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Abstract

This paper develops a method to estimate workers’ outside employment opportunities. We
outline a matching model with two-sided heterogeneity, from which we derive a sufficient
statistic, the “outside options index” (OOI), for the effect of outside options on wages, hold-
ing worker productivity constant. The OOI uses the cross-sectional concentration of similar
workers across job types to quantify workers’ outside options as a function of workers’ com-
muting costs, preferences, and skills. Using German micro-data, we find that differences in
options explain 25% of the gender wage gap, and that gender gaps in options are mostly due
to differences in the implicit costs of commuting and moving.
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1 Introduction

In standard models of the labor market, wages depend on a worker’s outside option. In a perfectly
competitive market, an equally attractive outside option always exists, and competition between
identical employers leads workers to earn their marginal product. However, in reality, a worker’s
next best option could require a different combination of their skills, could involve different work-
ing hours, or could be located in a different city. The number of outside options could be systemat-
ically lower for some workers because of the health or market structure of their local labor market,
because they are unwilling or unable to commute, or because their skills are only valuable for a
few employers or industries. Such differences could have significant implications for workers’
incomes.

A key challenge for empirical research on this topic is that researchers do not typically observe
a worker’s option set. Researchers often assume that an individual’s labor market consists of all
jobs within the same commuting zone and industry or occupation (sometimes both). However,
even workers in the same firm and occupation may face different option sets due to their specific
set of skills, their preferences, or their constraints.

In this paper we develop an empirical procedure to uncover a key latent parameter in most
wage-setting models: the value of an individual’s option set. We show how this latent parameter
can be derived from the cross-sectional concentration of similar workers across jobs. If similar
workers are concentrated in a certain region, industry, occupation or other job characteristics, then
the worker’s options are more limited. We quantify this concentration in a single “outside options
index” (OOI), which, in our model, is a sufficient statistic for the effect of outside options on com-
pensation. Using administrative matched employer-employee data from Germany, we estimate the
OOI for every worker in our dataset. We estimate the link between outside options and wages us-
ing a shift-share (“Bartik”) instrument. Combining these two ingredients, we show that differences
in outside options explain a substantial portion—a quarter—of the gender wage gap in Germany.
This is driven entirely by differences in willingness to commute or move.

We start by outlining a static model of the labor market that illustrates how, with two-sided
heterogeneity, differences in outside options lead to differences in compensation, even for equally
productive workers (Dupuy and Galichon, 2014). Our model is based on the classic Shapley and
Shubik (1971) assignment game—a two-sided matching model with transfers. Compensation in
this setting is set to prevent workers from moving to their outside options; because of heterogene-
ity, workers’ compensation is less than their full productivity in the first-best option. A direct
implication is that workers’ compensation is not only determined by what they produce, but also
by their ability to produce in more places. Our focus on heterogeneity, rather than search frictions,
is the standard approach in the industrial organization literature for analyzing market imperfections
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(see, for instance, Berry et al., 1995); this approach has recently been adopted to analyze the labor
market (Card et al., 2016; Azar et al., 2019; Chan et al., 2019).1

We derive a sufficient statistic from this model, the “outside options index” (OOI), that summa-
rizes the impact of options on compensation. Workers with more relevant jobs, as captured by the
OOI, will, on average, have a better outside option, and be able to sort into better matches, condi-
tional on their productivity. The OOI is estimated using information on the equilibrium distribution
of workers into jobs.

The OOI is similar to a standard concentration index: workers with more options are those
who, in equilibrium, are found in a greater variety of jobs. Under standard assumptions on the
distribution of match quality (Choo and Siow, 2006; Dupuy and Galichon, 2014), the OOI is equal
to the entropy index. This index, with a negative sign, is used in the industrial organization litera-
ture as a measure of market concentration (Tirole, 1988). It is similar to the Herfindhal-Hirschman
Index (HHI), which has also been used to measure concentration in labor markets (Azar et al.,
2020; Benmelech et al., 2020). Workers with more options (higher OOI) are those who are less
concentrated across jobs, on all dimensions observed by the researcher. Given discrete covariates,
the OOI can recover standard concentration measures based on, e.g. occupational concentration
(Handwerker et al., 2016) or occupational transitions (Schubert et al., 2020). The OOI allows the
researcher to incorporate continuous characteristics, such as distance or task intensity. The OOI is
calculated without using any information on wages or wage offers.

We develop a method to estimate the OOI that is computationally feasible even in large datasets.
In particular, we show that the problem of estimating the joint density of workers and jobs can be
translated into a logistic regression framework. Using this density, it is straightforward to calculate
the OOI for each worker.2

The OOI is the value of an individual worker’s option set, constructed using a flexible definition
for the worker’s labor market. The OOI can account for differences in commuting preferences and
constraints, for differences in the quality of labor market opportunities, for skill transferability
across industries/occupations, and for differences in workers’ valuations of amenities. We show
that the OOI predicts the relative rate of recovery for workers involved in the same mass-layoff, an
event which forces workers to move to one of their outside options.

We demonstrate, using linked employer-employee data from Germany, that individuals’ outside
options are influential in determining between-group wage inequality. First, we document sizable

1An alternative approach would be to use a dynamic model with search frictions (Shimer and Smith, 2000; Lise
and Postel-Vinay, 2020). In order to incorporate dynamic aspects of the labor market (that are beyond the scope of this
paper), these models place simplifying assumptions on the types of options workers have. As a result, these models
are less suitable for precisely estimating workers’ option sets based on a large number of independent worker and job
characteristics. That is the goal of this paper.

2We have developed an R package that implements this method. It is available to download through CRAN.
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between-group differences in OOI, by gender, education levels and citizenship status. We then
estimate the (semi) elasticity between OOI and wages using an industry shift-share (“Bartik”)
instrument (Beaudry et al., 2012). We compare workers who work in the same industry, but have
outside options in different industries because they reside in different parts of the country. We
instrument for the growth in outside options in other industries with the national industry trends
to exclude the impact of local productivity shocks. This approach yields a semi-elasticity between
the OOI and wages of approximately 0.19, implying that access to 10% additional outside options
increases wages by 1.9%.

Combining this elasticity with the estimated distribution of the OOI, we find that differences
in outside options lower compensation for women by five percentage points, explaining roughly
25% of the overall gender wage gap in Germany. Differences in outside options also account for a
five percentage points difference in compensation between immigrants and natives, which is 64%
of the overall gap. We also find large effects on the return to education. The results are consistent
with prior theoretical work, which has argued that some groups of workers—including women and
minorities—may receive lower pay, in part because they face worse opportunities at other firms
(see, e.g. Black, 1995).

In the last part of the paper we examine the reasons workers face different options. We use
the underlying model to create a counterfactual distribution of the OOI, if workers had the same
implicit commuting costs. This exercise shows that the heterogeneity in the ability to commute or
move is a key factor in explaining variation in outside options. This factor can account for the full
gender gap in outside options. These results are consistent with recent work by Le Barbanchon
et al. (2021), who show that female workers have shorter maximum acceptable commutes than
male workers. We also find that, without their higher willingness to work at more distant jobs, more
educated workers would have fewer options than less educated workers. Our analysis suggests that
this occurs because their skills tend to be more industry specific (Amior, 2019).

The results in this paper contribute to a small, but growing, literature on the relationship be-
tween individuals’ outside options and their wages. This literature has shown that there is a link
between individuals’ wages and their outside employment options (Beaudry et al., 2012; Cald-
well and Harmon, 2018), and that changes in the outside option of non-employment do not impact
wages (Jäger et al., 2020). The OOI provides a way to compare the employment opportunities
available to different groups of workers, including those with similar skill sets. We show that
heterogeneity in outside options explains a non-trivial portion of between-group wage inequality.

The results in this paper also contribute to a growing empirical literature on how to define a
labor market (Manning and Petrongolo, 2017; Nimczik, 2017) and on concentration in the labor
market (Azar et al., 2020; Benmelech et al., 2020; Schubert et al., 2020; Rinz, 2020). A growing
literature has noted that traditional labor market definitions, based only on occupation or commut-
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ing zone, may not capture a worker’s option set.3 The OOI provides a data-driven way to measure
workers’ labor markets.

From a policy perspective, our results on gender differences in outside options suggest that
efforts to reduce women’s commuting constraints are likely to help close the gender wage gap.
These policies may include making childcare more widely available (especially in the hours before
and after typical school hours) (Baker et al., 2008). Our results also indicate that policies that
improve workers’ option sets may have sizable and heterogeneous general equilibrium effects.
These effects can be studied through their effect on the OOI. In an appendix to the paper, we
provide one such example, focusing on how the introduction of high speed rail in a small German
town differentially affected workers’ outside options, based on their education and gender. We
find that higher educated workers gained access to more distant jobs due to the introduction of
these trains. This is not surprising, given the high cost of taking the train. Women who are more
likely to work closer to home benefited from new job openings in this town that followed the train
introduction.

The paper proceeds as follows: Section 2 outlines a theoretical matching model, from which
we derive the Outside Options Index (OOI). Section 3 explains how we estimate the OOI. Section
4 describes our empirical setting and data. Section 5 presents descriptive statistics on the OOI.
Section 6 estimates the elasticity between the outside options index and wages, and analyzes the
effect on wage inequality. Section 7 concludes.

2 A Model of Outside Options and Wages

This section outlines a model of a competitive labor market with two-sided heterogeneity, from
which we derive an outside options index (OOI). The model is based on standard two-sided match-
ing models with transferable utility (Shapley and Shubik, 1971; Becker, 1973).

2.1 Setup and Equilibrium

There is a continuum of workers I and a continuum of one-job firms J . We treat I,J as exoge-
nous and of equal measure, which we normalize to 1. In Appendix A.5 we present an extended
version of the model where participation decisions are endogenous and firms can have many jobs.4

3Manning and Petrongolo (2017) show that labor markets overlap across space and are more local than commuting
zone measures might imply. Contemporaneous work by Schubert et al. (2020) shows that workers frequently change
occupations when changing jobs.

4Including the option of non-participation yields similar results, except that compensation also depends on the
value of non-participation. We do not include non-participation in the baseline model since prior work has shown that
large changes to the value of non-employment do not impact compensation—even for workers likely to be unemployed
(Jäger et al., 2020).
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A match between a worker i ∈ I and a job j ∈ J , produces yij in output and aij in non-wage
“amenities” that are valued by the worker. For instance, workers may derive utility from having
flexible hours, or from working close to their home. Output is net of non-wage costs, including
any cost of producing amenities. The total value of a match, τij , is the sum of output and non-wage
amenities. Employers and workers decide how to split this surplus into worker compensation (ωij)

and employer profits (πij),
τij = πij + ωij = yij + aij.

This division is accomplished via a set of transfers (wages) wij .

profits︷︸︸︷
πij =

output︷︸︸︷
yij −

wages︷︸︸︷
wij

ωij︸︷︷︸
compensation

= aij︸︷︷︸
amenities

+ wij︸︷︷︸
wages

Employer profits are simply the total value of the output, minus transfers. Workers’ compensation
depends on the transfers they receive (wages) and on their valuation of the job’s amenities. Both
sides have perfect information.

We solve the model using an equilibrium notion based on cooperative game theory (Shapley
and Shubik, 1971).5 A stable equilibrium (core allocation) consists of an allocation, which is an
invertible function m : I → J , and a transfer wij for each matched pair (i, j) that satisfies

∀i′ ∈ I, j′ ∈ J : ωi′,m(i′) + πm−1(j′),j′ ≥ τi′j′ . (1)

This condition says that there is no single worker-employer combination that could deviate from
their current allocation, produce together, and split the surplus in such a way that both the employer
and the worker would be better off. This implies that surplus is split based on outside options: both
sides must earn more in equilibrium than what they could earn in any off-equilibrium match.

2.2 Parametric Assumptions

Workers and jobs can be characterized by sets of characteristics X ⊆ Rdx and Z ⊆Rdz . We use
Xi and Zj to denote the observed worker and job characteristics, which have densities d (Xi) and
g (Zj) respectively.

We pin down the equilibrium using a standard separability assumption and by assuming a

5While there are additional equilibrium concepts that lead to the same result, we focus on a cooperative framework,
which does not require us to make any assumptions about how agents reach this equilibrium (e.g. who makes offers).
Pérez-Castrillo and Sotomayor (2002) show one mechanism that leads to the same equilibrium under a sub-game
perfect Nash equilibrium.
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distribution for the portion of utility attributed to the unobservables (Choo and Siow, 2006). In
particular, we follow Dupuy and Galichon (2014) and assume that the value of τij conditional on
the observables is the sum of two independent shocks drawn from continuous logit models. Both
employers and workers have unobserved taste shocks: worker i receives additional idiosyncratic
utility εi,zj that does not depend on her observed characteristics, if she matches with an employer
with characteristics zj . Similarly, an employer j receives additional (unobserved) utility εj,xi if
it hires a worker with characteristics xi. These taste shocks are drawn from two continuous logit
models CL(αx) and CL(αz), which we describe in Appendix A.1. They are closely related to
extremum value type-1 distributions but allow for continuous characteristics (Dagsvik, 1994).6

Assumption 1. The match value τij between a worker i with observable characteristics xi, and a

job j with observable characteristics zj , can be written as

τij = τ (xi, zj) + εi,zj + εj,xi

where εi,zj and εj,xi are two independent draws from continuous logit models with scale parameters

αx and αz
εi,zj ⊥ εj,xi

εi,zj , εj,xi ∼ CL (αz) , CL(αx)

This assumption allows us to derive a unique solution, which we can estimate in the data. How-
ever, it is strong for two reasons. First, it implies that workers (employers) have unobserved utility
in or “taste” for jobs (workers) with specific observed characteristics, and that those unobserved
preferences are uncorrelated, even between jobs (workers) with similar characteristics. Second, the
assumption that εi,zj ⊥ εj,xi implies that there are no interactions between the unobserved worker
and job tastes. Because we place no restrictions on τ (x, z) and strong restrictions on εi,zj and
εj,xi , our model is expected to perform better in settings where the researcher has more detailed
information on workers and jobs. The parameters αx and αz scale the level of heterogeneity in the
idiosyncratic taste shocks (of jobs for workers and of workers for employers).

