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Abstract

We consider situations where a user feeds her attributes to a machine learning method that tries to

predict her best option based on a random sample of other users. The predictor is incentive-compatible if

the user has no incentive to misreport her covariates. Focusing on the popular Lasso estimation technique,

we borrow tools from high-dimensional statistics to characterize sufficient conditions that ensure that

Lasso is incentive compatible in large samples. In particular, we show that incentive compatibility is

achieved if the tuning parameter is kept above some threshold. We present simulations that illustrate

how this can be done in practice.

1 Introduction

Rapid advances in machine learning methods for analyzing big data have given rise to automated systems that

employ these methods to predict the best fitting outcomes for users based on their personal characteristics.

For example, many online platforms try to predict which content - a song, a video, a post, or an article

- is the best fit for each user. Medical providers have also begun using machine learning techniques to

automate check-ups and test appointments for patients based on their medical history. Typically, these

automated systems use data from past users to estimate a model that relates the best fit for a user (such as

the most preferred content or the appropriate medical test) to her characteristics. These estimates are then

applied to a new user’s characteristics, which she discloses either actively or passively via her past online

behavior (which may be reflected in her cookies or collected by her browser). Given the growing interaction

of users with such automated systems, it is only natural to ask whether a user should truthfully disclose her

characteristics?
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We also thank Columbia University, Department of Economics for the hospitality where this research is initiated, when both

authors were visitors in 2018-2019.
†School of Economics, Tel-Aviv University and Eccles School of Business, the University of Utah. Email: kfire@tauex.tau.ac.il.

1



If the information the user discloses is also used to exploit her (say, by providing it to third parties for

advertising or price discrimination), then the user has an obvious reason not to reveal her private information.

The question is whether special features of some popular machine learning methods introduce an incentive

to misreport one’s personal characteristics even when this information will be used solely for predicting her

best outcome?1 This question is of crucial importance: If individuals submit false reports to systems that

rely on these reports for estimation and predictions, then the conclusions drawn from such estimates and

predictions will be wrong and may lead to quite undesirable outcomes (e.g., think of an automated medical

platform that schedules tests for patients based on false reports on attributes such as smoking, drinking and

physical exercise).

To address the above question, we consider a stylized environment where each user i’s ideal option is a

linear function f of her privately observed attributes Xi = (Xi,1, ..., Xi,p)
′ such that f(Xi) = X ′iβ0. A user

may not know the values of the coefficients β0, in which case she would have some (possibly degenerate)

prior beliefs over them. A “statistician”, who represents some automated prediction platform has a sample

of the attributes of n users and noisy observations on their ideal options. For instance, suppose f(Xi) is

the optimal dosage of some medication when taken immediately at the onset of symptoms, conditional on

the patient’s medical history Xi, but the statistician observes the dosage that was given after some delay.

Similarly, f(Xi) may be the mix of news and reality shows that a user with attributes Xi actually watches,

but the statistician observes only self reports by a user who may have forgotten exactly what he watched.

The statistician uses her sample to estimate the function f by computing an estimate β̂ of the true

coefficients β0. The statistician wishes to apply these estimates to predict the ideal option of a new user,

n + 1, whose true attributes Xn+1 are not observed by the statistician. This new user must decide what

vector of attributes X̃n+1 (which may differ from the truth) to report to the statistician. In making this

decision, the new user takes into account her beliefs about the statistician’s sample (the new user only

knows the distribution from which the sample is drawn, but she does not observe its realization), and her

beliefs about the true parameters β0. The statistician then plugs the new user’s reported attributes into the

estimated function and gives the user the option X̃ ′n+1β̂, which is the statistician’s estimate of the user’s

ideal option based her report. The new user’s expected loss from a report X̃n+1 is given by the mean square

error between her expectation of the ideal option X ′n+1β0 and her assigned option X̃ ′n+1β̂. The statistician’s

estimator is (ex-ante) incentive-compatible, if in expectation, the new user has no incentive to deviate from

truthful reporting for any prior belief on β0 : i.e., if for every possible value of β0, the expected value of

(X ′n+1β0 − X̃ ′n+1β̂)2 is minimized at the truth X̃n+1 = Xn+1, where the expectation is taken with respect

to the statistician’s sample and the possible realizations of the user’s attributes.

Intuition suggests that an individual cannot benefit from lying to a procedure that is meant to predict

1In a recent interview of Brian Christian, the author of The Alignment Problem, he notes that “computers may one day be

able not only to learn our behavior but also intuit our values - figure out from our actions what it is we’re trying to optimize.

... What if an algorithm intuits the ‘wrong’ values, based on its best read of who we currently are but not of who we aspire to

be? Do we really want our computers inferring our values form browser histories? See Shaywitz (2020) for this interview.
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the best outcome for her. To counter this intuition, Eliaz and Spiegler (2019), and Eliaz and Spiegler (2020)

use the above framework to illustrate that a user may have a strict incentive to lie about her attributes

when the prediction is based on a linear regression that penalizes non-zero estimated coefficients. The rough

intuition is that the user believes that despite the statistician’s good intentions, these estimation techniques

lead to distortions, which she tries to undo by lying. For instance, given the user’s beliefs about the true

model parameters, she may be concerned that the estimator will admit too many irrelevant attributes, and

hence, she reports a zero value for these attributes (see Eliaz and Spiegler (2019), and Eliaz and Spiegler

(2020) for more details). However, these papers focus on particular examples in which attributes are binary,

the statistician has the same (fixed) finite number of observations on each possible combination of attribute

values, and the penalty parameter is fixed and does not adjust to the sample size. Hence, these papers

leave open the following important question: For a general environment, are there conditions ensuring that

a penalized regression model is incentive compatible in large samples?

Answering this question can potentially allow platforms, like those discussed above, to use machine-

learning methods to predict users’ most preferred options without worrying that their data is “contaminated”

by non-truthful users. Put bluntly, estimates and predictions made by methods that are not incentive-

compatible are possibly unreliable since they may be based on false data.

This paper addresses the above open question by focusing on the most popular form of penalized re-

gressions - the Lasso estimator.2 Borrowing tools from high-dimensional statistics, we establish sufficient

conditions for incentive compatibility of the Lasso estimator in large samples. We show that to achieve in-

centive compatibility, the tuning parameter must be large enough (i.e., it must remain above some threshold

as sample size increases) so as to avoid overfitting, which is the main reason why a user may want to lie

(see Remark 2 in Section 4). This potential to lie implies that the standard way of choosing small enough

tuning parameters to ensure consistency may violate incentive compatibility. We provide simulation results

that illustrate how the tuning parameter can be chosen in practice to ensure incentive compatibility. Incen-

tive compatibility may therefore be viewed as an additional important property that should be imposed on

estimators on top of consistency and unbiasedness.

We also offer a new technical contribution by extending the oracle-moment-inequalities of Jankova and

van de Geer (2018) to i.i.d. data, by changing their proof technique to derive less conservative bounds in

proofs for the moments of the Lasso estimator, and relaxing the bounded signal to noise ratio assumption

in Jankova and van de Geer (2018).

The motivation to focus on the Lasso estimator stems from the fact that this estimator is the bench-

mark among all high dimensional statistical estimators that predict large scale models when the number

of regressors exceeds the sample size. Following its original proposal by Tibshirani (1996), econometricians

and statisticians have used Lasso-based estimators to push the boundaries of economics and finance. One

2Our results can be extended to apply to the debiased lasso estimator, but this involves a different proof technique, and

hence, is beyond the scope of the current paper.
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of the most critical issues facing these Lasso type estimators is post-inference after estimation and model

selection, which require uniformly valid confidence intervals. In a seminal series of papers, Belloni et al.

(2012,2014) solved these issues by introducing the idea of “partialling out” the regressors. A different but

complementary approach, via debiasing-desparsifying is proposed by van de Geer et al. (2014). Caner and

Kock (2018) extended the debiasing of van de Geer et al. (2014) to heteroskedastic-non-sub-Gaussian data

with strong oracle optimality property, thereby proposing a high dimensional estimator that is robust to

heteroskedasticity, and with uniformly valid confidence intervals. Lasso-based debiasing are used in panel

data models (see, e.g., Chernozhukov et al. (2018), Kock (2016), Kock and Tang (2019)) and for addressing

quantile treatment effects and text analysis (see, e.g., Chiang and Sasaki (2019) and Chiang (2020)).

The concern that statistical procedures such as estimation, forecasting and classification are vulnerable

to manipulation, has been the subject of some recent papers in the computer science literature. In contrast

to us, this literature assumes there is an explicit conflict of interest between the statistician and the data

providers - either because the latter are concerned about their privacy, they have to incur a cost to provide

a precise report, or they have a different objective than the statistician. These papers analyze the Nash

equilibria of a game where users submit private values that are used for estimation/classification, and propose

incentive schemes that induce truthful reporting. Some notable works in this literature include Cai et al.

(2015), Cummings et al. (2015), Dekel et al. (2010), Gao et al. (2015), Hardt et al. (2016), Meir et al.

(2012) and Perte and Perote-Pena (2004). None of these papers consider penalized regression methods, and

none of them characterize conditions guaranteeing incentive compatibility of regression techniques when the

statistician and users have aligned interests (as is the case in our model).

The remainder of the paper is organized as follows. Section 2 considers the model and assumptions. Sec-

tion 3 provides new oracle inequalities. Section 4 shows under what conditions lasso is incentive compatible,

and Section 5 provides a simulation. Section 6 concludes. Appendix A and B provide proofs of the results

when p > n, and p ≤ n, respectively.

2 The model

We begin this section by describing our theoretical framework and introducing our notion of incentive-

compatibility. We then discuss the key ingredients of our model and conclude by laying out our assumptions

on the statistician’s data.

Throughout the paper we will use the following notational conventions. For any vector ν ∈ Rd, let

‖ν‖1, ‖ν‖2, ‖ν‖∞ denote its l1, l2, l∞ norm respectively, and ‖ν‖0 be the l0 norm, which means the total

number of nonzero entries. For a set S ⊆ {1, 2, · · · , d}, let |S| = s be the cardinality of the set. Let νS be the

modified ν such that we put 0 when the index does not belong to S (i.e., say S = {1, 2, 6} for a 10× 1 vector

ν, this means that ν is modified such that now all elements are zero except elements 1, 2, 6). Let ‖A‖l1 be

the maximum absolute column-sum norm of a matrix of dimensions m× l, i.e., ‖A‖l1 = max1≤k≤l
∑m
i=1 |Aik|

4



which is also called the induced l1 norm of A.

