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Abstract

Amarket model is presented, in which firms and consumers differ in
their “market understanding”. In the model, rational firms compete in
cumulative distribution functions over consumers with bounded abil-
ity to grasp statistical data. Increased competition causes firms to
increase their effort to obfuscate, instead of increasing their effort to
be more competitive. As a result, consumer welfare is not enhanced
and may even deteriorate. Specifically, when firms determine the dis-
tribution of both price and quality, and the technology for produc-
ing quality is convex, increased competition implies an efficiency loss
which is entirely borne by consumers.

∗I would like to thank the LSE for its stimulating hospitality during the fall term of
2003/4. I have greatly benefitted from numerous discussions with Eddie Dekel and Kfir
Eliaz. Finally, I thank Gil Kalai, Barton Lipman, Michele Piccione, Ronny Razin, Ariel
Rubinstein, Asher Wolinsky and numerous seminar audiences for helpful comments.

†School of Economics, Tel Aviv University, Tel Aviv 69978, Israel. E-mail:
rani@post.tau.ac.il. URL: Http://www.tau.ac.il/∼rani.

1



1 Introduction

In the past three decades we have seen remarkable advances in the economic
analysis of market models with informational asymmetries: markets for ex-
perience goods in which firms know their quality better than consumers, in-
surance markets in which consumers know their risks better than firms, etc.
At the same time, these market models impose a perceptual symmetry be-
tween firms and consumers, because they retain the meta-level assumption
that “the model itself is common knowledge”. In other words, all market
agents, firms and consumers alike, are assumed to be perfectly able to grasp
the market model and the market equilibrium.
In reality, firms and consumers often differ in their ability to understand

the market. Firms have more opportunities to learn the market model and
the market equilibrium than most consumers, because they interact more
frequently with the market and pay undivided attention to it. In addition,
many services provided in markets are multi-dimensional. Determining the
value of a multi-dimensional service is a difficult computational task for most
consumers. Firms, as price setters, are in a position to contribute to this
difficulty, e.g. by using complex pricing schemes that exploit this multi-
dimensionality.1

For instance, consider industries such as retail banking or healthcare. A
bank or an HMO provide a large number of services. A bank may charge
different fees for different services. Likewise, the quality of treatment offered
by an HMO may vary across medical problems. When consumers choose
a bank or an HMO, they do not know yet exactly which subset they shall
need, and therefore they need to consider a large set of potentially relevant
services. The task of evaluating this set is difficult, and many consumers
resort to simplifying heuristics. An example of such a heuristic is sampling
a small subset of services and evaluating the bank or the HMO on the basis
of the sampled services.
Similarly, when a consumer purchases life insurance, he is faced with a

contract that specifies many contingencies. Insurance companies may offer
different coverage in different contingencies. Trading off across all contingen-
cies is a hard computational task. Once again, a simplifying heuristic for the

1As Ellison and Ellison (2004) demonstrate, even in a potentially competitive environ-
ment such as internet commerce, retailers react to price search engines - whose aim is to
reduce the complexity of consumer choice - with a variety of obfuscation devices, whose
aim is to regain this complexity.

2



consumer would be to consider a small number of contingencies and evaluate
insurance companies according to the terms they offer for these contingencies.
In these examples, firms’ strategies have a complex multi-dimensional

structure. Consumers find it difficult to grasp this structure in its entirety.
This limitation may be due to inherently bounded ability to evaluate multi-
dimensional objects, or due to lack of opportunities to learn the data. Instead,
consumers sample a small part of the firms’ strategies and extrapolate naively
from their sample. This simplifying heuristic saves considerable cognitive
resources, because it can be applied in many market settings.
My objective in this paper is to examine the implications of market com-

petition in the presence of such an asymmetry, focusing on welfare implica-
tions. In particular, to the extent that firms can take advantage of consumers’
“boundedly rational expectations”, will competition among firms mitigate
this effect?
To address this question, I study a simple market model with a finite

number of firms and a continuum of consumers. Firms provide a service
that consists of a continuum of dimensions. Each dimension is associated
with some surplus, which the firm chooses how to divide with the consumer.
For simplicity, I assume symmetry across dimensions, such that the surplus
associated with each dimension is of size 1. When a dimension is interpreted
as a contingency, symmetry also means that all contingencies are equally
likely. Then, we can represent the firm’s strategy as a cdf G over the interval
[0, 1], such that G(x) is the fraction of dimensions, for which the consumer
share in the surplus does not exceed x (and the firm’s share is at least 1−x).
Firms are standard profit maximizers with perfect ability to grasp their

opponents’ strategies. Consumers, in contrast, choose according to a pro-
cedure that reflects their limited understanding of market alternatives. The
consumer focuses on one dimension at random and chooses the firm that offers
the best terms in this dimension. Formally, this means that the consumer
optimizes against a profile of random draws from the firms’ cdf s (instead
of optimizing against the firms’ true strategy profile). When the consumer
chooses a firm, he receives the expected share in the surplus induced by the
firm’s cdf. Firms take into account the consumers’ choice procedure when
choosing their strategy.2

2One could argue that some dimensions are more important or more likely than others,
and therefore consumers will predictably check them: e.g., the quality of pediatric services
at the HMO, or the amount of money the insurance policy promises your spouse when
you die. See Section 2 for a detailed discussion of this point.
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The consumers’ choice procedure is borrowed from Osborne and Rubin-
stein (1998), who called it S(1). This modeling device captures in a simplified
way the element of “boundedly rational expectations” that I wish to analyze -
namely, the “anecdotal” way in which consumers sometimes grasp a complex
statistical market environment. S(1) consumers are somewhat like the blind
men in the famous parable of the blind men and the elephant, who base their
entire conclusions about what an elephant is on the small part that they sam-
ple. Such naive extrapolation often leads to wrong conclusions. Firms are
like the Buddha, who can grasp the elephant as a whole. As I demonstrate
in Section 6, this consumer-firm asymmetry is not informational in the usual
sense. Specifically, the results of this paper cannot be replicated by rewrit-
ing the model as a standard game with imperfectly informed consumers and
applying sequential equilibrium.
The consumers’ reliance on small samples brings to mind the phenomenon

which Tversky and Kahneman (1971) discovered experimentally and dubbed
“the law of small numbers”. Decision makers tend to expect small samples
to represent the distributions from which they are drawn. This expectation
causes people to be over-confident when drawing inferences from small sam-
ples. Consumers who face a choice among multi-dimensional objects and
“believe in the law of small numbers”, will act on the false belief that even if
they survey a small number of dimensions, their decision error will be neg-
ligible. The S(1) procedure reflects an extreme degree of this fallacy: S(1)
consumers extrapolate from a single sample point per firm. In Section 6 I
discuss a generalized model, in which consumers extrapolate from K ≥ 1
sample points per firm.
If firms were restricted to offering degenerate distributions, consumers

would always make the optimal choice and the market would be truly com-
petitive. This suggests that firms have an incentive to introduce variance
into their cdf (by offering different terms in different dimensions), in order to
make it harder for consumers to perceive the true value of alternatives. Thus,
the firms’ strategic considerations involve two effects: competing over con-
sumers and trying to take advantage of their inference errors. The question
is how the “competitive effect” and the “obfuscation effect” interact.
The characterization of symmetric Nash equilibrium in Section 3 provides

a sharp answer. There is a unique symmetric equilibrium. The equilibrium
cdf has an expected value of 1

2
, independently of the number of firms. More-

over, when we add a firm to the market, the equilibrium cdf is a mean-
preserving spread of the original one. As the number of firms gets larger,
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the equilibrium cdf tends to the maximal-variance cdf - i.e., the distribu-
tion that assigns a mass of 1

2
to each of the extreme points x = 0 and x = 1.