Assumption 1 simplifies the matching procedure into two one-sided continuous logit choices
(Dupuy and Galichon, 2014).

Theorem 1. Under Assumptions 1, in equilibrium, worker i with characteristics xi faces a contin-

6Every worker i draws εi,zj shocks from a Poisson process on Z × R. As a result, for every subset S ⊆
Z , maxz∈S {εi,z} ∼ EV1 (αz logP (S) , αz) where EV1 is extremum-value type-1 distribution, and P (S) =∫
S
g (z) dz. We do not make any assumption on whether εi,zj or εj,xi are shocks to the amenity aij or to output

yij , since this does not affect our results. A similar process exists for εj,xi . We depart from Dupuy and Galichon
(2014) in how we parameterize the intensity of the Poisson Process in order to ensure that, as the number of options
increases, workers’ compensation (and employers’ profits) do not become infinite. More details in Appendix A.1.
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uous logit choice between employers who are offering

ω(xi, zj) + εi,zj

and employers choose between workers who generate profits

π(xi, zj) + εj,xi ,

where

ω (xi, zj) + π (xi, zj) = τ (xi, zj) .

We provide proofs for all our results in Appendix A.2. Workers’ expected compensation in
equilibrium is therefore

E [ωij|xi] = E
[
ω
(
xi, z

∗
j

)
|xi
]

+ E
[
εi,z∗j |xi

]
, (2)

where z∗j denotes the characteristics of the job worker i takes in equilibrium.

2.3 The Outside Options Index

We define the OOI as the standardized expectation 1
αz
E
[
εi,z∗j |xi

]
.7 This expression is a function

of the equilibrium match probabilities. Using f (xi, zj) to denote the joint distribution of matches
based on workers’ and employers’ observed characteristics, and fZ|X (zj|xi) =

f(xi,zj)

d(xi)
to denote

the conditional distribution, we get the following expression for the OOI.

Lemma 1. Under Assumption 1:

OOI :=
1

αz
E
[
εi,z∗j |xi

]
= −

∫
fZ|X (zj|xi) log

fZ|X (zj|xi)
g (zj)

. (3)

The expression on the right of equation 3 is (minus) relative entropy, which takes a value in
(−∞, 0]. This expression is the continuous version of the Shannon entropy index, an index often
used to measure industrial concentration. Workers have more options, as measured by our OOI,
when their probability of being in any particular type of job is lower. As we explain in the next
section, workers have more options when there are many jobs in which a worker receives roughly
the same compensation, ω (xi, zj). This measure of concentration may depend on workers’ oc-
cupation or industry; however it may also depend on other—possibly continuous—characteristics
such as distance. The concentration is measured for each individual worker, accounting for the fact

7Note that E[εi,z∗j ] > E[εi,zj ] because z∗j is positively selected. Descaling by αz guarantees that the value of the
OOI is independent of the units we use to define τ (x, z).
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that workers could have different option sets, depending on their observable characteristics (e.g.
their training, their gender, age, status of immigration).

The OOI depends both on a worker’s ability to receive similar compensation in different types
of jobs, and on the supply of available jobs (i.e. the distribution of zj). Workers who have more
transferable skills or who are more able to commute will, on average, have more opportunities.
Jobs that a worker could, in theory, do (e.g. a trained surgeon could take a job as a plumber)
but that workers of that type never take in equilibrium do not enter the OOI, as the OOI is not
affected by zero probability events. To give further intuition for the OOI—and for how, in this
perfectly competitive model, equally productive workers with different OOI earn different wages—
we present a simple parametric example in Appendix A.4.

The OOI can nest standard labor market definitions, including those that allow for transi-
tions across occupations, industries, or locations. Given a vector of indicators for an individual’s
prior occupation xi and a vector of occupation indicators for the set of jobs in the economy zj ,
fZ|X(zj|xi = x) is simply the probability that an individual in occupation x moves to the occupa-
tion of job zj (as in Schubert et al. (2020)). Because the OOI also allows for continuous covariates
and for the inclusion of multiple covariates (including worker characteristics), it allows for richer
substitution patterns across jobs than simple occupation- or industry-transition matrices. In our
analysis below, we find that differential sensitivity to distance is key for explaining differences
in sorting patterns between male and female workers with the same skill sets and between work-
ers with different levels of education. While our baseline model does not incorporate an explicit
role for firms, in Appendix A.5 we show that the OOI can easily be modified to account for firm
concentration.

2.4 The Link Between Outside Options and Compensation

Workers with more options receive higher compensation in equilibrium for two reasons, both of
which are captured in the OOI. First, a higher OOI implies a higher expected value of the unob-
served portion of the utility (E [εi,z∗|xi] in Equation 2). Workers have a larger value of E [εi,z∗|xi]
if they have more jobs with similar values of ω (xi, zj), perhaps because they live in a larger city,
are willing to commute longer distances, or have more general skills. By contrast, workers that
are concentrated (e.g. living in isolated areas, unable to commute, have specific skills) would have
only few jobs with high ω (xi, zj) to choose from, and therefore would compromise for a lower
value of εi,zj in expectation.

Second, a higher OOI implies better outside options. Dupuy and Galichon (2015) show that the
match surplus that is attributed to observable characteristics, τ (x, z), is divided between workers
and employers based on their outside options.
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Theorem 2. In equilibrium, ω (xi, zj), the share of τ (xi, zj) that workers receive, satisfies

ω(xi, zj) =
αx

αx + αz
E[ωij|xi] +

αz
αx + αz

(τ(xi, zj)− E[πij|zj]) . (4)

Equation 4 is reminiscent of standard equations for wage-determination in bargaining models
where workers receive a weighted average of the value of their outside option (e.g. the value of
working at their last best offer) and the value of their inside option (the value of working for this
employer). The ratio αz

αx+αz
is comparable to the bargaining parameter β in standard search and

matching models; it is higher when workers’ idiosyncratic preferences are more dispersed relative
to employers’. E [ωij|xi] is comparable to the outside option. It is the expected value of an offer a
worker with characteristics xi would receive from other employers.8

Because they have better offers from other employers, workers with a higher OOI receive a
larger portion of what they produce. A worker with a higher OOI will have higher compensation
E[ωij|xi] (Equation 2). They will then have a higher value of ω (xi, zj), which comes directly at the
expense of the employer’s profit π (xi, zj). This equation generates a multiplier effect for having
more options: having more options increases compensation directly by improving unobserved
utility, and indirectly by increasing the portion each worker receives from what they produce. To
get the overall impact we use the following decomposition by plugging in Equation 4 in Equation
2:

E
[
ω∗ij|xi

]︸ ︷︷ ︸
Expected compensation

= E
[
τ
(
xi, z

∗
j

)
|xi
]︸ ︷︷ ︸

Mean Production

− E[πi,j∗|xi]︸ ︷︷ ︸
Employer Rents

+

(
αx + αz
αz

)
E
[
εi,z∗j |xi

]
︸ ︷︷ ︸

(αx+αz)·OOI

(5)

The OOI is a sufficient statistic for the effect of the size of the option set on a worker’s compen-
sation. To show this, we examine how compensation changes if we increase the access to options
(λxi) for workers with characteristics xi, while keeping the quality of options constant.9 Such an
increase in options increases workers’ compensation by its effect on the OOI times a constant.

Theorem 3. Access to options λxi has the following overall effect on expected worker compensa-

tion in equilibrium:
dE [ωi,j]

dλxi
= (αx + αz)

dOOIi
dλxi

.

8Because there is a continuum of workers with observable characteristics xi, E [ωij |xi] is not affected by the
compensation worker i receives from her equilibrium employer.

9Formally, λxi is a parameter in the intensity of the Poisson process of the continuous logit model. A higher value
of λxi generates more options in every subset of jobs. Such shocks could include, e.g. the arrival of information
shocks about other job options (which we do not model here), or drops in regulatory barriers such as non-compete
agreements. Such shocks do not include shocks to productivity or preferences that are likely to change the quality of
the jobs as well.
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Theorem 3 shows that an increase in the size of a worker’s option set, holding the quality of the
options fixed, will affect compensation only through its effect on the third component in Equation
5. Because the quality of options remains fixed, mean production and employer profits stay the
same. The overall effect summarizes the impact of having more options through the two channels
described above. More options increases the unobserved portion of utility (E

[
εi,z∗j

]
= αzOOIi).

They also increase the portion of the utility that is attributed to the observables, ω (xi, zj), by an
amount of αx

αz

[
εi,z∗j

]
= αxOOI .10 Hence the impact of having more options on compensation

depends only on the effect on the OOI, multiplied by the constant αx + αz.
In our empirical exercise, we both examine how the distribution of OOI varies across groups

of workers, and examine how variation in the OOI contributes to wage inequality.

3 Estimation

We use the cross-sectional allocation of observably similar workers to estimate the relevant options
of each worker. Each individual’s outside options index (OOI) depends on the ratio between her
probability of working in jobs with characteristics zj , fZ|X (zj|xi), and the distribution of such jobs
in the economy, g (zj), for all jobs observed in the data (Equation 3).

3.1 Parameterization

In order to estimate these probabilities, we first parametrize this ratio as a function of the observ-
ables. We follow Dupuy and Galichon (2014) in assuming that the log density is linear in the
interaction of worker and job characteristics. Note that xi and zj can include functions of worker
and job characteristics (e.g. xi could include a quadratic in age).

Assumption 2. The log of the probability density is linear in the interaction of worker and job

characteristics:

log
fZ|X (zj|xi)
g (zj)

= xiAzj + a (xi) + b (zj)

The matrix A includes all the coefficients on each of the interactions between worker and
job characteristics. This assumption reduces the dimension of the problem significantly, without
imposing restrictions on the relationship between pairs of covariates.11

10 αx

αz
is the result of the multiplier effect in Equation 4. E

[
εi,zj

]
directly affects ω (xi, zj) by another factor of the

quasi-bargaining parameter αx

αx+αz
. But increasing ω (xi, zj) also raises E [ωij |xi] and so ω (xi, zj) further increases

by a factor of αx

αx+αz
as well. The overall impact of E

[
εi,zj

]
is αx

αx+αz
+
(

αx

αx+αz

)2
+
(

αx

αx+αz

)3
+ ... = αx

αz
.

11Dupuy and Galichon (2014) show that A is proportional to the cross-derivative of τ : (αx+αz)A = ∂2τ
∂x∂z , where

αx and αz are the scale parameters of ε we defined in Assumption 1. Intuitively, if a worker characteristic and a job
characteristic are complements, they will be observed more frequently in the data.

11



3.2 Estimating Densities

Prior work has focused on estimating A by matching E [XZ], the second moments of the joint
distribution of X and Z (Dupuy and Galichon, 2014). We estimate A using a similar method that
is computationally more efficient, especially in large datasets.

We first simulate data from a distribution f̃ (x, z) = d (x) · g (z), where x and z are indepen-
dent.12 We add these simulated data to our baseline dataset, and define a binary variable Yk that
equals one whenever match k is ‘real’ (taken from the data) and zero whenever it is simulated. As
a result of Bayes rule

P (Yk = 1|xk, zk)
P (Yk = 0|xk, zk)

=
f (xk, zk)

d (xk) g (zk)

P (Yk = 1)

P (Yk = 0)
=
fZ|X (zk|xk)

g (zk)
× const.

Combining this result with Assumption 2 yields

log
P (Yk = 1|xk, zk)
P (Yk = 0|xk, zk)

= xkAzk + a (xk) + b (zk) . (6)

We then use a logistic regression of Yk on the matched worker and job characteristics (xk, zk),
approximating a (x) and b (z)with linear functions.13 Under assumptions 1 and 2 this produces
consistent estimates for Â, â (xk) , and b̂ (zk).

We use the estimates from the logistic regression to estimate the log probability ratio for every
worker-job combination:

̂
log

fZ|X (zj|xi)
g (zj)

= xiÂzj + â (xi) + b̂ (zj) .

We estimate the densities as

̂fZ|X (zj|xi) = g (zj) exp
[
xiÂzj + â (xi) + b̂ (zj)

]
, (7)

where the sample weights are used for g (zj). We normalize the estimated densities so
∑

zj
̂fZ|X (zj|xi) =

12We randomly sample an observed worker and an observed job independently. We simulate a total number of
random matches equal to our original data size, so the share of real and simulated data is exactly one half.

13Dupuy and Galichon (2014) estimate a distribution f̂ (x, z) such that the estimated marginal distributions d̂ and
ĝare identical to their values in the data. To do so we would need to fully saturate the a (xi) and b (zj) functions,
which we cannot given our data size. Therefore, we take linear functions of the X variables and Z variables. We also
include indicators for district. As we discuss in Appendix B this specification fits the first moments of the marginal
distributions when the simulated data are sufficiently large.
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1 and calculate the OOI as:

ÔOIi = −
∑
zj

̂fZ|X (zj|xi)
̂

log
fZ|X (zj|xi)
g (zj)

. (8)

Our method is similar to prior work by Dupuy and Galichon (2014) who matched moments
of the form of E [XZ]. Appendix B shows that if Assumption 2 is correctly specified, the first
order conditions of the logistic regressions are equivalent to the moments matched by Dupuy and
Galichon (2014). In particular,

EA,a,b [XZ] =

∫
fA,a,b (x, z)XiZj = µ̂XZ ,

where µ̂XZ are the observed values of E [XZ]. We also show that if we fully saturate the functions
a and b our estimates converge to those of Dupuy and Galichon (2014) when the simulated data
are sufficiently large.