Our environment consists of users who are characterized by a set of p personal characteristics. For

instance, in the context of medical decision making, a characteristic can represent a risk factor (obesity,

smoking, etc.). For each user i, these characteristics are modeled as p explanatory variables, Xi,1, ..., Xi,p,

drawn from some distribution over a subset of Rp. These attributes determine the ideal option for a user

according to the function

f(Xi,1, ..., Xi,p) =

p∑
k=1

Xi,kβ0,k

This function applies to all users, who differ only in the values of their characteristics. The realized values

of (Xi,1, ..., Xi,p) are privately observed by user i. A user may or may not know the value of the coefficients

(β0,1, ..., β0,p). In the latter case, she has some (possibly degenerate) prior beliefs over their values.

A statistician (representing the automated prediction systems described in the introduction) has private

access to a sample of n observations. Each observation i = 1, ..., n consists of the true attributes Xi =

(Xi,1, ..., Xi,p) of user i and a noisy signal yi of that user’s ideal option,

yi = X ′iβ0 + ui, (1)

where ui is random noise that is drawn i.i.d from some distribution with zero mean.3

The Xi’ s are also i.i.d. across i, and exogenous, and will be discussed in detail in Assumption 1 in the

next subsection. β0 is a p × 1 vector, representing the true parameters in f . We let S0 = {j : β0,j 6= 0}

denote the set of relevant regressors with s0 being the cardinality of the set S0. (i.e., s0 of the elements of

β0 are nonzero, and the rest are zero). s0 is a nondecreasing function of n. These facts are known to an

“oracle” but not to the statistician (and possibly not to a user).

Using her (privately observed) sample, the statistician estimates the function f , or equivalently, she

estimates the coefficients β0,1, ..., β0,p. When p > n, the least squares estimator is infeasible due to singularity

of the empirical Gram matrix. Hence, the statistician uses Lasso, the penalized regression procedure that

assigns costs to including explanatory variables in the regression. Specifically, she solves the following

minimization problem

β̂ = argminβ∈Rp

∑n
i=1(yi −X ′iβ)2

n
+ 2λn‖β‖1, (2)

where λn > 0 is the penalty (also called tuning parameter) that decreases with the number of observations

at the rate of λn = O(
√
lnp/n) (an explicit expression for the sequence λn is given in equation (A.14) in

Appendix A).4

Given her estimates β̂, the statistician must take an action a ∈ R on behalf of a new user, j = n+1. This

action is just the statistician’s prediction of the ideal option of that user. The new user’s payoff from action

3Access to such observations is a necessary condition for any platform that tries to learn about users (say, Netflix, Spotify).

In the introduction, we gave a couple of examples for such data, which may be obtained from a third party, or from marketing

surveys.
4We established this rate in Lemma A.2 in Appendix A.
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a is −(a− f(Xn+1))2, where f(Xn+1) is the true ideal option associated with her personal attributes Xn+1.

The distribution of Xn+1 may be different from that of (X1, ..., Xn), and we do not impose any restriction

on its correlation with the sample distribution.

Since the statistician does not observe Xn+1, in order to make her prediction of f(Xn+1), she asks the

n + 1 user to report a p × 1 vector, X̃n+1, which is interpreted as that user’s attributes. The statistician

then plugs X̃n+1 into her estimated model and chooses the action a = X̃n+1β̂. When the n+ 1 user decides

what attribute values to report, she takes into account that she does not observe the statistician’s sample,

and hence, does not know the values of the estimated coefficients β̂. She only knows the distribution from

which the statistician’s sample is drawn, and that given her sample, the statistician chooses β̂ according to

(2). Given this, the user chooses the report X̃n+1 that minimize her expected loss Eβ0,β̂
(X̃n+1β̂−X ′n+1β0)2,

where the expectation is taken with respect to the user’s prior beliefs about the true parameters β0, and her

beliefs about the estimate β̂. Hence, the new user may decide to lie and report X̃n+1 6= Xn+1. In particular,

she may decide to “opt out” and submit a vector of zeros.5 Our objective is to understand under what

conditions it is in the user’s best interest to be truthful regardless of her prior beliefs on β0.

2.1 Incentive compatibility

To introduce our notion of ex-ante incentive compatibility, consider a user who prior to observing his co-

variates, commits to a strategy that maps every possible realization of his covariates to a report of these

realized values (which may differ from the actual realized values). An estimator is said to be (ex-ante)

incentive-compatible, if for any belief over the true model parameters, the user’s expected payoff from truth-

ful reporting is at least as high as her expected payoff from any misreport, where the expectation is taken

with respect to the user’s realized covariates, and with respect to the statistician’s sample.

Definition 1. An estimator is (ex-ante) incentive-compatible if for every X̃ ′n+1 and every β0

E[X̃ ′n+1β̂ −X ′n+1β0]2 ≥ E[X ′n+1β̂ −X ′n+1β0]2. (3)

where the expectation E is taken with respect to the possible realizations of Xn+1 and the possible realizations

of the statistician’s sample.

An alternative notion of incentive-compatibility would be defined ex-post with respect to the realization

of the user’s covariates, such that inequality (3) would be required to hold for every realization of Xn+1, and

the expectation operator would only be with respect to the statistician’s sample. The sufficient condition

for ex-ante incentive-compatibility of the Lasso estimator, which we establish in Section 4, also guarantees

ex-post incentive-compatibility. Furthermore, the proof of ex-post incentive compatibility follows from our

proof of ex-ante incentive-compatibility. In light of this, we shall focus on the ex-ante notion henceforth.

5In the case in which the individual’s attributes are collected “passively” from her browsing history, then reporting a vector

of zero attributes can be interpreted as the act of deleting cookies.
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Incentive compatibility means that the user is unable to perform better by misreporting her personal

characteristics, regardless of her beliefs over the true model’s parameters in mean squared sense.6 How

should we interpret this requirement, given that we do not necessarily want to think of the user as being

sophisticated enough to think in these terms? One interpretation is that lack of incentive compatibility is

merely a normative statement about the user’s welfare - namely, given our model of how the statistician

takes actions on the user’s behalf, it would be advisable for her to misrepresent her personal characteris-

tics. Furthermore, there are opportunities for new firms to enter and offer the user paid advice for how to

manipulate the procedure - in analogy to the industry of “search engine optimization”. Incentive compati-

bility theoretically eliminates the need for such an industry. In the context of the online content provision

story, some misreporting strategies take the form of “deleting cookies”. This deviation is straightforward to

implement, and the user can check if it makes her better off in the long run.

Note that incentive-compatibility is not a property that can be tested statistically. To see this, suppose

each user is characterized by only a single covariate that is uniformly distributed on {0, 1}. If users are

truthful, then one would expect a 50-50 distribution of 0’s and 1’s in the population. However, if each user

lies about his covariate, then one would also observe a 50-50 distribution of 0’s and 1’s.

Recall that the statistician’s sample contains the true attributes of n users. The idea is that the data on

these users is obtained through a different process than the way the statistician obtains the data from the

n + 1 user. For instance, as mentioned earlier, this data may be obtained from a marketing survey where

there is no incentive to lie. Alternatively, one may interpret our incentive compatibility requirement as a

requirement that truth-telling is a Nash equilibrium among all participants - such that given that everyone

else is telling the truth, no user has an incentive to lie.

To see that our definition of incentive-compatibility is not vacuous, simply add and subtract the term

X ′n+1β̂ inside the squared brackets on the left side term of (3), such that

E[X̃ ′n+1β̂ −X ′n+1β0]2 = E[X̃ ′n+1β̂ −X ′n+1β̂ +X ′n+1β̂ −X ′n+1β0]2

= E
[
‖(X̃n+1 −Xn+1)′β̂‖22

]
+ E[X ′n+1β̂ −X ′n+1β0]2

+ 2E[β̂′(X̃n+1 −Xn+1)X ′n+1(β̂ − β0)]

≥ E[X ′n+1β̂ −X ′n+1β0]2

Canceling common terms reduces incentive-compatibility to the following inequality:

E
[
‖(X̃n+1 −Xn+1)′β̂‖22

]
≥ −2E[β̂′(X̃n+1 −Xn+1)X ′n+1(β̂ − β0)]. (4)

Note that this inequality can go either way. For example, if all elements of the vectors, β̂, Xn+1 and β̂−β0 are

positive, and for every realized X̃n+1, the difference X̃n+1−Xn+1 is also positive, then incentive-compatibility

6If we were to relax the requirement that truth-telling is preferred for every prior belief over the true model’s parameters,

we would need to make some assumptions on the user’s prior beliefs (see, e.g. Eliaz and Spiegler (2020)). Thus, our incentive-

compatibility has the merit of being robust to any specification of prior beliefs.
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holds. If, however, β̂ − β0 < 0, while all the other terms are positive, then incentive-compatibility can be

violated.

2.2 Discussion

In this subsection we discuss the motivation for some key ingredients of our model, and we also remark on

the implications of making alternative modeling choices.

The choice of the Lasso estimator. We chose to focus on Lasso because it is the most basic machine learning

technique that engages in model selection. Since this is the first paper to ask, under what conditions are such

techniques incentive-compatible, it makes sense to start with the most basic textbook technique. Once we

understand whether and how to ensure incentive compatibility in the simplest penalized regression model,

we can move on to explore more advanced regression models in future research.

Nevertheless, it is worth mentioning that Lasso has several desirable properties. First, its prediction error

is of the same order of magnitude as if there were an oracle, who could make predictions based on the true

model. This is shown in Theorem 6.4 and Corollary 6.3 of Buhlmann and van de Geer (2011), who provide

general oracle inequalities for convex loss with Lasso penalty. Second, James et al. (2013) shows (see p.26)

that despite being less flexible than non-linear models such as random forests and deep learning, the Lasso

estimator can prevent overfitting, which is clearly a major issue in out-of-sample contexts. In addition, Lasso

is a continuous subset selection which has good prediction properties as shown in p.61-69 of Hastie et al.

(2011).

The statistician’s benevolence. Our paper addresses the issue raised in Eliaz and Spiegler (2019, 2020) that

even if a statistician wants to make the best prediction for the user (so there is no a priori conflict of interest

between them), the user may still have an incentive to lie because of the model selection component in

Lasso (or any penalized regression for that matter), and because the user does not observe the statistician’s

sample. Since the source of lying in this no-conflict benchmark comes from the estimation procedure itself,

the question is, how can we fix the procedure - without harming its estimation properties - so as to ensure

truth-telling?

What if the user and the statistician did have a conflict of interests - say, the statistician uses the

information that the user gives him in a way that may harm the user? Then obviously, the user will have an

incentive to lie no matter which tuning parameter is chosen. In other words, in such an environment, Lasso

(or any other estimator) will not be incentive-compatible unless the user is compensated, or the statistician

uses an alternative estimation technique that is not optimal econometrically (say, he deliberately adds noise

to it). Exploring this direction is clearly a separate research agenda.

