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Abstract

This paper considers a class of two-player symmetric games of incomplete informa-

tion with strategic substitutes. First we provide suffi cient conditions under which there

is either a unique equilibrium which is stable (in the sense of best-reply dynamics) and

symmetric or a unique (up to permutations) asymmetric equilibrium that is stable (to-

gether with an unstable symmetric equilibrium). Thus, (i) there is always a unique

stable equilibrium, (ii) it is either symmetric or asymmetric, and hence, (iii) a very

simple local condition – stability of the symmetric equilibrium (i.e., the slope of the

best-response function at the symmetric equilibrium) – identifies which case applies.

Using this we provide a very simple suffi cient condition on primitives for when the unique

stable equilibrium is asymmetric (and similarly for when it is symmetric). Finally we

show that the conditions guaranteeing the uniqueness described above also yields novel

comparative-statics results for this class of games.
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1 Introduction

This paper considers a class of two-player two-action symmetric games of incomplete informa-

tion with strategic substitutes (Bulow, Geanakoplos, and Klemperer (1985)). There are three

results. First we provide suffi cient conditions under which there is either a unique equilib-

rium which is stable (in the sense of best-reply dynamics) and symmetric or a unique (up to

permutations)1 asymmetric equilibrium that is stable (together with an unstable symmetric

equilibrium). Thus there is always a unique stable equilibrium, and it is either symmetric or

asymmetric. Moreover a very simple local condition – stability of the symmetric equilibrium

(i.e., the slope of the best-response function at the symmetric equilibrium) – identifies which

case applies. This in turn enables us to provide a very simple suffi cient condition for when

the unique stable equilibrium is asymmetric (and similarly for when it is symmetric). Finally

these conditions also provide novel comparative-statics results for the class of games we study.

Our interest in providing conditions that guarantee this form of uniqueness is three-fold.

First, the result says that under the identified assumptions there is a unique relevant equi-

librium, implying that predictions are meaningful. Second, as in the literature on symmetry-

breaking discussed further below, it is of interest to provide conditions under which the only

equilibrium is asymmetric. Finally, while there are many general comparative statics results

for games with strategic complements there are very few for games with strategic substitutes.

As mentioned we consider two-player two-action (say High and Low) symmetric games.2

The critical payoff parameters are the payoff difference of choosing High vs. Low against an

opponent playing High, denoted by UH , and similarly this difference against an opponent

choosing low, denoted UL. The game has strategic substitutes when UL > UH . There is

a continuum of types, with density f , where the type is an additively separable cost, x, to

choosing High over Low.3 This class of games admits several economic applications; we focus

1By unique up to permutations we mean that, as the game is symmetric, if (x, y) is an equilibrium so is
(y, x). Henceforth we refer to this as unique and drop the clause "up to permutations."

2It would be interesting, but beyond the scope of this paper, to extend the results to more players and ac-
tions, and also to extend those results that would apply, such as the comparative-statics results, to asymmetric
environments.

3Obviously the cost could be a benefit, and one could have both; we focus wlog on the case of costs as it
is more natural in some of the examples we consider and simplifies the writing.
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on the following three that are explained in more detail in Section 2.2. (1) A decision to invest

(or enter a market) with private costs followed by subsequent competition (see, e.g., De Frutos

and Fabra (2007), Amir (2000)). (2) Investment in a public good, again with private costs or

values. (3) Career choice followed by random matching into couples (see also Becker (1993),

Hadfield (1999)).

Our main assumption is that the density f is log concave4 and single peaked with modal

type having suffi ciently low costs (so that the modal type would choose High). This assumption

on the modal type is natural in some examples. For instance in the career choice model it

follows if the modal type is more qualified at the task she likes, and in the market entry

example it implies the modal type would choose to enter even when the opponent enters.

