section is devoted to a

brief discussion of variations and extensions of the model as well as related literature.

2 A Model

An economic variable z evolves over (discrete) time, ¢ = 0,1, 2, ... according to some
stochastic process. In each period ¢, a distinct PM, referred to as player ¢, observes the
entire history h = (z°,a°, ..., 2'71 a’~1 2!), where 2* and a*® denote the realization of
and the action taken at period s, respectively. The process is determined entirely by
this sequence of actions and outcomes: no additional variables that are hidden from
PMs are relevant for its continuation. I often use ¢(h) to denote the identity of the

). Upon observing the history, player

player who moves at h, and x(h) to denote x
t chooses an action a' from a set of feasible actions A(h). The action may affect the
continuation of the stochastic process. Assume that |A(h)| > 2 for every history h,
and that there exists a “null action” 0, interpreted as inaction or as a default, such
that 0 € A(h) for every h. Any a # 0 is interpreted as an active reform strategy. The
stochastic process is common knowledge among all PMs.

To complete this description into a full-fledged infinite-horizon game with perfect
information, we need to describe the players’ preferences. Along a given path of the

game, for any period ¢, define r(t) as the earliest period r > t in which a” # 0. If none



exists, then r(t) = oo. Player t’s payoff is

(1 . 5) Z:t+1 5S—t—1xmin[s,r(t)] — gt @f at 7£ 0
0 if a'=0

where ¢ € (0,1) is a discount factor. Note that when § tends to one, player t’s payoff
from playing a # 0 converges to 2"® — zf. Throughout the paper, I take it for granted
that when a PM is indifferent between active reform and the default, he goes for the
latter.

The interpretation of this payoff function is as follows. When a PM remains inactive,
none of the changes in the economic variable are attributed to him, because they are
all attributed to other PMs’ interventions. If, on the other hand, the PM implements
an active reform, the changes in the economic variable from that moment until another
PM implements a new reform are attributed to him. The discount factor captures
the PM’s horizon. When ¢ is close to zero, the PM is motivated by short-term career
concerns: he cares about how the public will evaluate him in the short run. When ¢ is
close to one, he cares about how his actions will be regarded in the eyes of posterity.

As in Example 3.1, we see that the PMs’ anticipation of future PMs’ career/legacy
motive is a “strategic multiplier” that exacerbates the tendency not to intervene. In
Example 3.1, this had no effect on the evolution of the economic variable because by
assumption all interventions were “Placebo reforms”. In contrast, in Example 3.2, the
disincentive to act implies that the system will permanently remain in a state of deep

Crisis.

3 Stationary Growth Processes

I now turn to the main application of the model, where the stochastic process follows a
linear growth trend with independently distributed, transient noise, such that both the
trend and the noise distribution are determined by the latest intervention. Formally,
assume that the set of feasible actions is fixed throughout the game, and denoted A.
(For expositional simplicity, I state the model and the results for finite A.) Every action
a € A is associated with a trend parameter u, and a continuous density function f,,
which is symmetrically distributed around zero with support [—k,, k,]. I refer to k,
as the spread of f,. Assume that p, € (0,k,) for every a € A. (The role of this
assumption is merely to simplify exposition, as it ensures interior solutions - relaxing

it would not alter the gist of the analysis.) For a given play path, define b’ as the most



recent active reform implemented prior to t. Formally, let ¢ be the latest period s < t
for which a® # 0; then, b = a'". If no such period ¢’ exists, set b* = 0. The economic

variable x evolves according to the following equation:
l’t — It_l 4 ,ut —|—gt _ gt—l (1)

where p' = p,: and ¢! is an independent new draw from fi. Note that since every
player ¢ perfectly observes the entire history of actions and realizations of x, he knows

the realizations ' and £~ 1.

3.1 The Riskiness Function

The following function will play an important role in our analysis. For a given cdf F

with support [—k, k], define:

for every € € [—k,k]. I refer to R as the riskiness function that characterizes the
noise distribution associated with the cdf F. I use R, to denote the riskiness function
associated with the reform strategy a. In a pair of classic papers, Rothschild and
Stiglitz (1970,1971) showed how to use this function to capture the riskiness of a real-
valued random variable. In particular, F; second-order stochastically dominates F;, if
and only if R,(g) > Ry(e) for every e € (—o0, +00).

The following is a useful alternative definition of R:
R(e)=e-F(e) — / z2f(2)dz (2)
—k

Finally, it is easy to check that: (i) the function R(e) — € is non-negative and strictly
decreasing with ¢; (i) R(e) —e < 1(k —¢) for all £ (this weak inequality is binding at
e = k, because R(k) = k).

3.2 Subgame Perfect Equilibrium

For every a # 0, define
I(a,e) = p, — 6 - Ry(e)

This function trades off the expected trend associated with an active reform strategy

and its riskiness. We are now ready for the main result of this section.



Proposition 1 In any subgame perfect equilibrium, each player t chooses 0 whenever
el > &*, and an action in arg max,.oIl(a,e*) whenever €' < &*, where €* is uniquely
defined by the equation
max I(a,e*)=(1—0) & (3)
Proof. The proof is structured as follows. I first establish lower and upper bounds
on the equilibrium payoff that each player ¢ can attain from choosing an action a # 0.
These bounds do not differ across players because for every player t, the only aspect
of the history that is relevant for the set of feasible payoffs is e!. I next show that the
two bounds coincide, and use this to pin down the equilibria.
In what follows, I define player t’s gross continuation payoff from choosing a # 0

to be equal to his payoff from this action plus &.