The user’s loss function. As explained above, incentive-compatibility means that the user cannot profit by

misreporting. Suppose the user had a generic loss function g(.), such that Eg(X̃n+1, Xn+1) denoted the

expected payoff of a user whose true characteristics are given by Xn+1, but he uses the reporting strategy

8



X̃n+1 (i.e., a function that determines what vector of characteristics to report for each realized vector of

characteristics). Then incentive-compatibility requires that Eg(X̃n+1, Xn+1) ≥ Eg(Xn+1, Xn+1) for any

reporting strategy X̃n+1. Note that in general, the user’s expected payoff is completely independent of the

statistician’s loss function. However, without imposing any structure on g(.), it is impossible to characterize

a condition that ensures the incentive-compatibility of Lasso.

Given our focus on the no-conflict-of-interests benchmark (which we discussed in the previous point), it

is only natural to let the user and the statistician have the same loss function that measures how far (in

expectation) the estimate is from the truth. For any loss function one chooses for the statistician, the user

has no incentive to lie if the expected loss from lying (i.e., the distance between the predicted best outcome

based on lying and the actual ideal outcome for the agent) is higher than under truth-telling. Hence, the

definition of incentive-compatibility clearly extends to any loss function shared by the statistician and the

user. Of course, for each candidate loss function one would need to find the exact sufficient condition. We

chose to focus on the mean squared error since it the most commonly used loss function.

If the user and the statistician evaluated the estimates using different loss functions, then the incentive

compatibility condition will apply only to the user’s loss function, and again, the precise sufficient condition

for incentive-compatibility will depend on the specification of this function.

2.3 The statistician’s data

In this subsection, we introduce a number of restrictions on the statistician’s data. To describe these

restrictions, we shall make use of the following notation. Define an l0 ball Bl0(s0) = {‖β0‖l0 ≤ s0}. Denote

Σ := EXiX
′
i for i = 1, 2, · · · , n and let Σ̂ := X ′X/n be the sample counterpart. Our first requirement

extends the sub-Gaussian data assumption used in statistics:

Assumption 1. (i). E(ui|Xi) = 0, Xi, ui are identical and independent across i = 1, · · · , n, and

max1≤j≤pE|Xij |4, E|ui|l, l = max(2k, 4) for all k ≥ 1 are uniformly bounded from above (across n). (ii).

The minimal eigenvalue of Σ is bounded away from zero uniformly in n.

Our second set of restrictions applies to the first and second moments. These will guarantee the consis-

tency of the Lasso estimator, but will not ensure incentive compatibility (sufficient conditions for incentive

compatibility will be introduced in Section 4). We start by defining the maximal value of certain cross

products, which will be related to the behavior of moments in high dimensions in our next assumption.

M1 := max
1≤i≤n

max
1≤j≤p

|Xijui|,

M2 := max
1≤i≤n

max
1≤j≤p

max
1≤l≤p

|XilXij − EXilXij |.
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Note that M1 is the maximal covariance between the regressors and errors in a high dimensional context.

Roughly speaking, when this covariance is small, it captures exogeneity of the regressors in the sample. M2

is the maximal variance of the regressors in the sample. With large p and n, these covariance and variance

terms can grow arbitrarily large; hence, we need a condition that restricts the growth rate of their moments.

Because we are allowing for heteroskedastic data and unbounded regressors, we need to consider the growth

rate of higher-order moments. 7

Assumption 2. (i). √
lnp√
n

[max((EM2
1 )1/2, (EM2

2 )1/2)]→ 0.

(ii). s0( lnpn )1/2 → 0.

(iii). ‖β0‖2 = O(1).

Assumption 2(i) and 2(ii) are standard in high dimensional econometrics. In particular, 2(i) is used in

Chernozhukov et al. (2017) allowing them to apply a concentration inequality, and 2(ii) is a standard sparsity

condition. Note that with Assumption 2(ii), Lasso prevents underfitting since letting λ = O(
√

lnp
n ) implies

that s0λn → 0, which ensures that λn cannot be large enough to generate underfitting. This allows us to

establish that consistency of Lasso in Lemmas A.1-A.3 in the appendix.

Assumption 2(iii) ensures that the signal to noise ratio is bounded (see p.2343 of Jankova and van de

Geer (2018)). To see this, set σ2
u := var(ui), which is the variance of the errors, and σ2

u ≥ c > 0, where c is

a generic positive constant. Hence,
var(yi)

var(ui)
=
β′0Σβ0

σ2
u

+ 1,

under E(ui|Xi) = 0 in Assumption 1 and Σ := EXiX
′
i. But

β′0Σβ0

σ2
u

+ 1 ≥ ‖β0‖22φmin(Σ)

σ2
u

+ 1.

where φmin(Σ) ≥ c > 0 is the minimum eigenvalue of Σ and is positive by Assumption 1. Hence, if

Assumption 2(iii) holds, then the signal to noise ratio satisfies var(yi)/var(ui) ≥ C0 + 1 > 0, with C0 being

a positive constant, and defined as C0 :=
‖β0‖22φmin(Σ)

σ2
u

. The empirical implication of this is that only a fixed

number of nonzero coefficients can be constants, and the other nonzero coefficients have to be local to zero.

To see this implication, note that

‖β0‖2 =

√√√√ p∑
j=1

β2
0,j =

√∑
j∈S0

β2
0,j = O(1).

But this last point can be achieved, in the case of s0 growing with n, with√∑
j∈S0

β2
0,j =

√∑
j∈F1

β2
0,j +

∑
j∈S0−F1

β2
0,j ≤

√
f1C2 + (s0 − f1)

C2

s0 − f1
= O(1),

7Alternatively, we could strengthen Assumption 2 using boundedness of individual moments of X,u.
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where F1 := {j : |β0,j | = C} with |F1| = f1 being a fixed number, C is a generic positive constant and

F2 := {j : |β0,j | = C√
s0−f1

} with |F2| = s0− f1. For ease of exposition, we set all coefficients in F1 and F2 to

be the same constants C,C/
√
s0 − f1 respectively. F2 contains indices of all local to zero coefficients. This

can easily be generalized without affecting our results.

In Appendix B we take a more flexible approach compared with Assumption 2(iii). There, we assume

that ‖β0‖2 = O(
√
s0). In this case, all nonzero coefficients can be large (i.e., none of them are local to zero,

as in set F2 above). In other words, there is no index set F2 as above, but all nonzero coefficients (their

indices) are in the set F1 above.

As p and n grow large, the total number of nonzero coefficients s0 (also known as the sparsity index ) can

grow arbitrarily large. To guarantee consistency and unbiasedness, it is typically assumed that the product

of the sparsity index and the tuning parameter should go to zero. However, this standard condition does

not guarantee the incentive compatibility of the Lasso estimator as can be seen in the proof of Theorem 3

below.

3 New oracle inequalities

Oracle inequalities in high dimensional statistics are upper bounds on prediction and estimation errors. For

our main result, we require moment bounds on the Lasso estimator’s error in l1 norm. By taking the sample

size to be large, we can show that the upper bound on the mean of higher-order moments of Lasso estimation

errors tend to zero. We then use this asymptotic result to establish the incentive compatibility of the Lasso

estimator in large samples. To illustrate this, we note that from the proof of Theorem 3 in Appendix A.2.4,

the incentive compatibility constraint is tied to the following expression

E[X̃ ′n+1β̂ −X ′n+1β0]2 − E[X ′n+1β̂ −X ′n+1β0]2 = E[β̂′(X̃n+1 −Xn+1)(X̃n+1 −Xn+1)′β̂] (5)

+ E[β̂′(X̃n+1 −Xn+1)X ′n+1(β̂ − β0)] (6)

+ E[(β̂ − β0)′Xn+1(X̃ ′n+1 −X ′n+1)β̂]. (7)

For incentive compatibility to hold in large samples, we need the sum of the right-hand side terms to be

greater than or equal to zero. The first term on the right-hand side (5) is always non-negative. Hence, if we

prove that (6) and (7) converge to zero, we establish asymptotic incentive compatibility. However, the size

of terms in (6) and (7) will depend on the mean of higher-order estimation error of Lasso.

To bound these error, we prove new oracle inequalities, which are different from those that are given

in the literature for ‖β̂ − β0‖1. These inequalities will serve an important role in proving our main result

in the next section (Theorem 3). They are also of independent interest as they extend previous results on

sub-Gaussian data to heteroskedastic (conditionally) data sets that are commonly used in econometrics. Our

proof technique will also look at a less conservative bound compared with Jankova and van de Geer (2018).
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Hence, our new inequalities contribute to the literature on high-dimensional econometrics where they can

be used for proving generalized semiparametric efficiency of Lasso-type-estimators (as, e.g., in Jankova and

van de Geer (2018)).

Our first result in this section is a k-th moment bound for the l1 norm of the Lasso bias. A key concept

used in this result is the exception probability for the event F := {A1 ∩ A2}, where A1 and A2 are defined

in (A.6) and (A.9), which represent the empirical process-noise, and the eigenvalue condition, respectively.

The exception probability is the complement of the event F , and is denoted by P (Fc). An explicit upper

bound for the exception probability is calculated in Lemma A.4.

Theorem 1. Under Assumptions 1-2, if n is sufficiently large and λn ≥ P (Fc)1/4k

s
1/2
0

, then

[E‖β̂ − β0‖k1 ]1/k = O(s0λn).

This result is valid uniformly over Bl0(s0) = {‖β0‖l0 ≤ s0}.

If we set k = 1 we can learn whether the Lasso estimator is unbiased. By the above Theorem, Assumption

2 and (A.15) imply s0λn → 0. Hence, in large samples, we have unbiasedness in the large λn case. Next, we

provide the k-th moment bound for l1 norm for the Lasso estimator.

Theorem 2. Under Assumptions 1-2, if n is sufficiently large n and λn ≥ P (Fc)1/2k/s
1/2
0 , then

[E‖β̂‖k1 ]1/k = O(s
1/2
0 ).

This result is valid uniformly over Bl0(s0) = {‖β0‖l0 ≤ s0}.

This is a new result and a simple extension of Theorem 1 above. The rate in Theorem diverges to infinity

if s0 →∞ as n→∞.

4 Incentive Compatibility of Lasso

Our main result, which is new in the literature on penalized regressions, establishes that the Lasso estimator

is incentive compatible for a sufficiently large sample size. In other words, we show that when n→∞

E[X̃ ′n+1β̂ −X ′n+1β0]2 ≥ E[X ′n+1β̂ −X ′n+1β0]2.

for all X̃ ′n+1 and for every β0, where the expectation is taken with respect to the reporting user’s attributes

X ′n+1 (this is our ex-ante notion of incentive-compatibility that we explained in Section 2.1) and with respect

to the statistician’s realized sample (since the reporting user does not observe this sample).

The next theorem is our main result, which provides sufficient conditions for incentive compatibility. Its

proof makes use of the following notation.

M3 := max
1≤j≤p

|Xn+1,j |,
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M4 : max
1≤j≤p

|X̃n+1,j −Xn+1,j |.

Note that M4 is nothing more than the absolute magnitude of the misreport on a given variable j by the

n+ 1 user.