These conditions yield our result that there is a unique stable outcome. Moreover, the unique

stable outcome is a pair of mirror-image asymmetric equilibria if UL−UH > 1/f
(
UL
)
, i.e., if

the strategic substitutes are strong enough, and it is a symmetric equilibrium if UL − UH <

1/f
(
UH
)
.5

There are two comparative-static results corresponding to the case of a stable symmetric

or asymmetric outcome. The former is intuitive: starting from a symmetric equilibrium xe a

decrease in UH moves the equilibrium down, i.e., xe decreases. This is intuitive because as

UH decreases the benefit of playing High decreases. The more interesting case is the latter:

starting from an asymmetric equilibrium, say xe1 > xe2, as U
H increases we have that xe1

increases while xe2 decreases. Here the indirect effect of the strategic substitutes dominates

for the player choosing a lower threshold and the direct effect of increasing the benefit of

playing High dominates for the player choosing the higher cutoff. Since we show that the

asymmetric equilibrium arises when the strategic substitutes are strong, this is intuitively

consistent with the indirect effect dominating for one player (it can never dominate for both);

that the indirect effect dominates for the player choosing the lower threshold follows from the

structural assumptions and will be proven in the subsequent analysis.

The questions of stability and uniqueness have been studied in various submodular con-

4Most commonly studied distributions have log concave densities, see Bagnoli and Bergstrom (2005).

5Strategic substitutes (UH < UL) together with the assumptions on f imply that f
(
UH
)
> f

(
UL
)
, which

is why these conditions are suffi cient but not necessary.
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texts (the first such being Cournot (1897)). Matsuyama (2002) and Amir, Garcia, and Knauff

(2010) provide an excellent discussion of the importance of obtaining symmetry breaking,

that is obtaining conditions under which the only (or only relevant) equilibrium is asymmet-

ric. Amir et. al. obtain only (pure strategy) asymmetric equilibria in symmetric games with

a nonconcavity along the diagonal, and hence a resulting discontinuity in the best-reply corre-

spondence. They show how this generalizes and unifies other papers with a similar structure.

By contrast in the environments we study the existence of a pure-strategy symmetric equilib-

rium is not ruled out a priori. In this sense our approach is closer to the important work of

Matsuyama who also explores when the only stable equilibria in symmetric environments are

asymmetric. However, he elegantly introduces a strategic complementarity into his models,

while our attention is on games of strategic substitutes.6 Hefti (2016a, b, c) is also interested

in the connection between stability and uniqueness of equilibrium. His work focusses on how

various stability properties lead to uniqueness and conversely. This then gives conditions that

select the symmetric equilibrium in symmetric games.7 Our results complement his as we

provide conditions such that either there is a symmetric stable equilibrium or there is only

one (up to permutations) asymmetric equilibrium. Also, the conditions obtained differ; ours

focus on assumptions on the distribution of types. Moreover, we are interested in comparative

statics, which brings us to the final class of related work. There are limited results on com-

parative statics in games with strategic substitutes. Roy and Saberwal (2010) and Acemoglu

and Jensen (2013) provide such results for the case where direct effects dominate indirect

effects, as occurs for example in the symmetric equilibria. We find the asymmetric equilibria

of particular interest, where the indirect effects need not be dominated, and our approach to

6For games with strategic complementarities (supermodular games) there is a significant body of work on
the structure of equilibria and their stability and comparative statics (e.g., Milgrom and Roberts (1990) and
Vives (1990)). However, as noted, those results do not apply in our strategic substitutes (submodular) context.
It is true that a two-player game of strategic substitutes can be transformed to one with strategic complements
by permuting the actions of one player (specifically by reversing the order). However, the symmetry of the
game is not preserved in this permutation, so the results on symmetric submodular games do not apply in our
case. For example, we may have a pair of stable mirror-image asymmetric equilibria (x, y) and (y, x) while
(x, x) and (y, y) are not equilibria, something that cannot happen in a supermodular game.