Thus, firms respond to increased competition by cultivating the “obfuscation
effect” alone. As a result, increased competition does not enhance consumer
welfare.3

Welfare considerations in the basic model are purely distributive, because
the surplus is fixed. If firms could control the size of the surplus, what would
be the efficiency implications of market competition? In Section 4 I study
an extension of the model, in which firms choose both a price and a quality
level for each dimension of their service. I retain the simplifying assumption
of symmetry across dimensions (both in terms of the value of each dimension
to the consumer and in terms of the firm’s cost of producing quality). I
assume that the technology for producing quality is convex, such that there
is a unique efficient quality level. Consumers choose as in the basic model:
they sample one dimension at random and select the firm that offers the
highest net value in that dimension. When they choose a firm, they receive
the expected net value induced by the firm’s cdf.
This extended model has a unique symmetric Nash equilibrium. If the

number of firms is sufficiently large, the outcome is inefficient: firms produce
excessive quality in a positive fraction of dimensions. Moreover, the efficiency
loss increases with the number of firms. At the same time, industry profits are
independent of the number of firms, such that the efficiency loss is entirely
borne by the consumers. This non-standard welfare effect is a result of a
standard assumption, namely the convexity of technology. An increase in the
number of competitors leads to a mean-preserving spread in the distribution
over net surplus, due to the same “obfuscation effect” as in the basic model.
But because technology is convex, this implies a decrease in expected net
surplus.
Although the equilibrium outcome in the above models is not competitive,

we cannot say that consumers are “exploited” by firms because they do not
have any outside option. In Section 5 I examine whether S(1) consumers
with an outside option could be made worse off by their exposure to the
market. Specifically, I modify the basic model by adding an outside option
to the consumers’ choice set. It turns out that as long as the cdf associated
with the outside option is atomless, all firms choose cdf s with an expected

3If there are asymmetric equilibria, they are even less competitive than the symmetric
equilibrium, in terms of consumers’ payoffs.
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value of 1
2
in Nash equilibrium. Thus, when the expected value of the outside

option is higher than 1
2
, consumers are worse off than when they are barred

from entering the market.
When the outside option is associated with a degenerate cdf which assigns

all weight to some µ0 >
1
2
- capturing situations in which consumers are fa-

miliar with the outside option and therefore know its true value - firms choose
the maximal-variance cdf in symmetric Nash equilibrium. This means that
firms respond to an outside option (which consumers know to be attractive)
in the same way that they respond to an increased number of competitors
- namely by exclusively cultivating the “obfuscation” effect. As the number
of competitors gets large, the welfare loss that consumers experience due to
their market exposure converges to µ0 − 1

2
.

The message of this body of results is simple to state. When rational
firms compete over consumers with anecdotal perception of complex data,
standard notions of competitiveness have non-standard welfare implications.
The reason is that firms respond to increased competition by obfuscating
rather than by acting more competitively.

2 The model

A market consists of a set of profit-maximizing firms {1, ..., n} and a contin-
uum of consumers. The firms play a simultaneous-move, complete informa-
tion game. A strategy for a firm is a cumulative distribution function (cdf )
Gi over the interval [0, 1]. The Gi’s are not required to be continuous. Let Ti
denote the support of Gi, and let µi denote the expected value of x according
to Gi. After the firms make their decisions, each consumer chooses an alter-
native from the set {1, ..., n}. Consumers choose according to a procedure
called S(1). They draw one sample point from every Gi. Given a sample
(x1, ..., xn), they choose i∗ ∈ argmaxj=1,...,n xj. In case of ties, the consumer
employs the symmetric tie-breaking rule. The outcome of the consumer’s
choice is a new, independent draw from Gi∗ (or any sequence of such draws).
This is a stylized model that is open to more than one interpretation. The

primary interpretation that I adopt in this paper is thatGi represents a “cross
section”. Firms offer a service that consists of a large number (idealized as
a continuum) of dimensions. All dimensions are treated symmetrically by
firms and consumers alike. Each dimension is associated with a surplus of
size 1, such that Gi(x) is the fraction of dimensions for which the consumer’s
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share in the surplus does not exceed x.
For a concrete illustration, consider a bank that offers many financial

services. A strategy for the bank is an assignment of fees to services. At
the time the consumer chooses a bank, all services have equal importance
to him, because he has the vaguest idea of the services he shall actually
need. Evaluating the bank’s entire fee structure is a computationally difficult
task. Therefore, the consumer examines one service at random and chooses
the bank that charges the lowest fee for that particular service. Once the
consumer chooses a bank, he will use any subset of the bank’s services, and
will be charged according to the bank’s complete pricing strategy.4

For every x ∈ [0, 1], let Hi(x) be the probability that a consumer chooses
alternative i, conditional on the event that the realization of Gi in his sample
is x. Of course, Hi is induced by (Gj)j 6=i. Let EHi denote the expected value
of Hi, where the expectation is taken with respect to Gi.5 Then, firm i’s
payoff function is:

ui(G1, ..., Gn) = [1− µi] ·EHi(x) (1)

In other words, the firm’s payoff is equal to its expected share in the surplus
conditional on being chosen, multiplied by the fraction of consumers who
choose it.
As expression (1) demonstrates, the role of the sampling procedure in the

present model is fundamentally different from other models which involve
sampling, e.g. search models. In both cases, the consumer chooses the al-
ternative with the highest realization xi in his sample. However, in a search
model the consumer ends up receiving xi. In contrast, in the present model
the consumer receives a new, independent draw from Gi when he chooses
firm i.

4In the long run, it may well be that the consumer will learn the entire fee structure of
all banks. However, it is reasonable to assume that for a long period of time, the consumer
will have to rely on a partial picture. As Camerer and Lowenstein (2003, p. 8-9) point out,
“many important aspects of economic life are like the first few periods of an experiment
rather than the last”. I believe that this statement holds rather well for consumption
problems such as choosing a bank or an HMO.

5When every Gi is atomless and has a well-defined density gi, then Hi(x) = Πj 6=iGj(x)

and EHi =
R 1
0
Πj 6=iGj(x)gi(x)dx.
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The firms’ strategies in this model are cdf s. However, they are not mixed
strategies: the payoff function is quadratic, rather than linear, in own prob-
abilities. Therefore, we should not expect the familiar indifference property
of mixed-strategy equilibria to hold in this model. Indeed, the following ex-
ample illustrates that firms may have a strict incentive to randomize. Let
n = 3. Suppose that firms 1 and 2 both play G(x) = x. If firm 3 assigns
probability one to some a ∈ (0, 1), then its payoff is (1− a) · a2. If the firm
switches to a distribution that assigns mass a to x = 1 and mass 1 − a to
x = 0, then its payoff is (1− a) · a, which is a strict improvement.

Correlation between the sample and the outcome. The model
assumes statistical independence between the consumer’s sample and the
outcome of his choice. Under the “cross section” interpretation of Gi, this
corresponds to the assumption that all dimensions have equal value (and
equal likelihood, if different dimensions correspond to different contingen-
cies). This is of course a great simplification. When a consumer chooses a
bank, he may have a rough idea of the services that he is more likely to use.
Therefore, he will not sample any random service, but rather the service that
he is more likely to use. This implies positive correlation between the sample
and the choice outcome.
When the consumer knows that he will use exactly one service (and he

knows what it is), then the sample and the choice outcome are perfectly cor-
related, and the model is reduced to standard Bertrand competition. Con-
versely, if firms are able to control the dimension that the consumer samples
(say, through advertising), they can induce (almost) perfectly negative corre-
lation between the consumer’s sample and the outcome of his choice, and the
market outcome will be monopolistic. Exploring a generalized model which
allows for arbitrary correlation is left for future research.
Suppose that there is a small number of dimensions which all consumers

check because they find them relatively important or likely (e.g., the main
account interest rate). Then, firms will behave competitively (x = 1) in these
dimensions. Still, the firm’s services may contain many other dimensions with
big overall importance, but consumers may have the faintest idea of which
of these dimensions will turn out to be important. If consumers ignore these
other dimensions altogether, firms will behave monopolistically (x = 0) in
them. If consumers evaluate the other dimensions according to the S(1)
procedure , the model of this section shall describe the firms’ behavior along
these dimensions.
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An alternative interpretation of Gi. We may interpret Gi not as a
“cross section” but as a genuinely random strategy. A realization x ∈ [0, 1] of
Gi represents a division of a unit surplus between the firm and the consumer.
After the consumer chooses alternative i, the outcome of his choice is a
new, independent draw from Gi, or any sequence of such draws. Under
this interpretation, the S(1) procedure does not reflect inherent bounded
rationality, but rather limited familiarity with the market. The asymmetry
between the two sides of the market is that firms have already learned the
market model and market equilibrium, whereas consumers have just begun
to learn, at the time they are required to reach a decision.
For illustration, consider the problem of choosing a professional service

such as litigation or plumbing. This is a relatively non-recurring problem.
The price or quality of a plumber’s visit is a random variable, which is con-
trolled by the plumber, because he may discriminate among visits on an
arbitrary basis. How do we choose a plumber in case of a leakage? Lacking
repeated experience in the plumbing industry, many of us rely on anecdotes:
one friend of ours has had a good experience with one plumber, another friend
has had a bad experience with another plumber, and so forth. As a result,
we form a very crude perception of the true distribution that characterizes
each plumber.
Of course, there may be other reasons for the plumber to discriminate

among visits. What may appear like randomization could in fact be a deter-
ministic strategy that conditions on some payoff-dependent variable. How-
ever, given the consumers’ “anecdotal” assessment of the plumber’s strategy,
he may have a strict incentive to condition his behavior on the variable even
if it is essentially a “sun spot”.