4 Empirical Application

We use administrative data from Germany to generate measures of individual workers’ outside
options. The data includes detailed information on establishment and worker characteristics, in-
cluding information on a variety of amenities provided by different establishments.

4.1 Empirical Setting: The German Labor Market

There are several distinctive features of the German labor market which are relevant for our anal-
ysis. First, there are different levels of secondary-school leaving certificates, which depend on the
number of years and type of education. Our data allows us to distinguish between three categories:
lower-secondary, which typically requires nine years of schooling, intermediate-secondary, which
typically requires ten years of schooling, and high-secondary, which requires twelve to thirteen
years of schooling, and allows the student to pursue a university degree. In our analysis we use
indicators for the type of secondary education to account for years of schooling, and for school
quality.

Second, in addition to (or sometimes instead of) formal education, many German workers
receive on-the-job training through formal apprenticeships. Individuals in apprenticeship programs
complete a prescribed curriculum and obtain occupation-specific certifications (e.g. piano maker).
We include information on apprenticeships in our worker characteristics.

Third, eleven percent of workers in Germany work under “fixed-term contracts” (as of 2014).
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These contracts expire automatically without dismissal at the end of the agreed term, at no cost to
the employer. The maximal period for employment under these contracts varies between 6 to 18
months over the period for which we have data. At the end of a contract, the worker and employer
may choose to continue the employment relationship, but cannot use another fixed term contract
to do so (Hagen, 2003; Daruich et al., 2017). We use an indicator for fixed term contracts as one
of our job characteristics.

Fourth, two percent of workers are hired through temporary work agencies. This is a triangular
employment relationship, which involves the temporary work agency, a client company and a
temporary worker. Historically these working relations were limited to 24 months; their duration
is no longer regulated. There are additional regulations on the pay received by workers hired
through temporary agencies (in particular relating to how these workers are paid relative to other
workers at the same firms) but the rules vary significantly over time (Mitlacher, 2008). In our
analysis, we distinguish between employment found via a temporary work agency and work found
via more traditional means.

While wage setting in Germany was historically governed by strong collective bargaining
agreements, employers today have considerable latitude in setting pay (Dustmann et al., 2009).
While employers could always raise wages above the agreed-upon levels, “opening clauses”, which
allow employers to negotiate directly with workers to pay below the collectively bargained wage,
emerged in the 1990s. Today these clauses are very common.

4.2 Data

Our analysis relies on the “LIAB Longitudinal” dataset, a matched employer-employee admin-
istrative dataset, based on a sample from the universe of German Social Security records from
1993- 2014. The data come from the Integrated Employment Biographies (IEB) dataset, which
is collected by the German Institute for Employment Research (IAB). Employers are required to
report daily earnings (which is top-coded), education, occupation, and demographics for each of
their employees at least once per year, and at the beginning of any new employment spell.14 New
spells can arise due to changes in job status (e.g. part-time to full-time), establishment, or occupa-
tion. The data do not cover civil servants or the self-employed, who comprise 18% of the German
workforce.

Establishment Surveys These data also include the answers from annual establishment surveys
conducted by the German Institute for Employment Research (IAB). Each year a stratified random
sample of establishments are asked a series of questions about their organizational structure (e.g.

14Daily earnings are calculated as an average for the reported period. 11% of the sample is top-coded. Since we do
not use wages to calculate the OOI, it is not affected by this censoring.
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size, percentage of managers who are female), personnel policies (e.g. leave policies), and finances
(e.g. annual sales, profits). This survey information is then merged with the complete (1993-2014)
employment histories of all workers who ever worked at these establishments. Because LIAB
samples at the establishment level, there are few establishments in each industry-district. This data
sparsity motivates our decision to construct the OOI at the job level, rather than the employer level,
in our baseline analysis.

BIBB Task Data We supplement these data with survey information on the characteristics of
occupations and industries from the BIBB. The BIBB survey is conducted by the IAB and includes
information on respondents’ occupation and industry, in addition to responses on questions related
to organizational information, job tasks, job skill requirements, health and working conditions.
These data are similar to the O*NET series, but allow us to account for possible differences in
the task content of occupations between the United States and Germany, as well as differences in
coding (Gathmann and Schönberg, 2010). These data allow us to account for the possibility that
the “distance” in task space between different occupation codes may not be uniform. We provide
more information on the data cleaning procedures in Appendix C.

4.3 Worker and Firm Characteristics

Estimating fZ|X (zj|xi) requires information on worker characteristics (x) and job characteristics
(z).

Worker Characteristics The worker characteristics x include gender, level of secondary educa-
tion, an indicator for German citizenship, and a quadratic in age. The characteristics also include
the occupation in which a worker undertook her apprenticeship (her “training occupation”). If we
do not have information on a worker’s apprenticeship (e.g. if it occurred before our data begin
in 1993), or if a worker did not complete an apprenticeship, we use the first observed occupation
observed, as long as it is at least ten years old.

Job Characteristics The z variables we use can be grouped into three categories: (1) charac-
teristics of establishments, (2) characteristics of employment contracts, and (3) characteristics of
jobs. First, we take several establishment-specific variables directly from the establishment survey:
size, sales per worker and the share of females in management. We also use the first two princi-
pal components of each of the six categories of the establishment survey: business performance,
investments, working hours, firm training, vocational training, and a general category. Appendix
Table A1 shows the most weighted questions in each category. Second, we use information on the
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structure of the employment contract: whether the job is part-time, whether the contract is fixed
term, and whether the position was filled by a temporary agency.

Third, we use industry and occupation characteristics. Because it would be infeasible to in-
clude interactions between all of our industry and occupation codes, we use data from the BIBB to
project each industry or occupation into task space. The BIBB survey contains modules on work-
ing hours, task type, requirements, physical conditions and mental conditions. For each 3-digit
occupation and 2-digit industry, we include the average value of the first two principal compo-
nents for each module. We use these to code both the occupation and industry that describe the
job, and the training occupation that describes the worker. Appendix Table A1 shows the most
weighted questions in each module. We also include indicators for occupation complexity. These
codes, available in the LIAB, group occupations into four categories based on the type of activity
they require: (1) simple, (2) technical (3) specialist or (4) complex. The categories typically re-
flect the type of qualification needed to perform the job. For instance, these categories allow us to
distinguish between a nursing assistant, nurse, specialist nurse and general practitioner.

Geographical Distance Finally, we include one worker-firm specific variable: the geographic
distance between a worker’s last place of residence (before taking this job) and the location of
the job.15 This distance could capture both the commuting and moving costs between places;
empirically we cannot directly distinguish the two. Both locations are given at the district (kreis)
level.16

To account for heterogeneity in willingness to commute or move, we interact a fourth degree
polynomial in distance with all worker characteristics x (i.e. we treat distance as a job charac-
teristic). This allows workers to be affected differently by distance, depending on their gender,
education, age, citizenship and training. As we discuss in Section 6.3, differential sensitivity to
distance turns out to be a main driver of between-group differences in outside options.

4.4 Descriptive Statistics

Table 1 describes the characteristics of workers and matches in our sample. Because the model is
static, we rely on repeated cross-sections of data. In much of our descriptive analysis we focus on
the 2014 cross-section; in Section 6.1 we use data from 2004 and 2014 to examine how variation
in the OOI affects wages. For each year, we define employment as of June 30th.

15A worker’s current place of residence may depend on their choice of job. Her place of residence before taking the
job better reflects the radius over which she searched for jobs.

16District size varies across the country and, importantly, highly populated areas have smaller districts. In many
cases, the major city is its own district, allowing us to separately identify the city center and the suburbs. Though not
perfect, this coding allows us to get a reasonable approximation of commuting and moving patterns by workers.
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Column 1 of Table 1 shows that the mean age for a worker in our sample is forty-five years old
and the vast majority (98%) are German citizens. About a third of workers have the highest level
of education. More information on the education categories is in Appendix C. Men and women
have similar age, education and citizenship status. However, women are much more likely to work
in part-time jobs (53% compared to 13%) and work at smaller establishments. Women also work
closer to their homes; Table 2 shows that their mean distance is 9.5 miles, compared with 15.8
miles for men.

The statistics in Table 2 are consistent with the findings in Manning and Petrongolo (2017), who
show that labor markets are more local than standard commuting zone definitions would indicate.
In our setting this is especially true for women, and for workers with less education. The statistics
are also consistent with recent work by Amior (2019), documenting that high skilled workers have
longer commutes.

5 Outside Options in the Labor Market

In this section we describe the distribution of the OOI, both within demographic groups and overall.
We then validate the index by showing that the OOI is able to predict the ease with which a
worker recovers from an involuntary job separation, which forces the worker to move to her outside
option.17 Finally, we explore the drivers of heterogeneity in the OOI.

5.1 The Distribution of the OOI

We start by plotting the distribution of OOI in the population. The dashed line in Figure 1 plots the
distribution for all workers. The distribution of the OOI is skewed, with a long left tail, indicating
that there are many workers who are extremely concentrated. The mean of the distribution is -4.87
and the standard deviation is 0.97.

We can interpret values of the OOI by considering a simple case where a worker only works
in a share of p jobs in the overall economy, but is equally likely to work in any of these jobs. In
this case, the probability density the worker is found at any given job is either 1

p
or 0; their OOI is

log 1
p
. In this scenario, a worker with an OOI of −4.87 (the mean in our sample) would be found

in p = 0.8% of jobs. A worker with one standard deviation more options would be found in 2% of
all jobs (150% more than a worker with the mean OOI), and a worker with one standard deviation
fewer jobs would be found in 0.3% of all jobs (60% fewer than a worker with the mean OOI).

17This result is consistent with standard dynamic models, in which workers with more outside options are able to
recover more quickly from economic setbacks. Because our model is static, it does not provide any direct predictions
on market adjustments after shocks.
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5.2 Validating the OOI Using Mass Layoffs

We next show that the OOI is a meaningful measure of workers’ outside options. In particular,
we show that it is able to predict the ease with which a worker recovers from an involuntary job
separation, which forces the worker to move to one of her outside options.

A large literature has documented that workers involved in mass layoffs suffer long-run earn-
ings losses (Jacobson et al., 1993; Lachowska et al., 2020). This is also true among our sample of
workers. Following Jacobson et al. (1993), we identify mass layoffs by focusing on plants whose
workforce has declined by at least thirty percent relative to the previous year. We only consider
mass layoffs that occur in establishments with at least fifty workers, and restrict our analysis to
workers under 55 who had been employed at the establishment for at least three years prior to the
mass layoff. Our final sample consists of 13,455 workers from 583 distinct mass-layoffs. Table A2
presents descriptive statistics.

Appendix Figure 3 shows that, on average, and without adjusting for any covariates, workers
lose 80% of their income in the month following the mass layoff. Workers’ income only gradually
returns to its previous level. This is consistent with previous work that has documented, using simi-
lar data, that German workers involved in a mass layoff suffer long-run earnings losses (Schmieder
et al., 2018; Jarosch et al., 2019).

We compare the experiences of individuals involved in the same mass layoff who had different
levels of OOI (as calculated using pre-layoff characteristics). We regress relative income (cur-
rent daily income/pre-mass layoff daily income, w̃t = wt

w0
) or an indicator for employment (ei,t)

on the OOI, interacted with dummies for the number of months since the mass-layoff event, on
establishment-by-month fixed effects ψj(i),t, and, in some specifications, on individual controls
Xit. We set wages to 0 during periods of unemployment or non-employment. Specifically, we
estimate

w̃i,t =
36∑
τ=0

λτOOIi + ψj(i),t + µtXit + νi,t, (9)

ei,t =
36∑
τ=0

λemp
τ OOIi + ψemp

j(i),t + µempt Xit + νemp
i,t , (10)

where λτ and λempτ are the coefficients on the interaction of the OOI with an indicator for τ months
since the mass layoff.

Panels A and B of Figure 3 plot λτ and λemp
τ . Panel A shows that, relative to her same-

layoff peers, a worker with one unit higher OOI, or, slightly more than one standard deviation
(σOOI = .97), has 5% higher earnings (as a share of her pre-layoff earnings) in the first year
after the separation. That same worker is roughly 1% more likely to be employed, relative to her
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same-layoff peers. The employment effects cannot fully explain the wage effects. Panels A and B
show that, over time, lower-OOI workers “catch up” to their peers. Within three years, there is no
statistically significant impact of having a higher OOI on either wages or employment.

Table 3 presents estimates of equations 9 and 10, augmented with additional worker-level con-
trols Xi, interacted with time since the layoff. In the interest of space, we report a subset of the
coefficients in the table: λ3, λ6, λ12, and λ24 are presented in Panel A and λemp

3 , λemp
6 λemp

12 , and
λemp

24 are presented in Panel B. The results in Column 1 are analogous to those presented in Figure
3. The remaining specifications include additional controls for worker tenure (Column 2), demo-
graphics (Column 3), and prior occupation (Column 4) and their interaction with the number of
months since the mass layoff. Across all specifications, we see that workers with greater OOI
recover more quickly from a mass layoff event than their same-layoff peers.

5.3 Heterogeneity in Outside Options

We conclude this section by examining drivers of heterogeneity in the OOI across groups of work-
ers. Figure 2 shows that workers in big cities with denser labor markets tend to have better options,
as measured by the OOI.18 This is not surprising as denser regions have more job opportunities
within a given geographic radius.