7Zimper (2007) and Roy and Saberwal (2012) provide conditions on the best-reply function that guarantee
dominance solvability in lattice games with strategic substitutes. Roy and Saberwal in particular relate this
to global stability.
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obtaining the comparative-statics results is therefore different.8

2 Model and Applications

2.1 The General Model

There are two players, 1 and 2, and two actions, H and L. The game is symmetric. Each

player draws, independently, a type x ∈ R, which is her relative dislike or cost of playing H,

and is her private information. The payoff from playing L is normalized to 0. The payoff from

playing H is the sum of −x plus either UH > 0 if the opponent plays H or UL > UH if the

opponent plays H:

agent\opponent H L

H UH − x UL − x

L 0 0

The distribution of each x has a log-concave density f with support on an interval [x, x̄]

(we allow for x = −∞ or x̄ =∞), where f has a single peak that is below UH . Thus, for the

modal type, H is the dominant action. To focus on the interesting cases we also assume that

x̄ > UL so that for some types L is the dominant action. (As noted, the assumptions on the

modal type of f imply that for some types H is dominant.)

Remark 1 While the model is described as a two-player Bayesian game, it obviously applies

also when each “player”’is a population of individuals (perhaps a continuum) and after each

chooses her action they are randomly paired (see Section 2.2.3).

We now describe three natural applications of the model. In each we explain how the

application’s parameters map into the model, and interpret the model’s critical assumptions

in the context of the application.

8It remains an open question to what extent the results herein can be extended to general lattice games,
and not only those with a differentiable structure as we assume.
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2.2 Applications

2.2.1 Public Good

Two agents invest (H) or not (L) in a public good. The gross return from investment has

decreasing returns: 0 if none invests, UL if one player invests and UL +UH , where UH < UL,

if both invest. Each agent’s cost of investment is x ∈ R and is the agent’s private information.

Each x is independently drawn from a distribution with a single-peaked log-concave density f

where, for the modal type, investing is a dominant action. The agent’s payoff matrix is thus

agent\opponent H L

H UL + UH − x UL − x

L UL 0

which is best-reply equivalent to that of the abstract model above (i.e., the best-reply functions

are the same).

2.2.2 R&D or Capacity Investment

Two firms decide, in a first stage, whether to invest in developing a product or in a technology

that reduces per-unit cost of production. In a second stage the firms compete in the product

market. Each firm’s profit in the second-stage product competition is 0 if the firm did not

invest, the monopoly profit UL if it is the only firm that invested, and a duopoly profit UH if

both firms entered. A firm’s cost of investment is x, and is its private information. Each x is

drawn from a distribution with a single-peaked log-concave density f where the modal type

would invest even if the other firm invested for sure (x < UH). The firm’s payoff matrix is

thus exactly that of the abstract model above.

2.2.3 Gender Differences in Career Choices

There are two equally sized intervals of men (m) and women (w), and two occupations, A and

B. Each person draws independently a type (k, x) where k is his/her high-income occupation

(HIO or H) and x is his/her dislike of working at the HIO relative to the other occupation

(L). An individual has income wh from working in his/her HIO, and wl < wh in the other

profession.
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Individuals first choose a profession, and then are randomly paired into households. The

utility of agents is the sum of job-satisfaction utility, −x or 0, and utility from household

income u. Thus the utility of an individual whose spouse earns w is:

choosing HIO u (wh + w)− x

non-HIO u (wl + w)

As discussed, we denote by UH the increase in utility from the additional income due to

choosing the HIO (ignoring job dissatisfaction, x) when the spouse has high income (chooses

H). Similarly UL is this difference when the spouse has low income (chooses L). That is,

UH ≡ u (wh + wh)− u (wl + wh)

UL ≡ u (wh + wl)− u (wl + wl)

Assuming positive and decreasing marginal utility of money implies UL > UH > 0. Nor-

malizing u (wl + wl) = 0 and assuming that an individual’s HIO, k, is either A or B we obtain

the same payoffmatrix as in the public-good application. Finally, we assume that the agents’

relative dislike, x ∈ R, is (independently) drawn according to a log-concave density f with

single peak below 0, i.e., that the modal type prefers to work at his/her HIO.

