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Abstract

I propose a model of a skill-replacing routine-biased-technological-change (SR-

RBTC). In this model, technology substitutes the usage of skill in routine tasks, in

contrast to standard RBTC models which assume technology replaces the workers

themselves. The SR-RBTC model explains three key trends that are inconsistent with

standard RBTC models: why specifically middle-wages declined even though rou-

tine workers are dispersed across the entire bottom half of the wage distribution, why

middle-wages stopped declining while the technological change continued, and why

there is no substantial decline in the average wage of routine workers. I derive two

new testable predictions from the model: a decrease in return to skill, and a decrease

in skill level in routine occupations. I use an interactive-fixed-effect model to con-

firm both predictions. Since SR-RBTC violates the ignorability assumption required

by standard decomposition methods, I introduce “skewness decomposition” to show

that SR-RBTC is the main driver of bottom-half inequality trends.
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1 Introduction

In recent decades, inequality at the bottom half of the U.S. wage distribution has been
fluctuating. Figure 1 plots the evolution of the 90/50 and 50/10 wage ratios over time.
At the upper half of the distribution, inequality has been steadily rising for more than
three decades. At the bottom half, inequality was equally rising in the early 1980s due to
skill-biased technological change (Katz and Murphy, 1992). Yet in the late 1980s, trends
within the upper and lower halves of the distribution started to diverge, as bottom-half
inequality started to decline. This generated a relative decrease in middle-wages that
is often referred to as “wage polarization.” Inequality at the bottom half then stopped
declining and even started to moderately increase around the year 2000. The leading
explanation for these trends is routine-biased-technological-change (RBTC): a decline in
demand for routine tasks (Autor et al., 2006).

But while there is strong evidence that supports the existence of RBTC, this theory can-
not explain some of the key stylized facts. Prominent models for RBTC (e.g., Acemoglu
and Autor, 2011) argue that routine tasks, which can be more easily automated, require
middle-skilled workers. As a result, middle-skilled workers should see the largest de-
cline in their wages when automation expands. Yet, these models cannot explain why
the decline in middle wages stopped around the year 2000, while evidence suggests that
RBTC continued long afterward (Autor, 2014). It is also hard to support the assumption
that RBTC reduces demand mostly for middle-skilled workers when routine workers are
actually dispersed almost equally across the entire bottom half of the wage distribution
(Autor and Dorn, 2013). Moreover, it is not clear why average wage declines in routine
occupations are relatively modest, compared to the substantial decline in employment.
Different decomposition methods found that the decrease in wages in routine occupa-
tions is too small to account for the aforementioned wage trends (Autor et al., 2005; Firpo
et al., 2013). These unresolved puzzles leave room for consideration of other explanations
for the fluctuations in bottom-half inequality (Hunt and Nunn, 2019), such as fluctuations
in the real minimum wage (Piketty, 2014), decline in unions (Firpo et al., 2013), business
cycles (Foote and Ryan, 2015), demand growth in the service sector (Autor and Dorn,
2013), or the low unemployment rate during the 1990s.

In this paper, I show theoretically and empirically that a small, yet important, mod-
ification to the RBTC model can solve all these puzzles. Instead of assuming that new
technology is replacing workers, I assume that it replaces their skill. For instance, calcula-
tors replace the need for arithmetic skills and allow workers with low arithmetic abilities
to perform calculation tasks equally well. As a result, the return to skill drops in rou-
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tine occupations. This reduces wages for high-skill routine workers, but could actually
increase wages for low-skill routine workers. Overall, the average decrease in wages for
routine workers would be modest, but wage gaps within routine workers would drop
considerably. At first, wage gaps at the bottom half of the distribution, where most rou-
tine workers are concentrated, decline. But gradually, the relative decline in their wages
incentivizes middle-skilled workers to leave (or never join) routine occupations. At that
point, while SR-RBTC continues, it does not affect middle-skilled workers since they do
not perform routine tasks anymore. Instead, it mostly reduces wages of low-skilled work-
ers, which makes inequality at the bottom half rise again.

I test this model in the data in two distinct ways. First, I confirm the above model pre-
dictions using an interactive fixed-effect model (IFEM). Using this model I find that the
return to skill has sharply declined in routine occupations, making them the occupations
with the lowest return to skill. I also show that with time, the composition of workers in
routine occupations becomes less skilled until eventually, they employ the lowest-skilled
workers on average. Second, I introduce a “skewness decomposition”, which can quan-
tify the wage impact of SR-RBTC. Using this decomposition, I find that almost the entire
trend of wage polarization (93%) is attributed to occupations, and is mostly driven by the
decrease in inequality in low-paying routine occupations, consistent with the prediction
of the SR-RBTC model. Taken together, my results suggest that SR-RBTC is not only con-
sistent with the data, but is also the main driver of bottom-half inequality trends in recent
decades.

I start by outlining the theoretical framework of the paper. I construct a model where
workers can be characterized by a one-dimensional continuous skill. Workers are em-
ployed in one of three occupations that vary in their return to skill (similar to Jung and
Mercenier, 2014; Cortes, 2016). In equilibrium, workers are allocated to occupations based
on comparative advantage. The lowest-skilled workers sort into the manual occupation,
middle-skilled to the routine occupation, and the highest-skilled workers into the abstract
occupation.

The model deviates from the majority of the previous literature by assuming that the
new technology in the routine occupation substitutes the skill of workers in this occu-
pation. This skill-replacing technology reduces the return to skill in the routine occupa-
tion, which generates larger wage decreases for higher-skilled routine workers. This dif-
fers from previous models (i.e., Acemoglu and Autor, 2011; Cortes, 2016) which assume
a skill-neutral technological change, where the wage effects are identical to all routine
workers, regardless of their skill levels. It also differs from skill-enhancing models (Jung
and Mercenier, 2014) that make the opposite assumption that technology increases the re-
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turn to skill for routine workers. It is conceptually similar to Downey (2021) who argues
new technology benefits low-skill workers.

There are many examples of skill-replacing technology in routine occupations. Cashiers
today do not need any arithmetic skills, as all calculations are automated; administrators
typically do not need to memorize any procedures or customer details, as most of them
are computerized; production workers rarely use their physical strength anymore as ma-
chines can perform many physical tasks. Yet, counterexamples exist as well. Therefore,
the empirical part of this paper tests how well the SR-RBTC model fits the data.

SR-RBTC predicts a non-monotonic relationship between technological advancement
and inequality at the bottom half of the distribution, consistent with the trends in recent
decades. A decrease in return to skill in the routine occupation would generate the largest
decrease in wages for the highest earning routine workers. Empirically, the highest earn-
ing routine workers used to be concentrated in the middle of the wage distribution.1 A
decrease in their wages would generate wage polarization. This creates an incentive for
middle-wage workers to switch occupations, which generates a large decrease in em-
ployment in the routine occupation. The average wage in the routine occupation does
not necessarily decrease as low-skill routine workers may benefit from the change.

At some point, the return to skill in the routine occupation would fall below its level in
the manual occupation. When such a reversal of comparative advantage occurs, workers
would completely reallocate and only the lowest-skilled workers would choose to work
in the routine occupation. After this reversal, SR-RBTC would reduce wages for the re-
maining routine workers who would be at the bottom of the wage distribution. SR-RBTC
would not affect middle-wage workers directly as they would no longer work in the rou-
tine occupation. Therefore, inequality at the bottom of the distribution would rise.

To directly test the model, I derive two new predictions that can distinguish a skill-
replacing RBTC from a skill-neutral or skill-enhancing RBTC. First, the model predicts a
decrease in return to skill in the routine occupation. Second, it predicts a gradual decline
in the skill level of workers in the routine occupation. These trends should continue
throughout the entire period of RBTC, starting in the late 1980s. At some point, the return
to skill in the routine occupation should fall below the return in the manual occupation,
leading to a reversal of comparative advantage. Following such reversal, the average skill
level should be lower in the routine occupation, compared to the manual occupation.

To test these predictions, I estimate an interactive fixed-effects model (IFEM). IFEM is

1This is shown in Appendix Figure A1, which plots the average routine intensity index of workers’
occupation by their wage percentile in 1990. Routine workers are concentrated at the bottom three quintiles
of the wage distribution, and so the highest earning routine workers are around the median. The routine
intensity index is defined in Appendix B. This result is similar to that of Autor and Dorn (2013, Figure 4).
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a more general version of the standard fixed-effects model. It regresses log wages on a
set of independent variables, including worker fixed effects that capture unobserved skill.
The only difference from a standard fixed-effects model is that the worker fixed effects are
interacted with the year and occupation. This interaction allows the return to the unob-
served skill to vary over time and between occupations, as the SR-RBTC model predicts.
Since the unobserved skill is estimated with noise, I instrument for the unobserved skill
with years of schooling to prevent an attenuation bias. For this exercise, I use data from
the Panel Study of Income Dynamics (PSID) between 1980–2011.

The results from the IFEM generate new empirical facts that are consistent with both
model predictions. I find a sharp decrease in the return to skill in routine occupations
starting in the late 1980s, exactly when inequality at the bottom half of the distribution
started to decline. The return to skill in routine occupations continued to decrease for
more than two decades. I also find that the average skill level in routine occupations, as
measured using the IFEM, steadily fell during this period. As a result, routine workers
became more concentrated at the bottom income quintile, instead of working in middle-
wage jobs. Previous work investigating the compositional change in routine occupations
has focused mainly on the employment decline in routine occupations (Goos and Man-
ning, 2007; Goos et al., 2009, 2014), and the flow of workers in and out of routine occupa-
tions (Cortes, 2016; Cortes et al., 2020). However, there has been little discussion on the
impact of these employment trends on the average skill level in routine occupations.

Estimates from the IFEM are consistent with a reversal of comparative advantage at
the bottom of the distribution. I find that around 1987, before inequality started to de-
cline at the bottom of the distribution, the return to skill was slightly higher in routine
occupations compared to manual occupations. During this time, the average skill level
of routine workers was substantially higher than the skill level of manual workers. With
time, the return to skill in routine occupations fell far below its value in manual occupa-
tions. The average skill level of routine workers also declined and, by 2009, it fell below
the average skill level in manual occupations. As a result, routine workers and especially
those in administrative or operator occupations have the lowest level of skill across all
occupational categories.2

In the final part of the paper, I use a decomposition exercise to show that SR-RBTC is
substantial enough to account for the overall wage trend. While the IFEM results support

2By 2011 manual workers still earned less than routine workers on average, despite having a higher
skill level. One reason for this is that routine workers are more experienced. Additionally, some of the
lowest-skilled workers still worked in manual occupations and earned lower wages than routine workers
with a similar level of skill. This is consistent with the model’s prediction that after a large SR-RBTC the
lowest-skilled workers earn a higher income if they work in the routine occupation.
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the SR-RBTC hypothesis, they do not necessarily reject potential concurrent mechanisms
for the fluctuations in inequality at the bottom half of the distribution. A common way to
quantify the contribution of various mechanisms to the overall wage trends is by using
a decomposition method (Juhn et al., 1993; DiNardo et al., 1996; Katz and Autor, 1999).
Yet, previous attempts to decompose wage polarization have found that technological
changes cannot explain the overall wage trend (Autor et al., 2005; Firpo et al., 2013). One
important exception is a contemporaneous paper by Acemoglu and Restrepo (2021), who
show technological change can explain the majority of the rise of inequality between skill
groups. I show that SR-RBTC can explain both the increase and the decrease in inequality,
for the entire bottom-half of the distribution, and not just across skill groups.