Table 4 shows that there are also differences in average OOI across workers in different demo-
graphic groups. Columns 1 and 2 present the mean and standard deviation of the OOI; Columns
2–5 present the 25th, 50th and 75th quantiles. We find that men, citizens and more educated
workers have a higher OOI, both on average, and throughout the distribution.

In order to examine these gaps more systematically, we regress OOI on a vector of worker
characteristics. Column 1 of Table 5 shows that, controlling for age (quadratic), education, and
citizenship, the average OOI for women is still 0.295 units below the OOI of men. The average
OOI for German citizen is 0.262 units higher OOI than that of the average non-citizen. Assuming
similar distributions across jobs, this would imply that the average male (German citizen) has 33%
(29%) more options than the average woman (non-citizen).19 On average, workers with more
education have higher values of OOI: lower-secondary (intermediate secondary) school workers’
OOI are on average 0.60 (0.24) units lower than higher-secondary workers. This implies 82%
(27%) more options assuming similar distribution across jobs. Together, these variables account
for 13% of the variation in the OOI.

The remaining columns in Table 5 add controls for training occupation (Columns 2, 4, and 6),
district of residence (Columns 3, 4, and 6), and establishment (Columns 5 and 6). Prior occupation

18This finding is robust to adding controls for worker demographics.
19If two workers have the same distribution of working across jobs, but with different support, the differences in the

OOI are differences in the measure of the support.
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explains a significant fraction of the variation in OOI; the R-squared increases to over 0.3 once
we control for an individual’s training occupation (at the 3-digit level). District of residence also
explains a large fraction of the variation. However, across all columns of the table, we see a sig-
nificant gap in the OOI between men and women: women have 0.241 units fewer OOI, controlling
for establishment and training occupation. The gaps between education groups are only somewhat
smaller when controlling for training occupation, district and establishment fixed effects. The OOI
gaps between citizens and non-citizens are larger when we compare workers from the same district
or establishment. This is because non-citizens are more concentrated in larger cities, which gives
them access to more options.

6 Outside Options and Wage Inequality

Finally, we combine our estimates on the distribution of the OOI, with estimates of the OOI-wage
semi-elasticity, to assess the overall effect of options on wage inequality. We first estimate the
link between the OOI and wages using a standard shift-share instrument. We then decompose the
between-group wage gap into the portion that can and cannot be explained by variation in the OOI.
We conclude by examining which factors explain the OOI-induced wage gaps.

6.1 Linking Options and Wages

We use a shift-share (“Bartik”) instrument to estimate the elasticity between wages and the OOI
(Bartik, 1991; Blanchard and Katz, 1992). Identifying the relationship between options and wages
is challenging for two reasons. First, the OOI estimator is a function of the observed characteristics
Xi. These observables are likely to also capture differences in productivity, thus leading to omitted
variable bias. Second, the OOI is estimated with noise, which may lead to attenuation bias. In
order to cope with both issues, we use an instrumental variables strategy.

Our treatment follows prior work by Beaudry et al. (2012), who used a shift-share instrument
to show that there are spillovers in wages between industries. The instrument allows us to com-
pare workers who work in the same industry, but who have different outside options, because of
differences in the industry mix of their local labor markets. Because local growth of certain indus-
tries may be due to the impact of local productivity shocks, we use national industry trends as an
instrument.

The instrument is a weighted average of national industry growth rates, weighted by the initial
share of each industry in the region. We define

Br =
∑
j

s04
jr × ĝj,
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where s04
jr is the share of employed workers in region r, working at industry j in the base year

(2004) and ĝj is the national employment growth of industry j. Regions are defined by the ad-
ministrative regions (“Regierungsbezirke”) in Germany, the statistical unit which is closest to a
commuting zone.20 Industries are defined at the 3-digit level.

To estimate the national growth of different industries, controlling for region-wide shocks, we
regress the change in employment in industry j in region r between 2004 and 2014 on industry
and region fixed effects21

∆14
04 log Ẽjr = gj + gr + εjr.

By construction, the estimator of ĝj is not driven by regional trends captured in ĝr. We use the
weighted average of the industry fixed effects ĝj by initial industry shares s04

jr to calculate Br. This
construction verifies that Br is not driven by local employment shocks in this region, or even in
nearby regions.

We then estimate the following system of equations:

∆14
04 logwijr = α∆14

04OOIijr +β∆14
04Xijr + Ind04

j + υijr

∆14
04OOIijr = γBr +δ∆14

04Xijr + Ind04
j + εijr,

(11)

where we control for Ind04
j , the worker’s industry at the beginning of the period (2004), and for

additional demographic controls, Xijr. We cluster standard errors at the level of the treatment,
which is the region. We also report standard errors calculated using the method in Borusyak et al.
(Forthcoming) in brackets underneath each specification.22 The parameter of interest is α, the
semi-elasticity of wages with respect to options.23

Table 6 presents the main results. Column 1 shows that a 10% higher employment in other
industries, which is about 0.1 increase in the instrument, translates to approximately 6% more
relevant options, and 1% increase in wages. Combining both estimates yields a semi-elasticity of
0.19: a 10% increase in relevant options leads to a 1.9% increase in wages.

20We take all 39 regions based on the NUTS2 level coding of the European Union. This includes historical admin-
istrative regions that have been disbanded. In results not reported, we find that the results are robust to the definition
of a region and to using the NUTS3 level (district).

21We use log Ẽjr = log(Ejr + 1), which is a Bayesian correction of a uniform prior that adds one observation in
each industry, region and year combination (Gelman et al., 2013).

22Adao et al. (2019) show that standard error calculations for shift-share instruments are biased. Their proposed
methodology is not applicable to our setting because we have more industries than regions. Borusyak et al. (Forth-
coming) provide an alternative method that relies on the assumption that the exclusion restriction is satisfied without
controls. A consistent estimator for settings where the exclusion restriction is satisfied only conditional on a set of
controls and where the number of industries is larger than the number regions has not, to the best of our knowledge,
been developed.

23The coefficient α is analogous to αx + αz in our model. Note that this is not the bargaining parameter αx

αx+αz
.

Rather, α captures the full impact of having more options on income, including both the ability to find a better match,
and the ability to gain a larger share of the surplus, as discussed in Section 2.4.
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The identifying assumption is that growing industries are not systematically located in regions
where wages are growing for other reasons (Borusyak et al., Forthcoming). One way the assump-
tion could be violated is if there are productivity spillovers. Workers that live near industries that
are growing, may enjoy a local demand shock for their production due to the positive income
effect on workers in that region. This could generate a wage increase, that is not driven by the im-
provement in their outside options. This is particularly a concern for workers who are producing
non-tradable goods, whose productivity is set by local demand.

Following Beaudry et al. (2012) we address this concern by showing that our results hold for
workers in exporting industries, which are less likely to be affected by local demand shocks. We
use information from the establishment survey to calculate the export share of each industry.24

We divide our data into three groups based on the export share of the industry where the worker
worked in 2004. Table 6 shows the results for each of the groups. We find a large and statistically
significant elasticity between options and wages even among workers in industries with the highest
exporting share. Column 3 indicates that, in response to a 10% increase in OOI, workers in these
industries see their wages rise by 1.2%. This elasticity is somewhat lower than that in our baseline
results (0.12 versus 0.19). However, we cannot reject that they are equal.

We examine heterogeneity by gender and education by re-estimating equations 11 within de-
mographic groups. Columns 1–5 of Table 7 presents the results of this exercise. While splitting the
sample by gender or education increases the size of the confidence intervals, the point estimates
are fairly stable. This stability suggests that using the same semi-elasticity for all groups (as we do
in our counterfactual exercise below) is a reasonable approximation.

We decompose the effect of access to more options into impacts for job stayers and movers.
Because the choice of whether to move is endogenous, we view this as a descriptive exercise.
We interact the changes in OOI with an indicator variable for whether a worker stayed at their
establishments during this period. Column 2 in Table A3 shows that, as our model predicts, stayers
saw smaller gains than movers. Our model provides one possible explanation. Stayers only benefit
through an improvement in their outside options, while the larger effect on movers is consistent
with the fact that both their outside options and match quality improve.25

24This is a lower bound for demand from outside the region, as it does not include sales to other regions in Germany,
which we cannot see in our data. We calculate the mean at the industry level because we do not have the share of sales
from exports for all employers, only a representative sample.

25The theoretical model suggests that the impact on movers depends on the level of unobserved heterogeneity of
workers compared to jobs, and it is double that of stayers when the heterogeneity is the same (αx = αz); a 95%
confidence interval for the ratio of the coefficients in Columns 2 of Table A3 includes 2.
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6.2 Decomposing Wage Gaps

We next examine the contribution of the OOI to between-group wage inequality. As a baseline,
we estimate a standard Mincer regression of log wages on demographic characteristics including
indicators for each education group, a quadratic function of age, gender, and citizenship status. We
also control for whether an individual’s job is part-time. Because wages are top-coded, we use a
Tobit model to estimate the coefficients, β̂0:

logwi = β0Xi + εi. (12)

These coefficients, presented in the red bars of Figure 4, show that the gender wage gap, accounting
only for differences in age, citizenship, and education, is roughly 20% (exp(.19)− 1). Accounting
for other demographic characteristics, German citizens earn 8% higher wages than non-citizens;
workers with higher-secondary education earn 34% more than those with intermediate secondary
education, who earn 13% more than workers with lower secondary education.

We then examine the extent to which these wage gaps are explained by the OOI. For each indi-
vidual the non-OOI portion of wages is logwi− α̂OOIi. Because wages are top-coded, rather than
simply subtracting α̂ times the OOI, we regress log wages on the same demographic characteristics
as before, and OOI:

logwi = α̂︸︷︷︸
.19

OOIi + β1Xi + νi. (13)

We constrain the coefficient on OOI to be α̂ = .19, as estimated in the previous section. While β̂0

captures the overall gaps in wages between demographic groups, β̂1 captures the gaps the driven
by factors other than the OOI.

The difference β̂0 − β̂1 is the part that can be attributed to the differences in OOI. This differ-
ence is plotted in the light blue bars in Figure 4. This figure shows that differences in the OOI
would imply a roughly 5% wage gap between men and women; this is a quarter of the overall
gap (red bar).They also imply a 5% wage gap between citizens and non-citizens (64% of the total
gap). The differences in OOI correspond to 4% (7%) higher wages for high-secondary graduates
(intermediate secondary graduates), 15% (56%) of the overall return.

6.3 The Role of Commuting Costs

Finally, we explore the role that commuting costs play in generating wage gaps. Our focus on
commuting costs is informed by the analysis in section 5.3, which revealed that large OOI gaps
between different demographic groups exist even between workers with the same training, between
workers in the same district, and between workers in the same establishment (Table 5). It is also
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informed by the patterns in Table 2: we see large gaps in distance between male and female workers
and between workers of different education groups.

We quantify the overall effect of differences in commuting and moving costs on wages through
their effect on the OOI. We estimate the counterfactual wage gain for every worker, if they had the
sensitivity to distance of a 40 year old male German citizen with the highest level of education.
We generate a matrix Ã where the coefficients on the distance variables are set to this level for
all workers. We then simulate the counterfactual probabilities ˜f (zj|xi) using this matrix, and
calculate the ÕOIi. This counterfactual should be thought of as changing only a zero measure
number of workers each time, and keeping all other workers and employers unchanged, so that
there are no general equilibrium effects. We then calculate workers’ predicted log wages under
this counterfactual.

A worker’s counterfactual wage is constructed as the sum of the portion of wages that is not
due to the OOI (the difference between log wages and α̂ times the actual OOI) and the portion
that would come from the OOI under the counterfactual (α̂ÕOIi). This counterfactual wage is
logwi − αOOIi︸ ︷︷ ︸

non−OOI portion

+ α̂ÕOI i︸ ︷︷ ︸
counterfactual OOI

. Due to censoring in wages, rather than regress the counterfac-

tual wage on Xi, we continue with the Tobit specification, running:

logwi = α̂︸︷︷︸
.19

(
OOIi − ÕOI i

)
+ β2Xi + εi. (14)

We constrain the coefficient on the OOI to be α̂ = .19. The coefficients β2 from this regression
are the wage gaps that would emerge, if commuting and moving costs were equalized. The results
of this exercise are presented in Figure 4. The figure plots the full gap (β̂0, red bar), the portion
that can be attributed to the OOI (β̂0 − β̂1, light blue bar), and the part that would be closed by
equalizing commuting costs at the minimal level (β̂0 − β̂2, navy bar).

Differences in commuting costs seem to explain all of the gender gap that is driven by differ-
ences in the OOI. Equalizing commuting costs would increase wages for women by about 0.05 log
units, relative to men. This is roughly one quarter of the overall gender gap, and all of the gap that
is explained by differences in the OOI.

The education gap in OOI reverses once we equalize commuting costs: workers with lower
levels of education have more options than those with higher levels. Therefore, the higher (inter-
mediate) secondary premium drops by 0.07 (0.09) log units, which is 24% (75%) of the overall
premium. This is more than the full effect of the OOI difference between these groups. This im-
plies that, in a given area, workers with lower levels of education have more relevant job options
than workers with higher levels of education. It is only because more educated workers are willing
to take jobs in more distant areas, that they end up with more options. This result can be explained
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by the fact that more educated workers tend to be more concentrated in occupations that have more
industry specific skills. Appendix Figure A2 shows the correlation between the OOI and wages
at the occupation level; many high-skilled workers such as doctors or pilots have low values of
the OOI (are very concentrated) despite having high wages, because their skills are very specific
(Amior, 2019).