3 Analysis

3.1 Characterization of the equilibria

In this section we show our main result, that either there is a unique equilibrium that is

stable and symmetric or there is a unique pair of (mirror-image) stable asymmetric equilibria

and an unstable symmetric equilibrium. Obviously an equilibrium has the form of threshold

strategies: a pair (x1, x2) such that player j of type xj chooses H iff xj < xj. Thus, the

probability that j’s opponent (−j) plays H is F (x−j), and j’s relative payoff from playing H

against the distribution of play by −j is:

UHF
(
x−j
)

+ UL
(
1− F

(
x−j
))
− xj

Player j’s best-reply threshold, xj, given the other player’s threshold, x−j, is then

xj = B
(
x−j
)
≡ UHF

(
x−j
)

+ UL
(
1− F

(
x−j
))
.
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Since UL > UH we see immediately that the slope of the best-reply function is negative: if

one player chooses H more often then the other player wants to choose it less often. (If xj

increases and UL > UH then UHF (xj) + UL (1− F (xj)) decreases.)

A pair of thresholds (x1, x2) is then an equilibrium if x1 = B (x2) and x2 = B (x1). (Note

that B (xj) is the best-reply function of player −j, not j.) In general there can be two

types of equilibria: (1) symmetric, in which case x1 = x2, where we will denote the common

equilibrium threshold by xs; and (2) mirror-image asymmetric equilibria, in which case we

focus throughout, wlog, on the equilibrium with x1 > x2.

We are interested in (dynamically) locally stable equilibria. An equilibrium is stable in this

sense if, starting from near enough to an equilibrium, the behavior would converge back to

the equilibrium, where the dynamics are given by the best-response functions. An equilibrium

is unstable if it locally diverges. It is straightforward that an equilibrium (x, y) is stable if

B′ (x) × B′ (y) < 1 and it is unstable if B′ (x) × B′ (y) > 1. In general if B′ (x) × B′ (y) = 1

an equilibrium may be neither stable nor unstable, but we will see that in our model such

equilibria are stable.

Proposition 1 Depending on the model’s parameters, either there is a unique equilibrium xs

which is stable and symmetric with |B′ (xs)| ≤ 1, or there are three equilibria: an unstable

symmetric equilibrium xs with |B′ (xs)| > 1 and two stable asymmetric equilibria (x, y) and

(y, x) with B′ (x)×B′ (y) < 1.

Proof. Denote the best-reply function by B (x) = UHF (x) + UL (1− F (x)) ∈
[
UH , UL

]
.

Since B is continuous, it has a fixed point in the closed interval
[
UH , UL

]
, which is a sym-

metric equilibrium. Consider now the function R (x) = B (B (x)). Then in any equilibrium,

symmetric or not, x = R (x), i.e., equilibria are intersections of R with the 45-degree line. In a

symmetric equilibrium x = B (x) = R (x). An asymmetric equilibrium is a pair of thresholds

(x, y) with x = B (y) = R (x) and y = B (x) = R (y).

We consider R′ at intersections R (x) = x, since then R′ (x) > 1 implies instability of

equilibrium (symmetric or not) and R increasing with R′ (x) < 1 implies stability. (To see

the stability argument, observe that if R is increasing and R′ (x) < 1 then for x̃ close to x

(specifically closer than any other fixed point) but below x we have x > R (x̃) > x̃ so the best

reply to the best reply of x̃ is closer to x but does not overshoot. (Iterating on R this process
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must converge and cannot converge to a point below x as then it would converge to a fixed

point between x̃ and x while we assumed that x̃ is closer to x than any other fixed point.). A

similar argument applies for x̃ close to and greater than x.)

Note first that B is decreasing: since UH < UL, B′ (x) =
(
UH − UL

)
f (x) < 0. Therefore

if there is an asymmetric equilibrium (x, y) with y > x we must have y > xs > x. It cannot

be that y > x > xs since if y > xs then x = B (y) < B (xs) = xs, a contradiction. Similarly

it cannot be that xs > y > x since if x < xs then y = B (x) > B (xs) = xs. Now, since

R (·) = B (B (·)), it is increasing.