The meaning of n. We shall interpret n as the physical number of
firms in the market. Alternatively, n may be viewed as the number of al-
ternatives that consumers are aware of. According to this interpretation,
the consumer may have actively gathered a sample of size n. When a firm
chooses its strategy, it is uncertain whether the consumer will be aware of
the firm’s existence. However, the firm knows that if it enters the consumer’s
consciousness, it will face n− 1 competitors. Under both interpretations, n
is a natural indicator of the intensity of competition in the market.6

6The sample size may be due to implicit search costs. For instance, the consumer may
(erroneously) believe that each firm offers a deterministic x, which is drawn from some
common distribution F . The value of n is selected optimally, given F and the search cost.
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3 Analysis

I begin with a characterization of symmetric Nash equilibrium in this model.
Let G(x, n) denote the equilibrium strategy. I sometimes use the abbreviated
notation G. Let T denote the support of G.

Proposition 1 There is a unique symmetric Nash equilibrium in the game.
Each firm plays the cdf given by:

G(x, n) =

n−1
p
2x/n 0 ≤ x ≤ bn

n−1
p
2bn/n bn < x < 1

1 x = 1

(2)

where bn = n
2
(An)

n−1 and An is the unique solution in [12 , 1] of the equation:

(An)
n − 2An + 1 = 0 (3)

What is the shape of G(x, n)? For n = 2, G(x, n) is the uniform distri-
bution U [0, 1]. For every n > 2, the support of G(x, n) is T = [0, bn] ∪ {1},
where bn decreases with n and tends to zero as n → ∞; G(x, n) contains
an atom (whose mass is 1 − An) on x = 1; the atom’s size increases with
n and tends to 1

2
as n → ∞; G(x, n) contains no other atom. As n → ∞,

G(x, n) approaches the distribution that assigns mass 1
2
to x = 0 and mass

1
2
to x = 1. The convergence is fast: A6 ≈ 0.51; b6 ≈ 0.1. I call the limit dis-

tribution “the maximal-variance cdf ”, because it has greater variance than
any other cdf over [0, 1].
A simple calculation establishes the following implication of Proposition

1. Let µ(n) denote the expected value of x according to G(x, n).

Corollary 1 For every n ≥ 2:
(i) µ(n) = 1

2
.

(ii) G(x, n+ 1) is a mean preserving spread of G(x, n).
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Corollary 1 demonstrates that an increase in n results in an increase in
the variance of the equilibrium cdf, without affecting its mean. Thus, the
number of competitors, normally an indicator of the market’s competitive-
ness, has an orthogonal effect when consumers form beliefs according to the
S(1) procedure. Industry profits are 1

2
, independently of n.

Firms in the model have two strategic considerations. First, there is
the usual competitive motive, which induces firms to offer attractive distri-
butions: if Gi first-order stochastically dominates Gj, firm i will attract a
higher clientele than firm j. This is what I call the “competitive effect”.
Second, there is an incentive to confuse the consumer by introducing greater
variance. In this way, a low-µ firm may increase the probability that the
consumer will choose it over a high-µ firm. This is what I call the “obfus-
cation effect”. A priori, one might expect that increased competition would
heighten both effects. The surprising feature of Corollary 1 is that firms
respond to greater competition by cultivating the obfuscation effect alone.
Indeed, firms strictly prefer to obfuscate in equilibrium. For n = 2, it

is easy to verify that although G(x, 2) has full support, the only payoff-
equivalent degenerate cdf is the one that assigns all weight to x = 1

2
. For

n > 3, there exists no degenerate cdf which is payoff-equivalent to G(x, n).
This shows once again that randomization in this model is different from
ordinary “mixing”. Firms in the present model randomize in order to confuse
consumers, rather than to surprise competitors.
To illustrate the rough intuition behind part (ii) of Corollary 1, consider

once again the case of a bank providing multiple financial services. An indi-
vidual service plays two roles: it attracts clients and it generates revenues.
The two roles are independent: the service generates revenues from clients
who chose the bank because it offers good terms for the service that the
consumer sampled. As the number of competing banks increases, it becomes
harder to generate clientele from intermediately priced services. Therefore,
the bank increasingly resorts to a strategy that relies on low-price services
to attract clients and on high-price services to generate revenues.
This argument brings to mind the phenomenon of “loss-leader” pricing

by multi-product firms. Proposition 1 suggests an interpretation of this mar-
keting tool as an obfuscation device. As competition becomes more intense,
loss-leader pricing is more ubiquitous, but that is not evidence for more
competitive behavior, but rather for a greater effort to obfuscate. Lal and
Matutes (1994) provide an alternative account of loss-leader pricing, which
focuses on the role of advertising. They assume that consumers can discover
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prices of unadvertised items only when physically at the store. However, at
that point consumers face a “hold-up” problem because the firm can exploit
their search costs. Consumers have rational expectations: they anticipate the
hold-up and therefore reduce their willingness to shop. Advertising serves as a
commitment device that partially resolves the hold-up problem. This results
in a high-variance price distribution inside each store, because firms compete
fiercely over advertised items and sell unadvertised items at the monopoly
price. One possible lesson from Corollary 1 is that loss-leader pricing may
have another rationale when consumers have “boundedly rational expecta-
tions”. Pursuing this logic in a more concrete I.O. setting is left for future
work.
The reasoning behind part (i) of Corollary 1 is more subtle. Recall that

firm i typically prefers its best-replying strategy Gi to any distribution whose
support consists of a single element. However, a lemma that plays a central
role in the proof of Proposition 1 (see Corollary 1) establishes another “indif-
ference principle”: firm i is always indifferent between Gi and a distribution
whose support consists of two elements, namely the extreme points in Ti,
x∗ = inf(Ti) and x∗ = sup(Ti). Moreover, this simple distribution has the
expected value as Gi.7

Let α denote the mass that such a two-outcome distribution assigns to
x∗. The firm’s payoff is:

[1− α(x∗ − x∗)] · [αHi(x
∗) + (1− α)Hi(x∗)] (4)

In a series of straightforward steps, I show that x∗ = 0 andHi(0) = 0 for each
firm i. It then immediately follows from expression 4 that the expected value
of the optimal two-outcome distribution is independent of Hi(x

∗), hence of
n. But by the “indifference principle”, this must also be a property of the
expected value of Gi.

Welfare implications
A natural measure of consumers’ welfare in this model is their expected

payoffs:
nX
i=1

µi · EHi (5)

7The lemma itself is a consequence of a technical argument originally due to Myerson
(1993) - see Appendix.
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because µi is their expected share in the surplus conditional on choosing firm
i and EHi is the probability that they choose firm i. One could argue that
this is not an obvious measure, because S(1) consumers do not maximize
their utility against (G1, ..., Gn). However, the reason they do not maximize
is that they do not hold correct beliefs. If we informed the consumers ex-post
of the true strategy profile, then presumably they would use expression (5) to
evaluate their welfare. Given this criterion, the implication of Corollary 1 is
that “greater competition” (in the sense of larger n) has no effect on consumer
welfare, because ΣµiEHi =

1
2
for every n ≥ 2 in symmetric equilibrium.

Expression (5) does not take into account the consumers’ risk attitudes.
The justification for welfare judgments that involve risk attitudes is not clear
in the present context. The reason is that S(1) consumers behave as if
they believe that firms play degenerate cdf s. If this is truly what consumers
believe, then they experience no subjective uncertainty at the time they make
their choices. Hence, it is not clear why their risk attitudes should be relevant
to our welfare analysis. At any rate, if we used risk aversion as a criterion for
welfare comparisons, then an increase in n would be welfare reducing because
G(x, n+ 1) is a mean-preserving spread of G(x, n).

Asymmetric equilibria
Let us turn to asymmetric equilibria, starting with the case of n = 2.

Proposition 2 When n = 2, there exist no asymmetric equilibria.

The uniqueness result relies on an imitation argument, which is unavail-
able when n > 2. Therefore, I do not know whether asymmetric equilibria
exist when n > 2. However, the next result shows that if asymmetric equi-
libria exist, they are less competitive (in terms of consumer welfare) than the
symmetric equilibrium. Thus, the symmetric equilibrium has a special status
in the model, because it is the most competitive equilibrium.

Proposition 3 In Nash equilibrium, µi ≤ 1
2
for every firm i, and µi =

1
2
for

at least n− 1 firms.
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The reasoning behind this result is as follows. The “indifference prin-
ciple” referred to earlier holds in asymmetric equilibrium. However, now I
cannot rule out the possibility that Hi(0) > 0 for some firm i because all its
competitors place an atom on x = 0. For this firm i, the expected value of
the optimal distribution within the restricted class of two-outcome distribu-
tions falls below 1

2
. By the “indifference principle”, this is also a property of

Gi.