Theorem 3. Under Assumptions 1 and 2, the Lasso estimator is incentive compatible in large samples

(n→∞) if the following conditions hold:

λn ≥ P (Fc)1/16/s
1/2
0 (8)

and

s
3/2
0

√
lnp

n
[EM4

3 ]1/4[EM4
4 ]1/4 → 0. (9)

Furthermore, incentive compatibility is valid uniformly over Bl0(s0) = {‖β0‖l0 ≤ s0}.

Remarks.

1. Theorem 3 establishes that a sufficient condition for incentive compatibility is that the tuning parameter

λn needs to be large “enough”. A simple way to choose λn to satisfy (8) is to use the upper bound of the

exception probability

λn := upperbound(P (Fc)1/16),

in Lemma A.4. The simulations in the next section address the issue of whether such a bound is feasible.

2. The typical concern with Lasso is the consistency of the estimator (‖β̂ − β0‖1 = op(1)), which can be

achieved by making sure that λn goes to zero at a relatively fast rate (as Lemma A.1 in Appendix A shows,

this rate is s0λn → 0). However, if λn gets too small, the Lasso estimator may admit many nonzero variables

incorrectly (i.e., it creates an overfit). Consequently, when the number of regressors p is very large, the

expectation of the sum of l1 errors (E‖β̂−β0‖1) can grow arbitrarily large, and incentive compatibility may

be violated. Put differently, consistency does not imply incentive compatibility in large samples.

In other words, just using the l1 estimator bound on its own does not imply a bound for the expectation

of l1 error. It requires a non-trivial proof. Consistency does not imply unbiasedness, and hence, it does not

imply incentive compatibility. Consistency requires a small λn, whereas incentive compatibility shows that

we cannot have too small λn. There is further technical discussion in Remarks 5-6 below.

Why is overfitting a significant issue for incentive compatibility? The intuition is as follows. Suppose the

tuning parameter is sufficiently small so that given the user’s prior on the true coefficients, she expects that

many irrelevant variables will be included in the estimator. To correct this bias, she can report that these

variables are equal to zero.

3. The second sufficient condition (9) allows the distance between the user’s report X̃n+1 and the truth

Xn+1 to be of any magnitude since EM4 ≡ E‖X̃n+1 − Xn+1‖∞ can be arbitrarily large. Since the above

conditions are sufficient but not necessary, it remains an open question whether incentive compatibility can
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be achieved with a tuning parameter that is lower than the threshold in (8) without restricting the magnitude

of the deviation between the user’s reported and true attributes.

4. Note that (9) requires stricter sparsity than Assumption 2. If EM4
3 = O(1) and EM4

4 = O(1), then

condition (9) amounts to s
3/2
0

√
lnp
n → 0, which is a sparsity requirement still stronger than Assumption

2(ii). In addition, if we let EM4
4 = O(lnn) and EM4

3 = O(lnn), then s
3/2
0

√
lnp
n (lnn)1/2 ≤ s3/2

0

√
2lnp
n → 0 is

needed to get incentive compatibility with n ≤ p.

5. A natural question that arises is whether condition (8) is compatible with the l1 norm consistency of

Lasso? In other .words, consistency requires a small λn, but incentive compatibility requires a large λn, so

are they compatible with each other? When we select a large λn to satisfy incentive compatibility, we should

not sacrifice consistency, i.e. we need s0λn → 0. To verify whether this is possible, we can take the lower

bound on the tuning parameter in (8) and see whether we can achieve consistency. Note that

s0λn = s0
P (Fc)1/16

s
1/2
0

= s
1/2
0 P (Fc)1/16, (10)

From (A.22) in the Appendix, an upper bound on this exception probability is:

P (Fc) ≤ 2

pC1
+
K[EM2

1 + EM2
2 ]

nlnp
, (11)

where C1 and K are positive constants. With l = 1, 2, it therefore follows from (10) and (11) that we need

s8
0/p

C1 → 0, s8
0 max

l
EM2

l /nlnp→ 0,

to have consistency. These two conditions are not unreasonable in the sense that they are consistent with

(n, p) increasing to infinity. Also they are compatible with moments satisfying condition (9) in Theorem 3.

6. Finally, note that λn = O(
√

lnp
n ) represents an upper bound in terms of rates for λn, whereas (8)

represents a lower bound. We can then take for a positive constant C > 0

C

√
lnp√
n
≥ λn ≥

P (Fc)1/16

s
1/2
0

.

The question is, are there suitable combinations of n and p that satisfy these inequalities? By using algebra

and the upper bound for exception probability (A.22), we obtain the requirement that,

Cs
1/2
0 ≥

[
2n

pC1
+
K[EM2

1 + EM2
2 ]

nlnp

]1/16 √
n√
lnp

,

which is plausible for p > n and large n since the left hand side may diverge and the right side may go to

zero. This may be the case for example when p is exponential in n.

7. Note that Xn+1 and X̃n+1 are random and vary with n.

8. When we relax Assumption 2(iii) to ‖β0‖2 = O(
√
s0), the incentive compatibility is still satisfied but

under the slightly stronger condition

s2
0

√
lnp

n
[EM4

3 ]1/4[EM4
4 ]1/4 → 0.
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The proofs are at the end of the Appendix. Remarks 5-6 above still apply but with slightly stronger sparsity

conditions.

5 Simulations

This section has two objectives. First, it illustrates how in practice the tuning parameter can be chosen

to ensure incentive compatibility of the Lasso estimator. Second, it demonstrates that by appropriately

choosing the tuning parameter (in line with the conditions in Theorem 3), incentive compatibility is satisfied

regardless of the magnitude of the “lie” (i.e., the distance between the true and reported attributes)

We provide a simple simulation setup. We model

yi = X ′iβ0 + ui,

where β0 = (1, 0′p−s0 , 1
′
s0−1)′, 0p−s0 is a p − s0 column vector of all zero elements, and 1s0−1 is a s0 − 1

dimensional column vector of all ones. Let s0 represent the sparsity of the above model and set s0 = 20.

We present three different simulations. In Design 1, we choose Xi to be a p× 1 vector of a t distribution

with five degrees of freedom. The new n + 1 user has the same distribution for her attributes but is

independent of the first n users. The errors ui are also chosen from a t5 distribution but independently

of the regressors. Tables 1-3 displays these results. For the second simulation (Design 2), we only change

the distribution of the attributes for the n + 1 user to a t distribution with three degrees of freedom. In

Design 2, we keep the same distribution for the errors and the same attribute distribution for the first n

users from Design 1. The results are displayed in Tables 4-6. In the third simulation (Design 3), we change

only the following in Design 2. We introduce a multivariate normal distribution for the attributes of users

i = 1, · · · , n, such that the covariance between the j and m-th random variables are governed by

Σj,m = 0.5|j−m|,

for j = 1, . . . , p and m = 1, · · · , p. Thus, the correlation between the adjacent random variables is 0.5, and

this declines when the random variables are further apart. This Toeplitz type structure is commonly used

in the high dimensional literature (see Caner and Kock (2018)). In Design 3, we keep the distribution of the

n+ 1 user and the errors from Design 2. The results are presented in Tables 6-9.

We aim to demonstrate that with a “large” tuning parameter as in Theorem 3, incentive compatibility

can be achieved when the sample size n is large enough. As mentioned in the previous section, one possible

choice of a tuning parameter that satisfies Theorem 3 is the upper bound on the exception probability,

λn ≥ upperbound(P (Fc)1/16).

The issue is to make the exception probability, P (Fc) operational and usable. Note that an upper bound

on this probability is (with positive constants C1 > 0, C2 > 0,K > 0)
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P (Fc) ≤ 2

pC1
+
K[EM2

1 + EM2
2 ]

nlnp
≤ 2

pC1
+

C2

(lnp)2
, (12)

by observing that for l = 1, 2

K maxlEM
2
l

nlnp
=

[
K1/2

√
maxlEM2

l√
n
√
lnp

]2

=

[
K1/2

√
maxlEM2

l

√
lnp√

n

]2

(
1

lnp
)2

≤ C2

(lnp)2
,

where we use Assumption 2(i). Hence, we can write the upper bound of the exception probability by using

p ≥ 1
2

pC1
+

C2

(lnp)2
≤ 2 +

C2

(lnp)2
.

The tuning parameter is as follows

λn := [2 +
C2

(lnp)2
]1/16, (13)

where C2 can start from a small positive value and stop at a large positive value. We select the values for

C2 and λn according to the Generalized Information Criterion (GIC) as in Caner and Kock (2018), which

gives consistent model selection with weighted Lasso choices in the least squares framework (the choice of

tuning parameter with GIC in least squares with Lasso and conservative Lasso is shown to be consistent in

Theorem 5 of Caner and Kock (2018)). Note that the criterion for choosing tuning parameter should take

incentive compatibility into account, hence, we choose only C2 with GIC, but the structure of our tuning

parameter is determined by our characterization of incentive compatibility. Therefore, our choice of λn is

above a lower bound, which prevents overfitting (this is the novel insight of Theorem 3). On the other hand,

to prevent a very large λn and ensure consistency of Lasso, the lower bound inversely depends on p.

Define

λ∗n := argminλn∈Λ[ln(σ̂2(λn)) +
ŝ(λn)

n
ln(n)ln(ln(p))],

where ŝ(λn) is the number of nonzero elements in the Lasso estimator, given a choice of λn in a grid Λ, and

σ̂2(λn) is the mean squared residuals from the Lasso regression, given a choice of λn in a grid Λ. We form

Λ as follows: We take C2 in a grid of values [2 + C2

(lnp)2 ] as in (13). Let C2 := [0.1, 0.5, 1, 2, 10, 20, 50, 100], so

Λ is the grid of values of λn depending on C2. The number of iterations is 1,000. We have also done some

simulations with cross-validation instead of Generalized Information Criterion(GIC). These gave the same

results qualitatively. Upon demand, we can share these or put the results in the paper.

The “Report” column in Tables 1-3 display E[X̃ ′n+1β̂−X ′n+1β0]2 as the mean squared error from a false

report by the user. “Truth” refers to E[X ′n+1(β̂ − β0)]2. The difference between X̃n+1 − Xn+1 is kept at
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Table 1: Design 1-Incentive Compatibility Scenarios: Difference 5

n = 100 n = 200 n = 400

Dimension Truth Report Truth Report Truth Report

p = 100 25.93 385.25 23.61 338.91 25.89 321.55

p = 250 27.75 353.90 25.25 353.08 26.41 337.91

p = 500 26.71 305.53 25.55 333.97 24.36 334.01

Note: ”Truth” refers to E[X ′n+1(β̂ − β0)]2 and ”Report” refers to E[X̃ ′n+1β̂ − X ′n+1β0]2

in Incentive Compatibility Definition. Smaller values of these average squared errors are desirable.