Most commonly used decomposition methods cannot quantify the impact of SR-RBTC
since it violates the “ignorability assumption.” Decomposition methods that simulate
full counterfactual distributions (Juhn et al., 1993; DiNardo et al., 1996), as well as RIF-
regressions (Firpo et al., 2009), all operate under this assumption of ignorability. In this
context, the ignorability assumption implies that the distribution of the unobserved skill
and its return are the same across occupations. But, the two key effects of SR-RBTC are
exactly its impact on the composition of skill and the unequal return to skill across occu-
pations.

Instead, I introduce a skewness decomposition to quantify the effect of SR-RBTC on
the overall wage trends.3 In analogy to inequality that can be measured with the second
moment of the log wage distribution, wage polarization can be measured with the third
moment of that distribution, namely, skewness. When inequality increases at the top and
decreases at the bottom, the log wage distribution becomes more positively skewed and
so this moment should increase. As expected, the skewness increases exactly when wage
polarization occurs. The main advantage of using skewness to measure wage polarization
is that, similar to variance, it can be decomposed into independent components (Mincer,
1974). Unlike in many commonly used decomposition methods, in skewness decompo-
sition these components do not depend on any arbitrary choice of baseline year and are
not affected by path dependence (Fortin et al., 2011).

Skewness decomposition breaks the trend of wage polarization into three components
for each choice of categorical groups (e.g. occupations, industries, education levels, etc.).
Similar to variance decomposition, skewness decomposition has a between-group and
a within-group components. The between-group component captures any wage trend
that affects all workers in the same group similarly (e.g., an overall decline in wages in
routine occupations). The within-group component captures any unexplained trend that

3This is the first implementation of skewness decomposition on economics data.
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is orthogonal to that grouping.
My focus will be on the third component, which captures violations of the ignorability

assumption. This component measures the covariance between the mean and variance in
each group. It is higher when higher-earning groups have larger inequality. Hence, if
wage gaps decrease in lower-paying routine occupations, while they increase in higher-
paying abstract occupations, as the model predicts, this will be captured by this covari-
ance component. Therefore, skewness decomposition is particularly useful to quantify
the impact of SR-RBTC. 4

I find that 93% of the overall wage polarization is driven by occupational trends. I
decompose the increase in skewness by occupations using data from the Current Popu-
lation Survey Outgoing Rotation Groups (CPS-ORG). This data has a large sample size
and measures the price of labor most precisely (Lemieux, 2006). I focus on the period
of wage polarization during the 1990s, as afterward, inequality at the bottom of the dis-
tribution is relatively stable. Ninety three precent of the rise in skewness is driven by
either the covariance component or the between-occupation component, and only 7% by
the within-occupation component. For comparison, trying to decompose the increase
in skewness by other categorical groups such as industry or education can explain only
small portions of wage polarization.

The decomposition results indicate that RBTC is skill-replacing. Skill-neutral RBTC
models (e.g., Acemoglu and Autor, 2011) assume a decrease in the price of routine tasks.
Under this assumption wage changes are driven mainly by a decrease in the premium for
routine occupations, and not by any distributional changes within routine occupations.
Therefore, skewness decomposition should show a large increase in the between-group
component. However, I find that almost the entire increase (78%) is in the covariance
component. Moreover, I find that the covariance component increases during the period
of wage polarization because of a decrease in inequality in routine occupations, exactly
as predicted by the SR-RBTC model. This decrease in inequality in routine occupations
was also documented by Lemieux (2007), and causally identified by Gaggl and Wright
(2017). Using skewness decomposition I find that the decrease in inequality in routine
occupations is actually the main driver of wage polarization, far beyond the decrease in
the occupation premiums.

I conclude this paper by discussing alternative explanations for these wage trends and
showing they are less consistent with my findings. I also briefly discuss similarities and
discrepancies with bottom half inequality in other developed countries and their potential

4Since this decomposition could be useful in various other contexts in economics, I developed an R
package for public use that can be downloaded from CRAN.
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explanation.

2 Model

2.1 Occupational Sorting by Skill

I outline a model that highlights the difference in return to skill in each occupation, build-
ing on earlier work by Jung and Mercenier (2014) and Cortes (2016). Assume that work-
ers have a one-dimensional skill, θi with some density function f (θ). This assumption
is more general than the assumption of a discrete number of skill levels (Katz and Mur-
phy, 1992; Autor et al., 2006; Acemoglu and Autor, 2011), but less general than assuming
multidimensional skills (Roy, 1951).5

Occupations are characterized by their return to skill. To simplify, I will assume three
occupations: manual, routine, and abstract. In each occupation j ∈ {M, R, A}, workers
produce an intermediate good with a production function ϕj (θi). Assume that in baseline

∀θ :
∂ log ϕM (θ)

∂θ
<

∂ log ϕR (θ)

∂θ
<

∂ log ϕA (θ)

∂θ
(1)

so that the manual occupation has the lowest return to skill, and the abstract occupation
has the highest. Assume also that for every θ and every occupation

∂ log ϕj(θ)
∂θ > c for some

constant c > 0, implying that the return to skill is strictly positive at any level.
Under the assumption of perfect competition, wages are set at the marginal produc-

tivity. Let pj be the price of the intermediate good in occupation j. Therefore, if worker i
is working in occupation j, she will earn

wj (θi) = pj ϕj (θi)

Workers sort into occupations based on comparative advantage. Condition 1 guaran-
tees the existence of two thresholds θ0, θ1 such that any worker with θi < θ0 will choose
to work in the manual occupation, any worker with θ0 < θi < θ1 will choose the rou-
tine occupation, and any worker with θi > θ1 will choose the abstract occupation (Jung
and Mercenier, 2014). Workers with a skill level that exactly equals the threshold will be

5In Section 5 I provide supportive evidence for this restriction by estimating a model with multidimen-
sional skills and show that the skills are strongly correlated.
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indifferent; hence the following two equations will hold in equilibrium:

pM ϕM (θ0) = pR ϕR (θ0)

pR ϕR (θ1) = pA ϕA (θ1)

Figure A2 shows this graphically, by plotting the equilibrium log wages by skill level θi.

2.2 Routine-Biased Technological Change

I focus on technological change that improves productivity in the routine occupation. For
simplicity, I assume that the technological change affects only ϕR directly, as this change
is sufficient for explaining the inequality trends at the bottom of the wage distribution.
Hence, ϕM, ϕA are left unchanged. However, wages in the manual and abstract occupa-
tions will be affected as well in a general equilibrium.

Specifically, I assume the following functional form:

ϕR (θi; τ) =

(
θ

σ−1
σ

i + τ
σ−1

σ

) σ
σ−1

where τ is the level of technology and σ > 0 is the elasticity of substitution between
technology and skill.

RBTC would then be modeled as an increase in the technology level τ over time. An
increase in τ can be thought of as an improvement in the quality of computers or robots.
Thus, RBTC enables every routine worker to produce more since ∂ϕR(θ,τ)

∂τ > 0. At the
same time, it also enables the production of the same quantity with fewer workers.

While RBTC makes all routine workers more productive, some workers may experi-
ence larger productivity gains than others. This could affect income gaps within workers
in the routine occupation. Whether income gaps increase, decrease, or remain constant
depends on the value of the elasticity of substitution between technology and skill, σ.

Theorem 1. Let θa, θb ∈ (θ0, θ1) be the skill levels of two workers in the routine occupation where
θa < θb. Let wa, wb denote their corresponding equilibrium wages. The effect of an improvement
in technology τ on the wage ratio wb

wa
depends on σ such that

sign

(
∂ wb

wa

∂τ

)
= sign (1− σ)

All proofs are given in Appendix A.
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If σ equals 1, RBTC is skill-neutral as in Cortes (2016). The effect on log wages will
be the same for all workers in the routine occupation. If σ < 1, as hypothesized by Jung
and Mercenier (2014), the new technology increases gaps between skill levels. If σ > 1,
technology is a substitute for skill, and the return to skill declines. For instance, cashiers
no longer need to use any arithmetic, librarians no longer depend on their memory to
locate books, and production workers rely on their physical strength much less than they
used to. I will use Theorem 1 to show that σ > 1 is most consistent with the data.

The key difference between this model and previous models of RBTC is the focus on
the substitutability between technology and skill, instead of the substitutability between
technology and the routine workers themselves. Previous models have focused on the
elasticity of substitution between technology and worker supply in routine occupations,
requiring it to be larger than 1 to generate RBTC (Autor et al., 2003; Jaimovich et al.,
2021). These papers assume routine workers have a homogeneous skill level (e.g., Ace-
moglu and Autor, 2011), and so RBTC is essentially skill neutral (σ = 1). I will show
that replacing the assumption that technology substitutes labor, with the assumption that
technology substitutes the usage of skill (σ > 1) yields predictions that are more consis-
tent with the data.

2.3 General Equilibrium

I assume that the three intermediate goods are used jointly to produce a final good. I use
M, R, A to denote the total amount produced from each intermediate good, which equals

M =
∫ θ0

θmin
ϕM (θ) dθ

R =
∫ θ1

θ0
ϕR (θ) dθ

A =
∫ θmax

θ1
ϕA (θ) dθ

The final good is the output of a CES function, i.e.,

Y = (Mρ + Rρ + Aρ)
1
ρ

where ρ<0. Hence the three intermediate goods are complementary, as found by Jaimovich
et al. (2021).

While RBTC increases the production of routine goods R, routine workers do not nec-
essarily benefit. This depends on whether there is a sufficient demand increase for those
additional routine goods. The price of one unit of the routine good pR would decrease due
to the rise in quantity. Because of the complementarities (ρ < 0), the increased productiv-
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ity in the routine occupation, makes the manual and abstract workers more productive as
well which raises the prices of the goods they produce. Overall the share of the total out-
put that is spent on routine workers pRR

Y declines.6 This is summarized in the following
theorem.

Theorem 2. RBTC (i.e., an increase in τ) generates:

1. An increase in the production of the routine good ( dR
dτ > 0).

2. A decrease in the absolute price of the routine good ( dpR
dτ < 0) and the relative price compared

to abstract/manual good (
dpR/pj

dτ < 0 for j ∈ {M, A}).

3. A decrease in the share of the total income that is spent on routine goods ( d pRR
Y

dτ < 0).

These predictions coincide with predictions of various other models for RBTC. This is
partly because the above predictions do not depend on any particular value for σ. There-
fore, they can also be generated by a technological change that is skill-neutral as assumed
in most earlier models. To distinguish between this and other models of RBTC, in the next
two sections I will derive unique predictions for the case of a skill-replacing technology.

2.4 Skill-Replacing RBTC: First Stage

I now examine in more detail the case of SR-RBTC, where technology and skill are substi-
tutes (σ > 1). In contrast to other models of RBTC, in this model, the impact of technology
on bottom-half inequality is non-monotonic. I start with the first stage, where the increase
in τ is still relatively small, such that the comparative advantage at Condition 1 still holds.
A small increase in τ generates wage polarization and additional predictions that can be
tested against the data.