The role of the bounds on x
Our model assumes that x ∈ [0, 1]. The motivation for imposing bounds

on x is that x represents a division of some fixed surplus between the con-
sumer and the firm. In particular, if we want to interpret 1 − x as a price,
then we should place an upper bound on x, in order to rule out negative
prices.
The main result in this section - namely, Corollary 1 - is independent of

the existence or value of an upper bound on x. In contrast, a lower bound
on x is crucial for equilibrium existence. If there were no lower bound on x,
firms would be able to attract some clientele by assigning positive mass to
a sufficiently high x, and then extract an arbitrarily large amount from this
clientele by assigning positive mass to arbitrarily low values of x. In general, if
the lower bound on x is some a < 0, then in symmetric equilibrium consumer
welfare is 1

2
− a.

4 Competition and inefficiency

In the model of Section 2, firms choose how to divide a fixed surplus. There-
fore, efficiency considerations are irrelevant. In this section, I enrich the
model by allowing firms to compete in (distributions over) both quality and
prices, thereby introducing efficiency considerations.
In the extended model, the firm’s service is characterized by its quality

and price. The firm produces quality by incurring a cost c ∈ [0,∞), such
that the resulting quality is f(c), where f is a strictly increasing and strictly
concave production function. Assume that f(c)−c attains a unique maximum
at some c∗ ∈ (0,∞). Denote s∗ = f(c∗) − c∗. This is the maximal surplus
that firms can generate in this model. Given a cost level c, the firm’s price
p is restricted to lie in [0, f(c)]. Consumers’ payoff from a pair (c, p) is
x = f(c)− p. The firm’s payoff from (c, p), when chosen by the consumer, is
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p− c.
A strategy for a firm in this model is a probability distribution over all

pairs (c, p) satisfying c ∈ [0,∞) and p ∈ [0, f(c)]. Consumers follow the S(1)
procedure: they draw one sample point from each firm, and then choose
the firm with the highest value of x in their sample. The outcome of the
consumer’s decision is a new, independent draw from his chosen distribution
(or any sequence of such draws).
To illustrate the model, recall the retail banking example of Section 2,

and suppose now that a financial service is characterized by a price as well as
a level of quality. A bank chooses a price and a quality level for each service.
The consumer samples a service at random and chooses the bank that offers
the highest net value for that particular service.
At first glance, this model looks like a considerable complication of the

basic model, because now a strategy is a distribution over pairs. A simplifi-
cation is immediately made possible thanks to the following observation. If
a firm assigns weight to an outcome that generates a consumer payoff of x,
it will set c to be the most efficient cost level that is compatible with x. In
other words, the firm assigns weight only to outcomes that lie on the Pareto
frontier. Thus, for every (c, p) in the support of the firm’s strategy: (i) if
f(c)− p ≤ f(c∗), then c = c∗; (ii) if f(c)− p ≥ f(c∗), then p = 0. It follows
that any inefficiency necessarily takes the form of over-investment in quality.
We can now redefine firm i’s strategy as a cdf Gi over the unidimensional

variable z = c − p, which gets values in the interval [−s∗,+∞). As in
the basic model, a higher z is more favorable for the consumer and less
favorable for the firm. Every z ≤ c∗ represents an efficient outcome, such
that the consumer’s payoff is x = z− [f(c∗)− c∗]. Every z > c∗ represents an
inefficient outcome, such that the consumer’s payoff is f(z). Firm i’s payoff
function is thus βi ·EHi, where βi is the expected value of−z according toGi,
and EHi is the fraction of consumers who choose firm i, given (G1, ..., Gn).
The simplification of the extended model makes it amenable to the same
characterization techniques that served us in Section 3.

Proposition 4 There is a unique symmetric Nash equilibrium in the game.
Each firm plays the cdf:

G(z, n) =
n−1
r
2(s∗ + z)

s∗n
(6)
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defined over the support [−s∗, s∗(n
2
− 1)].

Note that in contrast to Proposition 1, the equilibrium strategy in Propo-
sition 4 is atomless. The reason is that c is unbounded from above. This
simple formula has the following implications:

Corollary 2 The symmetric equilibrium satisfies the following properties:

(i) β = s∗/2 for every n ≥ 2.
(ii) For every n > 2( c

∗
s∗ +1), the equilibrium outcome is inefficient, such that

c > c∗ with positive probability.

(iii) The expected value of f(c)− c according to G(z, n) is strictly decreasing
with n for n > 2( c

∗
s∗ + 1).

The number of competitors does not affect equilibrium industry profits.
However, starting at some critical number of firms, market competition re-
sults in an inefficient outcome. Therefore, all the inefficiency is incurred by
the consumers. Moreover, the inefficiency grows with n. Thus, increased
competition in this model reduces total welfare, and the entire welfare loss is
borne by the consumers.
As n tends to infinity, firms concentrate most of their weight near the

point (c, p) = (c∗, f(c∗)). The remaining weight is concentrated in the range
{(c, p) | c > c∗, p = 0}. Thus, for each service, the firm either make an
efficient investment in quality and charge the monopoly price, or it makes
an inefficiently large investment in quality and charges nothing. The latter
services are “loss leaders”, designed to attract customers.8

Let us sketch the reasoning behind Corollary 2. Expression 6 implies that
G(z, n + 1) is a mean preserving spread of G(z, n). Therefore, the expected
value of any concave function defined on z decreases with n. Consider the
function v, defined as follows: v(z) = s∗ for z ≤ c∗ and v(z) = f(z) − z for
z > c∗. As we noted above, for every z in the support of G(z, n), z ≤ c∗ if
and only if c = c∗, and z > c∗ if and only if z = c. Therefore, the expectation

8If we ruled out negative-profit outcomes, we would return to the model of Section 2,
except that the size of divisble surplus would be s∗.
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of v according to G(z, n) is equal to the expectation of f(c)− c according to
G(z, n). By the concavity of f , the expectation of f(c)− c decreases with n.
Thus, two forces are at play in the inefficiency result: the mean-preserving-

spread property of G(z, n) and the convexity of the production technology. I
find it interesting that convexity of technology - a property that often leads
to normatively attractive results in market models - plays a detrimental role
in terms of efficiency in the present model.

5 Outside options and “market exploitation”

When consumers make judgment errors, they are vulnerable to being ex-
ploited by rational firms. Although the models examined so far yield non-
competitive outcomes, we cannot speak of “market exploitation” because
consumers have no outside option. In order for the notion of market exploita-
tion to have any meaning, we must endow our consumers with an outside
option.
Formally, extend the consumers’ choice set to {0, 1, ..., n}. Let G0 be

a cdf associated with the outside option. Extend the S(1) procedure to
encompass the outside option: consumers draw one sample point from every
Gi, i = 0, 1, ..., n, and select the alternative with the highest realization in
their sample. Thus, the only difference between G0 and G1, ..., Gn is that the
former is exogenously given whereas the latter are determined endogenously.

Proposition 5 Suppose that G0 is atomless. Then, in Nash equilibrium
µi =

1
2
for every firm i.

Thus, the existence of an outside option does not affect the expected value
of the firms’ strategies. The reasoning behind this result is essentially the
same as in the case of Corollary 1. Recall that the restriction to symmetric
equilibrium in the model of Section 2 implies that Hi(0) = 0 for each firm i.
The assumption that G0 is atomless has the same implication in the present
model. This in turn implies - invoking the “indifference principle” - that the
expected value of firm i’s best-replying strategy is 1

2
.

One may argue that there is a difficulty in extending the S(1) procedure
to encompass the outside option. Consumers are naturally much more fa-
miliar with an outside option, whereas the S(1) procedure reflects lack of
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familiarity with all alternatives. There is a simple way to resolve this diffi-
culty without changing the consumers’ choice procedure, by assuming that
G0 is a degenerate cdf that assigns probability one to µ0. This is as if the
consumer knows the value of his outside option.

Proposition 6 Let n > 2. Suppose that G0 assigns probability one to some
µ0 >

1
2
. Then, in symmetric Nash equilibrium firms play the maximal vari-

ance cdf.9

When µ0 >
1
2
, the outside option is “good”, in the sense that its expected

value µ0 exceeds the consumer’s true expected payoff in the model without
an outside option. However, according to Proposition 6, this does not cause
firms to act more competitively. Instead, they raise the variance of their cdf
to the maximal possible level. The intuition for this result is simple. When
consumers know µ0, firms do not compete at all in the range x < µ0. They
prefer to shift weight in this range to the extreme point x = 0, and this
generates a large revenue from their clients. Having secured this revenue,
the firms can afford to compete fiercely over high realizations in order to
attract clients, and this causes them to place all remaining weight on the
other extreme point x = 1.
It is significant that introducing an attractive outside option (with known

value) has the same effect as raising n in the model without an outside option.
Both interventions would normally constitute an improvement in the market
environment from the point of view of a consumer with rational expectations.
The two interventions continue to have a similar effect when consumers have
boundedly rational expectations, albeit in an orthogonal direction.
Let us turn to welfare analysis. I continue to use expression (5) to measure

consumer welfare, except that the summation is now over i = 0, 1, ..., n.
According to Propositions 5 and 6, when a consumer ends up choosing a
firm, he experiences a welfare loss of µ0− 1

2
relative to a situation in which he

only possesses the outside option. Since EHi > 0 for every firm i, consumers
experience “market exploitation” in equilibrium: they are worse off than if
they were barred from entering the market.
In the case of a degenerate G0, we may take this conclusion further.