Step 1: A lower bound on gross continuation payoff

Proof: Consider an arbitrary finite history h. Let C(h,a) denote the set of finite
histories in the subgame that begins after player ¢(h) chooses the action a. Denote
t(h) = t. To obtain a lower bound on player ¢’s gross continuation payoff, we need to

find a strategy profile in this subgame that minimizes the expectation of

o0

(1—8) 3 &4 [mnerO) 4 (min(s, r(t) — 1) -

s=t+1

This is equivalent to finding a stopping rule « : C(h,a) — {stop, continue} - defined by
a(h') = continue if and only if player ¢(h') plays 0 - that solves a stationary stopping
problem of searching for a low price, where p, is the constant cost of search per period;
€% is the price encountered in period s, drawn i.i.d according to the density function
fa; and 1 — ¢ is a constant exogenous stopping probability.

In this well-known textbook problem (e.g., see Stokey, Lucas and Prescott (1989,
pp. 304-315), the optimal stopping rule follows a stationary cutoff: stop in period s if

and only if €® < &, where €} is uniquely given by the equation

*

ua=5-/6a(52—6)fa(6)+(1—5)'62

—kq

which can be rewritten as
(a,e}) = (1—9) €

a

Moreover, the gross continuation payoff induced by this stopping rule is €. There-

fore, the minimal payoff that player ¢ can secure from implementing an active reform
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is max,.o €, = €.

Step 2: An upper bound on gross continuation payoffs
Proof: Let V* denote the highest gross continuation payoff that any player can attain

in equilibrium conditional on choosing a # 0. Then:

ka e*

V* < sup {ua +(1-=9)- / efale) +0- [/ efae) + (1 = Fu(g%)) - V*]}
a#0 —kq —ka

The reason is as follows. First, by Step 1, in any continuation, player ¢ + 1 will

choose a # 0 whenever '™ < ¢*. This explains the first term in the square brackets.

Second, the discounted sum of payoff flows that accrue to player ¢ in periods s >t + 1

conditional on a'*! = 0 is by definition bounded from above by V*. Rearranging this

inequality, and exploiting the fact that the expected value of ¢ is zero, we obtain
Ve <e*

Thus, the upper and lower bounds on gross continuation payoffs coincide. Therefore,

equilibrium gross continuation payoffs are uniquely given by £*.

Step 3: Pinning down equilibria

Proof: By the previous step, whenever player ¢ chooses a # 0 in equilibrium, he
necessarily chooses a € arg max, €5, and he chooses a = 0 if and only if " > £*. Note
that by definition:

e*

& = max mé-[/ cfule) + (1= Fo(e")) - "

a;é(] 7ka
= max [y, — 0Ry(e7) +4- €7
= maxIl(a,e")+d-&"

a#0

This completes the characterization of equilibrium. m

Thus, independently of the history, each player ¢ chooses to intervene if and only
if the noise realization in period ¢ is below a stationary cutoff £*. Conditional on
intervening, he chooses an action a # 0 that maximizes II(a,c*). If argmax,.o II(a, ¢)
is unique for all &, then the equilibrium is necessarily unique, such that each player ¢
chooses a* = arg max, o [I(a, c*) whenever £’ < ¢*. In this case, only the first PM who

plays a # 0 brings a real change in the expected trend, from zero to p,.. From that
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moment, the expected trend is p,. forever, and all subsequent interventions along the

equilibrium path are “placebo reforms”.

Equilibrium properties
The equilibrium characterization involves two aspects of strategic reform decisions: the

timing of reform and the risk attitudes displayed in the choice of reform strategies.

Timing. The equilibrium timing of active reform follows a stationary cut-off rule:
each player t chooses a # 0 if and only if the noise realization in period ¢ does not
exceed the cutoff £*. Since all noise distributions have a zero mean, the equilibrium
expected noise realization conditional on active reform is strictly negative. Thus, the
PMSs’ equilibrium timing of reform gives rise to an “adverse selection” effect: the noise
realization is negative on average in periods of active reform. In other words, PMs
tend to implement reform at times of crisis.

Risk attitudes. Conditional on implementing an active reform, PMs’ choices display
risk aversion. They choose a reform strategy as if they maximize a utility function
that trades off the expected trend and the riskiness of the available reform strategies,
in a manner similar to mean-variance preferences, except that the riskiness function R

(evaluated at the cutoff €*) replaces variance.

The connection to optimal stopping models

The proof of Proposition 1 makes use of a formal analogy to a textbook search problem.
Let us explore the intuition behind this analogy. First, suppose that A = {0,1} and
take the § — 1 limit. In equilibrium, each player ¢ chooses a’ = 1 if and only if ! < &*,

where €* is uniquely defined by the equation p; = R;(e*), which can be rewritten as

m=[ =9

This is precisely the cutoff rule in a textbook optimal stopping problem, in which a
consumer, say, searches sequentially for a low price drawn from a stationary distribution
with a constant per-period search cost. Under this interpretation, x; denotes the search
cost, € denotes the price and €* is the optimal cutoff price.