Theorem 3. Assume a skill-replacing technology (σ > 1). RBTC (i.e., an increase in τ) would
generate the following:

1. A decrease in wage gaps between routine workers who do not switch occupations.

2. The highest skill routine workers would leave the routine occupation ( ∂θ1
∂τ < 0).

3. The wage for the highest-skilled routine worker (θ1) would decrease relative to all other
workers.

6This prediction was empirically shown by Eden and Gaggl (2018).
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Figure 2a illustrates the results of Theorem 3. Since technology is skill-replacing, the
return to skill in the routine occupation becomes flatter. This generates lower gaps be-
tween workers who stay in the routine occupation. A relative drop in middle-wages
occurs since the most significant wage drop is for the highest-earning routine workers,
which (empirically) are concentrated in the middle of the overall distribution of skill. As
the return to skill declines, some of the highest-skilled routine workers will have their
comparative advantage in the abstract occupation, and so θ1 will drop.

The effect on θ0 could go either way. If ρ approaches −∞ (Leonteiff) θ0 will increase,
while if ρ is closer to 0 (Cobb–Douglas) θ0 will decrease. Empirically, it seems that during
the 1990s employment in manual jobs did increase, but not as fast as in abstract occupa-
tions (Acemoglu and Autor, 2011). In the specific case when θ is distributed uniformly,
this could only occur if θ0 increased, but by a smaller level compared to the decline in θ1.
The following theorem derives additional empirical conditions for this particular case.
Appendix A proves a more general version of this theorem for any continuous distribu-
tion of θ, and the same conclusions hold.7

Theorem 4. Assume a skill replacing technology (σ > 1), θ ∼ U
[
θ, θ̄
]
, and 0 < dθ0

dτ <
∣∣∣ dθ1

dτ

∣∣∣. In
the routine occupation, RBTC would generate a decrease in: (i) employment, (ii) within-occupation
inequality, and (iii) mean skill level (see Appendix A for formal definitions). Inequality within the
abstract and manual occupation will rise and so overall wage trend would be U-shaped (wage
polarization), such that for every θa < θb ≤ θ1

d wb
wa

dτ
≤ 0

and for every θ1 ≤ θa < θb
d wb

wa

dτ
≥ 0

The U-shaped wage trend can be seen in the difference between the red line and the
black line in Figure 2a. The productivity increase for routine workers is offset by the drop
in prices. Therefore wages in the routine occupation fall relative to the other two occu-
pations. Moreover, among routine workers, the relative drop in wages is most significant
for the highest-skilled workers. The abstract occupation expands and now includes some
additional less-skilled workers, which increases its within-occupation inequality. Taken

7For a general continuous distribution over θ ∼ F, the condition 0 < dθ0
dτ <

∣∣∣ dθ1
dτ

∣∣∣ is replaced by a more

general requirement that the increase in employment in the abstract occupation (
∣∣∣ dF(θ1)

dτ

∣∣∣) is sufficiently

larger relative to the increase in employment in the manual occupation ( dF(θ1)
dτ ). When this conditions

holds, the same conclusions are derived.
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together these trends generate a U-shaped pattern where wages increase the most at the
tails, and decrease the most around the middle of the skill distribution at the new value
of θ1.

In addition to the impact on wages, SR-RBTC also has an effect on employment in
each occupation. Since there is not enough demand for all the new routine goods workers
could potentially produce, some of them leave and employment in the routine occupation
falls (“job polarization”). This decline in employment is driven more by the higher-skilled
routine workers. As a result, routine workers become less skilled on average.

Along with employment, inequality within the routine occupation also declines for
two separate reasons. First, it declines directly due to the decrease in the productivity gap.
Second, it declines indirectly due to the compositional changes that make the remaining
workers in the routine occupation more similar in their skill level.

2.5 Skill-Replacing RBTC: Second Stage

Wage polarization stops when middle-skilled workers’ comparative advantage is no longer
in the routine occupation. This occurs when the first inequality in Condition 1 no longer
holds for all θi. At that point, higher-skilled workers in the routine occupation continue
to leave. However, some of the employment decline is offset by a positive flow into the
routine occupation from the bottom of the skill distribution.

Eventually, the comparative advantage flips, and bottom-half inequality starts to in-
crease. At this point, the routine occupation is filled by the lowest-skilled workers. Any
further increase in τ will still reduce wage gaps within routine workers. However, due to
the decline in pR, wages relatively drop for the lowest-paid workers as shown in Figure
2b. Hence at the bottom of the wage distribution, inequality could in fact rise.8

Yet, while wage trends change, the decline in employment trend still continues as
workers continue to leave the routine occupation. Since wages decline in the routine
occupation, more workers would prefer to leave and join the manual occupation. These
predictions are summarized in the following theorem.

Theorem 5. Assume a skill-replacing technology (σ > 1). There exists a τ̃ such that for any
τ ≥ τ̃ and for any θ

∂ log ϕR (θ; τ)

∂θ
<

∂ log ϕM (θ)

∂θ
(2)

8Given that inequality declines within routine workers while it increases between manual and routine
workers the overall impact of SR-RBTC on inequality at this stage depends on the specific parameters as
well as the exact index used to measure bottom-half inequality.
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When τ ≥ τ̃ routine workers earn the lowest wages. Any additional SR-RBTC (τ ↑) decreases
employment in the routine occupation (dθ0

dτ <0), as well as wage gaps within routine workers who
do not switch occupations.

The key reason why the impact of SR-RBTC on the wage distribution changes over
time is the change in the composition of routine workers. At first, when routine workers
are middle-skilled, the main negative effect is concentrated around the median of the
distribution. Later, when the routine occupation becomes a low-skilled job, the negative
impact of SR-RBTC is concentrated at the bottom of the distribution.

This model of SR-RBTC is consistent with recent trends in bottom-half inequality,
which were previously documented but could not be explained in terms of a skill-neutral
technological change. Specifically, a skill-neutral technological change cannot explain
why inequality at the bottom of the distribution rose again after its initial decline. It also
cannot explain why the relative wage decrease was concentrated in the middle of the dis-
tribution when most routine workers are concentrated below the median. The first stage
of SR-RBTC corresponds to trends in the late 1980s and 1990s and the second stage to
trends in the 2000s and onwards.

The model generates two new predictions that can be tested against the data. First, it
predicts a decline in the return to skill in the routine occupation. This generates a decrease
in wage gaps for routine workers who do not switch occupations. Second, it predicts a
decline in the average skill level of routine workers. Both trends should be sufficiently
large so that at some point a reversal of comparative advantage occurs whereby the re-
turn to skill and the average skill level become higher in the manual than in the routine
occupation.

In the following sections of the paper, I test these empirical predictions and show that
they fit well with the data.

3 Methodology

This paper uses two separate empirical techniques. To test the predictions of the SR-RBTC
model, I use an interactive fixed-effects model (IFEM). Then, to quantify the share of the
overall wage trend that can be attributed to SR-RBTC, I use skewness decomposition.

3.1 Interactive Fixed-Effects Model

To test whether RBTC is skill-replacing, skill-enhancing, or skill-neutral, I estimate the
return to skill directly, using an interactive fixed-effects model. This model is similar to a
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fixed-effects model that accounts for an unobserved skill, with the important distinction
that the return to the unobserved skill may vary. Specifically, I will estimate the following
equation for a worker i in occupation j in year t:

log wijt = β jtXit + λjt + αjtθi + εijt (3)

where λjt are occupation-year fixed effects and Xit is an additional control for experience
squared.9 The only difference from a fixed-effects model is that the individual fixed effects
θi are interacted with a coefficient αjt. This α parameter will be the focus of the analysis,
as it measures the return to skill in each occupation in each year. The model predicts
that αroutine,t will decrease as the skill-replacing technology advances. I use either three
occupational categories (abstract, routine, manual) or nine (defined by the first digit of
the occupational code).

The IFEM tests the SR-RBTC model by estimating wage gaps among workers who stay
in the same occupation. The SR-RBTC model predicts that inequality within stayers will
decline if and only if the technology is skill-replacing (Theorem 1). It is critical to focus on
workers who do not switch occupations, since total inequality within occupations may
also be driven by a composition effect, hence may decline under a skill-neutral or skill-
enhancing RBTC as well.10 This is especially concerning since we know that there is a sub-
stantial employment decline in routine occupations, driven prominently by the highest-
and lowest-earning workers in those occupations (Cortes, 2016; Böhm et al., 2019). The
change in the log wage gap between two workers with unobserved skill θb > θa who have
the same level of experience, and who stay in occupation j between period t′ and t′′ is on
average

(
αjt′′ − αjt′

)
(θb − θa). Hence the change in αj,t determines the inequality trend

among stayers.
Like a standard fixed-effects model, the interactive fixed-effects model also suffers

from a nuisance parameter problem. Each θi can be estimated only from observations of
a specific worker. Hence any estimation of it would be highly noisy. While the values of
the θi parameters are not the focus of the analysis, this could still bias the estimates for αjt.
To solve this, I derive moments that do not depend on θi, as with a standard fixed-effects
model. Define νijt as

9I do not control for education level and experience as they are collinear with θi and λjt.
10Estimating wage gaps only among workers who do not switch occupations is not trivial. First because

of regression to mean. Second, because workers who do not switch occupations are a selected sample.
Finally, because it is hard to distinguish between a systematic change in wage gaps to a change in wage
volatility. IFEM addresses all these problems.
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νijt =
1

αjt

(
yijt − β jtXijt − λjt

)
= θi +

εijt

αjt

For a given i, we can get a noisy estimate of θi as a function of yi, Xi and the parameters
α, β, λ by taking any weighted average over νijt,

θ̂ (yi, Xi, α, β, λ) = ∑
t

ωitνijt = θi + ε̃i (4)

where ∑t ωit = 1 for every i and ε̃i = ∑t
ωit
αjt

εijt. We can then use θ̂i to calculate a linear
combination of εijt that does not depend on θi

εijt (yi, Xi, α, β, λ) = yijt − β jtXit − λjt − αjtθ̂i = εijt − αjt ε̃i

I set ωijt =
α2

jt

∑j′t′ α2
j′t′

, which minimizes the mean squared error ε2
ijt.

I estimate this model using the method of moments. The basic assumption of the
model is that for every occupation j and every year t,

E
[
εijt|j, t

]
= E

[
Xitεijt|j, t

]
= E

[
θiεijt|j, t

]
= 0

Hence, as with a fixed-effects model, I can use moments of the form

E
[
εijt (yi, Xi, α, β, λ) |j, t

]
= 0

E
[
Xijtεijt (yi, Xi, α, β, λ) |j, t

]
= 0

This generates (p + 1)× J × T − 1 moments, where p is the number of X variables, J the
number of occupations, and T the number of time periods.11

However, the total number of parameters is (p + 2)× J × T− 2. To see why, note that
the model has three types of parameters: β parameters (p× J × T), λ parameters (J × T),
and α parameters (J × T). There are two degrees of freedom since θi can be identified
only up to a linear transformation. Therefore, I pin αAbstract,1980 = 1 and λAbstract,1980 = 0.
Taken together, there are (p + 2)× J × T − 2 parameters.