Table 2: Design 1-Incentive Compatibility Scenarios: Difference 2

n = 100 n = 200 n = 400

Dimension Truth Report Truth Report Truth Report

p = 100 26.12 80.11 25.88 76.10 23.56 71.87

p = 250 25.88 75.64 24.25 77.89 25.20 72.40

p = 500 28.02 72.21 25.20 76.73 25.03 71.63

Note: ”Truth” refers to E[X ′n+1(β̂ − β0)]2 and ”Report” refers to E[X̃ ′n+1β̂ − X ′n+1β0]2

in Incentive Compatibility Definition. Smaller values of these average squared errors are desirable.

three levels: 5, 2 and 0.2 (for all p variables), which represent large, medium, and small deviations from the

truth. We have p = 100, 250, 500, and for each p level we analyze n = 100, 200, 400.

The numbers in each cell of the tables correspond to the disutility of the user (i.e., the mean square

difference between the statistician’s estimate and the optimal action). Hence, smaller numbers correspond

to higher payoffs. Let us compare the three tables when p = 500 and n = 400. In Table 1, which corresponds

to a large magnitude of a lie, the user’s disutility from reporting the truth is 24.36, while the disutility

from lying is 334.01. Hence, the n + 1 user prefers to be truthful. In Table 2, for a medium magnitude

of lies, truth-telling induces a disutility of 25.03, while lying induces a higher disutility of 71.63. Finally,

in Table 3, if the lie is “close” to the truth, the disutility from truth-telling is 24.36, while the disutility

from lying is 24.73. Similar comparisons hold in the tables’ remaining cells, suggesting that that Lasso’s

incentive compatibility is achieved. In Tables 4-9, the same message from Tables 1-3 carries over: Lasso is

incentive-compatible with our tuning parameter choice. Tables 6 and 9 show that with a minor lie, Lasso is

still incentive-compatible and the difference between the truth and lie in MSE sense is larger compared with

Table 3 of Design 1.
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Table 3: Design 1-Incentive Compatibility Scenarios: Difference 0.2

n = 100 n = 200 n = 400

Dimension Truth Report Truth Report Truth Report

p = 100 25.60 25.90 25.73 25.93 24.61 25.03

p = 250 26.06 26.87 23.90 24.27 25.43 25.84

p = 500 28.34 28.98 24.94 25.62 24.36 24.73

Note: ”Truth” refers to E[X ′n+1(β̂ − β0)]2 and ”Report” refers to E[X̃ ′n+1β̂ − X ′n+1β0]2

in Incentive Compatibility Definition. Smaller values of these average squared errors are desirable.

Table 4: Design 2-Incentive Compatibility Scenarios: Difference 5

n = 100 n = 200 n = 400

Dimension Truth Report Truth Report Truth Report

p = 100 45.62 392.71 39.25 368.91 40.22 345.82

p = 250 47.11 374.02 45.55 355.38 46.59 342.67

p = 500 45.08 326.11 43.77 370.69 47.70 350.90

Note: ”Truth” refers to E[X ′n+1(β̂ − β0)]2 and ”Report” refers to E[X̃ ′n+1β̂ − X ′n+1β0]2

in Incentive Compatibility Definition. Smaller values of these average squared errors are desirable.

Table 5: Design 2-Incentive Compatibility Scenarios: Difference 2

n = 100 n = 200 n = 400

Dimension Truth Report Truth Report Truth Report

p = 100 48.63 97.92 59.58 94.09 58.65 85.68

p = 250 46.19 89.30 44.12 98.91 43.25 95.22

p = 500 55.57 105.84 41.61 90.43 40.95 92.95

Note: ”Truth” refers to E[X ′n+1(β̂ − β0)]2 and ”Report” refers to E[X̃ ′n+1β̂ − X ′n+1β0]2

in Incentive Compatibility Definition. Smaller values of these average squared errors are desirable.

Table 6: Design 2-Incentive Compatibility Scenarios: Difference 0.2

n = 100 n = 200 n = 400

Dimension Truth Report Truth Report Truth Report

p = 100 50.48 51.03 44.02 45.72 44.42 45.07

p = 250 45.98 47.33 48.88 49.47 42.56 43.68

p = 500 48.84 48.92 44.08 44.79 41.45 42.18

Note: ”Truth” refers to E[X ′n+1(β̂ − β0)]2 and ”Report” refers to E[X̃ ′n+1β̂ − X ′n+1β0]2

in Incentive Compatibility Definition. Smaller values of these average squared errors are desirable.
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Table 7: Design 3-Incentive Compatibility Scenarios: Difference 5

n = 100 n = 200 n = 400

Dimension Truth Report Truth Report Truth Report

p = 100 26.22 2766.29 18.84 3004.57 16.77 3136.86

p = 250 24.77 2725.52 21.41 3000.16 20.35 3130.54

p = 500 34.32 2722.20 19.68 2981.42 17.98 3139.44

Note: ”Truth” refers to E[X ′n+1(β̂ − β0)]2 and ”Report” refers to E[X̃ ′n+1β̂ − X ′n+1β0]2

in Incentive Compatibility Definition. Smaller values of these average squared errors are desirable.

Table 8: Design 3-Incentive Compatibility Scenarios: Difference 2

n = 100 n = 200 n = 400

Dimension Truth Report Truth Report Truth Report

p = 100 27.43 464.41 19.82 493.65 17.16 515.18

p = 250 23.49 454.13 19.76 488.40 16.14 507.25

p = 500 25.25 448.99 38.48 503.34 14.56 509.49

Note: ”Truth” refers to E[X ′n+1(β̂ − β0)]2 and ”Report” refers to E[X̃ ′n+1β̂ − X ′n+1β0]2

in Incentive Compatibility Definition. Smaller values of these average squared errors are desirable.

Table 9: Design 3-Incentive Compatibility Scenarios: Difference 0.2

n = 100 n = 200 n = 400

Dimension Truth Report Truth Report Truth Report

p = 100 24.16 28.51 16.77 20.07 14.35 19.63

p = 250 25.80 29.93 19.41 25.04 16.14 22.63

p = 500 27.11 30.47 19.97 25.11 18.24 22.52

Note: ”Truth” refers to E[X ′n+1(β̂ − β0)]2 and ”Report” refers to E[X̃ ′n+1β̂ − X ′n+1β0]2

in Incentive Compatibility Definition. Smaller values of these average squared errors are desirable.
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6 Conclusion

The growing reliance on machine learning in automating decisions previously made by people raises the

question of how people would interact with these automated systems. In particular, would people have an

incentive to act strategically in order to manipulate such automated systems? This strategic interaction

will become particularly important when these automated systems start playing a more prominent role in

medical decision-making or even in driving.

This paper takes only a small preliminary step towards addressing this question by studying whether a

user would want to lie to an automated system that uses Lasso to predict that user’s ideal outcome based

on her reported attributes. Our main contribution is showing that truthful reporting can be ensured by

appropriately adjusting the tuning parameter to be larger than what is required for consistency. Our result

is also significant from a pure econometrics point of view: Just concentrating on oracle inequalities and post-

selection inference can lead to a small tuning parameter, which in turn, can lead to model overfitting, which

then introduces an incentive to misreport. If users have an incentive to provide false input to algorithms used

for estimation and prediction, then it is no longer clear that one can rely on the output of these algorithms.
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In the next part, Appendix A considers the proofs when p > n, and Appendix B considers the case p ≤ n,

and relaxing Assumption 2(iii).

A Appendix A

A.1 Notation

In this section, we show some results that will help us in proofs. Define random vector of variables Fi :=

(Fi1, · · · , Fij , · · · , Fip)′. Also define σ2
F := n(max1≤j≤pvarFij), and MF := max1≤i≤n max1≤j≤p |Fij−EFij |.

Note that µ̂j := n−1
∑n
i=1 Fij , and µj := EFij .

A.2 Maximal Inequalities

We use two assumptions that will provide us maximal inequalities.

Assumption A.1. Assume Fi are iid random vectors across i = 1, 2, · · · , n with max1≤j≤p varFij

bounded away from infinity uniformly in n.

Assumption A.2. Assume √
EM2

F

√
lnp√

n
→ 0.

We use the following maximal inequality. With Assumption A.1, Lemma E.2(ii) of Chernozhukov et al.

(2017) is: (see (A.2) of Caner and Kock (2019))

P

[
max

1≤j≤p
|µ̂j − µj | ≥ 2E max

1≤j≤p
|µ̂j − µj |+

t

n

]
≤ exp(−t2/3σ2

F ) +K
EM2

F

t2
, (A.1)

for a constant K > 0. With Assumptions A.1-A.2 here, Caner and Kock (2019) or Lemma E.1 of Cher-

nozhukov et al. (2017) provides

E max
1≤j≤p

|µ̂j − µj | ≤ K[

√
lnp√
n

+

√
EM2

F lnp

n
]

= O(

√
lnp√
n

). (A.2)

Define the sequence κn = lnp. Set t = tn = (nκn)1/2 to have (A.1) as

P

[
max

1≤j≤p
|µ̂j − µj | ≥ 2E max

1≤j≤p
|µ̂j − µj |+

√
κn√
n

]
≤ exp(−C1κn) +K

EM2
F

nκn

=
1

pC1
+
KEM2

F

nlnp
(A.3)

where C1 > 0, is a positive constant.

Now combine (A.2) with (A.3) to have
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P ( max
1≤j≤p

|µ̂j − µj | ≥ 2K[

√
lnp√
n

+
(EM2

F )1/2lnp

n
] +

√
lnp√
n

)

≤ 1

pC1
+
KEM2

F

n(lnp)
= o(1), (A.4)

by Assumptions A1-A.2. This shows also that, since EM2
F is nondecreasing in n

max
1≤j≤p

|µ̂j − µj | = Op(
√
lnp/
√
n). (A.5)

A.2.1 Events

Before the assumptions, we need to define events that will be helpful. The first event is:

A1 =

{
2

∥∥∥∥u′Xn
∥∥∥∥
∞
≤ λn

}
, (A.6)

which controls the noise. This is the maximal correlation between regressors and errors. We want this to

be bounded with probability approaching one, and this upper bound, λn, itself is converging to zero in our

proofs. We show that in Lemma A.2. So in large samples, this proof technique amounts to verification of

exogeneity of regressors. This is standard in high dimensional econometrics, for a recent analysis see Lemma

A.4 of Caner and Kock (2018).

We start with defining first population counterparts of restricted eigenvalue conditions and then show

the empirical version also. These are standard in high dimensional econometrics and statistics and can be

seen from Assumption 1 of Caner and Kock (2018).

We define the population adaptive restricted eigenvalue of Σ

φ2
Σ(s) = min

{
δ′Σδ

‖δS‖22
: δ ∈ Rp − {0}, ‖δSc‖1 ≤ 3

√
s‖δS‖2, |S| ≤ s

}
. (A.7)

Note that if Σ = EXiX
′
i has full rank, the population adaptive restricted eigenvalue being positive is satisfied

by Assumption 1. Also instead of minimizing all over Rp, we minimize vectors that satisfy ‖δcS‖1 ≤ 3‖δS‖1.