These findings suggest that policies that affect workers’ abilities to commute—such as trans-
portation policies—are likely to have a heterogeneous impact on the options of workers in different
demographic groups (Butikofer et al., 2019). We test this prediction in Appendix D by using the
OOI to study the effect on options of the introduction of a high speed rail in the small German
town of Montabaur (Heuermann and Schmieder, 2018). We find that introducing these trains gave
workers, especially those with more education, access to more distant jobs. It also generated new
jobs in Montabaur that mostly benefited women, who are more likely to work in town.

7 Conclusion

In this paper we provided a distinctive and micro-founded approach to empirically estimate work-
ers’ outside options, and to measure the impact of outside options on the wage distribution. We
used a two-sided matching model, to derive a sufficient statistic for the impact of outside options
on wages, which we call the OOI. We then showed how this index can be estimated, even in large
linked employer-employee datasets.

We documented, using linked employer-employee data from Germany, that the OOI can ex-
plain a meaningful portion of between-group wage inequality. We found that roughly 25% of the
gender wage gap can be explained by differences in the OOI. Differences in the OOI between men
and women are largely driven by differences in the implicit cost of commuting. Our findings are
in line with other recent research documenting that individuals’ labor markets are more local than
commuting zone-based measures would suggest (Manning and Petrongolo, 2017; Le Barbanchon
et al., 2021). The OOI provides a way to measure workers’ option sets that does not depend on
rigid occupation, industry, or geographic boundaries.

One direction for future research would be to use the OOI to examine the impact of particular
policies on the labor market, such as restrictions on the use of non-compete clauses or changes
in transportation infrastructure. We provide an example of how such analysis could be done in
Appendix D.
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8 Figures and Tables

Figure 1: Distribution of the Outside Option Index
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Note: This figure plots the cumulative distribution function of the outside options index overall and by
gender, as calculated for the population of German workers as of June 30th, 2014. The OOI was calculated
using the procedure described in Section 3. LIAB sample weights are used.
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Figure 2: Distribution of OOI by District
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Note: This figure plots the distribution of the outside options index by district (kreis) as calculated for the
population of German workers as of June 30th, 2014. The OOI was calculated using the procedure described
in Section 3. We use weights that adjust the population size of each district to its real value as measured by
the Regional Database Germany ("Regionaldatenbank Deutschland") for the year of 2011 (Table 12111-01-
01-4).
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Figure 3: Mass-Layoffs Exercise
Panel A: Income (Relative to Pre-Displacement Income)
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Note: This figure shows estimates of the coefficients of the OOI by month, λt and λempt , from Equations 9
(Panel A) and 10 (Panel B). A mass layoff occurs when an establishment with at least 50 workers reduces
its workforce by at least 30% in a given year. The sample includes only workers below the age of 55 with at
least three years of tenure before the layoff. The sample includes observations for workers up to 36 months
following the mass layoff. The coefficients are taken from a regression of the outcome variable on the OOI,
interacted with indicators for each month after separation (plotted), controlling for establishment-month
fixed effects. Relative income (panel A) is defined as the current daily income in that month divided by
daily income before the layoff. Employment (Panel B) is an indicator for any positive income.
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Figure 4: Effect of Commuting/Moving Costs
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Note: This figure shows the extent to which the between-group wage gap can be explained by differences
in the OOI. The red bars (Total gap) are the coefficients on the corresponding characteristic (β̂0) from a
regression of log wages on Male, Citizen, an indicator for secondary-education category, a quadratic in age,
and an indicator for part-time job (Equation 12). The light blue bars (Total gap from OOI) are the difference
between the raw gaps (β̂0) and remaining gaps without the OOI (β̂1 in Equation 13). The navy bars capture
the portion of the gap that is driven by differences in commuting and moving preferences/constraints. We
simulate a counterfactual OOI for all workers, if they had the same sensitivity to distance as a 40 year old
male citizen with the highest level of education. We then calculate counterfactual wages for all workers
if they had this OOI by multiplying the OOI differences with the elasticity α. The navy bars capture the
portion of the gap that is explained by commuting costs (β̂0 − β̂2 from Equation 14). See Section 6.3 for
more details.
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Table 1: Descriptive Statistics

Mean SD Mean SD Mean SD
(1) (2) (3) (4) (5) (6)

Workers
Age 46.32 (11.63) 45.89 (11.85) 46.82 (11.35)
Female 46% (0.50) 0% (0.00) 100% (0.00)
German Citizen 98% (0.14) 98% (0.16) 99% (0.12)
Higher Secondary Degree 28% (0.20) 27% (0.20) 29% (0.21)
Intermediate Secondary Degree 31% (0.21) 27% (0.20) 34% (0.23)
Lower Secondary Degree 19% (0.16) 19% (0.15) 20% (0.16)
Intermediate/Lower Education 22% (0.17) 27% (0.20) 16% (0.14)
Daily Earnings 87.41 (51.23) 104.36 (104.36) 67.48 (43.96)
Distance 12.91 (39.15) 15.79 (43.70) 9.51 (32.67)

Jobs
Establishment size 1559 (7717) 2201 (9439) 805 (4876)
Sales per worker in 2013 (€) 166036 (187828) 194697 (199914) 132341 (166340)
Share of females in management 25% (0.31) 16% (0.24) 36% (0.35)
Part-time contract 31% (0.46) 12% (0.33) 53% (0.50)
Fixed term contract 8% (0.27) 8% (0.26) 9% (0.29)
Filled via temp agency 1% (0.12) 2% (0.15) 1% (0.08)

Observations

All Male Female

407,491 260,017 147,474

Note: This table shows descriptive statistics for all workers and jobs in our sample on June 30, 2014. We
use LIAB sampling weights. We provide information on the data and sample restrictions in Section 4.2.
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Table 2: Heterogeneity in Distance
Distance 
(Miles) <5 Miles 5-20 Miles 20-50 Miles 50+ Miles

(1) (2) (3) (4) (5)
All 12.9 71.39% 15.54% 9.73% 3.33%

Male 15.8 67.49% 17.05% 11.14% 4.33%
Female 9.5 75.92% 13.78% 8.10% 2.20%

Lower-Secondary 8.0 77.21% 13.26% 7.77% 1.77%
Intermediate-Secondary 9.9 74.82% 13.91% 8.84% 2.44%
Higher-Secondary 22.1 60.21% 20.50% 13.19% 6.11%

Note: This table presents descriptive statistics on the distance between a person’s current job and her place of
residence before taking the job. Each number is the sample average of the indicated characteristic (column)
for those in that subgroup (row). We use LIAB sampling weights. We provide information on the data and
sample restrictions in Section 4.2.
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Table 3: Outside Options for Workers in a Mass Layoff

3 Months 0.051 ** 0.051 ** 0.058 *** 0.056 **
(0.021) (0.021) (0.022) (0.022)

6 Months 0.045 ** 0.046 ** 0.059 ** 0.056 **
(0.023) (0.023) (0.024) (0.025)

12 Months 0.046 * 0.048 * 0.068 ** 0.062 **
(0.026) (0.026) (0.028) (0.029)

24 Months 0.025 0.031 0.054 0.045
(0.032) (0.032) (0.035) (0.035)

3 Months 0.018 *** 0.018 *** 0.018 *** 0.017 ***
(0.005) (0.005) (0.005) (0.005)

6 Months 0.007 0.007 0.008 0.006
(0.005) (0.005) (0.005) (0.005)

12 Months 0.008 0.007 0.010 * 0.006
(0.005) (0.005) (0.006) (0.006)

24 Months 0.005 0.005 0.010 * 0.005
(0.005) (0.005) (0.006) (0.006)

Establishment-Month FE
Tenure
Age
Education
Gender
Training Occupation Characteristics

Observations
Workers 13,455

659,295
13,455
659,295

13,455
659,295

B. Employment

A. Relative Wages

✓
✓

✓

✓

✓
✓

✓
✓
✓
✓

659,295
13,455

(4)(3)(2)(1)

✓ ✓ ✓✓

(𝜆!)

(𝜆")

(𝜆#$)

(𝜆%#)

(𝜆!)

(𝜆")

(𝜆#$)

(𝜆%#)

Note: This table shows the results of regressing relative income and employment on OOI for workers that
lost their jobs in a mass-layoff (λt and λempt in Equations (9) and (10)). Time is defined relative to the mass
layoff. A mass layoff occurs when an establishment with at least 50 workers reduces its workforce by at
least 30% in a given year. The sample includes only workers below the age of 55 with at least three years
of tenure before the layoff. Relative wages (panel A) are defined as current daily income divided by the last
daily income before the layoff (wit/wi0). Employment (Panel B) is an indicator for any positive income.
The tenure controls include a quadratic polynomial of days at the previous (mass layoff) establishment; the
age controls include a quadratic polynomial in age; the education controls include dummies for the type of
secondary education. All controls are interacted with months since mass layoff. See section 4.1 for details.
Levels of significance: *10%, ** 5%, and *** 1%.
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Table 4: Distribution of the OOI

Mean SD 25th 50th 75th
(1) (2) (3) (4) (5)

All -4.87 0.97 -5.44 -4.75 -4.18

Male -4.77 0.99 -5.31 -4.62 -4.07
Female -5.00 0.94 -5.56 -4.91 -4.32

Citizen -4.87 0.96 -5.43 -4.75 -4.17
Non-Citizen -5.26 1.39 -5.64 -5.02 -4.48

Higher Secondary Degree -4.62 0.89 -5.07 -4.50 -4.03
Intermediate Secondary Degree -4.88 0.91 -5.45 -4.78 -4.20
Lower Secondary Degree -5.19 0.97 -5.75 -5.12 -4.49

Quantiles

Note: This table presents statistics on the distribution of the OOI for different groups of workers. We
compute the OOI using data from our baseline cross-section (June 30, 2014). We list the X and Z variables
used to construct the OOI in Section 4.3. We use LIAB sampling weights.
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Table 5: Heterogeneity in the OOI

Female -0.295 *** -0.268 *** -0.283 *** -0.257 *** -0.201 *** -0.241 ***
(0.009) (0.011) (0.007) (0.008) (0.008) (0.008)

Non-Citizen -0.262 *** -0.242 *** -0.553 *** 0.500 *** -0.539 *** -0.495 ***
(0.036) (0.031) (0.030) (0.025) (0.022) (0.019)

Lower-Secondary Certificate -0.601 *** -0.531 *** -0.526 *** -0.466 *** -0.504 *** -0.468 ***
(0.014) (0.013) (0.011) (0.009) (0.011) (0.010)

Intermediate -0.236 *** -0.217 *** -0.110 *** -0.118 *** -0.129 *** -0.140 ***
(0.011) (0.011) (0.008) (0.007) (0.009) (0.008)

Age Controls
Training Occupation FE ✓ ✓ ✓
District FE ✓ ✓
Establishment FE ✓ ✓

Adjusted R-Squared
Observations

Quadratic

(6)(5)(4)(3)

Quadratic

(2)

Quadratic Quadratic Quadratic Quadratic

(1)

0.684
375,765

0.573
375,765

0.664
375,765375,765

0.133 0.317
375,765

0.530
375,765

Notes: Each column in this table presents results from a regression of OOIi on the covariates listed in that column. The sample includes all workers
with complete information that were employed on June 30th 2014. We use LIAB sampling weights. Training occupation fixed effects are at the
3-digit levels. Levels of significance: *10%, ** 5%, and *** 1%.
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Table 6: Linking Outside Options and Wages

First Stage 0.542 *** 0.465 *** 0.898 *** 0.223 ** 0.431
(0.207) (0.180) (0.319) (0.107) (0.281)

Reduced Form 0.101 * 0.101 ** 0.108 0.141 ** 0.055
(0.054) (0.049) (0.080) (0.056) (0.053)

2SLS 0.186 ** 0.217 *** 0.120 ** 0.631 * 0.128
(0.073) (0.079) (0.061) (0.325) (0.131)
[0.054] [0.067] [0.138] [0.319] [0.054]

Industry FE
Demographic Controls
District Controls

Observations 408,815 408,815 142,940146,243119,632

✓ ✓
✓

✓ ✓ ✓

(1) (2)
Full Sample

By Exporting Share of Sales

(3)

More than 
33%

(4)

Between 1 
and 33%

(5)
Less than 1%

Notes: This table shows estimates from model 11. We use a two-stage least squares set-up where the
outcome variable is the change in log daily wages 2004–2014 and the endogenous variable is the change in
the OOI. The instrument is constructed from an average of a 3-digit industry national employment growth
weighted by the initial share of every industry in a region (see Section 6.1). The first stage results are from
a regression of the endogenous variable on the instrument. The reduced form comes from a regression
of the outcome on the instrument. All columns control for industry (in 2004) and age. The demographic
variables include gender, citizenship, education category and age squared. Columns 3–5 present the same
results within subgroups defined by the exporting share of the worker’s 2004 industry. The share of exports
is calculated for each 3-digit industry based on the establishment panel survey in 2014. The standard errors,
presented in parentheses below the coefficients, are clustered at the level of treatment, which is the region.
We include additional standard errors, calculated using the method in Borusyak et al. (Forthcoming), in
brackets beneath the clustered standard errors. Levels of significance: *10%, ** 5%, and *** 1%.
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Table 7: Heterogeneity in Shift-Share Results

First Stage 0.606 ** 0.387 *** 0.512 *** 0.310 ** 0.395 *
(0.262) (0.134) (0.183) (0.141) (0.215)

Reduced Form 0.112 * 0.082 0.107 *** 0.079 * 0.098
(0.065) (0.035) (0.037) (0.043) (0.079)

2SLS 0.185 *** 0.211 0.207 *** 0.255 * 0.247 *
(0.066) (0.130) (0.073) (0.144) (0.134)