Altogether, J × T − 1 additional moments are missing, and so an additional instru-
ment is necessary. This is not surprising, as we added J × T − 1 parameters to the stan-
dard fixed-effects model by allowing the return to skill to vary. For this instrument to be
informative it needs to be correlated with workers’ skill θi.12 However, we cannot simply

11The moments of the form E
[
εijt (yi, Xi, α, β, λ) |j, t

]
= 0 are linearly dependent, similar to a standard

fixed-effects model.
12For instance Holtz-Eakin et al. (1988) use lagged variables as instruments. An alternative approach is to
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use θ̂i as it is correlated with εijt.
A natural choice for such an instrument is years of schooling. Denote by Si the years

of schooling for individual i. I focus on a subsample of observations where workers have
finished their schooling period, and so Sijt = Si. This adds J × T − 1 moments of the
form13

E
[
Siεijt (yi, Xi, α, β, λ) |j, t

]
= 0

The identification assumption is E
[
Siεijt

]
= 0. This assumption implies that condi-

tional on Xijt, years of schooling affects wages only through its impact on overall skill
E [θi|Si].14 Put differently, it implies that the return to education is identical to the return
to any other skill that is not captured by years of schooling. This is already implied by the
model that assumes only a one-dimensional skill, and hence no additional assumptions
are needed.15

It is possible to estimate a more general model where skill can vary by occupation.
Hence θij is constant throughout time t, but varies across occupations j. This model would
capture cases where different skills are used in different occupations. As a robustness
test, I estimate this model as well, using the same instrument. The results in Appendix C
indicate that θij are very correlated across j, hence the one-dimensional skill assumption
approximates the data quite well.

3.2 Decomposing Wage Polarization

Even if all the predictions of the SR-RBTC model were corroborated by the data, it would
not disqualify other mechanisms that are potentially occurring simultaneously. For in-
stance, institutional changes such as an increase in the real minimum wage (Piketty, 2014),
or a decrease in the unionization rate (Firpo et al., 2013) can also coincide with SR-RBTC
and potentially explain a significant portion of the trends as well.

Quantifying the importance of various potential explanations is often done using a

assume that εijt has a constant variance that does not change over time, as in Ahn et al. (2001). This assump-
tion allows them to use changes to the variance of νijt in order to estimate α. However, this assumption is
violated if wage volatility is not constant over time.

13Since Si is constant for a given i, these moments are linearly dependent, and so their total number is
J × T − 1.

14The assumption still holds if Si is only a signal for the skill level θi (Spence, 1973).
15This approach is similar to 2SLS where θ̂i is the endogenous variable. The estimator θ̂i is only a proxy

for θi and is therefore endogenous. The instruments are Si interacted with occupation and year, such that
the link between education and skill can change over time (Carneiro and Lee, 2011). The moments used for
2SLS are a linear combination of the moments I use in the IFEM, and so would be pinned at zero as well,
as the model is exactly identified. However, the approaches are not identical since θ̂i is a function of the
estimated parameters α, β, λ.
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decomposition. Several decomposition methods have been developed in recent decades
exactly for this task. These methods were proven especially useful in the study of the rise
in income inequality in the 1980s. By showing that a large portion of the rise in inequality
is driven by the rise in the return to education, they provided some of the most important
evidence for skill-biased technological change.

Previous decomposition attempts have found that RBTC can account only for a small
portion of the wage trends at the bottom of the distribution (Autor et al., 2005; Firpo et al.,
2013). Earlier models of (skill-neutral) RBTC hypothesized that the recent wage trends
were driven by changes in occupation premiums. Such changes are expected to be cap-
tured by the price component of various decomposition methods (e.g., Juhn et al., 1993;
DiNardo et al., 1996; Firpo et al., 2009). Yet, the price component was not large enough to
explain the main wage trends during this period, leaving room for other potential drivers.

Moreover, the decomposition methods discussed above are unable to quantify the
impact of SR-RBTC, as it violates the ignorability assumption that underlies them. Com-
monly used decomposition methods assume that the distribution of wages conditional
on observables does not change when the distribution of observables changes.16 In this
context, the critical observables are occupations or occupation characteristics. This as-
sumption is innocuous if wages decline uniformly for all routine workers, as the skill-
neutral RBTC model predicts. However, in an SR-RBTC the distribution of wages within
occupations changes considerably, violating this assumption. This is because both the dis-
tribution of skill and the return to skill are changing within occupations. This generates
a change in wage structure that includes an interaction of an observed characteristic (oc-
cupations) and an unobserved characteristic (skill). Most decomposition methods cannot
accommodate such interactions without making strong assumptions such as ignorability,
which are violated in this model (Fortin et al., 2011).

This problem is also relevant for a recentered influence function (RIF) regression. This
method was used by Firpo et al. (2013) to show that at least some share of wage po-
larization can be attributed to RBTC. Firpo et al. (2013) were the first to document that
inequality trends within occupations are asymmetric, and inequality drops in routine oc-
cupations, as predicted by the SR-RBTC model. They also suggested a model where the
return to skill varies by occupation. However, the RIF regression they used cannot fully
account for the impact of these trends on the overall wage polarization, due to the ignor-
ability assumption. Specifically, RIF regression is valid when either skill and occupations

16Formally, ignorability assumes that the conditional distributions of wages Fw|X (w|X = x) does not vary
over time. This assumption implies invariance to conditional distributions, where Fw|X (w|X = x) does not
change when the marginal distribution of X (FX) changes.
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are independent, or when the distribution of unobserved skill is held fixed within occu-
pations (Firpo et al., 2009). These assumptions are violated in the model, as well as in the
data, as I will show.

To address this problem, I use a different decomposition, based on the skewness of the
log wage distribution.

3.2.1 Skewness Decomposition

Wage polarization can be measured with skewness.17 Skewness is the third standardized
moment and is defined as

S(Y) = E

[(
Y− E [Y]

σ

)3
]

(5)

It provides a measure for the asymmetry of the distribution relative to the mean. Ap-
pendix Figure A3 demonstrates the link between skewness and wage polarization by
plotting the derivative of the empirical influence function at each quantile for a standard
normal distribution. Intuitively, the figure shows the effect that a small increase in log
wages has on the skewness, for each quantile of the distribution, when log wages are
normally distributed. In particular, it shows that skewness increases exactly when wages
at the edges increase relative to the middle. This pattern aligns quite well with the ob-
served trends in wages by quantile that were shown by Autor et al. (2006) and I replicate
in Section 7.1.

The main advantage of using skewness is that it has a simple decomposition. Letting
Y be the standardized log wages, X be the category we wish to decompose by, and µ3 be
the third centralized moment (µ3 (Z) = E

[
Z3 − E [Z]3

]
), we can write

S(Y) = µ3 (Y) = E [µ3 (Y|X)]︸ ︷︷ ︸
Within

+ µ3 (E [Y|X])︸ ︷︷ ︸
Between

+ 3COV (E [Y|X] , V [Y|X])︸ ︷︷ ︸
Correlation

(6)

This decomposition was theoretically discussed by Mincer (1974), but was never used
on economics data. It is the third-moment equivalent of the variance decomposition for-
mula.18

17In other contexts, polarization is typically measured with the fourth moment of the distribution (kur-
tosis). However, the term wage polarization refers to the polarization of the change in wages, where wages
increase mostly at the top and at the bottom. The log wage distribution itself is not becoming more polar-
ized or bipolar, and therefore the kurtosis will not necessarily change.

18The variance of log wages, which is commonly used to measure wage inequality, can be decom-
posed into two independent components for the variance within and between categories V (log w) =
E [V (log w|X)]︸ ︷︷ ︸

Within

+ V (E [log w|X])︸ ︷︷ ︸
Between

.
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The first and second components are quite standard. The first component E [µ3 (Y|X)]

can be thought of as a “within” component. It captures the remaining skewness within
each category. This component increases when the division into categories is orthogonal
to the increase in skewness, and therefore can be thought of as a residual component.
The second component, µ3 (E [Y|X]) captures skewness between groups, which is the
skewness due to differences between group averages. This component increases if the
increase in wage polarization is due to a similar change in wages for all workers in a
group, compared to other groups. This includes changes in occupation premiums, return
to education, etc.

The third component captures the correlation between the levels and inequality in
each categorical group. Formally, this component measures the covariance between the
conditional mean and variance for each value of X. When highly paid groups also have
larger inequality, inequality will be higher at the top than at the bottom of the overall
distribution, making the distribution more positively skewed.

With this covariance component, we can capture trends that violate ignorability. The
covariance component allows us to have interactions between unobserved characteris-
tics (e.g., ability), and observed characteristics (e.g., occupation). Hence it can quantify
changes to the wage structure that cannot be detected by other methods.

Thus, the covariance component allows measuring the wage impact of SR-RBTC. Ac-
cording to SR-RBTC, inequality increases in the abstract occupation, since skill gaps in-
crease when lower-skilled workers join this occupation. By contrast, inequality decreases
in the routine occupation (Theorem 4). The effect on inequality in the manual occupation
could go either way, yet since manual occupations are only a small portion of all occu-
pations, their overall impact would be small. Taken together, we expect a wage trend
that is exactly captured by this component: inequality is rising in the higher-paying more
abstract occupations and declining in the lower-paying more routine occupations. In-
deed, the covariance component will turn out to be responsible for most of the increase
in skewness during the period of wage polarization.

Skewness decomposition also provides another test of whether RBTC is skill-replacing
or skill-neutral. In SR-RBTC, most of the increase in skewness is due to the increase in the
covariance component. By contrast, in a skill-neutral RBTC, most of the increase in skew-
ness should be due to the between component. This is because according to a skill-neutral
RBTC, recent wage trends are driven mostly by the decrease in price of routine goods pR.
Such a decrease in price has an identical effect on all workers in a given occupation. This
is exactly the case when we expect a large effect on the between component.19

19The covariance component can also increase in a skill-neutral RBTC due to some particular composi-
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Skewness decomposition has several important properties that make its results more
robust. It allows quantifying wage polarization using a single index. Similar to variance
decomposition, skewness decomposition breaks skewness into independent components.
This means that there is no problem of path dependence nor any need to arbitrarily define
a baseline year, which are common problems in other popular decomposition methods
(Fortin et al., 2011).

While in this paper I use skewness decomposition to study wage polarization, it could
also be applied to any distribution where the third moment is of interest. There are var-
ious cases in economics where we know that the distribution is very skewed, and the
level of skewness has important implications. Some examples are the distribution of the
return to patents, firm productivity, the distribution of capital ownership, and raw wages
(without logs). Any variation in these distributions over time or across places can be an-
alyzed with skewness decomposition. To simplify and encourage the usage of skewness
decomposition by more researchers I provide an R package that implements it.20

4 Data

This paper combines three sources of data. To estimate the interactive fixed-effects model
panel data is required. I use the Panel Study of Income Dynamics (PSID) between 1980–
2011. This data was chosen due to its long panel. I measure income using hourly wage
(annual income divided by hours worked) as this best captures the real price of labor,
which is the focus of the model.21 I use the full core sample (SRC) without weights for
every individual whose wage is available.22

Whenever a panel structure is not needed, including the skewness decomposition
exercise, I use a larger dataset from the Current Population Survey Outgoing Rotation
Group (CPS-ORG). The CPS-ORG provides the most accurate representative sample of
hourly wages (Lemieux, 2006). I use the same sample definition as given in Acemoglu
and Autor (2011). Observations with missing wages are dropped. The main results hold
when using imputations instead. Sampling weights are used in all analyses.

tional changes. This is why I also estimate the IFEM, which shows that inequality within routine occupa-
tions declines regardless of any compositional changes.