However, the analogy comes with a twist, because the meaning of the actions 0 and
1 is not stable over time: for the current player, 0 means stopping, while his calculation
of the optimal action implies that for all subsequent players, 0 means continuing. Thus,
in equilibrium PMs behave as if they collectively solve a textbook stopping problem

of searching for a low price, except that their stopping decision with respect to the
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optimal cutoff is inverted. When |A| > 2, the “inverted search” analogy is extended
to allow for multiple search pools, as if each action a # 0 gives the consumer access
to a different search pool with a characteristic (stationary) price distribution. The
equilibrium risk aversion displayed by PMs in our model is thus a mirror image of the
preference for high-variance price distributions exhibited by optimal behavior in the

analogous search model.

The effect of a longer evaluation horizon
How is equilibrium behavior affected by changes in the PMs’ evaluation horizon, as

captured by the discount factor 67

Corollary 1 When A = {0,1}, the equilibrium cutoff e* decreases with §.

To see why this is the case, note that the equilibrium cutoff £* satisfies the equation
py=10-R(e) +(1—0) & (4)

In Section 3.1, we saw that R(e) > ¢ for all ¢ < k. Therefore, in order to satisfy (4),
£* must decrease when d goes up.

Thus, the more PMs care about “posterity” (that is, evaluations that lie in the
distant future), the more reluctant to intervene they become, such that the equilibrium
probability of reform goes down. The intuition is that a longer horizon increases the
weight of future PMs’ intervention decisions in the calculation of the current PM’s
payoft. Because of the adverse selection that characterizes such a decision, the current
PM’s disincentive to act becomes stronger. The formal link to optimal stopping models
sheds more light on this result: when a consumer searches for a low price, his cutoff
price will decrease as he becomes more patient.

When A contains more than two actions, the effects of a longer horizon on the
equilibrium timing of reform and PMs’ risk attitudes become more subtly intertwined.
It is easy to see that holding the cutoff ¢* fixed, PMs become more risk averse as
0 goes up. However, since €* is endogenously determined, it appears that stronger
assumptions are required to obtain clear-cut results.

For example, let A = [I,h] U {0}, where h > [ > 0, and assume that for each
a € [l,h], F, is uniformly distributed over [—a,+a]. Thus, each reform strategy is
identified with the spread of its noise distribution. In addition, assume that pu, =17-a

for every a € [I, h|, where r € (0, 1) is an exogenous constant. As to the default action,

12



all we need to assume is that the noise distribution associated with it has a sufficiently
large support (this assumption is relevant only for histories in which all prior PMs
chose the default). To characterize subgame perfect equilibria, we need to find a noise

realization £* such that:

* 2
max [ra—o. S
a€(l,h] 4a

|=(1-5)¢

The solution to this problem induces a reform probability of

(1—0)+ 61—(5(1—7’) 5

It can be verified that this expression increases with r and decreases with §. In the
d — 1 limit, reform probability is /7.

Let us turn to the PMs’ choice of reform strategy conditional on acting. When
0 < 4r, all PMs choose the action h in equilibrium after every history. When § > 4r,
all PMs choose the action [ after every history. Thus, as long as r < i, PMs opt for
the lowest-risk, lowest-return (highest-risk, highest-return) reform strategy when the

discount factor is high (low).

Ex-ante payoffs for patient PMs
Suppose that just before player ¢ observes e, he is asked to evaluate his equilibrium

expected payoff. In the 6 — 1 limit, we obtain

/ max(0, " — €) fo (€)

where a* € arg max, . [I(a,*). It is easy to see that this expression is equal to R,-(¢),
and therefore, by Proposition 1, to u,.. That is, the player’s ex-ante expected payoft
is equal to the trend parameter that characterizes the active reform strategy taken in
equilibrium.

This observation has interesting welfare implications. On one hand, it is plausible
to assume that the public’s welfare criterion is to maximize long-run growth. On the
other hand, PMs turn out to use this same criterion to evaluate equilibrium outcomes.
However, the equilibrium action a* does not maximize long-run growth, but a target
function that trades off the growth rate associated with reform strategies and their
riskiness. In this sense, the equilibrium outcome is inefficient: if the public had a
correct understanding of the model, all parties would agree that the equilibrium path

is sub-optimal because it displays insufficient growth.
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Comparison with a Non-Strategic Model
To get a deeper understanding of the strategic considerations of PMs in our model, it
will be useful to draw a comparison with a simpler model, in which there is a single
PM who acts at an arbitrary period ¢, and does not expect any subsequent PM to act.
The PM’s payoff function is exactly as in the model presented in Section 2, except that
r(t) = oo with certainty.