Industry FE
Age Controls

Observations

By Gender By Education

266,777 142,038 91,099 138,885 85,823

✓ ✓ ✓ ✓ ✓

Lower 
Secondary

(5)

✓ ✓ ✓ ✓

Intermediate 
Secondary

(4)

✓

Male Female
Higher 

Secondary
(1) (2) (3)

Notes: This table shows estimates from model 11 estimated in different demographic groups. We use a
two-stage least squares set-up where the outcome variable is the change in log daily wages 2004–2014 and
the endogenous variable is the change in OOI. The instrument is constructed from an average of a 3-digit
industry national employment growth weighted by the initial share of every industry in a region (see Section
6.1). All columns control for industry (in 2004), and age. The standard errors, presented in parentheses
below the coefficients, are clustered at the level of treatment, which is regions. Levels of significance:
*10%, ** 5%, and *** 1%.
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Appendix Figures and Tables

Figure A1: Impact of a Mass Layoff on Wages
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Note: This figure shows the impact of a mass layoff on workers’ wages. Each dot is an estimate of βτ
from a regression of daily income on months since the layoff (relative to pre-layoff income) on a vector of
dummies for months since the mass-layoff and for mass-layoff fixed effects. Time is defined relative to the
mass layoff. A mass layoffs occurs when an establishment with at least 50 workers reduces its workforce
by at least 30% in a given year. The sample includes only workers below the age of 55 with at least three
years of tenure before the layoff. The sample includes observations for workers up to 36 months following
the mass layoff.
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Figure A2: OOI by Training Occupation
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Note: This figure plots the mean residualized outside options index and log wages by training occupation
as calculated for the population of German workers as of June 30th, 2014. The OOI was calculated using
the procedure described in Section 3. Residuals for the OOI and log wages were taken from a regression
on gender, a quadratic in age, education category, citizenship status and district of residence. Means are
calculated using the LIAB sample weights to make the distribution representative of the population in the
occupation. See Section 4.2 for variable definitions.
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Table A1: Most Weighted Questions in PCA
Panel A. Establishment Survey

N First Component Second Component
Business Performance 8824 Member of chamber of industry Profit
Investment & Innovation 8824 IT investment Total investment
Hours 8824 Vacation credit policy Flexible hours
In-Company Training 8824 Internal courses Share workers in training
Vocational Training 8824 Offer apprenticeship Ability to fill training
General 8824 Family managed Staff representation

Panel B. BIBB Survey

N First Component Second Component
Hours 11021 Work on Sundays and public holidays Hours per week like to work
Type of Task 15035 Have responsibility for other people Cleaning, waste, recycling
Requirements 10904 Face acute pressure and deadlines Highly specific regulations
Physical 20036 Oil, dirt, grease, grime Pathogens, bacteria
Mental 17790 Support from colleagues Often missing information about work

Note: This table shows the survey question that received the most weight in the first and second principal components in each survey category. We
include the first two principal components from each survey category in our calculation of the OOI.
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Table A2: Descriptive Statistics for Mass-Layoff Workers

Mean SD Mean SD
(1) (2) (3) (4)

Workers
Age 46.32 (11.63) 38.64 (10.61)
Female 46% (0.50) 40% (0.49)
German Citizen 98% (0.14) 98% (0.14)
Higher Secondary Degree 28% (0.20) 18% (0.15)
Intermediate Secondary Degree 31% (0.21) 23% (0.18)
Lower Secondary Degree 19% (0.16) 20% (0.16)
Intermediate/Lower Education 22% (0.17) 39% (0.24)
Daily Earnings 87.41 (51.23) 66.35 (86.17)

Workers

Main Sample Mass Layoff Sample

407,491 13,455

Note: This table shows descriptive statistics for workers who lost their jobs in a mass-layoff (columns 3 and
4). The descriptive statistics of the main sample are presented for reference in columns 1 and 2. The OOI
is computed using pre-layoff characteristics. Following Jacobson et al. (1993), we identify mass layoffs by
focusing on establishments with more than 50 workers whose workforce declines by at least 30% in a given
year. The sample includes only workers who have worked for at least three years before the layoff and are
below the age of 55.
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Table A3: Shift-Share Results by Job Mobility
(1) (2)

ΔOOI 0.186 0.285
(0.073) (0.107)

ΔOOI x Stayer -0.180
(0.073)

Industry FE ✓ ✓
Age Controls ✓ ✓

Observations 408,815

Notes: This table shows the impact of OOI on wages interacted with whether a worker stayed at the same
establishment. The outcome variable is the change in log wages 2004-2014. We instrument for the change
in OOI over this time period using the average of a 3-digit industry national employment growth weighted
by the initial share of every industry in a region (see Section 6.1). The indicator “Stayer” is 1 if the worker is
at the same establishment on June 30, 2004 and June 30, 2014. The standard errors, presented in parentheses
below the coefficients, are clustered at the level of treatment, which is the region. Levels of significance:
*10%, ** 5%, and *** 1%.
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A Theoretical Appendix

A.1 Continuous Logit Distribution

We follow Dagsvik (1994) in defining the continuous logit models that produces εi,zj and εj,zi . In
this section we define the distribution of εi,zj . The distribution of εj,xi is defined similarly.

Using continuous logit (rather than, for instance a multinomial logit) allows both workers and
jobs to have characteristics that are continuous. For instance, it allows us to account for the pos-
sibility that the distance between a worker and a job affects the quality of a match in a continuous
manner (e.g. a worker’s preference for jobs may not vary discontinuously at boundaries of labor
markets).

Each worker i ∈ I knows about a random subset of the total set of available jobs J . For each
of the jobs the worker is informed of, she draws εi,zj shocks from a Poisson process on Z × R with
intensity

g (z) dz × e−εdε

where g (z) is the probability density function of job characteristicsZ.26 Denoting by Pi the infinite
but countable points chosen in the process, every worker has a set of options for εi,zj{

εizj = αzε| (z, ε) ∈ Pi
}

This process yields a distribution of εi,zj that has several similarities to finite extremum value
type-1 distribution. These similarities are all derived from one basic property of this point process.

Proposition 1. Let h : Z → R be a function that satisfies∫
Z
eh(z)g (z) dz <∞

and let S ⊆ Z be some Borel measurable subset. Define

ψgS = max
z∈S∩Pi

{
h (z) + εi,zj

}
Then

ψgS ∼ EV1

(
αz log

∫
S

exp
h (z)

αz
g (z) dz, αz

)
and

S1 ∩ S2 = φ ⇐⇒ ψg1S1
⊥ ψg2S2

26We deviate from the Poisson process used in Dupuy and Galichon (2014) as the density g (z) also affects the
intensity. This allows this distribution to be properly defined over a larger class of functions for τ (x, z), including a
constant, or simple polynomials.
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Proof. This proposition stems from the fact that in a Poisson process, the amount of points chosen
in two disjoint Borel measurable setsB1, B2 has an independent distributionN (Bi) ∼ Poisson (Λ (BI))

with
Λ (Bi) =

∫
Bi

λ (x) dx

Therefore, in our context the cumulative distribution function of ψgS is

P (ψgS ≤ x) = P (N ((S × R) ∩ {h (z) + αzε > x}) = 0)

From the Poisson distribution this is

logP (ψgS < x) = −Λ
(
S ×

{
ε > x−h(z)

αz

})
= −

∫
S

∫∞
x−h(z)
αz

g (z) e−εdzdε

= −
∫
S
e−

x−h(z)
αz g (z) dz

= − exp

[
−x−αz log

∫
S exp

h(z)
αz

g(z)dz

αz

]

which is exactly a cumulative distribution function of EV1

(
αz log

∫
S

exp h(z)
αz
g (z) dz, αz

)
.

Since every draw of points in a Poisson process is independent, S1 ∩ S2 = φ ⇐⇒ ψg1S1
⊥

ψg2S2
.

This Proposition implies that even though εi,zj is not defined for every z ∈ Z , it is defined
infinitely often for every Borel measurable subset that includes z, and the maximum for that set ψ1

S

has an extreme-value type-1 distribution with variance αz.
Since workers in equilibrium get a sum of a continuous function (which we denote by ω (x, z))

and εi,zj (Theorem 1), the maximum value they receive also has an EV1 distribution for every
Borel measurable set of jobs. Moreover, the probability density that a worker ends up in a job with
observables zj is similar to the finite case. Its exact value is

fZ|X (zj|xi) = P
(
zj = arg max

z

{
ω (xi, z) + εi,zj

})
=

exp
[

1
αz
ω (xi, zj)

]
g (zj)∫

Z exp
[

1
αz
ω (xi, z)

]
g (z) dz

(15)

A direct link to the finite multinomial logit can be drawn if we divide Z into a finite number of
disjoint sets Z =

⋃n
i=1 Si, Si ∩ Sj = φ. In this case, the value of the best job for worker i in each

subset (ψωSi) is distributed EV1. The maximization problem over each of the n job characteristics
zm(i) is a finite multinomial logit. As n increases, the sets become smaller, and the choice becomes
closer to an infinite options choice.

Like a standard multinomial logit, the continuous logit has the independence property: a
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worker’s unobserved taste for jobs with characteristics in an neighborhood of z are uncorrelated
with her unobserved taste for jobs with characteristics in a neighborhood of z′ 6= z.

However, unlike in a standard multinomial logit, increasing the number of options to infinity
does not yield infinite compensation. This is because when the number of options n grow, the
mean measure of Si decreases at a rate of 1

n
. As a result, the location parameter of each of the

choices, decreases at a rate of log 1
n

(by the above proposition).

A.2 Theorems and Proofs

Theorem. 1 Under Assumptions 1, in equilibrium, worker i with characteristics xi faces a contin-

uous logit choice between employers who are offering

ω(xi, zj) + εi,zj

and employers choose between workers who generate profits

π(xi, zj) + εj,xi

where

ω (xi, zj) + π (xi, zj) = τ (xi, zj)

Proof. Consider two workers i, i′ ∈ I and two jobs j, j′ ∈ J that have the same observed charac-
teristics: Xi = Xi′ = x0 and Zj = Zj′ = z0, where m (i) = j and m (i′) = j′ (worker i is matched
to job j and worker i is matched to job j′).

By definition, the sum of worker and employer compensation equals total surplus

ωij + πij = τ (x0, z0) + εi,z0 + εj,x0 (16)

ωi′j′ + πi′j′ = τ (x0, z0) + εi′,z0 + εj′,x0 (17)

In equilibrium it must be that workers i, i′ and jobs j, j′ do not have a profitable deviation:

ωij + πi′j′ ≥ τ (x0, z0) + εi,z0 + εj′,x0 (18)

ωi′j′ + πij ≥ τ (x0, z0) + εi′,z0 + εj,x0 (19)

Inequality 18 says that the amount that worker i gets from being matched with employer j plus
the amount that employer j′ gets from being matched with worker i′ must be weakly greater than
the amount that the worker i and j′ could get from matching with each other. Because we have
assumed that the workers and jobs have the same observed characteristics this is τ(x0, z0) plus
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the sum of the idiosyncratic values of worker i (εi,z0) and employer j (εj,x0). Inequality 19 shows
that employer j and worker i′ also are better off in their equilibrium matches than they are from
matching to each other.

Because the sum of the two weak-inequalities (18 and 19) is equal to the sum of the two
equalities (16 and 17), the two weak inequalities must hold with equality. In particular, we can
take the difference between 16 and 19 and the difference between 17 and 18 to write:

ωij − ωi′j′ = εi,z0 − εi′,z0

πij − πi′j′ = εj,x0 − εj′,x0

In other words, compensation for workers and employers in matches with the same character-
istics is constant up to ε. As a result we can write

ωij = ω (x0, z0) + εi,z0

πij = π (x0, z0) + εj,x0

where ωij is the compensation worker i (with characteristics x0) gets if she is matched with em-
ployer j (with characteristics z0). Taking the sum of these equations and using Equation 16 yields

ω (x0, z0) + π (x0, z0) = τ (x0, z0)

Lemma. 1 Under Assumption 1:

OOI :=
1

αz
E
[
ε∗i,zj |xi

]
= −

∫
fZ|X (zj|xi) log

fZ|X (zj|xi)
g (zj)

Proof. Taking logs over Equation 15, using the fact that log
∫
Z exp

[
1
αz
ω (xi, z)

]
g (z) dz = 1

αz
E [ωij|xi]

we get

log fZ|X (zj|xi) =
1

αz
ω (xi, zj) + log g (z)− 1

αz
E [ωij|xi]

Since E [ωij|xi] = E
[
ω
(
xi, z

∗
j

)
|xi
]

+ E
[
ε∗i,zj |xi

]
and by taking expectations over both sides we

get

E
[
log fZ|X (zj|xi)

]
= E [log g (z)]− 1

αz
E
[
ε∗i,zj |xi

]
and so

1

αz
E
[
ε∗i,zj |xi

]
= −

∫
fZ|X (zj|xi) log

fZ|X (zj|xi)
g (zj)

48



Theorem. 2 In equilibrium, ω (xi, zj), the share of τ (xi, zj) that workers receive, satisfies:

ω(xi, zj) =
αx

αx + αz
E[ωij|xi] +

αz
αx + αz

(τ(xi, zj)− E[πij|zj])

Proof. Define Qzj |xi to be the measure of jobs zj that are chosen by workers with characteris-
tics xi and, analogously, Qxi|zj , the measure of workers xi that are chosen by jobs (firms) with
characteristics zj .