According to Proposition 6, the probability that consumers end up choosing a

9When n = 2, the same result holds for µ0 >
5
8 .
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firm in symmetric equilibrium is 1−(1
2
)n (as long as µ0 < 1). This expression

is increasing in n, and converges to one as n→∞. Thus, if there are many
firms in the market, the consumer experiences an almost certain welfare loss
of µ0 − 1

2
, relative to a world in which only the outside option is available.

Consumers are exploited in this case because they choose a firm over the
outside option whenever argmaxi=1,...,n xi > µ0. In other words, they behave
as if they believe that for every firm i, Gi assigns probability one to xi. This
is a “belief in the law of small numbers” writ large: consumers behave as
if they believe that one sample point drawn from a firm’s cdf has the same
informational content as full knowledge of µ0. Moreover, they disregard
the fact that a firm’s cdf is a strategic choice that takes into account the
consumers’ inference procedure, while the outside option is exogenous. For
failing to draw these distinctions, consumers suffer a welfare loss.

6 Discussion

The premise of this paper was that consumers and firms often differ in their
ability to perceive statistical market regularities. This asymmetry implies
that firms might be able to take advantage of consumers, by introducing
statistical complexity into the market. It turns out that market competition
does not protect consumers from this form of exploitation. Indeed, the firms’
sole reaction to increased competition is to strengthen their obfuscation tac-
tics. As a result, consumer welfare and total surplus are not enhanced - and
are sometimes diminished - by increased competition.

6.1 Extensions of the S(1) procedure

Osborne and Rubinstein (1998) proposed a natural generalization of the S(1)
procedure, called S(K), which in our context means that consumers draw K
independent sample points from every Gi, and choose the alternative with
the highest average realization in their sample. The parameter K reflects
the extent to which the consumer’s belief formation process departs from
full understanding of market alternatives. The larger K, the smaller the
departure.
There is some formal relation between the S(K) procedure and the model

of “inferences by believers in the law of small numbers” due to Rabin (2002).
In this model, an individual decision maker observes repeated draws from an
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i.i.d process, and tries to learn the process. He updates his belief according
to Bayes’ rule, as if the draws were taken from an urn with K balls without
replacement. After K observations, the decision maker believes that the urn
is refilled. Thus, Rabin’s decision maker predicts the (K +1)-th observation
just like an S(K)-agent. In other respects the two models are incomparable.
It is straightforward to modify the model of Section 2 by replacing the

consumer’s S(1) procedure with the more general S(K) procedure. The firms’
payoff function continues to be represented by expression (1). However, the
definition of EHi is different. Define GK

i as the cdf of the average of K
independent draws from Gi. Let Hi(x) be the probability that a consumer
will choose firm i, conditional on the event that the realization of GK

i is x.
The expectation of Hi in expression (1) should now be taken with respect to
GK
i .
In principle, one could adapt the equilibrium characterization technique

of Section 3 to the generalized model, by analyzing the model as if the firms
chose GK

i , rather than Gi. Indeed, some arguments can be replicated using
this trick. However, the “indifference principle” that plays a central role in
Section 3 - namely, the payoff-equivalence between the firm’s best-replying cdf
and a two-outcome distribution - cannot be reproduced. To see why, assume
that the points 0, 1

K
, 1 all belong to the support of Gi. Assume further that

Hi(
1
K
) < 1

K
· Hi(1) +

K−1
K
· Hi(0). Ideally, firm i would like to deviate by

shifting all the weight from x = 1
K
to x = 0 and x = 1. However, such a

deviation is impossible: by the definition of GK
i , if 0 and 1 belong to the

support of Gi, then 1
K
necessarily belongs to the support of GK

i .
Nevertheless, some lower bounds on industry equilibrium profits can be

obtained. It can be shown that an individual firm cannot do worse than when
it plays a simple distribution G∗ that assigns mass K

K+1
to x = 1 and mass

1
K+1

to x = 0. This implies that industry profits are bounded from below
by KK/(K + 1)K+1. In some cases the lower bound can be improved. For
example, suppose that we add an outside option G0 that assigns all weight
to x0 = 1. Then, Hi(x) = 0 for every x < 1. Therefore, all firms play
G∗ in Nash equilibrium. When n → ∞, industry profits converge to 1

K+1
.

Obtaining tight general lower bounds on industry profits as a function of K
is left for future research.
Another way of enriching the S(1) procedure is to endogenize the number

of sample points that consumers draw from every Gi. Recall that when Gi

is a genuinely random strategy, a sample point in the description of the S(1)
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procedure is interpreted as a random anecdote. In this case, one could argue
that if firm i has a larger clientele than firm j, the consumer would be able to
gather more anecdotes about firm i. This extension may have a subtle effect
on the market outcome. Recall that firms in this model have an incentive
to confuse consumers. If consumers have more accurate perceptions of firms
with a larger clientele, it is harder for these firms to take advantage of their
clients. This creates an incentive for firms to reduce their clientele, say by
offering an unattractive distribution. Thus, firms in this extended model
may have a strictly anti-competitive motive.

6.2 Can the model be rationalized?

The modeling procedure in this paper is non-standard, in that it sets up
a market model in which the two sides differ in their ability to grasp the
firms’ strategies. The question arises, whether one could “rationalize” the
model in some sense. This question has two distinct meanings. First, we
may ask whether the consumers’ individual behavior, although non-rational
in our market model, might be rational in some other market environment.
The answer is clearly affirmative, if consumers believe that each firm offers
the same terms in all dimensions, where these terms are drawn from some
common distribution. Thus, we can “rationalize” the consumers’ individual
behavior in the sense that they behave optimally with respect to an incorrect
market model.
The more interesting question is whether market equilibria in our model

can be replicated as sequential equilibria in another market model, in which
our imperfectly rational consumers are substituted with rational, imperfectly
informed consumers. To explore this question, consider the following variant
on the model of Section 2. Consumers move after the firms choose their
strategies, but they are unable to observe them. However, they can condi-
tion their action on a random draw from (G1, ..., Gn). What is the relation
between sequential equilibria in this game and our analysis of the model of
Section 2?
There is a sequential equilibrium in this incomplete-information game,

in which all firms play the cdf given by Proposition 1, and consumers play
the strategy induced by the S(1) procedure - i.e., they choose the firm with
the highest realization in their sample. For n > 2, we need to sustain this
equilibrium with suitable out-of-equilibrium beliefs, because the equilibrium
distribution does not have a full support. In equilibrium, consumers are
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indifferent among all firms, hence they do not mind using the decision rule
prescribed by S(1).10 However, there is a huge set of other sequential equilib-
ria which sustain many other market outcomes. For example, we can sustain
the fully monopolistic outcome (in which all firms assign all weight to x = 0),
using suitable out-of-equilibrium beliefs. Therefore, we cannot say that the
incomplete-information game rationalizes the model of Section 2. A similar
argument applies for the model of Section 4.
When we add an outside option with µ0 > 1

2
, the mismatch is worse:

there exists no sequential equilibrium that rationalizes the results of Section
5. The reason is as follows. In sequential equilibrium, it is impossible for
all firms to play a cdf with µ = 1

2
and for consumers to choose firms over

the outside option with positive probability. The failure to rationalize the
model in this case follows from the rational-expectations aspect of sequential
equilibrium. Consumers can never be systematically fooled in sequential
equilibrium. They will not choose an alternative that gives them less in
expectation than the outside option.
Even if we could rationalize the model, this would not undermine our

welfare analysis, which occupies a central place in this paper. A standard
model based on full rationality and informational asymmetries might be ob-
servationally equivalent to the present model, but it would lead to different
welfare implications. As long as one believes in the economic relevance of
the premise underlying our analysis, one should find its welfare implications
economically relevant.

6.3 Related literature

The S(1) procedure was introduced by Osborne and Rubinstein (1998), who
studied a solution concept for games in which all players behave according
to this procedure. Their focus was therefore on devising a novel equilibrium
concept for such a situation. In contrast, the present paper studies a market
model, in which only non-strategic agents (the consumers) follow the pro-
cedure. Therefore, there is no need to tamper with standard equilibrium
concepts.