20The package offers both skewness and variance decomposition. It can be easily applied to any data, for
any choice of an outcome variable Y and a categorical variable X. It also provides an analytical calculation
of the standard errors.

21Inequality trends in the PSID are similar to the ones in the CPS.
22I include workers who appear only once in the data because, even though they do not affect the esti-

mation of the IFEM parameters, they still affect the estimation of the average skill level in each occupation.
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One important limitation of hourly wage data is its relatively high level of measure-
ment errors. This problem is particularly severe at both tails of the distribution. Misre-
porting of working hours could lead to extremely high or extremely low values of hourly
wages. Therefore, I drop the top and bottom 5% of the positive wages throughout the
paper. The level of 5% minimizes the drop of data, without generating substantial fluctu-
ations between consecutive years in the skewness estimator. It is also similar to the data
cut choices made by earlier papers in this literature (Katz and Murphy, 1992; Autor et al.,
2008). Smaller cuts also yield similar but noisier results, particularly for the skewness
estimates.23

Most of the skewness decomposition analysis is focused on the years between 1992–
2002. This is due to a significant revision of the occupational classification system that
took place before and after this period, which makes comparisons to other years less pre-
cise. As I will show, most of the increase in polarization occurred during this time period.
For robustness, I also implement an analysis over a longer period using the occupational
crosswalk constructed by Autor and Dorn (2013), and show the main results hold.

I maintain a consistent definition for routine occupations, similar to earlier papers in
the literature. I first translate all versions of occupational coding into a uniform coding,
using the Autor and Dorn (2013) crosswalk. I then define all administrative, operator,
and production occupations as routine, based on their 1-digit category. All managerial,
professional, and technician occupations are classified as abstract. Sales, services, and
agricultural occupations are classified as manual. This is a similar classification to that
used in previous studies (e.g., Acemoglu and Autor, 2011) with one important exception:
I do not classify sales occupations as routine occupations.24 The analysis by 1-digit occu-
pational category is fully consistent with previous literature.

Finally, I use data from the Occupational Information Network (O*NET) to measure
the routine-level of each occupation more accurately, in cases where a continuous index
can be accommodated. This dataset contains 400 scales to describe various aspects of
each occupation, based on a worker survey. I use the same index for the routine content
of occupations as Acemoglu and Autor (2011). This index summarizes six questions that
proxy the routine level of the job.

More details on the data are provided in the data appendix (B).

23Cornfeld and Danieli (2015) analyze skewness in the Israeli labor market, using the entire distribution
since measurement errors in the Israeli data are not as severe. They reach very similar conclusions.

24While information on task components suggests that sales is a routine occupation, I do not see the same
wage and employment patterns in sales as in other routine occupations. Be that as it may, including sales
in the routine occupations will not strongly affect the results as it is a small share of workers compared to
the other routine occupations. However, it will make the results weaker. One potential explanation for this
is that sales occupations are not as easily automated as one might infer from their O*NET description.
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5 The Decline in Return to Skill in Routine Occupations

The main prediction of the SR-RBTC model is that the return to skill declines in the routine
occupation. Based on Theorem 1, such a decrease in the skill gap is only consistent with
a skill-replacing RBTC (σ > 1). In this section, I provide empirical evidence for this
prediction. I first show reduced-form evidence that the education premium has declined
in routine occupations. I then use an interactive fixed-effects model to get a direct estimate
of the return to skill and its trends in all occupational categories.

5.1 The Education Premium in Routine Occupations

In cross-sectional data, the education premium reflects not only the return to education,
but also potential differences in unobserved ability across education groups (Card, 1999).
Therefore, any changes in the education premium over time could reflect both changes in
the return to skill, as well as changes in the skill composition of workers across education
levels. In order to focus on the changes in the return to skill, I measure the changes in the
education premium in a panel setting, controlling for differences in ability.

I estimate the education premium using a (standard) fixed-effects model. I define
education level by years of schooling. Specifically, I use the following model to estimate
the education premium for the subsample of routine workers in the PSID

log wit = γtSi + ψt + θi + ρtXit + εijt (7)

where Si measures years of schooling, ψt are year fixed effects, θi are worker fixed ef-
fects, and Xit is an additional control for experience squared. I focus on the coefficient
γt, which captures how much the wage gap between more- and less-educated routine
workers changes over time.

This specification focuses on changes in the return to skill, holding skill composition
fixed. This is done by focusing on wage changes over time. Assuming that the skill
differences between workers is constant over time, the fixed effects (θi) guarantee that
any trend in γt is not driven by compositional changes, which are controlled for. For
instance, if γt > γt+1 , it implies that for a given set of workers, the gap between more
and less educated workers is decreasing over time.

I find that the wage gap between more and less educated workers has decreased since
the late 1980s. Appendix Figure A4 plots the estimated coefficient γt relative to its value
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in 1980.25 While the results are noisy due to the small sample size of the PSID, they still
indicate that since the late 1980s the education premium has declined in routine occupa-
tions. This is consistent with the timing when bottom-half inequality starts to decrease. In
order to account for skill differences within education levels, compare the trends in rou-
tine occupations to abstract and manual occupations, and improve precision, I estimate
the interactive fixed-effects model.

5.2 IFEM Results

The IFEM estimation results are consistent with the predictions of the SR-RBTC model. I
estimate Equation 3 as described in Section 3.1. I start by analyzing the estimation results
in detail for specific years, before analyzing the full sample period.

In 1987, approximately the last year before bottom-half inequality starts to decline, the
estimation results are consistent with the initial pre-SR-RBTC model predictions. Panel A
of Figure A5 plots the expected log wage of workers in 1987 as a function of their skill θi

in the three different occupational categories. This figure highly resembles the theoretical
prediction in Figure 2a. Return to skill, αjt, which is the slopes in the graph is highest in
the abstract category, lower in the routine category, and lowest in the manual category. As
a result, the lowest-skilled workers can earn their highest wage in manual occupations,
the highest-skilled workers can earn the highest wage in abstract occupations and middle-
skilled workers earn the highest wage in routine occupations. Moreover, the indifference
point between routine and abstract occupations is very close to zero, which is the average
skill level in the economy. Hence, if workers sort optimally into occupations, the highest-
skilled routine workers have an average skill level.

Following the model prediction, by 2011, there is a reversal of comparative advantage.
Panel B of Appendix Figure A5 plots the expected log wage as a function of a worker’s
skill for the three occupational categories in 2011. At this point, the slope is lowest in
routine occupations, which reflects their lowest return to skill (αroutine,2011). The lowest-
skilled workers are expected to earn the highest wages in the routine occupation.26

Figure 3 extends the analysis over more years and shows that the return to skill has
steadily declined in routine occupations since the late 1980s. This is approximately when
wage polarization and the decline in routine employment start. The figure plots αj,t in

25Since this specification is only focused on changes, it cannot estimate the absolute return to education.
26Unlike in the model, the IFEM estimation results predict that wages in abstract occupations are on av-

erage higher than in manual occupations, for every skill level. Workers still choose to sort into manual
occupations for reasons beyond the scope of the model, such as transition costs, search frictions, compen-
sating differentials, multidimensional skills, etc.
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log units for the three broad occupational categories. Since there is a degree of freedom
in this estimation, I pin log αabstract,1980 to 0. The figure shows that the return to skill in
routine occupations has dropped substantially. The value of log α decreased by more than
0.7, which correspond to a 50% cut between its peak value in 1987 and 2011. This means
that conditional on age, the average return to skill was reduced by more than half. Hence,
skill gaps were substantially compressed in routine occupations among stayers.

The other two occupational categories did not see a similar sharp decline. For manual
occupations, log αmanual,t remains very stable at around -0.2. In the late 1980s, the return
to skill in manual occupations was below that in routine occupations, as assumed in the
model (Condition 1). Yet because the return to skill declined in routine occupations while
remaining relatively stable in manual occupations, their ranking reversed in the 1990s.
This matches the prediction of Theorem 5. Abstract occupations also see some decline in
return to skill, mostly after 1994, which supports recent evidence on a reversal in demand
for cognitive skill (Beaudry et al., 2016). While interesting in itself, this decline is signifi-
cantly smaller compared to the decline in routine occupations and is not large enough to
change the ranking of occupational categories based on their return to skill.27

I find similar results when repeating the analysis separately by gender. I estimate
Equation 3 separately for females and males. The results are presented in Appendix
Figure A6. For both genders, I find a similar decrease in the return to skill in routine
occupations.

The same pattern of results emerges when using nine occupational categories based
on 1-digit occupational coding. I estimate Equation 3 allowing the return to skill (αjt)
to vary by 1-digit occupation category and year. Figure 4 plots the coefficient for αjt in
log units for each 1-digit occupation category in three years: 1985, 1997, 2011.28 In 1985,
before wage polarization starts, the return to skill is in accordance with the assumption
of the model: the return to skill is largest in the abstract occupations (managers, profes-
sionals, and technicians), lowest in the service occupations, and in between for routine
occupations (administrative, operator and production). One noticeable exception is sales
occupations, which seem to have a return to skill in the range of the abstract occupations
despite often being classified as routine.

27Figure 3 documents a decline only in return to skill in abstract occupations ( ∂ log ϕA(θ)
∂θ ), and not a general

decline in the occupation premium (pA). Wages in abstract occupations are still higher relative to other
occupations, as seen in panel B of Figure A5 for 2011. Inequality within abstract occupations is still rising,
potentially due to lower-skilled workers joining these occupations. See Section 7.2 for further discussion.

28In this plot I omit agricultural workers, who comprise only a small share of the labor force. Yet these
workers experience similar trends to other manual workers in the service sector, as seen in Appendix Figure
A7.
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The return to skill then drops only in the routine occupations. All four routine occu-
pations, including sales, see a decline in return to skill between 1985–1997. At the same
time, the other four occupations (managers, professionals, technicians, and services) ex-
perience an increase in their return to skill. Later, between 1997–2011, there is a decline in
the return to skill in all occupations, but it is sharper in the routine ones, and especially in
the administrative category. By 2011, the occupations with the lowest return to skill are
the four routine occupations.

Appendix Figure A7 shows the trends in more detail. It plots the value of αj.t for each
1-digit occupational category by year. Administrative workers and operators and to some
extent also production workers, the three occupations classified as routine, experience a
significant drop in return to skill. By contrast, in service and agricultural occupations, the
return to skill has not shown any decline. During the 2000s service occupations had a
return to skill around –0.1 in log units, substantially higher than the routine occupations
during this time. This could potentially explain why workers from routine occupations
decided to switch service occupations (Autor and Dorn, 2013), which I discuss in more
depth in the next section.

In accordance with the SR-RBTC model, the IFEM assumes a one-dimensional skill.
I test the implication of this assumption in Appendix C. I estimate the model allowing
for multidimensional skills where θij can vary by occupation. I find that skills are highly
correlated across occupations, hence the one-dimensional skill assumption is a reasonable
approximation for the purposes of this research.

Overall, these results fit well with the predictions of the skill-replacing RBTC model.
They rule out a skill-neutral or skill-enhancing technological change. Theorem 1 shows
that a decrease in the skill premium is consistent with a skill-replacing technology (σ > 1).
The interactive fixed-effects model shows that (conditional on cohort) wages of routine
workers who do not switch to a different occupational category become more similar and
less affected by skill. This process started in the late 1980s and continued until 2011. This
fits the prediction of Theorems 3 and 5 that wage gaps between stayers will decrease in
both stages of RBTC.