The PM'’s expected payoff from taking an action a # 0 in period ¢, given z* and &,

is

Ma _ ot

Thus, player ¢ will act if and only if ¢! < &, where £ is given by

=(1—-9)¢
max i, = (1 - 0) (7)
Conditional on acting, he will choose a to maximize s, .
Compare this with the PMs’ equilibrium behavior in our model, given by (3). The
two equations are nearly identical, except for the term § - R,(¢), which appears in the
strategic model only. This term is crucial, as it leads to several notable differences

between the cutoff rules in the two models.

e The cutoff (and therefore the reform probability) is lower in the strategic model.
In particular, when max,c4 1, =~ 0, the cutoff is €* ~ 0 in the non-strategic model,
whereas it is negative and bounded away from zero in the strategic model. The
reason is that only in the strategic model, PMs are concerned with the adverse
selection that characterizes the noise realization when a future PM implements

an active reform.

e The noise component is irrelevant for the PM’s decision in the non-strategic
model, whereas it plays a crucial role in the PMs’ equilibrium decisions in the
strategic model. The reason, once again, is that the adverse selection effect exists
only in the strategic model. In the absence of this effect, PMs do not care about
the noise because they are risk-neutral. In the strategic model, they care about

the noise because it determines the magnitude of the adverse selection effect.

e The effect of extending the PMs’ horizon is different in the two models. In the
non-strategic model, a higher ¢ leads to a higher reform probability (because we
assumed (1, > 0 for all @). In the § — 1 limit, PMs almost always act. In contrast,

in the strategic model, as we saw, a higher § can result in a lower equilibrium
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reform probability because it makes the strategic adverse selection effect more

important for PMs.

3.3 Permanent Shocks

In this sub-section, I extend the growth model of this section by incorporating the pos-
sibility of permanent shocks. Specifically, assume that every action a is characterized

by an additional parameter p, € [0, 1], and that the process (1) is modified as follows:

. R A S with probability p'~?
xrx =
o' 4t et — 71 with probability 1 — pt~!

where p' = p,.. Thus, p' is the probability that the random, independent shock in
period t is permanent; and just like the trend parameter and noise distribution, p' is
determined by the latest intervention prior to t.

The characterization of subgame perfect equilibrium undergoes a slight modification

under this extension. For every a # 0, define

e
1_pa

1y

As before, to ensure an interior solution, assume p* € (0, k,) for every a # 0.

Proposition 2 Subgame perfect equilibrium is characterized exactly as in Proposition

1, except that ; substitutes p,.

I omit the proof, as it follows the same outline as the proof of Proposition 1. It
immediately follows from this characterization that in equilibrium, all PMs display a
preference for reform strategies that are associated with permanent shocks. Moreover,
PMs are less risk averse when they choose actions with more permanent shocks. The
intuition is simple. Suppose that reform involves appointing a new administrator. The
impact of any new administrator on the economic variable is a function of his personal
characteristics, and therefore uncertain. However, it is likely to be durable if the
administrator is appointed for a long term. This attenuates the mean reversion that
causes the adverse selection effect on subsequent PMs’ timing decisions, and therefore

the incentive to act and take risks goes up.
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4 Crisis Dynamics

There is a common intuition that when an economic system enters a state of crisis,
attempts by PMs to fix it tend to arrive too late, and in the meantime the crisis
continues to spiral. In this section I examine a simple example that demonstrates how
this tendency can be exacerbated by the career/legacy concerns captured by our model.

Assume that = gets values in {—N,...,—1,0}, N > 2. A value x < 0 represents a
state of crisis; the lower the value of z, the deeper the crisis. Assume that 2 < 0. Each
PM faces the same set of actions A = {0, 1}. The value x = 0 represents full recovery
from the crisis. This state is absorbing: 2! = 0 implies /"' = 0, independently
of player t’s action. If z' < 0, then z!™' = z' + 1 with probability p(z!) - a', and
'™ = max(z' — 1, —N) with the remaining probability, where p(z) > 0 for every
x < 0.

In a non-strategic model in which a single PM makes all the decisions, it is clear that
in the 6 — 1 limit, the PM would always choose a = 1. Another relevant benchmark
is the case of fully myopic PMs (6 = 0). In this case, when —N < z' < 0, player ¢
would choose a = 1 if and only if p(z') > . Let us turn back to our model, focusing
on the § — 1 limit. When 2! = —N, a = 1 is a dominant strategy for player ¢. The
question is how players would act in equilibrium at other states. It turns out that
under mild upper bounds on the values of p(z), the existence of a single level of z
at which the default is myopically optimal suffices to “infect” the players’ strategic
reasoning elsewhere in the game such that all PMs choose the default in equilibrium,

except when the economic variable hits “rock bottom”.

Proposition 3 Suppose that p(z) < N]Eil forallz € {—N+2,..,—1}. If p(Z) < 3
for some T € {—N+1,...,—1}, there is a unique subgame perfect equilibrium, in which

each player t chooses a = 0 whenever x* > —N.

Proof. Clearly, a' = 0 whenever z! = 0, since 2° — ¢ = 0 for every s > t. From now

on, consider only histories h for which z(h) < 0. The proof proceeds stepwise.

Step 1: Players choose a =0 at .

Proof: First, suppose that x(h) = Z. If player t(h) chooses a = 0, his payoff is zero.
Suppose that he chooses a = 1. If 2!)*1 = & — 1, this implies that z"¢") < 7 — 1. If
'MW+l = 7 1 1, this implies that 2"®(") < # + 1. Therefore, player ¢(h) earns a payoff
that is bounded from above by p(Z) -1 — (1 —p(%)) -1 < 0. Therefore, a = 1 is strictly

dominated at h.
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Step 2: Players choose a =0 at every v € {—N +1,...,2 — 1}.