Even in the cases that Σ does not have full rank, it is possible that minimal adaptive restricted eigenvalue

condition is satisfied due to optimization over a restricted set. The parameter δ will be related to structural

parameter β in the proofs.

First define the empirical adaptive restricted eigenvalue condition, which is empirical counterpart of the

population version in Assumption 1:

φ̂2
Σ̂

(s) = min

{
δ′Σ̂δ

‖δS‖22
: δ ∈ Rp − {0}, ‖δSc‖1 ≤ 3

√
s‖δS‖2, |S| ≤ s

}
. (A.8)

We are interested in behavior of the minimal empirical adaptive restricted eigenvalue condition evaluated

for set S0 at cardinality s0. The second event is:

A2 =
{
φ̂2

Σ̂
(s0) ≥ φ2

Σ(s0)/2
}
. (A.9)
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Empirical adaptive restricted eigenvalue condition is needed since in case of p > n, X ′X is singular and the

minimal eigenvalue of X ′X is zero. Empirical adaptive eigenvalue is over a restricted set which we prove

to be positive, with probability approaching one, in Lemma A.3. This is also standard in high dimensional

econometrics, see Lemma A.6 of Caner and Kock (2018). Set F = A1 ∩ A2, and the complement event as

Fc.

A.2.2 Proofs of Lemmata

The following four Lemmata are the intermediate results that are used for Theorems.

Lemma A.1. Under the joint event F := {A1 ∩ A2} we have

‖β̂ − β0‖1 ≤
24λns0

φ2
Σ(s0)

.

This is also valid uniformly over Bl0(s0) = {‖β0‖l0 ≤ s0}.

Proof of Lemma A.1. Using β̂ definition

‖Y −Xβ̂‖2n + 2λn

p∑
j=1

|β̂j | ≤ ‖Y −Xβ0‖2n + 2λn

p∑
j=1

|β0,j |.

Use the model Y = Xβ0 + u on the first left side term as well as the first right side term to simplify the

inequality above combining with Holder’s Inequality

‖X(β̂ − β0)‖2n + 2λn

p∑
j=1

|β̂j | ≤ 2

∣∣∣∣u′Xn (β̂ − β0)

∣∣∣∣+ 2λn

p∑
j=1

|β0,j |

≤ 2‖u
′X

n
‖∞‖β̂ − β0‖1 + 2λn

p∑
j=1

|β0,j |

On the right side assuming we are on the event A1

2‖u
′X

n
‖∞‖β̂ − β0‖1 ≤ λn‖β̂ − β0‖1.

So we have

‖X(β̂ − β0)‖2n + 2λn

p∑
j=1

|β̂j | ≤ λn‖β̂ − β0‖1 + 2λn

p∑
j=1

|β0,j |.

Use ‖β̂‖1 = ‖β̂S0
‖1 + ‖β̂S0

c‖1 on the second term for the left side of the inequality immediately above

‖X(β̂ − β0)‖2n + 2λn
∑
j∈Sc

0

|β̂j | ≤ λn‖β̂ − β0‖1 + 2λn

p∑
j=1

|β0,j | − 2λn
∑
j∈S0

|β̂j |.

By assumption of sparsity
∑
j∈Sc

0
|β0,j | = 0, and using the reverse triangle inequality we have

‖X(β̂ − β0)‖2n + 2λn
∑
j∈Sc

0

|β̂j | ≤ λn‖β̂ − β0‖1 + 2λn
∑
j∈S0

|β̂j − β0,j |.
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Next by ‖β̂ − β0‖1 = ‖β̂S0 − β0,S0‖1 + ‖β̂Sc
0
‖1 for the first term on the right side of the inequality

immediately above

‖X(β̂ − β0)‖2n + λn
∑
j∈Sc

0

|β̂j | ≤ 3λn
∑
j∈S0

|β̂j − β0,j |.

Use ‖β̂S0
− β0,S0

‖1 ≤
√
s0‖β̂ − β0,S0

‖2 above on the right side to have

‖X(β̂ − β0)‖2n + λn
∑
j∈Sc

0

|β̂j | ≤ 3λn
√
s0‖β̂S0

− β0,S0
‖2. (A.10)

Ignoring the first term on the left of (A.10), (A.10) shows that we satisfy the restricted set condition in

empirical adaptive restricted eigenvalue condition, so we have

‖β̂S0
c‖1 ≤ 3

√
s0‖β̂S0

− β0,S0
‖2.

Using δ = β̂ − β0 in the empirical adaptive restricted eigenvalue condition (A.8) in (A.10)

‖X(β̂ − β0)‖2n + λn
∑
j∈Sc

0

|β̂j | ≤ 3λn
√
s0
‖X ′(β̂ − β0)‖n

φ̂Σ̂(s0)
.

Then use 3uv ≤ u2/2 + 9v2/2 with u = λn
√
s0/φ̂Σ̂(s0), v = ‖X(β̂ − β0)‖n to get

‖X(β̂ − β0)‖2n + λn
∑
j∈Sc

0

|β̂j | ≤
‖X(β̂ − β0)‖2n

2
+

9

2

λ2
ns0

φ̂2
Σ̂

(s0)
.

Simplify above

‖X(β̂ − β0)‖2n + 2λn
∑
j∈Sc

0

|β̂j | ≤
9λ2

ns0

φ̂2
Σ̂

(s0)
.

Use the event A2 we get the following

‖X(β̂ − β0)‖2n + 2λn
∑
j∈Sc

0

|β̂j | ≤
18λ2

ns0

φ2
Σ(s0)

.

This implies the oracle inequality

‖X(β̂ − β0)‖2n ≤
18λ2

ns0

φ2
Σ(s0)

. (A.11)

To get to the l1 bound ignore the first term in (A.10) and add both sides λn‖β̂S0
− β0,S0

‖1 to have

λn
∑
j∈Sc

0

|β̂j |+ λn
∑
j∈S0

|β̂j − β0,j | = λn‖β̂ − β0‖1 ≤ λn‖β̂S0
− β0,S0

‖1 + 3λn
√
s0‖β̂S0

− β0,S0
‖2,

by seeing also
∑
j∈Sc

0
|β0,j | = 0. Now use the norm inequality ‖β̂S0

− β0,S0
‖1 ≤

√
s0‖β̂S0

− β0,S0
‖2 to have

λn‖β̂ − β0‖1 ≤ 4λn
√
s0‖β̂S0 − β0,S0‖2.

Use the empirical adaptive restricted eigenvalue condition with δ = β̂ − β0

‖β̂ − β0‖1 ≤ 4
√
s0
‖X(β̂ − β0)‖n

φ̂Σ̂(s0)
.
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Use (A.11) and the event A2 to have

‖β̂ − β0‖1 ≤ 4
√
s0

[
3
√

2λn
√
s0

φΣ(s0)

][
1

φ̂Σ̂(s0)

]

≤ 24λns0

φ2
Σ(s0)

. (A.12)

Note that uniformity over Bl0(s0) follows since the upper bound in (A.12) depends on β0 only through s0.

Q.E.D

Lemma A.2. (i). Under Assumption 1, and since κn = lnp

P (A1) ≥ 1− exp(−C1κn)− KEM2
1

(nκn)
= 1− 1

pC1
− KEM2

1

nlnp

(ii). Under added Assumption 2 to Assumption 1, P (A1)→ 1.

(iii). Under added Assumption 2 to Assumption 1, λn = O(
√
lnp/n).

Proof of Lemma A.2. (i). Establish the probability bound on A1 via Assumption 1, using (A.3)(A.4)

with Fi = Xiui there and κn = lnp, we have

P (A1) ≥ 1− exp(−C1κn)−K EM2
1

(nκn)
= 1− 1

pC1
− KEM2

1

nlnp
, (A.13)

with

λn = K[

√
lnp

n
+

√
EM2

1 lnp

n
] +

√
lnp

n
. (A.14)

(ii). By Assumption 2, we have the proof.

(iii). By Assumption 2, we have

λn = O(
√
lnp/n). (A.15)

Q.E.D.

Lemma A.3. Under Assumptions 1, 2, κn = lnp

P (A2) ≥ 1− exp(−C1κn)− KEM2
2

(nκn)
= 1− 1

pC1
− KEM2

2

nlnp
= 1− o(1).

Proof of Lemma A.3. Start with ∣∣∣∣δ′X ′Xn δ

∣∣∣∣ =

∣∣∣∣δ′(X ′Xn − Σ + Σ)δ

∣∣∣∣
≥ |δ′Σδ| − |δ′(Σ̂− Σ)δ|. (A.16)

The second term on the right side of (A.16) can be bounded by repeated application of Holders inequality

|δ′(Σ̂− Σ)δ| ≤ ‖δ‖21‖Σ̂− Σ‖∞.

So (A.16) becomes

|δ′Σ̂δ| ≥ |δ′Σδ| − ‖δ‖21‖Σ̂− Σ‖∞. (A.17)
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Now we digress a bit to simplify (A.17). Note that we have the restriction set definition

‖δSc
0
‖1 ≤ 3

√
s0‖δS0‖2,

where we add ‖δS0‖1 to both sides

‖δ‖1 ≤ 3
√
s0‖δS0

‖2 + ‖δS0
‖1

≤ 3
√
s0‖δS0

‖2 +
√
s0‖δS0

‖2

= 4
√
s0‖δS0‖2,

where we used the norm inequality ‖δS0‖1 ≤
√
s0‖δS0

‖2 in the second inequality above. So we get

‖δ‖21
‖δS0‖22

≤ 16s0.

Now divide (A.17) by ‖δS0‖22 > 0 to have

|δ′Σ̂δ|
‖δS0
‖22
≥ |δ

′Σδ|
‖δS0
‖22
− 16s0‖Σ̂− Σ‖∞.

Minimize over δ on the both sides

φ̂2
Σ̂

(s0) ≥ φ2
Σ(s0)− 16s0‖Σ̂− Σ‖∞. (A.18)

So if we can prove that with probability approaching one, 16s0‖Σ̂ − Σ‖∞ ≤ φ2
Σ(s0)/2, that will imply of

φ̂2
Σ̂

(s0) ≥ φ2
Σ(s0)/2 with probability approaching one. Define εn = 16s0t1, where

t1 = K[

√
lnp2

n
+

√
EM2

2 lnp
2

n
] +

√
lnp

n
. (A.19)

By (A.3)(A.4), via Assumption 1

P [16s0‖Σ̂− Σ‖∞ > εn] = P [‖Σ̂− Σ‖∞ > t1]

≤ exp(−C1lnp) +
KEM2

2

(nlnp)

→ 0, (A.20)

where we use Assumption 2 for the probability tail converging to zero. Also see that by Assumption 2,

εn → 0 since s0

√
lnp/n→ 0. So we get, with probability approaching one, 16s0‖Σ̂−Σ‖∞ ≤ εn ≤ φ2

Σ(s0)/2,

since left side of that inequality converges to zero in probability, and the right side is constant. Then by

(A.18)(A.20)

P [φ̂2
Σ̂

(s0) ≥ φ2
Σ(s0)/2] ≥ 1− exp(−C1κn)− KEM2

2

(nκn)

= 1− 1

pC1
− KEM2

2

nlnp

= 1− o(1). (A.21)

Q.E.D.