10The out-of-equilibrium beliefs must be inconsistent with S(1) in order to sustain the
sequential equilibrium. Suppose that one firm deviates from G to a c.d.f that assigns
probability one to some x > 1

2 , x /∈ T . If the agent’s out-of-equilibrium belief is that this
is indeed the firm’s strategy, then there exists such a deviation which is profitable for the
firm.
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Recall that when Gi represents a genuinely random strategy, the meaning
of the S(1) procedure is that consumers try to draw inferences about Gi from
anecdotes. In this regard, the S(1) procedure is not far in spirit from the
theory of case-based decision making, due to Gilboa and Schmeidler (2001),
which also aims to describe choice under uncertainty when insufficient famil-
iarity with the environment makes probabilistic reasoning impractical. As in
the S(1) model, decision makers in case-based theory base their assessments
of actions on random cases. However, case-based theory focuses on the simi-
larity judgments that people make when drawing inferences from anecdotes,
whereas the S(1) procedure ignores them.
A companion of the present paper is Spiegler (2003), which studies a

“market for quacks”, in which firms provide a worthless treatment (in the
sense that it has the same probability of success as the consumers’ default
option). Firms play an ordinary price competition game and consumers
choose according to the S(1) procedure. My objectives in that paper are
to demonstrate how “the market for quacks” can be active and to study its
welfare and comparative-statics properties. The two models differ in several
ways. While the consumers’ uncertainty is entirely endogenous in the present
paper, in Spiegler (2003) it is entirely exogenous. Consequently, the issue of
obfuscation is irrelevant and standard mixed-strategy equilibrium analysis
applies. More importantly, the fact that consumer uncertainty is exogenous
leads to very different welfare implications: the quacks’ adverse welfare effects
disappear as n→∞.
The present paper belongs to a small literature which studies market

interaction between rational firms and consumers with imperfect perceptions:
bounded ability to grasp intertemporal patterns in Piccione and Rubinstein
(2003); limited memory in Chen, Iyer and Pazgal (2003); imperfect awareness
of contingencies that may arise after the good is purchased in Gabaix and
Laibson (2004); and biased beliefs concerning future tastes in DellaVigna and
Malmendier (2004) and Eliaz and Spiegler (2004); to mention a few instances.
Within this literature, some works have examined what is also a theme

in the present paper, namely rational firms’ incentive to randomize when
consumers have a limited perception of stochastic environments. Rubinstein
(1993) demonstrates that a monopolist may find it optimal to use a prob-
abilistic pricing strategy, in order to discriminate between consumers with
diverse abilities to categorize the realization of a random variable. Erev and
Haruvy (2003) argue that when consumers evaluate alternatives with dou-
ble exponential noise, lower-quality firms have a stronger motive to increase
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the variance parameter of the noise. However, it should be noted that the
randomization motive per se can be accounted for by models with rational
consumers. For instance, Salop (1977) demonstrates that a monopolist may
wish to randomize in order to discriminate between consumers with diverse
search costs. Wilson (1988) derives a probabilistic pricing strategy from the
assumption that consumers arrive in a random order and are served on a
first-come-first-served basis.
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Lemma 1 Let (G1, ..., Gn) be a Nash equilibrium. Then, for every firm i,
Gi is continuous in (0, 1).

Proof. Assume the contrary - i.e., that there is some firm i, such that Gi

assigns an atom to some x ∈ (0, 1). Then, there exists ε > 0, such that no
other firm j assigns any weight to (x− ε, x] - because by shifting this weight
to x + ε0, for some ε0 < ε, firm j could increase EHj by an amount that is
bounded from zero, while infinitesimally reducing µj. But this means that
firm i can profitably deviate by shifting the atom on x slightly downward
- this will leave EHi unaffected, while reducing µj. This contradicts the
assumption that (Gi)i=1,...,n is an equilibrium.

The following lemma involves a technical argument originally found in
Myerson (1993). That paper studies a model of electoral competition, in
which candidates choose income-redistribution policies, under a fixed-budget
condition. Myerson analyzes the implications of this type of competition
under various electoral rules. The function Hi in the present model has an
analogue in Myerson’s model, which he proves to be linear, using essentially
the same argument as the lemma below.11

Lemma 2 (Linearity of H) Suppose that G is a best-reply for firm i to
G−i. Then, there exist numbers a, c (a > 0), such that Hi(x) = ax + c for
every x ∈ T and Hi(x) ≤ ax+ c for every x /∈ T ∩ [inf(T ), sup(T )].

Proof. For expositional convenience, let us first present the argument
for the case of G with a finite support {x1, ..., xK}, K > 2.
Firm i’s payoff is given by ui(·) = (1−Σp(xk)xk) · (Σp(xk)Hi(xk)). Sup-

pose that Hi(·) is not linear in the xk’s. Then, there are three outcomes in
T , xk < xl < xm, such that:

Hm −Hl

Hm −Hk
6= xm − xl

xl − xk
(7)

Let Fi differ from G only in the probabilities it assigns to xk, xl, xm, such
that p0l = pl − ε− δ, p0k = pk + ε and p0m = pm + δ, and set ε and δ such that
the expected value of x is the same under Fi and G. Suppose that the L.H.S

11I thank Ronny Razin for referring me to Myerson’s paper.
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is higher (lower) than the R.H.S in expression (7). Then, by setting ε, δ > 0
(< 0), we guarantee that EHi(x) increases as a result of the deviation.
The extension to the case of G with an infinite support is straightforward.

Let x, y, z be three outcomes in T , with 0 ≤ x1 < x2 < x3 ≤ 1. By Lemma
1, none of the Gj’s contains an atom in (0, 1). By the definition of H,
Hi(x) is continuous in (0, 1). Therefore, if G does not assign an atom to xi,
and expression (7) holds for x1, x2, x3, the expression continues to hold if we
substitute xi with any y in a sufficiently small neighborhood of xi. Therefore,
we substitute weight shift from xi with weight shift from the neighborhood
of xi.
This establishes that there exist a > 0 and c, such that Hi(x) = ax + c

for every x ∈ T . It remains to be shown that for every x /∈ T , inf(T ) < x <
sup(T ), Hi(x) ≤ ax+ c. Assume the contrary - i.e., that there exists x /∈ T ,
inf(T ) < x < sup(T ), such that Hi(x) > ax+c. Then, we can find two points
in T , y and z, such that by the same reasoning as in the previous paragraphs,
we can shift weight in a mean-preserving fashion from one of these two points
(or from their close neighborhoods) to x and the third point, and this would
increase EHi.
Note that the above argument presumes that T contains at least two

points. Let us prove that this must be the case. Lemma 1 establishes that
there are no atoms in (0, 1). An atom of measure one on x = 1 yields zero
payoffs to the firm. This is inconsistent with profit maximization: if the firm
shifts some of the weight away from x = 1, it guarantees that both EHi and
µi are positive. An atom of measure one on x = 0 would induce EHi > 0
only if all other firms also place an atom of measure one on x = 0. But then,
G is not a best-reply to G−i, by a standard “Bertrand” argument.

Corollary 3 (An indifference principle) Suppose that G is a best-reply
for firm i to G−i. Let F be a cdf that satisfies two conditions: (i) µF = µG;
(ii) TF ⊆ TG. Then, F is also a best-reply to G−i.

Proof. Assume the contrary. Then, there must be three outcomes in
the support of G, xk < xl < xm, such that expression (7) holds. But this
contradicts Lemma 2.

Lemma 3 Let (G1, ..., Gn) be a Nash equilibrium. Then, inf(Ti) = 0 for
every firm i.

27



Proof. Assume the contrary, and suppose that there exists a player i,
such that inf(Ti) is strictly positive. Denote inf(Ti) = x∗i . Then, for every
j 6= i, Hj(x) = 0 for every x < x∗i . It follows that if Gj assigns positive
weight to [0, x∗), all the weight is assigned to x = 0. Suppose that firm i
deviates by shifting all the weight it assigns to (x∗i , x

∗
i+ ε) to some arbitrarily

small x > 0. Then, it reduces µi by x∗i · Gi(x
∗
i + ε). At the same time, it

reduces EHi by Πj=1,...,n[Gj(x
∗
i + ε)−Gj(x

∗
i )]. If ε > 0 is sufficiently small,

the reduction in µi more than compensates the reduction in EHi. Therefore,
the deviation is profitable.
Note that the argument would fail if x∗i = 1. However, as we saw in the

proof of Lemma 2, this can never be the case if Gi is a best-reply to G−i.