Proof: Consider a history h for which xz(h) € {—N +1,...,—1} and it is known
that player t(h) + 1 chooses a = 0 at the history (h,1,x(h) + 1). (By Step 1, such
a history must exist if £ > —N + 1.) Suppose that player ¢(h) chooses a = 1. If
o'W+ = 3(h) + 1, then 2"¢M) < z(h). If 'MW+ = 2(h) — 1, then 2"t < (k) — 1.
It follows that the player’s expected payoff is negative, hence it is optimal for player
t(h) to choose a = 0.

Step 3: Players choose a =0 at every x € {Z,...,—1}.

Proof: 1 prove this claim by induction. By Step 1, it holds for x = x. Suppose
that the claim holds for some = € {Z,...,—2}, and consider a history h such that
x(h) =z + 1. If 2/™+1 = (k) — 1, then by the inductive step as well as Step 2, all
subsequent players choose a = 0 until = reaches the minimal value — N, in which a PM
will intervene. Therefore, 27") = —N. On the other hand, if 2!+ = 2(h) + 1, then
2" h) < (k) + 1. It follows that player #(h) earns an expected payoff that is bounded

from above by p(z +1)-1— (1 —p(x +1)) - (x + 1+ N). This expression is negative

N+z+1
N+z+2°

choose a = 0. This completes the proof. m

by the assumption that p(x + 1) <

Therefore, it is optimal for player ¢(h) to

Thus, along the equilibrium path, the system reaches the bottom states —N and
—N + 1 in the shortest time possible, and then fluctuates between them indefinitely.
Note that this conclusion holds even in the extreme case in which NN is very large, 2° =
—1 and p(«°) is close to 1 — %, such the myopic behavior would lead to recovery almost
with certainty. We can see that relative to the myopic benchmark, the career/legacy
motives captured by our model induces a very strong disincentive to act.

The proof of Proposition 3 follows a “contagion” argument. The rough intuition
is as follows. When intervention is myopically sub-optimal at a certain level of x,
it is never chosen in equilibrium (except when x = —N). This “infects” the strategic
considerations of all other players at all other interior levels of z, because when a player
anticipates that his immediate successor will choose the default, he knows that the
system will deteriorate as a result, and that the public will attribute this deterioration

to his own intervention.

Comment on the public’s attribution rule in the context of crisis dynamics
By assumption, the public’s attribution rule does not give PMs who choose the default
any credit (positive or negative) for subsequent developments. This aspect of the model

is quite problematic in the context of the current model. In the stationary growth model
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of Section 3, default meant inertia. Therefore, it made some sense to give no credit
to a PM who does not intervene. In contrast, in the present model, the choosing the
default option results in immediate deterioration. If the public understood that, it
would certainly penalize PMs who fail to act. It follows that the fallacy embodied in
the public’s attribution rule is greater - and therefore perhaps less plausible - in the

present model, compared with the model of Section 3.

5 Irreversible Reforms

In this section, I turn to environments in which player 0’s action induces an irre-
versible Markov process, such that his actions alone affect the evolution of x, whereas
subsequent PMs’ interventions are “Placebo reforms”. Formally, assume that for every
t>0:

="t d (8)

where the initial condition is 2° = 0, and d' is governed by the following stochastic
process. Let @ be a finite partition of the set of finite game histories. 1 typically
refer to elements of Q as states. Let ¢ € Q denote the state of the process at time t.
Whenever ¢' # ¢°, the set of feasible actions for player ¢ is {0,1}. For every q # ¢°,
d(q) represents the change in the value of the economic variable when the process is
in the state ¢ - i.e., d' = d(q'). Let A° denote the set of actions available to player 0.
For every q # ¢°, let 7(¢' | ¢) be the probability that the process switches to the state
¢ = ¢ conditional on ¢' = ¢q. Assume 7(¢° | q) = 0 for every q # ¢°. For every
a € A% let 79%(q | a) denote the probability that the system switches from the initial

O = g. Assume that 7°(¢° | a) = 0 for

state ¢ to the state ¢* = ¢ conditional on a
every a € A%. The notion that player 0’s actions are irreversible is captured by the
assumptions that ¢° is never visited again after period 0 and that transitions do not
depend on the actions of players ¢t > 0.2

It turns out that in this environment, subgame perfect equilibrium payoffs are

unique and given by a simple recursive characterization.

Proposition 4 In subgame perfect equilibrium:
(i) Each playert > 0 chooses a = 1 and earns a payoff of V(q¢*) if and only if V(q") > 0,

2The assumption that the output of states is the change in x (rather than, say, the level of z) is
an arbitrary modeling choice suited for the application I analyze later in this section.
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where V' is uniquely determined by the following recursive equation:

V(g)=Y_ dl¢)+ 6 -min(0,V(¢))] 7(d | g) (9)

q/

0

(ii) Player 0 chooses an action a° € argmaxge 4o\ (o} V(g® a) if V(¢°,a®) > 0, and

a = 0 if max,e a0\ 0} V(q®, a) <0, where

V(¢®.a) =Y [d(q)+6-min(0,V(q)] - ™(q | ¢°,a) (10)

q7#q°

Proof. Fix an equilibrium strategy profile 0. Because z! is governed by a Markov
process and game histories are fully observed by players, it is legitimate to write a
finite history at which some player ¢ > 0 moves as a sequence of actions and states
(¢°,a% ¢, a',...,a"", ¢"). For any such history &, let ¢(h) denote ¢", and let V*(h | o)
be the expected payoff that player ¢(h) attains if he chooses a = 1. Note that his
equilibrium payoff is by definition