Before continuing with the details, we outline the main parts of the proof. We show that if

R′ (xs) > 1 then R looks like in Figure 1 where it is convex to the left of xs and lies below the

45 degree line near xs. As it has range in
[
UH , UL

]
it must intersect the 45 degree line between

UH and xs so there is an asymmetric equilibrium (x, y). Moreover, at this intersection R′ < 1

so this equilibrium is stable.

Figure1: When R′(xs) > 1, then R is convex below xs and there exists another fixed point

x̂ < xs with R′(x̂) < 1.

We also show that if R′ (xs) ≤ 1 then R looks as in Figure 2 where R is strictly concave

and increasing to the right of xs, and since R′ (xs) ≤ 1 it is below the 45 degree line to the

right of xs, and hence R cannot intersect the 45 degree line to the right of xs, so there is no

asymmetric equilibrium (x, y).
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Figure 2: When R′(xs) ≤ 1, then R is concave above xs and there does not exist another

fixed point x̂ > xs.

For R′ (xs) < 1 we already noted that xs is stable so, finally, we show that xs is also stable

if R′ (xs) = 1. In this case R is as in Figure 3 where it is convex below and concave above

xs, and as it is increasing and crosses the 45 degree line from above at xs, we have that xs is

stable.

Figure 3: When R′(xs) = 1, then R is convex below xs and concave above it. This implies

that xs is stable.

We continue now with the formal arguments. As noted, B′ (x) =
(
UH − UL

)
f (x) < 0.

Since f is single peaked with peak below UH , then over the interval
[
UH , x̄

]
we have f ′ (x) < 0

10



hence B′′ =
(
UH − UL

)
f ′ (x) > 0. That f is log-concave is equivalent to f ′(x)

f(x)
being weakly

decreasing, which implies that B′′(x)
B′(x) is weakly decreasing. This implies 0 > B′′ (x)B′ (y) ≥

B′′ (y)B′ (x) for all y > x (and B′′ (x)B′ (y) ≤ B′′ (y)B′ (x) < 0 for all y < x).

Consider now a symmetric equilibrium xs = B (xs). For any x and y = B (x) we have

R′ = (B (B (x)))′ = B′ (B (x))B′ (x) = B′ (y)B′ (x) (1)

R′′ = B′′ (B (x)) (B′ (x))
2

+B′ (B (x))B′′ (x) = B′′ (y) (B′ (x))
2

+B′ (y)B′′ (x) . (2)

Note also that for an asymmetric equilibrium R′ (x) = R′ (y). Furthermore, since B′ < 0 then

R′ > 0.

Consider the case where R′ (xs) ≥ 1 and recall that

B′′ (y)B′ (x) ≤ B′ (y)B′′ (x) ⇐⇒ (3)

|B′′ (y)B′ (x)| ≥ |B′ (y)B′′ (x)| (4)

for y > x. For x < xs (since B′′ > 0 and |B′ (xs)| =
√
R′ (xs) ≥ 1) we have |B′ (x)| > 1. Hence

multiplying the LHS of (3) by B′ (x) it becomes positive and by (4) is greater in absolute value

than the RHS. Hence, substituting into (2), R′′ (x) > 0. Thus,

R′ (xs) ≥ 1⇒ R′′ (x) > 0 ∀x < xs, (5)

and similarly one can show

R′ (xs) ≤ 1⇒ R′′ (x) < 0 ∀x > xs. (6)

First note that if R′ (xs) = 1 then xs is stable. This is because when R′ (xs) = 1 we have

from the preceding pair of equations that R′ (x) < 1 for all x 6= xs which implies stability.

Thus xs is stable iff R′ (xs) ≤ 1 and then, by (6), R does not cross the 45 degree line for

any x > xs so there is no asymmetric equilibrium. (Recall that if there were an asymmetric

equilibrium (x, y) then R (x) = x and R (y) = y and one of them would be greater than xs

and the other would be less.)