The above results hold for any Nash equilibrium. From this point, I focus
on symmetric equilibria. Let G denote the equilibrium strategy. Then, all
firms share the same H(x). Lemma 2 has already established that H(x) is
linear over T . Our objective in this proof is to characterize T andH, and this
will immediately give us the expression for G. Denote y = sup(T ). Lemma 3
establishes that inf(T ) = 0. Without loss of generality, assume that 0, y ∈ T .

Step 1: H(0) = 0.

Proof : This could be violated only if G placed an atom on x = 0. But
then, any firm i can shift the atom slightly upwards, and this will increase
EHi by an amount that is bounded away from zero, while increasing µi by
an infinitesimal amount. Therefore, the deviation is profitable.

Step 2: µ = 1
2
and the firms’ equilibrium payoff is 1

2n
.

Proof : Consider the simple lottery F , which satisfies: (i) TF = {0, y};
(ii) µF = µG. Because 0 and y are the infimum and supremum of T , such a
lottery F exists. By Corollary 3, any firm i is indifferent between G and F .
Let α denote the probability that F assigns to y. Then, firm i’s payoff from
F is:

[1− αy − (1− α) · 0] · [αH(y) + (1− α)H(0)]

But since H(0) = 0, this expression can be simplified into [1− αy] · αH(y).
The value of α that maximizes this expression is α = 1

2y
, yielding µF =

1
2
. If

µG 6= 1
2
, then G is not a best-reply, a contradiction. Therefore, µG =

1
2
. By

symmetry, EH = 1
n
. Therefore, the firms’ equilibrium payoff is 1

2n
.

Step 3: There exists a number b ∈ (0, 1], such that T = [0, b] ∪ {1}.
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Proof : First, let us first show that y = 1. Suppose that y < 1. Because
G is atomless on [0, 1), G(y) = 1 and H(y) = 1. Each firm can deviate to a
lottery that assigns probability 1

2y
to y and probability 1− 1

2y
to 0. The firm’s

payoff would be 1
2
· 1
2y
, which is larger than 1

2n
, a contradiction. It follows

that y = 1.
Second, let us show that G is strictly increasing in [0, b], where b =

sup(T\{1}). In other words, we need to show that G contains no “holes”
below b. The proof is identical to the proof of Lemma 3, and therefore the
details are omitted.

Step 4: H(1) = 2
n
.

Proof : As we have seen in the proof of Step 2, each firm is indifferent
betweenG and a lottery F which satisfies: (i) Supp(F ) = {0, y}; (ii) µF = 1

2
.

By Step 3, y = 1. Therefore, each firm is indifferent between G and the
maximal variance cdf. The firm’s payoff from the latter is 1

2
· 1
2
H(1). Since

this expression must be equal to 1
2n
, H(1) = 2

n
.

Step 4 implies that G places an atom on x = 1 for every n > 2. Other-
wise, H(1) would be equal to one and the firm’s payoff would exceed 1

2n
, a

contradiction. Let us denote the size of this atom by 1−A.

Step 5: G must be given by expressions (2)-(3).

Proof : By Step 3, T = [0, b]∪{1}. By Lemma 2, H is linear over T . We
have established that H(0) = 0 and H(1) = 2

n
. Therefore, H(x) = 2x/n for

every x ∈ T . Because G contains no atoms below x = 1, H(x) = Gn−1(x)
for every x ∈ [0, b]. Therefore, in this domain:

G(x) =
n−1
r
2x

n

It only remains to determine the exact values of b and A. By definition,
G(b) = A. The relation between b and A is thus given by:

b =
n

2
An−1

Let us now determine the value of A. Let g be the density function induced
by G in the interval [0, b]. By definition:

µG = (1−G(b)) · 1 +
Z b

0

xg(x)dx
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Because µG =
1
2
, we can retrieve G(b) from the expression for µG, obtain-

ing:
1

2
=

Gn(b)

2
−G(b) + 1

which can be rewritten as:

An − 2A+ 1 = 0

and thus we have the desired characterization.

Step 6: The strategy profile (G, ..., G) given by expressions (2)-(3) is a
Nash equilibrium.

Proof : First, let us verify that G induces the function H which is given
by Figure 1. Given the expression for G, it follows immediately that H(x) =
2x/n for every x ≤ b and H(x) = 2b/n for every x ∈ (b, 1). Let us check that
H(1) = 2/n. For the sake of convenience, denote m = n − 1. The precise
definition of H(1) in the symmetric equilibrium is:

H(1) =
mX
k=0

¡
m
k

¢
k + 1

Am−k(1−A)k

We can rewrite:¡
m
k

¢
k + 1

=
m!

(m− k)! · k! · (k + 1) ·
m+ 1

m+ 1
=

1

m+ 1
·
µ
m+ 1

k + 1

¶
Denote j = k + 1. Then:

mX
k=0

¡
m
k

¢
k + 1

Am−k(1−A)k =
1

A(m+ 1)
·
m+1X
j=1

µ
m+ 1

j

¶
Am+1−j(1−A)j

By a standard binomial expansion:µ
m+ 1

0

¶
·Am+1 +

m+1X
j=1

µ
m+ 1

j

¶
Am+1−j(1−A)j = 1

Therefore, Am+1+A(m+1)·H(1) = 1. By expression (3), Am+1−2A+1 = 0.
It follows that H(1) = 2

m+1
≡ 2

n
.
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Thus, H(x) = 2x/n for every x ∈ T , and H(x) ≤ 2x/n for every x /∈ T .
Suppose that there is a cdf F which is better than G. Modify F by shifting
weight from (0, 1) to {0, 1} in a mean preserving fashion. By the structure
of H, this modification cannot be payoff-reducing. Therefore, when looking
for profitable deviations, we need only consider deviations to lotteries whose
support is {0, 1}. Now, we have already seen that each firm is indifferent
between G and the maximal variance cdf, which in turn is the optimal lottery
within the class of lotteries whose support is {0, 1}. Therefore, G is a best-
reply.

Proof of Corollary 1
Part (i) is immediate, because the construction of G relies on the result

that µ = 1
2
. As to part (ii), a simple calculation shows that for every x ≤

bn+1:

n

r
2x

n+ 1
>

n−1
r
2x

n

At the same time, An+1 < An. Thus, as we move from n to n + 1, the
weight in (bn, bn+1) is shifted both leftward to (0, bn) and rightward to x = 1,
and the weight in (0, bn) is shifted leftward.

Proof of Proposition 2
Let us first state several properties of the supports of G1 and G2. First,

note that T1 = T2 = T , up to zero-measure differences. Assume the contrary,
and suppose that firm i assigns weight to some interval (b, c), whereas firm j
does not. Then, firm i can profitably deviate by concentrating all this weight
nearer b. Second, denote b = sup(T\{1}). Then, both G1 and G2 are strictly
increasing in (0, b). That is, the support does not contain “holes” between 0
and b. The proof is the same as in Lemma 3, and therefore omitted. Let y
denote sup(T ).
By Lemma 1, both G1 and G2 are continuous in (0, 1). Moreover, at least

one firm, say firm 2 without loss of generality, does not place an atom on
x = 0. Therefore, G2 is continuous in [0, 1), such that for every x ∈ [0, b),
H1(x) = G2(x). By Lemma 2, H1(x) is linear over the support of G. It
follows that for every x ∈ [0, b], G2(x) = x · H1(y)

y
.

By the proof of Proposition 2, µ1, µ2 ≤ 1
2
. Therefore, for every i = 1, 2,

firm i’s payoff is at least 1
4
. Otherwise, the firm could deviate from Gi to
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Gj (i.e., by imitating its opponent). By symmetry, both firms would have
EH = 1

2
, and because µj ≤ 1

2
, the firm’s payoff would be no lower than 1

4
, a

contradiction.
Because G2 does not place an atom on x = 0, H1(0) = 0, and therefore,

by the proof of Proposition 2, µ1 =
1
2
. Moreover, by Corollary 3, firm 1 is

indifferent between G1 and the lottery that assigns probability 1
2y
to x = y

and probability 1 − 1
2y
to x = 0. Thus, firm 1’s payoff is 1

2
· 1
2y
H1(y), and

EH1(x) =
1
2y
·H1(y). Because firm 1’s payoff is at least 1

4
, 1
2
· 1
2y
H1(y) ≥ 1

4
.

Therefore, H1(y) ≥ y.
Suppose that y < 1. Then, becauseG2 contains no atom in [0, 1), H1(y) =

1 and G2 is uniform on [0, y]. Therefore, EH1(x) =
1
2y
and µ2 =

y
2
. Because

there are two firms in the market, EH2(x) = 1 − EH1(x). Therefore, firm
2’s payoff is y

2
· (1− 1

2y
). Because y

2
· (1− 1

2y
) ≥ 1

4
, y ≥ 1, a contradiction.