The drop in the return to skill in routine occupations is most harmful to the highest-
skilled routine workers. Workers with the largest values of θi are most affected when αj,t

drops. This is why the model predicts that these workers will leave routine occupations
(Theorem 3), and that overall routine occupations will become less skilled (Theorem 4).
In the next section, I provide evidence for such employment trends.
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6 The Reversal of Comparative Advantage

This section presents evidence that the employment decline in routine occupations was
predominantly driven by higher-skilled routine workers. As a result, routine occupations’
average skill level fell below that of manual workers. This explains why inequality at the
bottom of the distribution stopped declining and started rising back, even though SR-
RBTC continued.

I estimate each worker’s skill using the interactive fixed-effects model. For each worker
i, I estimate θ̂i using Equation 4. Since θ̂i is estimated separately for every worker, it relies
only on a small number of observations, making it a very noisy estimate. To solve this
problem, I analyze the average value of θ̂i for large groups of workers.

Specifically, I examine the average value of θ̂i for each occupational category in a given
year. I do this both by dividing occupations into the three main categories (abstract, rou-
tine, manual) as well as by the 1-digit classification. I normalize θ̂i to have a mean of zero
for each cohort based on the year in which the worker entered the labor market. Therefore
this is an analysis of relative skill within cohorts.29

I find a substantial and steady decline in the average skill level of routine workers.
Figure 5 plots the average skill level by occupational category and year. At the begin-
ning of the sample period, in the early 1980s, routine workers were middle-skilled. Their
average θ̂i was very close to zero, which is the population average. Over the next three
decades, the skill composition of routine workers steadily declined, reaching -0.2 at the
end of the period. Since the return to skill in routine occupations in 2011 (αroutine,2011) was
about 0.4 (-0.9 in log units), it follows that if routine workers had been as skilled as they
were at the beginning of the period they would have earned an additional 8 log points
(about 8%) of their 2011 wages.

By the end of the sample period, routine occupations employed the lowest-skilled
workers. While the average skill level of routine workers declined, the average skill level
of manual and abstract workers remained fairly stable. As a result, in 2009, the average
skill level of routine workers fell for the first time below that of manual workers.30

I find similar trends when repeating the analysis separately by gender. Appendix Fig-
ure A8 presents the average skill level by occupational category and year when estimating

29 The estimated skill θ̂i is higher for older cohorts due to the positive return to experience.
30Since the analysis is done within cohort, it does not imply that wages in routine occupations are lower

than in manual occupations. Older workers who earn higher wages due to their experience are more likely
to work in routine occupations. Moreover, as shown in Panel B of Appendix Figure A5, low-skilled workers
who still sort into manual occupations earn even lower wages than similar-skilled routine workers. This is
because the return to skill is higher in manual occupations.
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Equation 3 separately for the subsample of females and males. For both genders, I find a
decline in the average skill level of routine workers. However, for females, average skill
levels for routine workers are still higher than manual by 2011.

I find very similar trends using the 1-digit classification of occupations. Figure 6 plots
the average skill level in 1985, 1997, and 2011. At the beginning of the period, routine
occupations were middle-skilled, where all four routine occupational categories (includ-
ing sales) had a skill level between -0.1 to 0.1. In the following periods, administrators,
operators, and production workers became significantly less skilled.

Other occupations, like services, actually saw a rise in the average skill level of their
workers. In 2011, service workers had higher skills than administrative workers and
operators. This fits well with the prediction of the model that since the lowest-skilled
workers were now employed in routine occupations, manual occupations such as services
would see an increase in the skill level of their workers. Appendix Figure A9 plots the
results for all years.

I also find that while in 1990 many middle-wage workers worked in routine occupa-
tions, by 2010 this is no longer the case. Figure 7 plots the average routine intensity in
each occupation for each wage percentile. It adds two additional years, 2000 and 2010, to
the original plot of 1990 I discussed earlier (Figure A1). Between 1990 and 2000, routine
intensity fell mostly for wages above the 40th percentile. In the following decade between
2000–2010, routine employment fell mostly between the 20th and 40th wage percentiles,
perhaps because not many workers in routine occupations were left in higher percentiles.

There are at least two potential explanations for this decline in the number of middle-
wage routine workers. First, the decline could be driven by middle-skilled workers leav-
ing, or never joining routine occupations. Workers in the middle and the upper half of the
wage distribution may have switched to occupations with a lower routine intensity. This
corresponds to a decline in θ1 in the SR-RBTC model, as predicted by Theorems 3 and 5.
Second, the decline could be driven by lower wages in routine occupations. This corre-
sponds to a decline in pR, as predicted by Theorem 2 and empirically shown by Cortes
(2016). Either way, routine workers are now concentrated in much lower percentiles of
the wage distribution than they were in the past. Therefore, any further RBTC is not
expected to generate a decline in middle wages.

These findings fit very well with the model’s predictions. Since wages decline mostly
for the highest-skilled routine workers, they are the first to leave these occupations, as
predicted by Theorem 3. As a result, the overall skill level decreases, as predicted by
Theorem 4. At some point, the average skill level of routine workers falls below that of
manual workers, as predicted by Theorem 5.
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This compositional change explains why inequality at the bottom of the distribution
stopped decreasing and started increasing. Once middle-wage workers were no longer
employed in routine occupations, they were no longer affected by SR-RBTC as before.
Since routine workers were now the lowest-skilled workers, any further SR-RBTC was
working mostly against the lowest earning workers. This generated an increase in in-
equality at the bottom half of the wage distribution.

7 Quantifying the Overall Impact of SR-RBTC

So far I have shown that the main predictions of the model are consistent with the data.
This section shows that SR-RBTC is also substantial enough to account for almost the
entire trend of wage polarization. Using skewness decomposition, I show that wage po-
larization is driven almost entirely by occupational trends. Moreover, the effect is not
driven by the drop in the premium in routine occupations as predicted by a skill-neutral
RBTC. Instead, I find that the decline in inequality in low-paying routine occupations is
the main driver of wage polarization, consistent with the SR-RBTC model.

7.1 Evidence From Skewness Decomposition

I start by showing that skewness is indeed a good measure for wage polarization. Figure
8 shows the trend in skewness between 1979–2012. The rise in skewness aligns very well
with the timing of wage polarization as depicted in Figure 1. Skewness increased between
the late 1980s and the early 2000s, exactly when the 90/50 gap was rising and the 50/10
gap was falling.

The rise in skewness is driven by trends in all parts of the wage distribution. An in-
crease in skewness occurs when the distribution becomes more tilted toward the left-hand
side. This corresponds to an increase in the gap between middle and high wages and a
decrease in the gap between middle and low wages. Appendix Figure A10 presents a
bin scatter of the change in wages between 1992–2002, for 20 quantiles. This generates a
U-Shape that was previously shown by Autor et al. (2006, 2008). The U-Shape received
qualitatively resembles the EIF derivative plotted in Figure A3. This suggests that skew-
ness rose in this period because of the rise in wages both at the top and at the bottom of
the distribution, making it a good fit to measure wage polarization.

I decompose the rise in the skewness of the distribution into three components, namely,
within, between, and covariance components, as described in Equation 6, for different
choices of categorical groups (X). I first focus on the period between 1992-2002 since data
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on other years uses different occupational coding (see Section 4). As Figure 8 shows this
time period includes a big portion of the overall increase in skewness.

Decomposing by occupations can explain almost the entire rise in skewness. Figure 9
presents the decomposition by 3-digit occupational coding. The figure depicts the change
in each of the aforementioned components since 1992, as well as in the sum of the three,
which equals the total change in skewness.31 The first interesting conclusion from this
figure is the importance of occupation in explaining the trends in skewness. The within
component, which captures the part that is unrelated to occupational trends, explains
only a very small share of the overall increase. That small share might also be the result
of classification errors.

Most of the increase in skewness is due to the covariance component. This is indicated
by the blue area in Figure 9. Table 1 displays the values of each component and its overall
contribution to the rise in skewness. The within component accounts for only 7% of the
rise in skewness. Hence 93% of the rise in skewness is related to occupational trends. The
between component, which is driven by the trends in mean wages in each occupation,
accounts for 15% of the overall trend. The majority (79%) of the increase is driven by
the rising correlation between the mean and the variance of log wages in occupations.
In other words, the rise in skewness is due to the growing correlation between wage
levels and inequality levels in each occupation. As I discussed in Section 3, this type of
correlation is not captured by other decomposition methods, which is why earlier work
potentially underestimated the contribution of occupational trends.

These results align better with the hypothesis that RBTC is generating wage polariza-
tion than with institution-related hypotheses. The theory of RBTC argues that its effect is
driven predominantly through occupations. Therefore, the fact that wage polarization, as
measured with skewness, is driven by occupations greatly supports this hypothesis. By
contrast, institutional changes do not operate directly through occupations.

Moreover, the results are most consistent with a skill-replacing RBTC. Earlier models
of a skill-neutral RBTC (Autor et al., 2006; Acemoglu and Autor, 2011) argue that there is
a drop in the price of routine tasks, making wages fall equally for all workers in routine-
intense occupations. Such a trend would have been captured by the between component
as it generates the same effect for all workers in the same occupation. While this compo-
nent can be seen to rise, it generates only 15% of the overall rise in skewness. Instead, the
substantial rise in the covariance component suggests that the effect is mostly driven by
the asymmetric trends within occupations. Such trends could include a decrease in the

31Appendix Figure A11 performs the same exercise using imputed wages for observations where wages
are not reported and reaches very similar results.
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return to skill in routine occupations, as described in the SR-RBTC model.
The results are not driven by any other worker characteristic in the data. Since oc-

cupations are correlated with workers’ skill levels or industries, it is important to verify
that occupations are not just proxying for some other worker characteristics. In Appendix
Figures A12 and A13 I show the same decomposition results by industry, education, and
experience. Clearly, in those cases the within component is much larger, suggesting that
a great portion of the trend in skewness is unrelated to these categories.

Moreover, most of the increase in the between and covariance components in those
cases is due to their correlation with occupations. Appendix D discusses how to de-
compose by more than one category using a linear model. I then use this method to
decompose jointly by occupation and industry or education. The results in Appendix D
show that the increase in skewness is driven almost entirely by occupation and not other
observables.

Looking at a longer time period yields similar results. In Appendix Figure A14, I run
the same decomposition between 1988, when skewness starts to rise, and 2012. Within
this time period the occupational coding changes. While this analysis uses an occupa-
tional crosswalk (Autor and Dorn, 2013), changes in the baseline coding still might be
affecting the results, making changes between 1991–1992 and 2002–2003 potentially bi-
ased. With that caveat in mind, we still see a similar pattern in the earlier period between
1988–1992. Most of the increase in skewness is driven by the covariance component. In
the period after 2002, when wage polarization stops, skewness is stable, as are the three
different components.

7.2 The Decline in Inequality Within Routine Occupations

The increase in correlation between wage levels and inequality that is driving wage po-
larization could be driven by different explanations. The increase could be because of
trends in the wage levels, wage inequality, or perhaps the composition of workers in each
occupation. The following section presents evidence that the main driver is the decrease
in inequality in low-paying routine occupations, as predicted by Theorem 4.