Also, xs is unstable iff R′ (xs) > 1 and then R must cross the 45-degree line at some

x̂ < xs. (If not, then for all x < xs we have R (x) < x. But for x < UH this contradicts

that for all x̃ we have B (x̃) ∈
[
UH , UL

]
hence R (x) ≥ UH ≥ x.) Thus (x̂, B (x̂)) is an

asymmetric equilibrium. Moreover, since R′′ (x) > 0 for all x < xs this is the only x for which

R (x) = x and R′ (x̂) < 1 so it is the only asymmetric equilibrium with x < xs and since

R′ (x̂) < 1 it is stable. (Obviously there exists one other asymmetric equilibrium, its mirror
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image, (B (x̂) , x̂).)

Whether the stable equilibrium is asymmetric or symmetric depends on whether the strate-

gic substitutes are strong enough (i.e., whether |B′ (xs)| is greater than, or weakly less than,

1). The following corollary states suffi cient conditions on the model’s primitives for that:

Corollary 1 1. If UL−UH > 1/f
(
UL
)
then the only stable outcome is a pair of (mirror-

image) asymmetric equilibria.

2. If UL − UH ≤ 1/f
(
UH
)
then the only stable outcome is a symmetric equilibrium.

Proof. The symmetric equilibrium is stable and hence by the result above unique iff |B′ (xs)| =∣∣(UH − UL) f (xs)
∣∣ ≤ 1 and since xs ∈

[
UH , UL

]
and f is decreasing on

[
UH , UL

]
this follows

if
∣∣UH − UL∣∣ = UL − UH ≤ 1/f

(
UH
)
≤ 1/f (xs). Similarly it is unstable, and hence the

unique stable equilibrium is asymmetric, iff |B′ (xs)| =
∣∣(UH − UL) f (xs)

∣∣ > 1 and again this

follows if
∣∣UH − UL∣∣ = UL − UH > 1/f

(
UL
)
≥ 1/f (xs).

3.2 The implication of the characterization in the applications

In the public good case the difference UL−UH measures the decrease in the marginal returns

to investment in the good —the difference between the return if one agent invests and the

additional return if a second agent invests. If this decrease in returns is suffi ciently weak, then

both agents have the same threshold of private investment cost below which they invest. If

the decrease is suffi ciently strong, then a stable equilibrium must be asymmetric: one of the

agents invests as long as his cost is below a low threshold, and the second invests below a high

threshold (that is, invests more often). Which of the two agents is the one with the low/high

threshold is undetermined (i.e., there are two mirror-image stable equilibria).

In the R&D / capacity-investment interpretation of the model UL − UH is the difference

between monopoly and duopoly profits. If competition decreases profits suffi ciently, then the

equilibrium outcome is asymmetric — one firm is "aggressive" and enters the market for a

wide range of investment costs, while the other invests only as long as its cost is below a low

threshold. If instead the gain from being a monopolist vs. a duopolist is not too large, then

both firms will pick the same investment threshold.
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Finally, in the career-choice interpretation, what matters is the additional household utility

when an individual brings home additional income by working in his/her high-income vs.

low-income occupation. By the assumption of decreasing marginal utility, this additional

household utility is lower if the spouse works in his/her high-income occupation and hence

already brings home a high income. If marginal utility is suffi ciently decreasing then there

will be an asymmetric equilibrium: individuals of one gender choose their HIO even if they

dislike it quite strongly, while those of the other gender choose their HIO only as long as their

dislike is not so strong. While the model does not predict whether men or women will be

those choosing their HIO more often, the observed gender wage-gap in which men have higher

wages corresponds to the first case.

4 Comparative statics

4.1 Theoretical results

In the section we analyze general properties of the comparative statics of the model. The

comparative statics obviously depend on two effects. First, there are the standard direct

effects: how each player’s choices respond to a parameter change when the other player’s

behavior does not change. Second, there are the indirect effects: each player’s behavior does

change, which further impacts the other player’s choices. The results in this section show how

the overall equilibrium effect can be determined from the direct effects alone.