U(h | o) =max(0,V*(h| o)) (11)

because he can guarantee a payoff of zero by choosing the default. Observe that for

every two periods s > t:
s — ZEt — (ZL’S _ xt—l—l) +d(qt+1)

By definition, r(t) = t + 1 if and only if player ¢t + 1 plays a = 1. Therefore, we can

write V* recursively as follows:

Vi(h|o) =) [d(¢)+d-min(0,V*((h,1,¢) | 0))]-7(¢' | a(h)) (12)

ql

Our objective is to verify that this recursive functional equation has a unique so-
lution, that is moreover measurable with respect to Q\{¢"}. Recall that without the
minimum operator, this is a Bellman equation. The standard proof of uniqueness es-
tablishes that the value function (defined by the recursive functional equation) is a
contraction mapping, using Blackwell’s sufficient condition for a contraction.

Thus, all we need to do in the present context is to note that the set of finite histories
is countable, and therefore trivially a metric space, as well as verify that Blackwell’s

sufficient conditions for a contraction hold. The proof is straightforward, and virtually
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identical to the case of a standard Bellman equation. Therefore, I omit the detailed
proof and refer the reader to Acemoglu (2009, pp. 190-199, 544-549) for an accessible
exposition of the proof.

It remains to be shown that V*(h | o) = V*(h' | 0) = V(q) whenever q(h) =
q(h') = q. Assume the contrary. Then, since d is only a function of ¢, we can permute
the solutions for h and A/, and this would still be a solution of (12), thus violating the
uniqueness result. It follows that (9) represents the equilibrium payoff that each player
t earns if he chooses a = 1. Expression (10) immediately follows as a best-reply for

player 0. m

The recursive function defined by (9)-(10) captures the essence of the PMs’ strategic
considerations in this model. When player ¢ chooses to intervene, he takes into account
the future changes in the value of x, but he is concerned that a future PM will act and
thus expropriate credit for subsequent changes in the value of x. This future PM will
choose to act only if it is profitable to him - i.e., only if the value of V' at the time he
moves is positive. If this value is negative, the future PM will prefer to be inactive,

such that player ¢t will continue to get credit for changes in the value of .

An application: Non-stationary growth processes
In the remainder of this section, I apply this equilibrium characterization to a variant
on the stationary growth model of Section 3, in which player 0’s action induces a growth
process with a time-varying trend. This enables us to examine the time preferences
that player 0 exhibits in equilibrium.

Formally, assume that every action a # 0 in A° is associated with two positive

trend parameters, u! and p2, such that
' =p+ et

and

gt =gt e =€

for every ¢t > 0, independently of subsequent PMs’ actions, where ¢! is 7.i.d according
to a fixed noise distribution f which is symmetrically distributed over the support
[—k, k). Thus, ! measures the expected short-run benefit from the action a, whereas
p2 measures its expected long-run benefit.

It is straightforward to embed this description in the formalism introduced earlier
in this section, except that the state space is infinite. For every ¢t > 0, define the state

q" as a triple (a° ', e71), and let A(q) = A for every ¢, and d(q') = o + &' — et 1
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The transition function is simple: for every t > 0, &' is an independent draw from f,o.
If player 0 were fully myopic, he would obviously choose arg max,o pL. In contrast,
consider a non-strategic model in which player 0 does not expect any future PM to act.
Then, if § is sufficiently close to one, player 0 would choose arg max,o 2. Equilibrium
behavior in our model departs from these two benchmarks.
Consider the § — 1 limit. For every a € A(q°)\{0}, define

®(a) = py + R (pd) — il (13)

and denote ¢* = max,.o ®(a). Note that ®(a) increases with p2, by the properties of

the riskiness function described in Section 3.1.

Proposition 5 There is a unique subgame perfect equilibrium, in which player 0 chooses
a=0if " <0, and an action in arg max,,o P(a) if ¢* > 0.

Proof. Fix player 0’s action a. The continuation game that follows the realization
of x! falls exactly under the class of games analyzed in Section 3, with A = {0,1}, a
constant trend parameter ;2 and a fixed noise distribution f (which induces a riskiness
function R). According to Proposition 1, each player ¢ > 1 chooses a' = 1 if and only
if ! < &*, where £* is uniquely determined by the equation R(g*) = u2. When player
0 takes an action a # 0, his expected payoff is

i+ [ e+ - P

—k

1 2 < M2
S IO
k F(e*)

Since p? = R(e*), we can use (2) to obtain:

g pa
/k ef(e) + Fl) =¢

It follows that player 0’s expected payoff is equal to
fo — Hy + €= pig — iy + R7 () = ®(a)
Therefore, he plays a = 0 if ¢* < 0, and an action that maximizes ® otherwise. m

To see the implications of this characterization for the intertemporal trade-offs

revealed by player 0’s equilibrium behavior, observe that the equilibrium probability
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that each player t > 0 chooses a # 0 is o* = F[R™*(u2)]. This probability increases
with p2. But since F is by definition the derivative of R, it follows that the marginal

rate of substitution between u! and p? that characterizes the function ® is

0®(a)/Out a*
0®(a)/0u? 1—ar

This expression increases with p2. When p2 is close to zero, the marginal rate of
substitution is close to zero, which means that player 0 is far-sighted at the margin: he
prefers actions with lower short-run benefits and higher long-run benefits. As u? goes
up, the marginal rate of substitution goes up, and so player 0 becomes more myopic
at the margin.