Qzj |xi = d(xi)fZ|X(zj|xi)

Qxi|zj = g(zi)fX|Z(xi|zj)

In equilibrium, the measures of workers and firms choosing each other must be equal. Equal-
izing Qzj |xi and Qxi|zj we obtain:

Qzj |xi = Qxi|zj

exp 1
αz
ω(xi, zj)

exp 1
αz
E[ωij|xi]

× g(zj)︸ ︷︷ ︸
f(zj |xi)

×d(xi) =
exp 1

αx
π(xi, zj)

exp 1
αx
E[πij|zj]

× d(xi)︸ ︷︷ ︸
f(xi|zj)

×g(zj)

and, taking logs,

1

αz
ω(xi, zj)−

1

αx
π(xi, zj) =

1

αz
E[ωij|xi]−

1

αx
E[πij|zj]

By construction,
ω(xi, zj) + π(xi, zj) = τ(xi, zj)

Adding 1/αx of this to the expression before yields:

ω(xi, zj)

(
1

αz
+

1

αx

)
=

1

αz
E[ωij|xi] +

1

αx
(τ(xi, zj)− E[πij|zj])

We end up with

ω(xi, zj) =
αx

αx + αz
E[ωij|xi] +

αz
αx + αz

(τ(xi, zj)− E[πij|zj])

and

ωij = ω(xi, zj) + εi,zj
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When αx = αz = α the expression for ω(xi, zj) further simplifies to:

ω(xi, zj) =
1

2
E[ωij|xi] +

1

2
(τ(xi, zj)− E[πij|zj])

A.3 Linking Outside Options and Wages

We next show how that the OOI is a sufficient statistic for the impact of outside options on workers’
wages. We examine how compensation changes if we increase the size of the option set for workers
with observed characteristics xi, while keeping the quality of options constant. To do so, we
assume that the intensity of the Poisson process is multiplied by some constant λxi (previously we
assumed λxi = 1)

λxi × g (z) dz × e−εdε

As we discussed in Appendix A.1, in the continuous logit model, the intensity of the Poisson
process governs the number of options workers have in every subset of jobs. A higher value of
λxi generates more options in every subset of jobs. Such shocks could include, e.g. the arrival of
information shocks about other job options (which we do not model here), or drops in regulatory
barriers such as non-compete agreements. They do not however include shocks to productivity or
preferences that are likely changing the quality of the jobs as well. Note that we, keep λ fixed for
all other values of x.

Theorem. 3 Access to options λxi has the following overall effect on expected worker compensa-

tion in equilibrium
dE [ωi,j]

dλxi
= (αx + αz)

dOOIi
dλxi

Proof. The value of τ (xi, zj) does not depend on λxi . Employers’ expected profits are also not
affected by any change in λx because the set of workers with characteristics xi has zero measure.
Theorem 2 then implies that any change to ω (x, z) is independent of z:

∀zj :
dω (xi, zj)

dλxi
=

αx
αx + αz

dE [ωij|xi]
dλxi

= γ (xi)

Because ω (xi, zj) changes by a constant, Equation 15 implies that f (z|xi) is unchanged.
Therefore, the first two components of the decomposition in Equation 5 are unchanged. Therefore
any change in λxi will only affect compensation through the third component, (αx + αz)OOIi,
Since αx, αz are fixed

dE [ωi,j]

dλxi
= (αx + αz)

dOOIi
dλxi
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In the generalized version of our model, the OOI depends on λ. The best offer in every subset
S the best offer is distributed

EV1

(
αz log

∫
S

exp
ω (xi, zj)

αz
g (z)λxidz, αz

)
Using similar calculation as in the proof of Lemma 1 we find that

OOIi =
1

αz
E
[
ε∗i,zj |xi

]
= −

∫
fZ|X (zj|xi) log

fZ|X (zj|xi)
g (zj)λxi

hence
dE [ωi,j]

dλxi
= (αx + αz)

dOOIi
dλxi

=
αx + αz
λxi

This follows the intuition that the OOI is similar to the log of the size of the option set.

A.4 Simple Parametric Example: Competition on a Line

In order to illustrate the intuition of the model, we provide a simple parametric example where
workers are characterized by their productivity and their amount of options. For simplicity we
assume αz = αx = 1.

Assume workers and jobs are equally dispersed across the [0, 1] continuum. Each worker can
be described as a 3-dimensional tuple xi = (li, yi, di) which consists of her location on the real
line, her productivity and the maximal distance she is able to commute. For simplicity, suppose di
is either 0.1 or 0.01 with equal probability regardless of yi, li:

∀yi, li : P (di = 0.1|yi, li) = P (di = 0.01|yi, li) =
1

2

We can think of di as a worker’s commuting radius: some workers can take jobs within d = 0.1

and others are limited to jobs within d = 0.01. There is free entry of firms such that equilibrium
profits are 0.

Jobs are identical other than their location zj = lj . The value of a match is

τij =

yi + εi,zj + εj,xi |li − lj| < di

−∞ otherwise

where εi,zj + εj,xi are the sum of two continuous logit distribution as before.
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Equilibrium It is easy to show that in equilibrium, all workers will be matched with firms such
that |li−lj| < di. Because εi,zj and εj,xi are not correlated with |li−lj|within this interval, workers
are evenly dispersed across jobs within this interval. For a worker who is not close to either edge
(i.e. for whom li ∈ [di, 1− di]): fZ|X (zj|xi) = 1/2di if |li − lj| < di and 0 otherwise.

OOI Given this distribution of workers across firms, we can compute the OOI. Focusing on
workers with li ∈ [di, 1− di]:

OOI = −
∫ 1

0

fZ|X (lj|xi) log
fZ|X (lj|xi)
g (lj)

= −
∫ di

−di

1

2di
log(1/2di)

= − log
1

2di
= log 2di

This is the log measure of jobs that are available to the worker. Differences in OOI between
workers are simply due to differences in the (log) measure of relevant options.

Wages We can go one step further and derive workers’ equilibrium compensation

E
[
ω∗ij|xi

]︸ ︷︷ ︸
Expected compensation

= E
[
τ
(
xi, z

∗
j

)
|xi
]︸ ︷︷ ︸

Mean Production

− E[πi,j∗|xi]︸ ︷︷ ︸
Employer Rents

+

(
αx + αz
αz

)
E
[
εi,z∗j |xi

]
︸ ︷︷ ︸

(αx+αz)·OOI

= yi − 0 + log 2di

This example shows clearly how two workers who are, on average, equally productive (have
identical yi), could still earn different wages due to differences in outside options. Assume l1 = l2,
y1 = y2, and d1 < d2. Worker 2 will earn a a higher wage because her OOI is greater—despite the
fact that workers 1 and 2 are equally productive at every job in [l − d1, l + d1]. Because worker
2 has a higher price, most jobs in this range would prefer to hire worker 1. Still, as a result of
idiosyncratic tastes, some employers are willing to pay a higher price.

A.5 Allowing for Entry and Size-Based Monopsony Power

While the baseline model considers a world where workers match with “jobs”, jobs are typically
organized into firms. We can augment the model allowing jobs to be concentrated in a countable
number of firms. In this case market power may arise both due to heterogeneity (as above) and due
to size. We also incorporate entry decisions.
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Define a firm as a positive measure of jobs and define k : J → K as the function that assigns
jobs to firms. Jobs within a firm may differ according to their observed (z) and unobserved (ε)
characteristics. We assume that all jobs with exactly the same observed characteristics are at the
same firm.27 We assume a linear production function between jobs within a firm; the total value
produced by a firm k0 is then

∫
j∈{k(j)=k0} τm−1(j),jdj.

The equilibrium is defined as before: an allocation and a set of transfers such that no worker
and firm would be better off by pairing with each other instead of their existing match. However,
in this case, i cannot deviate to a different job at the same firm. We also add entry conditions for
both sides, which require them to receive larger compensation than their non-participation outside
options.

∀i′ ∈ I, j′ ∈ J / {k (j′) = k (m (i′))} : ωi′ + πj′ ≥ τi′j′ (20)

∀i′ ∈ I : ωi′ ≥ ui′

∀j′ ∈ J : πj′ ≥ vj′

In this setting, a worker’s compensation depends only on her outside options from outside the firm;
her income does not depend on her particular job within the firm. We next assume that employers
are profit maximizing:

Assumption 3. Firms allocate workers to maximize profits. Specifically, for every pair of workers

in the same firm i1, i2 that are matched to jobs j1, j2

πi1j1 + πi2,j2 ≥ πi1j2 + πi2,j1

Since compensation does not depend on the particular job a worker takes, by adding ωi1 + ωi2

on both sides we get that
τi1j1 + τi2,j2 ≥ τi1j2 + τi2,j1

The allocation is the same as in the one-job firm case. This is because both models generate the op-
timal allocation of workers into jobs. Any other allocation would either violate profit maximization
or Equation 20.

However, the transfers are not necessarily the same. One can prove that the compensation from
the base case is still an equilibrium (as it satisfies a stronger set of conditions). However, it is
no longer the unique equilibrium. Instead, it is an upper bound on workers’ compensation. Any
equilibrium that involved a worker earning more would either violate Equation 20 (if the deviation
involves a job at a different firm) or Assumption 3 (if the deviation involves a job at the same firm).

27If jobs with the same characteristics exist in more than one firm, the equilibrium solution would be identical to
the one-job employer case.
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A worker’s equilibrium compensation is bounded from below by the maximum a competing
firm would be willing to pay her. This differs from the baseline case if the worker’s first and second
most productive jobs are housed in the same firm.

ωij ≥ max
j|k(j) 6=k(m−1(i))

{τij′ − πj′}

This is a tight lower bound as setting ωi = maxj|k(j)6=k(m−1(i)) {τij′ − πj′} satisfies the equilibrium
conditions.

We assume the distribution of match quality τij satisfies Assumption 2. We also assume the
value of non-participation for workers has a type-1 extremum value distribution:

Assumption 4. A worker i that chooses not to participate in the labor market receives a compen-

sation of

u (xi) + εi,u

This assumption incorporates the decision of participation in the same multinomial logit struc-
ture of choosing where to work.

Theorem 4. Under the above assumptions

ωij = max
j|k(j)6=k(m−1(i))

{
ω (xi, zj) + εi,zj

}
,

where ω (x, z) is the same as the one-job firm case

Proof. We prove that this is a tight lower bound for ω by showing that any equilibrium that involves
lower compensation for workers would have to violate one of the equilibrium conditions and that
such equilibrium exists.

Suppose ωeqij < ωij for some i, j, and let z0 be the characteristics of the job that solve

max
j|k(j)6=k(m−1(i))

{
ω (xi, zj) + εi,zj

}
These are the characteristics of the job worker i found most attractive under the one-job firms case,
considering only the set of jobs housed in outside firms. Because there is a continuum of workers,
there is at least one worker i′ with the same characteristics xi, who is matched to a job with
characteristics z0 and is indifferent in the one-job firms case between job z0 and non-participation.
Because the allocation is the same, and because non-participation compensation is the same, this
worker must earn at least her compensation in the single-worker case ω (xi, z0) + εi′,z0 .

Use k (z0) to denote the competing firm. Because the profits of this firm from hiring i′ are
τ(xi, z0) − ω(xi, z0) + εxi,j for all jobs with characteristics z0 (regardless of the exact iden-
tity), firm k (z0) would earn higher profits by firing i′ and hiring worker i at .5 × (ωeqij ) + .5 ×
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(
ω (xi, zj) + εi,zj

)
. As this is higher than worker i’s equilibrium compensation ωij , she would also

be better off than in her equilibrium match, which contradicts the model assumption (Equation 20).
This is a tight bound since setting ωij = ωij satisfies all of the equilibrium conditions.

Using this theorem we can find an expression for the expected maximal markdown: the max-
imum difference between workers compensation in a fully competitive market (the one-job firms
case) and their worst-case wages.

Theorem 5. Under the above assumptions the difference between workers’ maximal and minimal

compensation is

E
[
ωij − ωij

]
= −

∑
k

log (1− pk,i)

where pk,i is the probability that a worker with the same characteristics as worker i works in firm

k.

Proof. The difference between the upper and lower bounds on a worker’s compensation is:

max
j|k(j)=k(m−1(i))

{
ω (xi, zj) + εi,zj

}
− max

j|k(j)6=k(m−1(i))

{
ω (xi, zj) + εi,zj

}
according to the previous theorem. The first term is simply her compensation in the one-job firms
case. The second term is the lower bound from the previous theorem; this is the maximum com-
pensation worker i would receive from another firm, where ω(xi, zj) is the same as the one-job
firms case.

In a slight abuse of notation we use ωk (xi) to denote the best compensation offer in the one-job
firms case from jobs in some firm k and ω−k (xi) to denote the best compensation offer she receives
from jobs in a firm other than firm k.

ωk (xi) = max
j∈{j|k(j)=k}

{ω (xi, zj) + εi,j}

ω−k (xi) = max
j∈{j|k(j)6=k}

{ω (xi, zj) + εi,j}

Based on Proposition 1 (Appendix A.1) both ωk (xi) and ω−k (xi) have a type-1 extremum
value distribution and are independent. Therefore, their difference has a logistic distribution with
mean E [ωk (xi)− ω−k (xi)] = log

pk,i
1−pk,i

where pk,i = P (ωk (xi)− ω−k (xi) > 0). The expected
compensation difference at firm k given that firm k is the optimal choice for worker i is

E [ωk (xi)− ω−k (xi) |ωk (xi)− ω−k (xi) > 0]
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This is the expectation of a truncated logistic distribution and so

E [ωk (xi)− ω−k (xi) |ωk (xi)− ω−k (xi) > 0] = − 1

pk,i
log (1− pk,i)

The overall expectation is then

E
[
ωi − ωi

]
=
∑
k

pk,iE [ωk (xi)− ω−k (xi) |ωk (xi)− ω−k (xi) > 0] = −
∑
k

log (1− pk,i)

This expression is similar to the HHI.28 It is also similar to the expression derived in Jarosch et al.
(2019), which focuses on the role that employer concentration plays in wage determination.