To state these results formally let t be an exogenous parameter affecting both players, with

t = 0 denoting the initial situation. We thus add the argument t to all functions. So xs (t)

denotes the symmetric equilibrium as a function of t, that is, xs (t) = B (xs (t) , t). Similarly, an

asymmetric equilibrium is a pair (x1 (t) , x2 (t)) that solves xj (t) = B (x−j (t) , t) for j = 1, 2.

Denote partial derivatives using subscripts, for example Bt (xs (t) , t) = ∂B (y, t) /∂t at the

point y = xs (t).

Remark 2 Note that t may be an explicit change in UH , UL or f (e.g., replacing UH by

UH + t or shifting the distribution function F to F (x + t)), but t may also be a change in a

parameter in an application that affects one or more parameters in the model, e.g. a change

in wl in the career choice application, which affects both UL and UH .
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Theorems 2 and 3 formalize the relationships between the direct and indirect effects. Their

proofs follow, with elementary algebraic manipulations from Lemmas 1 and 2 that follow

Theorem 3.

Theorem 2 states that in the case of a (stable) symmetric equilibrium the combined equi-

librium effect turns out to be of the same sign as the direct effect:

Theorem 2 Consider a stable symmetric equilibrium xs (t). Then at t = 0, xst (t) has the

same sign as Bt (xs (t) , t).

Theorem 3 below considers (stable) asymmetric equilibria (x1, x2) where, recall, wlog x1 >

x2. In this case the relationship depends on the signs of the direct effects and their relative

magnitudes. If the direct effects on the two players go in opposite directions (part 1 of the

theorem) then the combined equilibrium effect has the same direction as the direct effect for

each, and, moreover, the effect on x1 is larger. If the direct effects are in the same direction,

there are two cases: If the direct effect on player 2 is larger than that on player 1 (part 2a)

the combined effect on player 2 is the same as the direct effect, while the combined effect on

player 1 is the opposite. Otherwise (part 2b) at least one of the combined effects must be

the same as the direct effect. However, in this case, which of the three possibilities —whether

x1 (t) or x2 (t) or both change in the same direction as the direct effect —cannot be determined

without further data.

Theorem 3 Consider a stable asymmetric equilibrium (x1 (t) , x2 (t)), with the convention

that x1 > x2. Then at t = 0:

1. If Bt (xj (t) , t) < 0 < Bt (x
−j (t) , t) for j = 1 or 2 (where one inequality may be weak),

then

xjt (t) > 0 > x−jt (t) .

Moreover |x1t (t)| > |x2t (t)|.

2. Otherwise,

(a) If |Bt (x1 (t) , t)| ≥ |Bt (x2 (t) , t)| > 0, then

sign
(
x2t (t)

)
= sign

(
Bt
(
x1 (t) , t

))
and sign

(
x1t (t)

)
= −sign

(
Bt
(
x2 (t) , t

))
.
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(b) If 0 < |Bt (x1 (t) , t)| < |Bt (x2 (t) , t)| then

sign
(
x2t (t)

)
= sign

(
Bt
(
x1 (t) , t

))
or sign

(
x1t (t)

)
= sign

(
Bt
(
x2 (t) , t

))
.

These theorems follow, with elementary algebraic manipulations, from the next two lem-

mas.

Lemma 1 In a stable asymmetric equilibrium (x1 (t) , x2 (t)), with the convention that x1 >

x2, at t = 0, ∣∣Bx (x1 (t) , t
)∣∣ < 1 <

∣∣Bx (x2 (t) , t
)∣∣ .

Proof. At t = 0, Bx (xj (t) , t) =
(
UH − UL

)
f (xj). Recall that x1 > xs > x2, and that

f is decreasing in this region. Thus |Bx (x1 (t) , t)| < |Bx (xs (t) , t)| < |Bx (x2 (t) , t)| where

xs denotes the unstable symmetric equilibrium. Since |Bx (xs (t) , t)| > 1 (by instability) and

|Bx (x1 (t) , t)| |Bx (x2 (t) , t)| < 1 (by stability) we have∣∣Bx (x1 (t) , t
)∣∣ < 1 <

∣∣Bx (x2 (t) , t
)∣∣ .