Now suppose that y = 1. We have shown that H1(1) ≥ 1. Therefore,
H1(1) = 1, which means that G2 places no atom x = 1. We have shown
that G2(x) = x · H1(y)

y
for every x ∈ [0, b]. Therefore, b = y and G2(x) is

the uniform distribution over [0, 1]. In particular, µ2 = µ1 =
1
2
. Therefore,

it must be the case that H2(0) = 0 - otherwise, by the proof of Proposition
2, µ2 would have been strictly lower than

1
2
- such that G1 does not place an

atom on x = 0. Note that since G2 assigns weight to any x < 1, G1 cannot
place an atom on x = 1 (because then it would not be optimal for firm 2 to
assign weight to values of x that are close to 1). Therefore, G1 must be the
uniform distribution over [0, 1].

Proof of Proposition 3
Lemmas 1-3 and Corollary 3 hold for arbitrary equilibria. Let us now

show that Hi(0) = 0 for at least n − 1 firms. Denote the number of firms
that place an atom on x = 0 by k. If k ≤ n − 2, then Hi(0) = 0 for every
firm i. If k = n, then Hi(0) > 0 for every firm i, and any firm can profitably
deviate by shifting the atom slightly upwards. Now suppose that k = n− 1
- i.e., there is exactly one firm j, which does not place an atom on x = 0. In
this case, Hj(0) > 0 and Hi(0) = 0 for every i 6= j.
The rest of the proof replicates Step 2 in the proof of Proposition 1.

Let y denote the supremum of Ti. Consider the following mean-preserving
modification of Gi. By Lemma 3, inf(Ti) = 0. Without loss of generality, let
0 ∈ Ti. Let F satisfy µF = µi and TF = {0, y}. By Corollary 3, firm i is
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indifferent between Gi and F . Let α denote the probability that F assigns
to y. Then, firm i’s payoff from F is

[1− αy − (1− α) · 0] · [αHi(y) + (1− α)Hi(0)]

IfHi(0) = 0, then the value of α that maximizes this expression is α = 1
2y
,

yielding µF =
1
2
, such that µi =

1
2
. However, it is possible that for exactly

one firm j, Hj(0) > 0, such that the optimal α yields µF < 1
2
, such that

µi <
1
2
.

Proof of Proposition 4
Let us use the abbreviated notation G for the equilibrium strategy. Let

T denote the support of G. Denote y = sup(T ). Recall that −z denotes
the firm’s profit. Thus, z = −s∗ is the point of the firm’s maximal possible
profit, whereas any z > 0 represents a loss for the firm. It follows that we
can replicate many of the steps in the proof of Proposition 1. Moreover,
because the firms’ strategy space places no upper bound on c (unlike the
basic model of Section 2), G is atomless. Therefore, G is continuous and
strictly increasing over T = [−s∗, y]. Also, H(·) is linear over T . The proofs
mirror those given in the proof of Proposition 1.
By the above properties of G, H(−s∗) = 0 andH(y) = 1. By the linearity

of H over T :
H(z) =

z + s∗

y + s∗
(8)

for every z ∈ [−s∗, y].
The same indifference principle stated in Corollary 3 applies in the present

context. Therefore, there exists a simple lottery F with support {−s∗, y},
such that: (i) The expected value of −z according to F is equal to the
expected value of −z according to G; (ii) the firm is indifferent between G
and F ; (iii) F is the optimal lottery within the restricted family of lotteries
with support {−s∗, y}. The proof is identical to the analogous part in the
proof of Proposition 1.
The firm’s payoff from a lottery F that assigns probability α to z = y

and probability 1− α to z = −s∗ is:
[−αy + (1− α) · s∗] · [αH(y) + (1− α)H(−s∗)] (9)

The optimal such lottery satisfies α = s∗/2(s∗ + y). It is easy to show
that the expected value of −z according to this lottery is s∗/2. By symmetry,
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EH = 1/n, hence the firm’s equilibrium payoff is s∗/2n. Substituting back
in Expression 9 and using our knowledge that H(y) = 1, we obtain:

y = s∗(
n

2
− 1)

Substituting in Expression 8, we obtain:

H(z) =
2(z + s∗)

s∗n

and because H(z) = Gn−1(z) for every z ∈ T , we obtain the desired expres-
sion for G.

Proof of Corollary 2
Part (i) is immediate, because G is constructed on the basis of the result

β = s∗
2
. Part (ii) is a simple consequence of the observation that y > c∗

for every n > 2( c
∗
s∗ + 1). Part (iii) is more involved. A simple calculation

establishes that for every z,
R z
0
G(w)dw is increasing with n. By a well-known

result (see Mas-Colell, Whinston and Green (1995), p. 198), this is equivalent
to G(z, n+1) being a mean preserving spread of G(z, n). Define the function
v as follows: v(z) = s∗ for z ≤ c∗ and v(z) = f(z) − z for z > c∗. Because
f is strictly concave, v is concave, and strictly concave in the range z > c∗.
Therefore, because G(z, n + 1) is a mean preserving spread of G(z, n), the
expectation of v(z) is decreasing with n. Moreover, the expectation of v(z)
is strictly decreasing with n, in the range n > 2( c

∗
s∗ + 1). Recall that c = c∗

for every z ≤ c∗ and c = z for every z > c∗. Therefore, the expectation of
f(c) − c according to G is equal to the expectation of v(z) according to G.
It follows that the expectation of f(c) − c is strictly decreasing with n, for
n > 2( c

∗
s∗ + 1).

Proof of Proposition 5
Lemmas 1-3 and Corollary 3 hold for arbitrary equilibria in the model

without an outside option. Because G0 is assumed to be atomless, these
results continue to hold in the present context. The same assumption implies
that Hi(0) = 0 for every firm i. Therefore, using the same reasoning as in
Step 2 in the proof of Proposition 1, it follows that in Nash equilibrium,
µi =

1
2
for every firm i.
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Proof of Proposition 6
Let G be the symmetric equilibrium strategy. By definition, H(x) = 0

for every x < x0. Therefore, G(x) = G(0) for every x ≤ x0. By the proof
of Proposition 2, µG =

1
2
, and each firm is indifferent between G and the

maximal variance cdf (which assigns probability 1
2
to each of the extreme

points x = 0 and x = 1). Therefore, the firm’s equilibrium payoff is 1
2
· 1
2
H(1).

By symmetry, EH = 1
n
· [1−G(0)]n. Therefore, the firm’s equilibrium payoff

is equal to 1
2
· 1
n
· [1−G(0)]n. It follows that H(1) = 2

n
· [1−G(0)]n.

Assume that G assigns positive weight to the interval (x0, 1). Let us show
that G(x) > G(0) for every x > x0. Assume the contrary, and let x∗ denote
the infimum of Ti ∩ (x0, 1]. Then, H(x) = 0 for every x < x∗. Suppose that
firm i deviates by shifting all the weight it assigns to (x∗, x∗+ ε) to some
x > x0 arbitrarily close to x0. Then, it reduces µi by x

∗ · [G(x∗+ ε)−G(x∗)].
At the same time, it reduces EHi by [G(x∗ + ε) − G(x∗i )]

n. If ε > 0 is
sufficiently small, the reduction in µi more than compensates the reduction
in EHi. Therefore, the deviation is profitable.
By Lemma 2, H is linear in the support of G. It must be the case that

0 ∈ T - otherwise, G would assign positive weight only to elements above
x0, and since x0 > 1

2
, we would have a contradiction with µG =

1
2
. Because

H(0) = 0 and G assigns positive weight to elements above and arbitrarily
close to x0, H(x) tends to x0 ·H(1) as x tends to x0. At the same time, by
definition, H(x) = [G(0)]n−1 as x approaches x0 from above.
We are now able to use our expressions for limx→x+0

H(x) and H(1), to
derive the following identity:

G(0)n−1 = x0 · 2
n
· [1−G(0)]n

But G(0) ≤ 1
2
, for otherwise µG would not be equal to

1
2
. Moreover, we

assumed that x0 ≥ 1
2
. Combining the two inequalities yields 2n + 1 ≥ 2n,

a contradiction for n > 2. The only remaining possibility is that G assigns
probability 1

2
to each of the extreme points. Let us verify that this is an

equilibrium. Given that firm i’s opponents all play G, Hi(x) = 0 for every
x ∈ (0, x0), Hi(x) = (

1
2
)n−1 for every x ∈ (x0, 1) and Hi(1) =

2
n
· [1 − (1

2
)n].

For n > 2, Hi(x) < x · H(1) for every x ∈ (0, 1). Therefore, firm i will
never want to deviate to a strategy whose support is not {0, 1}. Among the
lotteries whose support is {0, 1}, G is optimal. Therefore, G is a best-reply.
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