At this stage of the paper, it should come as no surprise that the driving force behind
this result is the adverse selection that characterizes PMs’ decision to implement an
active reform. When feasible values of ;2 are low, players ¢ > 0 choose to act only after
very low noise realizations, and this noise term largely dominates the overall change
in x. Therefore, player 0 mostly cares about curbing the adverse selection effect, and
this is accomplished by raising p2 even at the expense of a lower u!. In contrast, when
feasible values of ;2 are large, the adverse selection effect is small. Moreover, it does
not take a long time on average before some player ¢ > 0 plays a # 0. Therefore, the
most effective thing player 0 can do to improve his evaluation is to choose a reform

strategy that brings immediate benefits.

6 Concluding Remarks

My objective in this paper was to present a stylized model of strategic policy making
when PMs have career /legacy concerns and they are evaluated by a public that employs
a boundedly rational rule for attributing observed outcomes to observed actions. The
model illuminates the much-researched subject of reform delay from a new angle, and
also links it to other aspects of PMs’ project selection, such as risk attitudes and
intertemporal preferences. The model’s very simplicity immediately suggests various
extensions that were not examined here. For instance, introducing costly actions or
multiple monitored economic variables would be straightforward extensions. In this
concluding section, I briefly discuss interesting directions for continued research that I

find less straightforward.
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Multiple Equilibria

All the specifications of the model studied in Sections 3-5 gave rise to unique subgame
perfect equilibrium payoffs, and often unique equilibrium strategies. This raises the
question of whether equilibrium payoffs are unique in general. The following simple
example demonstrates that the answer is negative.

Assume that the action set for each player is A = {0, 1}, and suppose that z't1 =
xt + 2a’ — 1. The myopically optimal action is obviously a = 1. There is a subgame
perfect equilibrium in which all PMs play this action. However, when ¢ is sufficiently
large, there is another equilibrium, in which all PMs play a = 0 at all histories. To
see why this is an equilibrium, suppose that player ¢ deviates after some history and
plays a’ = 1, such that 2" = 2! + 1. Given that all subsequent PMs adhere to their
equilibrium strategy, we have /72 = 2! and 2°*t! = 2° — 1 for every s =t + 3.t + 4, ...,
such that player ¢’s discounted payoff is negative.

Note that like the environment studied in Section 3, this example is stationary. The
difference lies in the effect of the default action on the evolution of z. In the model of
Section 3 default meant inertia - i.e., the trend and noise distribution were unchanged.
In contrast, in the present example choosing the default action affects the course of zt.
Thus, the question of multiple equilibria seems to revolve around the role of the default
option. Finding conditions for uniqueness of subgame perfect equilibrium payoffs is an

interesting problem that I leave for follow-up research.

Heterogeneous Discount Rates

The assumption that all PMs have the same discount factor has been made primarily
as a simplifying starting point. There are various reasons for being interested in the
case of heterogeneous discount rates. First, PMs of different age and at different
stages of their career will have a different mixture of career and legacy concerns. For
example, an old politician near the end of his career is likely to care about their “legacy”
(large &), whereas a younger politician will be motivated by short-term career concerns
(low 0). An extended model that assumes a stochastic discount factor can capture
this distinction. Second, our model assumed that each PM moves exactly once, thus
ignoring re-election. When PMs can be re-elected, they are likely to be motivated
by short-term career concerns in their first term and by legacy concerns in their final
term. Thus, their own discount factor changes as the game progresses. Thorough

investigation of these extensions is beyond the scope of the present paper.

Alternative Attribution Rules

This paper focused on a particular element of “boundedly rational” attribution of out-
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comes to actions, namely the tendency to credit the most recent intervention for changes

in the monitored variable. In this section I briefly discuss alternative attribution rules.

7 The model assumes that

Getting credit for “whatever happens during one’s shi
PMs get zero credit for subsequent changes if they choose the default action, because
the public attributes changes to the latest intervention. In reality, PMs do seem to
get some credit for the changes during their term in office, independently of whether
or not they attempted to intervene. We could capture this effect by adding a term
v+ (2 — 2t) to player t’s payoff function, where v > 0 is a constant. If v is very large,
player ¢ will choose an action that maximizes the expectation of /! .For intermediate
values of v, equilibrium behavior will trade-off this conventionally myopic motive with

the effects highlighted in this paper.