Lemma 2 In a stable equilibrium (x1 (t) , x2 (t)), at t = 0,

sign
(
x1t (t)

)
= sign

(
Bt
(
x2 (t) , t

)
+Bx

(
x2 (t) , t

)
Bt
(
x1 (t) , t

))
and likewise

sign
(
x2t (t)

)
= sign

(
Bt
(
x1 (t) , t

)
+Bx

(
x1 (t) , t

)
Bt
(
x2 (t) , t

))
Proof. Taking derivatives of xj = B (x−j (t) , t) wrt t we obtain:

x1t (t) = Bt
(
x2 (t) , t

)
+Bx

(
x2 (t) , t

)
x2t (t)

x2t (t) = Bt
(
x1 (t) , t

)
+Bx

(
x1 (t) , t

)
x1t (t)

and thus

x1t
(
1−Bx

(
x2 (t) , t

)
Bx
(
x1 (t) , t

))
= Bt

(
x2 (t) , t

)
+Bx

(
x2 (t) , t

)
Bt
(
x1 (t) , t

)
.

By stability, at t = 0, 1−Bx (x2 (t) , t)Bx (x1 (t) , t) > 0. Thus we obtain the statement of

the Lemma.
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4.2 Applicability of the comparative statics results

The general comparative statics results above yield interesting predictions in some cases —in

particular when the stable equilibrium is asymmetric. Consider thus an equilibrium (x1, x2),

with the convention that x1 > x2, and consider an increase in UH . This has an unambiguous

(and perhaps surprising) effect on the equilibrium strategies. Player 1’s threshold, x1, unam-

biguously decreases and player 2’s threshold, x2, increases. The threshold of player 1 decreases

because in this case the strategic substitutes effect is so strong that for her the indirect effect

—of player 2 choosing H more often —must dominate the direct effect.

Why is the comparative static on UH unambiguous? Details follow from the proof of

Theorem 3, but we provide the basic ideas here. The direct effect of a change in UH is

stronger for player 2 than for player 1, as 2 faces an opponent who more often plays H (recall

that x1 > x2). Moreover, we show that player 1 reacts to a change in player 2’s threshold more

strongly than the change that occurs in player 2’s threshold itself (i.e., the slope of the best

reply function is steeper than 1). Combining these two arguments implies that the indirect

effect dominates the direct effect for player 1, and thus the overall effect must be a decrease in

player 1’s threshold. For player 2 the opposite holds since the slope of her best-reply function

is less than 1 and player 1’s direct effect is smaller than that of player 2’s.

To see the above more formally, recall that for j = 1, 2, the best-response function is:

xj = B
(
x−j
)
≡ UHF

(
x−j
)

+ UL
(
1− F

(
x−j
))
.

The derivatives with respect to t = UH are Bjt = F (x−j) > 0. Since F (x1) > F (x2) we thus

have B2t (x1) > B1t (x2) > 0. By Theorem 3 part (2a), the combined effects are x2t > 0 and

x1t < 0.

In our three applications the above analysis of a change in UH yields the following con-

clusions. Recall that we consider a stable asymmetric equilibrium in which x1 > x2. In the

public-good environment, if the benefit of having a second contribution decreases, then x2 will

become even smaller while x1 will increase further. That is, the player investing less often will

invest even less frequently due to this, but the player investing more often will invest even

more despite the benefit of doing so going down. In an asymmetric equilibrium of the R&D

example, a decrease in duopoly competition (e.g., an increase in product differentiation) would

lead the player investing more in the asymmetric equilibrium to decrease his investment and
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the one investing less to invest more. Finally, in the gender occupation choice example a tax

increase on households with two high incomes would lower UH and hence further decrease the

threshold of the gender choosing the high-income less often but would increase the threshold

of the one already choosing it often.
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