We need the following Lemma for the exception set Fc := {A1 ∩A2}c upper bound probability.
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Lemma A.4. Under Assumptions 1, 2, with κn = lnp

P (Fc) ≤ 2exp(−C1κn) +
K[EM2

1 + EM2
2 ]

(nκn)

=
2

pC1
+
K(EM2

1 + EM2
2 )

nlnp
= o(1).

Proof of Lemma A.4.

Now we provide an upper bound for the probability P (Fc) in our case under Assumptions 1, 2, by using

Lemmata A.2-A.3

P (Fc) = P (A1 ∩ A2)c = P (Ac1 ∪ Ac2) ≤ P (Ac1) + P (Ac2)

≤ 2exp(−C1κn) +
K[EM2

1 + EM2
2 ]

(nκn)

=
2

pC1
+
K[EM2

1 + EM2
2 ]

nlnp

→ 0. (A.22)

Q.E.D.

A.2.3 New Oracle Inequality Proofs

We start with proof of Theorems 1-2, where they are used as inputs to proof of Theorem 3. Theorems 1-2

consider the new oracle inequalities.

Proof of Theorem 1. We proceed in several steps.

Denote the joint event F = {A1 ∩ A2}. Fc is F ’s complement. See that

E‖β̂ − β0‖k1 = E‖β̂ − β0‖k11{F} + E‖β̂ − β0‖k11{Fc}. (A.23)

We want to form rates for the right side terms in (A.23).

Step 1. Note that by Lemma A.1, the first term on the right side of (A.23) is:

E‖β̂ − β0‖k11{F} = O(sk0λ
k
n). (A.24)

Now we want to evaluate the second term on the right side of (A.23). But before that we need the

following intermediate step.

Step 2. Use Nemirowski’s moment inequality, Lemma 14.24 in Buhlmann and van de Geer (2011), with

for all k ≥ 1, for the first inequality, and for the second inequality by Loeve’s cr inequality, and for the

equality we use ui being iid, also the definition of σ2 := Eu2
i ,

E

∣∣∣∣∣
∑n
i=1 u

2
i − σ2

n

∣∣∣∣∣
k

≤ [8ln(2)]k/2E

[∑n
i=1(u4

i )

n2

]k/2

≤ Cn(k/2)−1

nk

n∑
i=1

Eu2k
i

= C[Eu2k
i ]n−k/2 = O(n−k/2) = o(1),

27



by Assumption 1. Before the next result we provide the inequality,

|x+ y|k ≤ 2k−1(|x|k + |y|k), (A.25)

for k ≥ 1, and x, y being generic scalars, and σ2 being bounded above by Assumption 1 and using (A.25)

E

∣∣∣∣∣∣ 1n
n∑
i=1

u2
i

∣∣∣∣∣∣
k

= E

∣∣∣∣∣∣ 1n
n∑
i=1

(u2
i − σ2) + σ2

∣∣∣∣∣∣
k

≤ 2k−1

E
∣∣∣∣∣∣ 1n

n∑
i=1

(u2
i − σ2)

∣∣∣∣∣∣
k

+ (σ2)k


= O(n−k/2) +O(1) = O(1). (A.26)

Step 3. Now we have to form another l1 expectation bound for lasso that will be key to the second right

side term analysis in (A.23). This step 3 modifies the proof of Theorem 1, supplement, p.4 of Jankova and

van de Geer (2018). We extend their proof to non-sub-Gaussian case and show that their bound is very

conservative, and we provide a new less conservative bound. Start with the definition of lasso.

‖Y −Xβ̂‖2n + 2λn‖β̂‖1 ≤ ‖Y −Xβ0‖2n + 2λn‖β0‖1.

Ignore the first term and use the model u = Y −Xβ0 to have

‖β̂‖1 ≤
‖u‖2n
2λn

+ ‖β0‖1.

Then use triangle inequality and then the inequality above

‖β̂ − β0‖1 ≤ ‖β̂‖1 + ‖β0‖1 ≤
‖u‖2n
2λn

+ 2‖β0‖1. (A.27)

Next taking the k th moment of the sampling error in l1 norm, and using (A.25) by taking expectations

there for the second inequality below

E‖β̂ − β0‖k1 ≤ E

[
‖u‖2n
2λn

+ 2‖β0‖1

]k
≤ 2k−1{E

[
‖u‖2n
2λn

]k
+ 2‖β0‖k1} (A.28)

We use the assumption ‖β0‖2 = O(1) to have

‖β0‖k1 ≤ (
√
s0‖β0‖2)k = O(s

k/2
0 ). (A.29)

Then use the last equation with (A.26) in (A.28) to have

E

[
‖u‖2n
2λn

]k
+ 2‖β0‖k1 = O(λ−kn ) +O(s

k/2
0 ) = O(max(s

k/2
0 , λ−kn )). (A.30)

Note that proof of Jankova and van de Geer (2018) use s
k/2
0 λ−kn but this is very conservative upper bound

since both two terms in multiplication is diverging with n. But a better bound is max(s
k/2
0 , λ−kn ).
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We get the rough bound for expectation using (A.30) in (A.28)

E‖β̂ − β0‖k1 = O(max(s
k/2
0 , λ−kn )). (A.31)

Note that rates in (A.24)(A.31) are different and the last rate in this step is a rough bound which will be

helpful in the next step. The rate in (A.31) is diverging to infinity.

Step 4. Rewrite the expectation using event F ,Fc.

E‖β̂ − β0‖k1 = E‖β̂ − β0‖k11{F} + E‖β̂ − β0‖k11{Fc}

≤ O(sk0λ
k
n) +

√
E‖β̂ − β0‖2k1

√
E1{Fc}

= O(sk0λ
k
n) +O(max(s

k/2
0 , λ−kn ))

√
P (Fc) (A.32)

where we use (A.24) and Cauchy-Schwartz inequality for the first inequality, and the second equality is by

(A.31).

First possibility of a rate is (jointly holding):

sk0λ
k
n ≥ s

k/2
0 P (Fc)1/2. (A.33)

sk0λ
k
n ≥ λ−kn P (Fc)1/2. (A.34)

By (A.32)(A.33)(A.34)

E‖β̂ − β0‖k1 = O(sk0λ
k
n).

We can simplify further (A.33)(A.34), respectively they are

λn ≥ P (Fc)1/2k/s
1/2
0 , (A.35)

and

λn ≥ P (Fc)1/4k/s
1/2
0 . (A.36)

Since P (Fc)1/4k ≥ P (Fc)1/2k, k ≥ 1 (A.34) implies (A.33) or (A.36) implies (A.35). So if λn ≥

P (Fc)1/4k/s
1/2
0 then

E‖β̂ − β0‖k1 = O(sk0λ
k
n). (A.37)

Of course there is another possibility-subcase that provides the rate in (A.37). That is when

sk0λ
k
n ≥ λ−kn P (Fc)1/2, (A.38)

jointly holding with

λ−kn P (Fc)1/2 ≥ sk/20 P (Fc)1/2. (A.39)
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This results in the same sufficient condition (A.36) via only (A.38) since by Assumption 2, s0λn → 0 which

results in by rewriting (A.39): 1 ≥ (s0λn)k/s
k/2
0 . So (A.39) is always satisfied with sufficiently large n. Note

also that joint inequalities sk0λ
k
n ≥ s

k/2
0 P (Fc)1/2 jointly holding with

s
k/2
0 P (Fc)1/2 ≥ λ−kn P (Fc)1/2 (A.40)

is not possible since (A.40) implies s
k/2
0 λkn ≥ 1 which is equivalent to (s0λn)k/(s

k/2
0 ) ≥ 1 . This last inequality

cannot hold given s0λn → 0 Assumption 2 in large n.

To combine all the results for the k th moment of the estimation error, for values of λn ≥ P (Fc)1/4k/s
1/2
0 ,

E‖β̂ − β0‖k1 = O(sk0λ
k
n).

The uniformity over Bl0(s0) follows since the rates in (A.24)(A.31)-(A.34) depends on β0 only by s0.

Q.E.D.

Remark. Proof of Theorem 1 in Jankova and van de Geer (2018), in their appendix, p.5, shows that they

use assumption:

λn ≥
P (Fc)1/4k

s
1/4
0

, (A.41)

which is equivalent to the following condition as shown in p.3 of proof of Theorem 1 in Jankova and van de

Geer (2018)

τ2 > 2kln[(
√
s0λ

2
n)−1]/lnp,

given that λn ≥ Cτ
√
lnp/n and C > 0, τ > 1 with

P (Fc) ≤ 2

(2p)τ2/2
(A.42)

by Lemma 7 in appendix of Jankova and van de Geer (2018). Our result and theirs are not comparable in

terms of λn since they assume sub-Gaussian data, and ours is more general.

Proof of Theorem 2.

We start with

E‖β̂‖k1 = E‖β̂‖k11{F} + E‖β̂‖k11{Fc} ≤ E‖β̂‖k11{F} +

√
E‖β̂‖2k1

√
P (Fc), (A.43)

by using Cauchy-Schwartz inequality. Then use triangle inequality on set F and by Lemma A.1, and norm

inequality to have

‖β̂‖1 ≤ ‖β̂ − β0‖1 + ‖β0‖1

≤ 24λns0

φ2
Σ(s0)

+
√
s0‖β0‖2

= Op(
√
s0),

by Assumptions 1, 2. This last rate shows that

E‖β̂‖k11{F} = O(s
k/2
0 ). (A.44)
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To handle the second right side term in (A.43) we start with the second inequality in (A.27) and ignore

‖β0‖1 in the middle to have

‖β̂‖1 ≤
‖u‖2n
2λn

+ ‖β0‖1.

then follow (A.30) to get √
E‖β̂‖2k1 P (Fc)1/2 = O(max(s

k/2
0 , λ−kn ))P (Fc)1/2

= O(λ−kn P (Fc)1/2), (A.45)

and to get the second equality by Assumption 2(ii) (s0λn)k/s
k/2
0 ≤ 1 since the ratio on the left converges to

zero, so this means s
k/2
0 ≤ λ−kn with sufficiently large n.