During the 1990s, inequality trends within occupations were strongly correlated with
the wage levels in those occupations. High-paying occupations saw an increase in in-
equality, while low-paying occupations saw a decrease. Figure A15 shows this by plotting
the change in the variance of log wages from the beginning of the studied period (1992/3)
to its end (2001/2) as a function of mean log wages. Changes in inequality, measured with
the variance of log wages, are correlated with the occupation wage levels. This fact was
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previously documented by Lemieux (2007).
In fact, the trends in within-occupation inequality can explain the full rise in the co-

variance component. The covariance component is calculated by using

COV (E [Y|X] , V [Y|X]) = ∑
x

Pr (X = x) E [Y|X = x]V (Y|X = x)

where in this case Y is log wages and X is 3-digit occupations. Most of the increase
stems from changes in the variance of log wages in different occupations, V (Y|X = x).
To show this, I fix the share of workers and the expected log wage in each occupation to
their averages throughout the period. Thus, I allow only the variance to vary between
years. Formally, I calculate the following counterfactual partial-equilibrium covariance
for t between 1992 and 2002:

C̃OV
(

E [Yt|Xt], V [Yt|Xt]
)
= ∑

x
Pr (X = x) E [Y|X = x]V (Yt|Xt = x) (8)

where Pr (X = x) and E [Y|X = x] are simple averages of the share of workers and mean
log wages over all years between 1992–2002.

I find that the asymmetric trends in within-occupation inequality can explain the en-
tire increase in covariance. Figure 10 compares the real value of the covariance to its
counterfactual value from Equation 8. The counterfactual trend closely follows the real
trend. Therefore, if the share of workers and the mean log wage in each occupation were
held fixed, we would still get the same increase in the covariance, and hence the same
increase in skewness and wage polarization. Letting the share of workers or the expected
log wage vary while holding other factors fixed does not yield any similar results. This
exercise demonstrates that the increase in covariance, and hence the increase in wage po-
larization, is mostly the result of the asymmetric changes in within-occupation inequality,
as measured with the variance of log wages.

Wage polarization occurs mainly during the 1990s because that is the only period in
which inequality in lower-paying occupations dropped. Figure A16 shows the trend in
occupational inequality by decade. For each decade, it presents a bin scatter plot of the av-
erage change in within-occupation inequality, measured with the variance of log wages.
Occupations are binned into deciles by their mean log wage. The increase in inequality
in high-paying occupations is a long-standing trend.32 However, the 1990s are unique

32In Section 5 I showed some decline in the return to skill in abstract occupations. Yet inequality is still
rising in high-paying occupations which are mainly abstract. This is potentially driven by a compositional
change. As employment in abstract occupations grows, they employ lower-skilled people as well, which
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for their decrease in inequality in low-paying occupations. This is why inequality drops
at the bottom of the wage distribution only in the 1990s, generating wage polarization
instead of the overarching increase in wage inequality across all parts of the wage distri-
bution, as in other decades.

The drop in inequality in low-paying occupations is driven mostly by routine occupa-
tions. Figure A17 presents a bin scatter plot of the changes in within occupation variance
for routine and non-routine occupations. I divide occupations into 10 bins separately for
routine and non-routine occupations, based on their initial wage decile in 1992. I then
plot the mean change in the variance of log wages between 1992–2002. While there is
some drop in inequality in low-paying occupations that are non-routine, the trend is sub-
stantially stronger for routine occupations. This is also in accordance with the findings in
Firpo et al. (2013) who show using O*NET data that routine occupations tend to have a
stronger decrease in variance.

Overall, these findings fit well with the predictions of the model. Most of the wage
polarization is related to occupational trends, which supports the explanation of RBTC.
The trend is driven mostly by the asymmetric trends in within-occupational inequality.
Inequality is decreasing in low-paying, mostly routine occupations, while it is increasing
in high-paying occupations. This fits well with the predictions of the SR-RBTC model in
Theorem 4, and explains why we see a U-shaped wage trend during the 1990s.

8 Discussion

This paper makes three distinct contributions. First, I provide a theoretical explanation
for the fluctuations in inequality at the bottom half of the wage distribution since the late
1980s. I introduce the notion of SR-RBTC, where new technology does not replace the
workers themselves, but rather the skills they use in their work. The reduction in the
return to skill reduces inequality levels within routine occupations. This makes overall
inequality decline at the bottom half of the wage distribution where most routine work-
ers are concentrated. SR-RBTC changes the skill composition of routine workers, push-
ing middle-wage workers out of routine occupations. When routine occupations employ
mostly low-wage workers, SR-RBTC lowers wages at the very bottom of the distribution,
and inequality at the lower half of the distribution increases.

Second, using IFEM I document two new empirical facts that are consistent with this
model. I find that the return to skill declined in routine occupations significantly more

generates larger wage gaps within these occupations.
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than it did in other occupations. This is consistent with a skill-replacing technology. I also
show evidence that the decline in employment in routine occupations is driven mostly by
the higher-earning routine workers, who suffer the most from the decline in return to
skill. While in the early 1980s the skill level of routine workers was similar to that of the
general population, by 2009 routine occupations employed the lowest-skilled workers in
the labor force.

Third, using skewness decomposition I show that 93% of wage polarization is driven
by occupational trends. These trends cannot be captured by most decomposition methods
that rely on the assumption of ignorability, which is violated in an SR-RBTC model. I find
that the 1990s are unique for their decrease in inequality within routine occupations. Even
though most routine workers were earning below median wages, most of the relative
decline in wages was around the middle of the wage distribution, because of the wage
compression in routine occupations.

Skewness decomposition could be a useful empirical tool for studying any trend that
affects the skewness of a distribution. In economics, we study many skewed distribu-
tions (wealth distribution, returns to patents, etc.) or models that generate an increase in
skewness (e.g., economics of superstars model, as in Rosen, 1981; König, 2019).

Other explanations do not fit these empirical patterns as well as SR-RBTC. Several
alternative explanations for the decline in bottom-half inequality in the 1990s focus on
institutional changes, such as an increase in the real minimum wage (Piketty, 2014) or a
decline in unionization (Lemieux, 2007). Other explanations focus on high growth and
low unemployment rates as potential drivers for the increase in lower wages. Finally, it
is possible that trade shocks have lead to some of the changes in the wage distribution
(Autor et al., 2013). However, none of these explanations is expected to work through
occupations in particular, more than through education levels or industries. For instance,
while some occupations are more unionized than others, industries are likely better prox-
ies for unionization status. Moreover, while these mechanisms could generate a decrease
in inequality within lower-paying occupations, as part of the overall decrease in lower-
half inequality, it is unclear why their impact would be mostly on low-paying routine
occupations and not, for example, service jobs.

Among theories that focus on occupational-related trends, SR-RBTC best fits the em-
pirical findings. Generally, theories related to technology seem to fit the data better as
most of the trends are related particularly to routine occupations, which can be auto-
mated more easily (Autor et al., 2006; Goos et al., 2014). Skill-neutral or skill-enhancing
RBTC models are inconsistent with the clear decline in return to skill in routine occupa-
tions. They also do not predict the decrease in skill level in routine occupations. Another
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theory that could potentially explain the bottom-half inequality trends is a positive de-
mand shock for service occupations (Autor and Dorn, 2013). SR-RBTC also predicts an
increase in demand for manual occupations due to the complementarities between occu-
pations. Therefore several predictions of the SR-RBTC model overlap with the predictions
in Autor and Dorn (2013). But one important distinction has to do with who is expected
to leave routine occupations. A demand shock in service occupations should attract more
workers from the bottom of the skill distribution as they have a comparative advantage
in manual jobs. However, most employment decline in routine occupations is driven by
the highest-skilled routine workers, making it more consistent with SR-RBTC.

Institutional explanations are potentially more relevant for bottom half inequality in
other countries. Other developed countries have more dominant labor market institu-
tions compared to the U.S. (Blau and Kahn, 2002). Such institutions tend to have a larger
impact on bottom-half compared to upper-half inequality. For instance, Broecke et al.
(2016) find that minimum wage levels are substantially more associated with bottom half
inequality than upper half inequality. As a result, technological changes could have less
effect on bottom half inequality in other developed countries. This could explain why
similar inequality patterns are not seen in other countries, despite having similar pat-
terns of job polarization (Naticchioni et al., 2014; Goos et al., 2014). Interestingly, in Israel,
which is one of the few countries to experience similar fluctuations in bottom half in-
equality, similar patterns are detected (Cornfeld and Danieli, 2015).

While this paper does not provide causal identification, my findings are consistent
with those of previous papers that have studied the causal effect of RBTC on firm wage
distribution. Gaggl and Wright (2017) exploit a natural experiment where exposure to
technology varies by firms. They find that the new technology generates wage com-
pression within routine workers in a given firm. In this paper, I show that this wage
compression is actually the main driver of wage polarization and not a side-effect.

One direction for future research would be to explore why technology in routine oc-
cupations is skill-replacing. This could be because skill-replacing technologies are easier
to develop. Alternatively, it is possible that employers invest more in technology that
requires more skill/training to save higher wages costs (Feng and Graetz, 2020).
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Figures and Tables

Tables

Year Total Skewness Within Between 3COV

1992 .0946 .0334 -.04171 0.1030
N = 130, 502 (.0037) (.0032) (.0053)

2002 .1898 .0397 -.0276 0.1777
N = 108, 145 (.0045) (.0036) (.0062)

∆ 1992-2002 .0951 .0063 .0141 0.0747
(.0058) (.0048) (.0081)

100% 6.6% 14.9% 78.5%

Table 1: Skewness Decomposition by 3-Digit Occupation
Skewness decomposition based on Equation 6. The three components sum to the overall skewness (Equation 6). Wages at the top and
bottom 5% were dropped (see Section 4). Standard errors are calculated analytically (using the delta method).
Source: CPS Outgoing Rotation Groups
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Figure 1: 90/50 and 50/10 Log Hourly Wage Ratio
Quantiles are calculated for all workers with positive earnings at the hours level, using sample weights multiplied by hours worked.
Source: CPS Outgoing Rotation Groups
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θ0 θ1
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Manual Routine Abstract

(a) Change in Log Wage for Small SR-RBTC
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θ
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(b) Change in Log Wage for Large SR-RBTC