28Taking a second order Tayler series of this function gives
∑
k −pk,i −

p2k,i

2 = −1− HHI
2 .
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B f (x, z) Estimation

To estimate a logistic regression following Equation 6, we maximize

max
θ

∑
k

logP (yk|xk, zk; θ)

where θ are the parameters defined in this equation, including matrix A. We rewrite Equation 6 in
a more general form. Note pk (θ) = P (Yk = 1|X = xk, Z = zk):

log
pk (θ)

1− pk (θ)
=

K∑
j=1

βjhj (xk, zk)

where K is the number of moments hj we control for in this regression.
Then the K first order conditions converge asymptotically to

E [pk (θ)hj (xk, zk)] = E [h (xk, zk) |yk = 1] s

where s = P (Y = 1) is the share of real data (in our case 1
2
). Using pk(θ)

1−pk(θ)
= f(x,z)

d(x)g(z)
s

1−s we can
write

E

[
f (x, z)

sf (x, z) + (1− s) d (x) g (z)
hj (x, z)

]
= E [hj (x, z) |real]

The right side of this expression is the moment of hj (x, z) in the real data. The left side is the
moment of hj (x, z) in the full data (real and simulated), weighted by the probability it is real.

If the model is correctly specified and the functional form assumption on f(x,z)
d(x)g(z)

is true, θ will
be estimated consistently. This is because

E

[
f (x, z)

sf (x, z) + (1− s) d (x) g (z)
hj (x, z)

]
=

∫
f (x, z)

sf (x, z) + (1− s) d (x) g (z)
hj (x, z) (sf (x, z) + (1− s) d (x) g (z)) dxdz =

=

∫
h (x, z) f (x, z) dxdz = E [h (x, z) |real]

If the model is misspecified, our estimate of f(x,z)
sf(x,z)+(1−s)d(x)g(z)

will not converge to the real
density ratios. Instead we will equalize moments of some other weighted average of hj

E [w (x, z, θ)hj (x, z)] = E [hj (x, z) |real] (21)
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where

w (xk, zk, θ) = s−1
exp

∑K
j=1 βjhj (xk, zk)

1 + exp
∑K

j=1 βjhj (xk, zk)

We next analyze these weights as the simulated data grows asymptotically such that s→ 0. In
order to calculate the OOI, we simulate values from d (x) and g (z), and re-weight them based on
the following weights (Equation 7).

f̂ (x, z)

d (x) g (z)
=

1− s
s

exp
K∑
j=1

βjhj (xk, zk)

Because s 6= 1
2

we also need to multiply by 1−s
s

. These weights converge to w (xk, zk, θ)

lim
s→0

w (x, z, θ)

f̂(x,z)
d(x)g(z)

= lim
s→0

1

1+exp
∑K
j=1 βjhj(xk,zk)

1− s
= 1

where the last equality is because lims→0 exp
∑K

j=1 βjhj (xk, zk) = 0.
The density of the full data approaches the density of the simulated data. Hence the logit FOC

(Equation 21) becomes:

E [w (x, z, θ)hj (x, z) |sim] = E [hj (x, z) |real]

The above equation guarantees that after re-weighting we sample from a distribution with same
moment value for every hj (x, z), even if the model is misspecified. Dupuy and Galichon (2014)
produce a distribution with the same second moments as the data, and same marginal distributions.
Therefore, when s → 0, and h includes all X,Z interactions, as well as indicators for every xk
and zk value (that is, h (x, z) = 1x=xk or h (x, z) = 1z=zk for every k), we have a distribution
that satisfies exactly the same moment conditions. Moreover, since both methods require that
f (x, z) = ã (x) b̃ (z)K (x, z), K has the same functional form, and there is a unique solution that
satisfies these conditions, the two methods yield exactly the same distribution.
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C Data Appendix

C.1 Data Cleaning

This section provides more information on the data cleaning procedure.

Demographics We set German citizenship to one, if a worker was ever reported as a German
citizen by her employer.

Education Within a year, we take the highest level of education that is reported up to that year.
All upper secondary school certificates are coded as upper-secondary. In some years intermediate
and lower secondary education are coded with the same value. In these cases, if we observe the
worker in other years and can infer their schooling level we use that. Otherwise, we code these
workers in a separate category for either lower or intermediate secondary education.

Wages The OOI is computed without information on workers’ wages. This makes it ideally
suited to settings where wage information may not be available, or where the available wage infor-
mation is heavily censored. In our analysis of the link between workers’ OOI and wages, the main
outcome variable is log daily earnings. In the shift-share analysis we use a Tobit model to account
for top-coding of earnings.

Past Location We define an individual’s past location as the district they were living in before
taking their current job. If this location is not available, we use the district of the last firm they
were working at. If this is also not available, we take the first district that is available in the data
for them.

Distance We calculate distance at the district level. For each district, we calculate the district
center, by taking the weighted average of the latitude and longitude coordination of each city in
this district, weighted by its population. We then calculate the distance between the districts, taking
into account the concavity of the earth.

Occupation The LIAB contains occupations that are coded using KldB2010 classification. Oc-
cupation are coded with 5-digits where the last digit is used for occupation complexity (see main
text). Occupation characteristics are calculated at the 3-digit level of the KldB 2010 coding using
the BIBB data. We treat the last digit (occupation complexity) as a separate variable.
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Training Occupation We define an individual’s training occupation as the occupation in which
workers spent the longest time in training. We use the employment status indicators (erwstat) to
identify workers who are in training. For the large majority of workers, there is only one occupation
in which they have completed vocational training. In rare cases where workers have conducted
training in more than one occupation, we use the occupation in which the training was longer.

Some workers do not have any completed vocational training that we can observe. In this
case, our we define their prior location as the occupation in which they completed an internship
(again, measured using the employment status variable). If an individual has not completed either
vocational training or an internship, we set their past occupation to be the first occupation they
were observed working in, provided that at least ten years have elapsed since the first point at
which they enter the data.

C.2 BIBB Survey

We use data from the 2011-2012 wave of the German Qualification and Career Survey conducted
by the Federal Institute of Vocational Training (BIBB) and the Institute for Labor Market Research
(IAB). The data cover 20,000 employed individuals between the ages of 16 and 65. Our data – the
Scientific Use File – contain 3-digit occupations coded using the 2010 Kldb scheme and 2-digit
industries. We run PCA on this survey by questions category and aggregate the results by 2-digit
industry and 3-digit occupations. We then link the results to our main data at this level. The top
questions in each category are reported in Table A1.
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D Application: High-Speed Commuter Rail

In this section we show how the OOI can be used to understand the channels through which work-
ers may benefit from infrastructure improvements. We focus on the case of the introduction of
high speed commuter rail stations in Germany. As discussed in previous work by Heuermann and
Schmieder, high speed rail was first introduced in Germany between 1991 and 1998 (2018).29 Dur-
ing that period, stations were placed in major cities such as Berlin and Munich. In this paper we
focus on the second wave, which expanded access to high speed rail by installing new stations in
cities along pre-existing routes. As discussed by Heuermann and Schmieder (2018), the selection
of cities in this second phase was based primarily on political factors, not factors related to antici-
pated labor market trends, or even anticipated train usage. This increase in infrastructure led to an
increase in commuting probability. Figure A3 shows the map of districts that got stations in each
wave.

Our treatment group consists of workers who, in 1999, lived in Montabaur, a small town
(~12,000 residents) between Cologne and Frankfurt that received a station in the second wave.30

We construct a matched control group using the set of workers from the same state (Rhineland-
Palatinate) who, in 1999, lived in districts that never received stations. We use nearest-neighbor
matching to match workers from the treatment and the control group based on their gender, age,
citizenship, education level, training occupation characteristics, and lagged income using nearest-
neighbor matching with replacement. We require the match to be exact on gender, education, and
2-digit occupation. Table A4 shows that this procedure produces a set of workers who are statis-
tically indistinguishable. Because the workers reside in different districts, there is a difference in
their baseline OOI in 1999 and their average distance to work.

We first show that the introduction of the high speed rail stations impacted workers’ OOI. We
estimate the OOI separately in 1999 and 2012, using the full cross-sectional distribution of the
German population. In this exercise, we use a fourth degree polynomial of both physical distance
and trip duration by train, to estimate match probabilities. The left bars in Figure A4 show the
results for the full Montabaur population and by gender (Panel A), as well as by education level
(Panel B). Relative to the control group, the treatment group saw a 0.37 unit increase in OOI. Given
a semi-elasticity of 0.19 (estimated in Section 6.1), this would suggest that wages in Montabaur
should grow by around 7%.31 The OOI has also grown similarly for both genders and all three
education groups.

29Daniel Heuermann and Johannes Schmieder generously provided the train data for our use in this project.
30We do this for comparability with the previous literature. Heuermann and Schmieder (2018) focus on Montabaur

as their key case study, as it is the prime example of the randomness in the selection process, and is an ideal natural
experiment.

31We do not analyze the actual impact on wages due to our small sample size.
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Figure A3: ICE Stations

Note: This figure shows the locations of ICE train stations by districts. The first wave includes all stations
that were opened pre-1999. The second wave includes all stations that were opened post-1999.
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Table A4: Treatment-Control Comparison

Treated Control
(1) (2)

Female 31.3% 31.3%

Age (1999) 47.98 47.70

Higher Secondary Degree 16.0% 16.0%

Intermediate Secondary Degree 31.5% 31.5%

Lower Secondary Degree 52.5% 52.5%

Log Daily Income 1999 4.32 4.34

OOI 1999 -5.52 -5.31

Distance 1999 10.33 13.25

Part-Time 1999 0.15 0.18

Observations - Treated
Observations - Total

613
5,299

A. Variables Used for Matching

B. Variables Not Used for Matching

Notes: This table compares the characteristics of individuals in the treatment and control groups for the
trains exercise. The treatment group consists of all workers who, in 1999, lived in Montabaur. We construct
a matched control group using nearest neighbor matching with replacement, drawing from the set of indi-
viduals who, in 1999, lived in a district in Rhineland-Paltitinate (the same state as Montabaur) that never
received a high speed rail station. Matching is done exactly on gender, education group, citizenship status,
state and 2-digit training occupation and continuously on age, and PCA components for training occupation
(the third digit).
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Infrastructure investments may increase the OOI and affect wages both (1) by changing the
productivity of workers’ matches and (2) by changing the value of workers’ outside options. After
the introduction of high speed rail, workers may find it easier to commute to high-quality matches
that were previously too far away. It is also possible that the introduction of high speed rail en-
couraged new job openings in Montabaur itself. Even workers who did not end up commuting and
did not end up matching with new job opportunities in Montabaur may have benefited by having
these jobs in their option set.

Using our framework, we can assess the drivers of the increase in workers’ outside options. We
compute two counterfactual OOI: First, ÕOIX,A where the values of X and A are taken from their
2012 values, while the distribution of jobs (Z) and the train schedules are kept at their 1999 level.
Second, ÕOIX,A,Z where X,A,Z are at their 2012 levels while only train schedules remains at its
1999 level, before the introduction of the fast commuter rails. We decompose the overall increase
in OOI into three components (1) changes in worker characteristics due to, e.g. aging, and the
matching function (difference between ÕOIX,A − OOI1999), (2) changes in the distribution of
available jobs (difference between ÕOIX,A,Z − ÕOIX,A) and (3) changes in commuting times
(OOI2012 − ˜OOIX,A,Z). For each component we compare the treatment and the control groups.

We find the trains affected workers differently, depending on their gender and education. The
second bar in Figure A4 shows what the change in OOI would have been if only Xi and A had
changed. This explains a relatively small fraction of the increase in outside options (9%). The
third bar shows what the change in OOI would have been if the distribution of jobs Zj had also
changed, but commuting times remained the same. Overall, this reduced the OOI by about -.03
(-7% of the overall change). Yet the impact on female workers is positive and significant—0.25
(vs. -.16 for men) —consistent with the idea that the new jobs in Montabaur were primarily taken
by women, who work closer to home. The final bar in each panel shows the change in OOI due
to the change in commuting time. This component explains most of the increase in OOI (99%).
The effect is significantly larger for higher educated workers. While we do not directly observe
ridership, we do observe that more educated workers are more likely to work at districts to which
that can commute using the fast trains, and so these workers were more likely to use the train.32

The high cost of the high speed train made them impractical for lower-wage workers, who have
lower levels of education on average.

To conclude we find that the various impacts of the new trains affected workers differently.
Workers that are more likely to use the fast train to commute, such as higher educated workers,
benefited from the access to more distant jobs. Workers that tend to work closer to home, such as
female workers, benefited from the increase in supply of local jobs.

32Similar patterns were found by Butikofer et al. (2019) who analyze the impact of the Oresund bridge on workers.
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Figure A4: Impact of Express Trains on Options and Wages
A. By Gender
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B. By Education Group
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Notes: This figure shows the results of the impact of express trains on outside options. We calculate the OOI
before the trains—OOI1999—and after the trains—OOI2012. The first set of bars shows the difference in the
overall changes in OOI between the treatment and control groups: OOI2012 −OOI1999. The second set of
bars shows what the change in OOI would have been if onlyXi andA had changed (ÕOIX,A−OOI1999).
The third set of bars shows the effect of the change in Z, holding X,A and train schedule at their 2012

value, and train schedules at their 1999 value (ÕOIX,A,Z − ÕOIX,A). The final set of bars shows the

impact of the new train schedule holdingX,A and Z at their 2012 values (OOI2012− ˜OOIX,A,Z). The
whiskers depict 95% confidence intervals calculated using the methodology in Abadie and Imbens (2006).
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