Now use (A.44) with (A.45) in (A.43)

E‖β̂‖k1 = O(s
k/2
0 ) +O(λ−kn P (Fc)1/2). (A.46)

If λn ≥ P (Fc)1/2k/s
1/2
0 it is clear that

s
k/2
0 ≥ λ−kn P (Fc)1/2, (A.47)

So by (A.47) in (A.46) we have the desired result. Q.E.D.

Q.E.D.

A.2.4 Main Theorem Proof: Incentive Compatibility

Proof of Theorem 3.

By Theorem 1 and 2 we can choose the larger of λn in those theorems, with s0 ≥ 1, and since it is

nondecreasing with n,

λn ≥
P (Fc)1/4k

s
1/2
0

≥ P (Fc)1/2k

s
1/2
0

(A.48)

Add and subtract X ′n+1β̂ inside the right hand side of the incentive compatibility definition:

E[X̃ ′n+1β̂ −X ′n+1β0]2 = E[X̃ ′n+1β̂ −X ′n+1β̂ +X ′n+1β̂ −X ′n+1β0]2

= E[X̃ ′n+1β̂ −X ′n+1β̂]2 + E[X ′n+1β̂ −X ′n+1β0]2

+ E[β̂′(X̃n+1 −Xn+1)X ′n+1(β̂ − β0)]

+ E[(β̂ − β0)′Xn+1(X̃ ′n+1 −X ′n+1)β̂]. (A.49)

Using the definition of incentive compatibility, with defining Dn+1 := X̃n+1 −Xn+1, we have

E[X̃ ′n+1β̂ −X ′n+1β0]2 − E[X ′n+1β̂ −X ′n+1β0]2 = E[β̂′Dn+1D
′
n+1β̂] (A.50)

+ E[β̂′Dn+1X
′
n+1(β̂ − β0)] (A.51)

+ E[(β̂ − β0)′Xn+1D
′
n+1β̂]. (A.52)
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Now analyze (A.51), the analysis of (A.52) is the same and thus omitted. See that

β̂′Dn+1X
′
n+1(β̂ − β0) ≤ |β̂′Dn+1X

′
n+1(β̂ − β0)|

≤ |β̂′Dn+1||X ′n+1(β̂ − β0)|

≤ ‖β̂‖1‖Dn+1‖∞‖Xn+1‖∞‖β̂ − β0‖1, (A.53)

where we use Holder’s inequality. Then

E[β̂′Dn+1X
′
n+1(β̂ − β0)] ≤ E

[
‖β̂‖1‖Dn+1‖∞‖Xn+1‖∞‖β̂ − β0‖1

]
(A.54)

≤ [E‖β̂4
1 ]1/4[E‖Dn+1‖4∞]1/4[E‖Xn+1‖4∞]1/4[E‖β̂ − β0‖41]1/4 (A.55)

= [E‖β̂4
1 ]1/4[EM4

4 ]1/4[EM4
3 ]1/4[E‖β̂ − β0‖41]1/4 (A.56)

where we apply (A.53) for the first inequality and Holder’s Inequality in the second inequality above, and

the last equality comes from M3,M4 definitions. Then we apply Theorems 1-2 with k = 4. We assume

λn ≥ P (Fc)1/16/s
1/2
0 and if

s
3/2
0

√
lnp

n
[EM4

3 ]1/4[EM4
4 ]1/4 → 0, (A.57)

we see that (A.56) goes to zero, by Theorems 1-2, and λn = O(
√

lnp
n ).

So looking at incentive compatibility definition and (A.50)-(A.52)

E[X̃ ′n+1β̂ −X ′n+1β0]2 − E[X ′n+1β̂ −X ′n+1β0]2 = E[β̂′Dn+1D
′
n+1β̂] + o(1), (A.58)

where the first right side term in (A.58) is nonnegative and the other terms are negligible in large samples

by (A.57).

The uniformity over Bl0(s0) goes through since Theorems 1, 2 depend on β0 only through s0, and they

are the main ingredient in the proof.

Q.E.D.

B Appendix B

Here we consider results when p ≤ n, and relaxing Assumption 2(iii).

B.1 When p ≤ n

There are minor modifications in the proofs compared to p > n. We consider them here. One major change

is since p ≤ n, we set κn = lnn. Change Assumption 2(ii) so that s0

√
ln/n→ 0.

We provide the maximal inequality here. Now take the case of p ≤ n, and combine (A.2) with (A.3) to

have with κn = lnn in that case

P ( max
1≤j≤p

|µ̂j − µj | ≥ 2K[

√
lnp√
n

+
(EM2

F )1/2lnp

n
] +

√
lnn√
n

)

≤ 1

nC1
+

EM2
F

n(lnn)
= o(1), (B.1)
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by Assumptions A1-A.2. To see this point

EM2
F

nlnn
=

( (EM2
F )1/2

√
lnp√

n

)
1√

lnn
√
lnp

2

= o(1). (B.2)

This shows also that

max
1≤j≤p

|µ̂j − µj | = Op(
√
lnn/

√
n). (B.3)

Lemma A.1 will be the same. Lemma A.2(i) lower bound probability has κn = lnn now. Lemma A.2(ii)

is the same. Lemma A.2(iii) will change to λn = O(
√
lnn/

√
n). Lemma A.3 use κn = lnn, so (A.19) becomes

t1 = K[

√
lnp2

√
n

+

√
EM2

2 lnp
2

n
] +

√
lnn

n
.

Lemma A.4 is the same with κn = lnn.

Given these results, the proof of Theorem 1 is the same with λn = O(
√

lnn
n ). Theorem 2 does not change.

Theorem 3 condition will be changing to

s
3/2
0

√
lnn

n
[EM4

3 ]1/4[EM4
4 ]1/4 → 0,

B.2 Relaxing Assumption 2(iii)

In this subsection we relax Assumption 2(iii) from ‖β0‖2 = O(1) to ‖β0‖2 = O(
√
s0) and we explain the

logic and meaning of this new assumption.

Assumption 2(iv).

‖β0‖2 = O(
√
s0).

Assumption 2(iii) which is suggested by Jankova and van de Geer (2018) and simplifies their paper in

semiparametric efficient estimators. Our Assumption 2(iv) here generalizes that assumption and in the case

of s0 being constant becomes Assumption 2(iii). The implication of Assumption 2(iv) is that all nonzero

coefficients can be constant and none of them has to be local to zero.

‖β0‖2 =

√√√√ p∑
j=1

β2
0,j =

√∑
j∈S0

β2
0,j = O(

√
s0).

In terms of Section 2 discussion after Assumption 2, this implies S0 = F1, and F2 is an empty set. So

Assumption 2(iv) can simultaneously allow s0 increasing with n, and all large nonzero coefficients in S0.

Previously in Assumption 2(iii), there can be only a fixed number of large coefficients, and increasing (s0−f1)

number of local to zero (small) coefficients.

We proceed in a way that we only change the proofs in Appendix A, when necessary. All lemmata in

Appendix A goes through, there is no usage of Assumption 2(iii) there. The first change comes in step 3
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of Theorem 1 proof. First (A.29) changes to ‖β0‖k1 = O(sk0) under Assumption 2(iv) instead of Assumption

2(iii). Then (A.30) becomes

E

[
‖u‖2n
2λn

]k
+ 2‖β0‖k1 = O(max(sk0 , λ

−k
n )). (B.4)

Then (A.32) changes to following

E‖β̂ − β0‖k1 = O(sk0λ
k
n) +O(max(sk0 , λ

−k
n )
√
P (Fc). (B.5)

Instead of (A.33)(A.34) we have the following conditions, to establish the rate for the oracle inequality (i.e.

mean l1 norm bound to k th order)

sk0λ
k
n ≥ sk0P (Fc)1/2. (B.6)

sk0λ
k
n ≥ λ−kn P (Fc)1/2. (B.7)

Using (B.5)-(B.7)

E‖β̂ − β0‖k1 = O(sk0λ
k
n). (B.8)

The conditions (B.6)(B.7) can be written as

λn ≥ max(P (Fc)1/2k, P (Fc)1/4k/s
1/2
0 ), (B.9)

where the tuning parameter choice under Assumption 2(iv) which is (B.9) is larger than or equal to choice

by Assumption 2(iii), which is the second component in the max on the right side of (B.9). The discussion

after this in step 4 is the same, given Assumption 2(i)-(ii). So we have the following result:

Corollary B.1. Under Assumptions 1, 2(i)(ii)(iv), with

λn ≥ max(P (Fc)1/2k, P (Fc)1/4k/s
1/2
0 ).

we have

[E‖β̂ − β0‖k1 ]1/k = O(s0λn).

The result is also uniform over l0 ball Bl0
Now we modify the proof of Theorem 2. In that respect, by Assumption 2(iv) the rate after (A.43)

becomes

‖β̂‖1 = Op(s0). (B.10)

Then (A.46) changes to

E‖β̂‖k1 = O(sk0) +O(λ−kn P (Fc)1/2). (B.11)

We can show that

sk0 ≥ λ−kn P (Fc)1/2, (B.12)

if we have

λn ≥ P (Fc)1/2k/s0. (B.13)
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Then given (B.13), using (B.12) in (B.11) we have

E‖β̂‖k1 = O(sk0).

So we established the following Corollary to Theorem 2. The result is different from Theorem 2 and the k

th moment of l1 error grows faster here in Corollary B.2 if s0 increases with n. So relaxed assumption comes

with a cost that will affect main incentive compatibility condition.

Corollary B.2. Under Assumptions 1, 2(i)(ii)(iv), with

λn ≥ P (Fc)1/2k/s0.

we have

[E‖β̂‖k1 ]1/k = O(s0).

The result is also uniform over l0 ball Bl0
Now we follow the proof of Theorem 3 and substitute Assumption 2(iv) instead of Assumption 2(iii).

Note that our λn choice must choose the maximum of the ones in Corollary B.1 and B.2. Clearly Corollary

B.1 tuning parameter is larger than the one in Corollary B.2. The only place we have to change there is

(A.57). Given λn ≥ max(P (Fc)1/8, P (Fc)1/16

s
1/2
0

) we need

s2
0

√
lnp

n
[EM4

3 ]1/4[EM4
4 ]1/4 → 0,

to have Incentive Compatibility in large samples. So we have the following counterpart to Theorem 3.

Corollary B.3.Under Assumptions 1, 2(i)(ii)(iv) and

λn ≥ max(P (Fc)1/8,
P (Fc)1/16

s
1/2
0

),

and

s2
0

√
lnp

n
[EM4

3 ]1/4[EM4
4 ]1/4 → 0,

lasso is Incentive Compatible. The result is also uniform over l0 ball Bl0 .

Clearly, there are two differences between Theorem 3 and Corollary B.3 here. First, we need a tuning

parameter in Corollary B.3 which may be larger than or equal to the one in Theorem 3. Then, incentive

compatibility of lasso is more difficult to achieve, due to sparsity, s0, having exponent of 2 here instead of

3/2 in Theorem 3.
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