Salience and the timing of evaluation. The model implicitly assumes that public con-
stantly pays attention to the economic variable, such that evaluation takes place at
every period. Each PM weighs all future evaluations according to his discount factor.
In reality, salience of actions and outcomes plays an important role in determining
public attention. For example, when a PM implements an active reform - i.e., chooses
a # 0 - this is a mark of salience that invites public attention to the economic variable.
An extreme way of capturing this salience effect would be to assume that evaluations
take place only in periods s for which a® # 0. Note, however, that this would be
equivalent to taking the 6 — 1 limit in our model. Thus, we can perfectly capture
this salience effect without abandoning our model. Public attention to an economic
variable can also be triggered by sharp changes in its value. We could incorporate this
salience factor into our model by assuming that the probability that evaluation takes

place in period s increases with |75 — z571.

Attributing outcomes to developments prior to the most recent intervention. While
the assumption that the public attributes changes in x to the latest intervention, in
some scenarios it seems plausible to assume that the public will evaluate the latest
intervention in light of counterfactuals that seem natural given the longer history. For
example, consider a history in which all players 1, ..., s—1,s+1, ...t choose a = 0, while
a® # 0. Assume in addition that

S—J]O l’t—l‘s

<
S s—1

It would be plausible for an evaluator at period ¢ to give player s positive credit because

his action appears to have curbed the negative trend, even if it has failed to overturn
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it.

Bayesian rational attribution. Finally, it would be interesting to model the PMs’ eval-
uation by the public as the result of a conventionally rational equilibrium inference in
a model with asymmetric information regarding the PMs’ “type”. In such a model,
the set of players consists of the PMs and a rational “evaluator”, who observes the
history and rewards each PM according to long-run limit of the posterior probabil-
ity that his type is “good”. The obvious merit of this modeling strategy is that it
is based on a behavioral assumption perceived to be less ad-hoc than any boundedly
rational attribution rule. However, it has several, inter-related drawbacks. First, as
I argued at the beginning of the paper, Bayesian rationality requires the public to
possess an unrealistically thorough understanding of the underlying stochastic process.
Second, the equilibrium inferences that the evaluator is required to carry out in such
a model are likely to require unlimited memory. In particular, he will rely on obser-
vations in early stages of the game to update his beliefs in later stages, and he will
keep updating his belief regarding early players’ types. Finally, I expect the model to
be intractable for most stochastic processes of interest. While the main equilibrium
characterization results of this paper (Propositions 1 and 4) were obtained for general
classes of stochastic processes, it is very likely that complete equilibrium character-
ization in the analogous Bayesian-rational model can be accomplished under special
(ad-hoc?) stochastic processes. As Ellison (2006) pointed out in a different context,
bounded-rationality models are often much more tractable than their Bayesian-rational
counterparts, a property that enables the modeler to enrich the analysis in a number

of important dimensions.

Related Literature

To my knowledge, this is the first paper to analyze theoretically public decision making
when policy makers care about the way they will be evaluated by a boundedly rational
audience. Although the model addresses in an abstract manner a general strategic
situation and does not commit to a particular application, it is closely related to a
strand in the political economics literature that deals with the question of reform tim-
ing. This literature has primarily tried to explain why socially beneficial reforms often
seem to be adopted after a long delay, typically at a time of economic crisis. Drazen
and Easterly (2001) provide empirical evidence for this common wisdom. Alesina and
Drazen (1991) derive reform delay as a consequence of a war of attrition among differ-
ent factions as to which will bear the burden of reform. Fernandez and Rodrik (1991)

explain delay as a form of status quo bias resulting from majority voting when indi-
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viduals are uncertain about their benefits from reform. In Cukierman and Tommasi
(1998), PMs cannot credibly demonstrate the superiority of reform to voters, because
the latter are uninformed of the state of the economy and recognize that PMs’ policy
decisions also reflect their partisan preferences. As a result, socially desirable reforms
may fail to be adopted. Orphanides (1992) explains reform delay as a solution to an
optimal stopping problem in the context of an inflation stabilization model (this is a
conventional stopping problem, to be distinguished from the subtle formal analogy to
search models highlighted in Section 3). For a survey of current approaches to this
problem, see Drazen (2001, pp. 403-454).

There are a few precedents for the general idea of modeling interactions with/among
agents who use boundedly rational attribution rules. Osborne and Rubinstein (1998)
construct a game-theoretic solution concept in which each player forms an action-
consequence link by naively extrapolating from a sample of observations taken from
the opponents’ mixed strategies. Spiegler (2004) analyzes a proto-bargaining game, in
which a player’s tendency to explain his opponent’s concessions as the consequence of
his own recent bargaining posture arises endogenously from a simplicity-based crite-
rion for selecting equilibrium beliefs. Spiegler (2006) models price competition among
providers of credence goods when consumers use anecdotal reasoning to evaluate the
quality of each market alternative. The consumers’ naive reliance on anecdotal evi-
dence causes them to reward firms for sheer luck as if they had true skill, and as a
result a market for an inherently useless product can thrive. This effect is analogous
to the statistical Placebo effect that leads the public in the present model to attribute
economic performance to PMs’ actions.

Finally, this paper is somewhat related to the vast literature on career concerns in
organizations and their implications for dynamic moral hazard situations (see Prender-
gast (1999) for a survey). The distorting effect of career concerns on experts’ interven-
tion decisions - particularly in the case of medical decision making - was addressed by
Fong (2009), who focused on the case of a single PM facing multiple sequential choices,

and formulated it as a mechanism design problem of a Bayesian rational evaluator.
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