Figure 2: Illustrated Log Wages by Skill in Equilibrium
These figures illustrate the equilibrium sorting of workers into occupations and their log wages as a function of their skill θ. The
dashed red line represents equilibrium log wages in a later time period when technology has further advanced (increase in τ). Panel
A represents a small technological change, that reduces the slope of log wages as a function of θ only in the routine occupation. Panel
B describes the equilibrium after a large technological advancement and a reversal of comparative advantage such that the slope in
the routine occupation is lower than the slope in the manual occupation (Condition 2 replaces Condition 1).
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Figure 3: Return to Skill (ajt) by Occupational Category
This figure presents the return to skill (αjt) in log units for the three occupational categories. Return to skill is calculated using an
interactive fixed-effects model (Equation 3). The log return to skill in the abstract occupation in 1980 is fixed to zero, hence all other
values are relative to that year and occupational category. Routine workers are defined as workers in administrative, production, or
operator occupations, classified by the first occupational coding digit. Abstract workers include managers, technicians, and profes-
sionals. Manual includes service, sales and agricultural occupations. Autor and Dorn (2013) occupational crosswalk is used for a
consistent definition of occupations over time. Dashed lines represent 95% confidence intervals.
Source: PSID
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Figure 4: Return to Skill (αjt) by 1-Digit Occupational Category
This figure presents the return to skill (αjt) in log units for eight 1-digit occupational categories. The log return to skill in administrator
occupations in 1980 is fixed to zero, hence all other values are relative to that year and occupational category. Results for all years are
available in Appendix Figure A7. Return to skill are calculated in an interactive fixed-effects model (αjt, using Equation 3). αjt varies
by 1-digit occupation and year. Autor and Dorn (2013) occupational crosswalk is used for a consistent definition of occupations over
time.
Source: PSID
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Figure 5: Mean Skill Level (θ̂i) by Occupational Category
Mean level of θ̂i by occupational category and year. θ̂i is calculated using Equation 4, and demeaned at the cohort level, where cohorts
are defined based on year of entry into the labor market. Routine workers are defined as workers in administrative, production, or
operator occupations, classified by the first occupational coding digit. Abstract workers include managers, technicians, and profes-
sionals. Manual workers include service, sales, and agricultural occupations. Autor and Dorn (2013) occupational crosswalk is used
for a consistent definition of occupations over time.
Source: PSID
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Figure 6: Mean Skill level (θ̂i) by1-Digit Occupational Category
Mean level of θ̂i by occupational category and year. θ̂i is calculated using Equation 4 and demeaned at the cohort level, where cohorts
are defined based on year of entering the labor market. The Autor and Dorn (2013) occupational crosswalk is used for a consistent
definition of occupation over time.
Source: PSID
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Figure 7: Routine Intensity of Occupation by Wage Percentile
This figure plots the average routine intensity by wage bins for 20 equal-sized bins. Bins are based on workers’ hourly wages. The
routine intensity is calculated at the occupational level as in Acemoglu and Autor (2011). It is the average of routine manual and
routine cognitive indices, both standardized, such that the population average is 0. More details are provided in Appendix B. I use
the occupation classification in Autor and Dorn (2013) for consistency across decades. Sample weights are used.
Source: CPS Outgoing Rotation Groups and O*NET
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Figure 8: Skewness of Log Hourly Wage
Skewness (Equation 5) of the log wage distribution by year. Sample weights are used. Vertical lines represent changes in occupational
coding. Wages at the top and bottom 5% were dropped (see Section 4).
Source: CPS Outgoing Rotation Groups
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Figure 9: Skewness Decomposition by 3-Digit Occupation
Skewness decomposition based on Equation 6. Changes in each component (within, between, covariance) are plotted relative to the
baseline year (1992). The three components sum to the overall skewness (Equation 6). Wages at the top and bottom 5% were dropped
(see Section 4).
Source: CPS Outgoing Rotation Groups
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Figure 10: Covariance of Expectation and Variance of Log Wages by Occupation
This figure plots the covariance of mean log wage and variance of log wage by occupation, COV (E [log w|occ] , V (log w|occ)) (black
line). The counterfactual covariance (in blue) is calculated by fixing E [log w|occ], and the share of workers in each occupation to
their average throughout the period, allowing only the variance within each occupation to change (Equation 8.) Wages at the top and
bottom 5% were dropped (see Section 4).
Source: CPS Outgoing Rotation Groups
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A Proofs

Theorem 1 Let θa, θb ∈ (θ0, θ1) be the skill levels of two workers in the routine occupation
where θa < θb. Let wa, wb denote their corresponding equilibrium wages. The effect of an
improvement in technology τ on the wage ratio wb

wa
depends on σ such that

sign

(
∂ wb

wa

∂τ

)
= sign (1− σ)

Proof. The wage ratio is

wb
wa

=
ϕR (θb; τ)

ϕR (θa; τ)
=

θ
σ−1

σ
b + τ

σ−1
σ

θ
σ−1

σ
a + τ

σ−1
σ

 σ
σ−1

∂ wb
wa

∂τ
= τ−

1
σ

(
θ

σ−1
σ

b + τ
σ−1

σ

) 1
σ−1
(

θ
σ−1

σ
a + τ

σ−1
σ

) 1−2σ
σ−1

(
θ

σ−1
σ

a − θ
σ−1

σ
b

)

Since τ−
1
σ

(
θ

σ−1
σ

b + τ
σ−1

σ

) 1
σ−1
(

θ
σ−1

σ
a + τ

σ−1
σ

) 1−2σ
σ−1

> 0

sign

(
∂ wb

wa

∂τ

)
= sign

(
θ

σ−1
σ

a − θ
σ−1

σ
b

)
= sign(−σ− 1

σ
) = sign (1− σ)

Theorem 2 RBTC (i.e., an increase in τ) generates:

1. An increase production of the routine good ( dR
dτ > 0).

2. A decrease in the absolute and relative price of the routine good (dpR
dτ < 0) and the

relative price compared to abstract/manual good (
dpR/pj

dτ < 0 for j ∈ {M, A}).

3. A decrease in the share of the total income that is spent on routine goods (d pRR
Y

dτ < 0).

Proof. The proof follows the order of the claims in the theorem:

1. Under the same allocation of workers, when τ increases R increases while M, A are
not changed. Hence, Y must be larger in GE (otherwise, Y is not maximized). If
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R does not increase then M, A must increase in order for Y to increase. Assume
without lost of generality that A increases. From the FOC of the CES function we
have

pR

pA
=

(
R
A

)ρ−1

Hence, if A increases and R decreases, pR/pA increases. Therefore, for the previous
equilibrium level of θ1

pR ϕR (θ1) > pA ϕA (θ1)

which implies that θ1 increases until equality is reached. Therefore, A must de-
crease, in contradiction to the assumption.

2. From the FOC we have

pR =

(
R
Y

)ρ−1

Hence, it is sufficient to show R increases more than both M, A such that R
Y increases

(and pR declines). Assume without loss of generality that R/A decreases. By a
similar argument as before, if R/A decreases, θ1 increases and hence A decreases
(contradiction). Hence, R/A must increase and hence so must R

Y .

Relative prices must also decrease since pR
pA

=
( R

A
)ρ−1

and ρ− 1 < 0.

3. The share is
pRR

Y
=

Rρ

Yρ =
Rρ

Mρ + Rρ + Aρ =
1(M

R
)ρ

+
(

A
R

)ρ
+ 1

since R increases relative to both M, A,
(M

R
)ρ

and
(

A
R

)ρ
increase and therefore pRR

Y
decreases.

Theorem 3 Assume a skill-replacing technology (σ > 1). RBTC (i.e., an increase in τ)
would generate the following:

1. A decrease in wage gaps between routine workers who do not switch occupations.

2. The highest skill routine workers would leave the routine occupation ( ∂θ1
∂τ < 0).

3. Wages for the highest skill routine worker (θ1) would decrease relative to all other
workers.

Proof.
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1. By theorem 1.

2. By the following lemma (where ϕR
τ (θ0, τ) =

∂ϕR(θ0,τ)
∂τ )

Lemma 6. ϕR
τ (θ0,τ)

ϕR(θ0,τ) >
Rτ
R =

∫ θ1
θ0

ϕR
τ (θi,τ)∫ θ1

θ0
ϕR(θi,τ)

> ϕR
τ (θ1,τ)

ϕR(θ1,τ)

Proof. We use
∂2 log ϕ

∂τ∂θ
=

1− σ

σ

1(
θ

σ−1
σ

i + τ
σ−1

σ

)2

(τθ)
1
σ

< 0

Hence, for any positive b > a, we have

ϕτ (a, τ)

ϕ (a, τ)
>

ϕτ (b, τ)

ϕ (b, τ)

ϕτ (a, τ)

ϕτ (b, τ)
>

ϕ (a, τ)

ϕ (b, τ)

Defining b = θ1 and taking the integral over a between [θ0, θ1] yields Rτ
R =

∫ θ1
θ0

ϕR
τ (θi,τ)∫ θ1

θ0
ϕR(θi,τ)

>

ϕR
τ (θ1,τ)

ϕR(θ1,τ) . Similarly defining a = θ0, taking the inverse of the above inequality, and

integrating over b ∈ [θ0, θ1] yields ϕR
τ (θ0,τ)

ϕR(θ0,τ) >
Rτ
R .

Using this lemma we can show that θ1 decreases. To do so, we use the equations

pR ϕR (θ1) = pA ϕA (θ1)

pR ϕR (θ0) = pM ϕM (θ0)

and the CES structure

log ϕA (θ1)− log ϕR (θ1, τ) = log pR − log pA = (ρ− 1) log R− (ρ− 1) log A

and similarly for M. Define two functions of θ0, θ1, τ such that

fM = log ϕM (θ0)− log ϕR (θ0, τ) + (ρ− 1)m (θ0)− (ρ− 1) r (θ0, θ1, τ)

fA = log ϕA (θ1)− log ϕR (θ1, τ) + (ρ− 1) a (θ1)− (ρ− 1) r (θ0, θ1, τ)
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where m (θ0) = log M (θ0), r (θ0, θ1) = log R (θ0, θ1), and a (θ1) = log A (θ1). In
equilibrium fM, fA = 0 as the FOCs hold. Using the implicit theorem function we
can derive dθ1

dτ . Taking the derivative by τ we have

∂ fM

∂τ
= −ϕR

τ (θ0, τ)

ϕR (θ0, τ)
− (ρ− 1)

Rτ

R

∂ fA

∂τ
= −ϕR

τ (θ1, τ)

ϕR (θ1, τ)
− (ρ− 1)

Rτ

R
> 0

where the last inequality is from the previous lemma and ρ < 0. Taking the deriva-
tive by θ0, θ1 and using Condition 1

∂ fM

∂θ0
=

ϕ′M
ϕM
− ϕ′R

ϕR
+ (ρ− 1)m′ (θ0)− (ρ− 1)

Rθ0

R
< 0

∂ fA

∂θ1
=

ϕ′A
ϕA
− ϕ′R

ϕR
+ (ρ− 1) a′ (θ1)− (ρ− 1)

Rθ1

R
> 0

∂ fA

∂θ0
= − (ρ− 1)

Rθ0

R
< 0

∂ fM

∂θ1
= − (ρ− 1)

Rθ1

R
> 0

From the implicit function theorem we have

∇θ (τ) = −
(

∂ fM
∂θ0

∂ fM
∂θ1

∂ fA
∂θ0

∂ fA
∂θ1

)−1(
∂ fM

∂τ
,

∂ fA

∂τ

)
or

∇θ (τ) = − 1
det

(
∂ fA
∂θ1

− ∂ fM
∂θ1

− ∂ fA
∂θ0

∂ fM
∂θ0

)(
∂ fM

∂τ
,

∂ fA

∂τ

)
The determinant is negative. Hence

∂θ1

∂τ
= c ∗

(
−∂ fA

∂θ0

∂ fM

∂τ
+

∂ fM

∂θ0

∂ fA

∂τ

)
∂θ0

∂τ
= c ∗

(
∂ fA

∂θ1

∂ fM

∂τ
− ∂ fM

∂θ1

∂ fA

∂τ

)
when c > 0.
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Plugging in the values that were previously calculated and using Lemma 6 yields

∂θ1

∂τ
=

(
ϕ′M
ϕM
− ϕ′R

ϕR
+ (ρ− 1)m′ (θ0)

)
∂ fA

∂τ
− (ρ− 1)

Rθ0

R

(
∂ fA

∂τ
− ∂ fM

∂τ

)
=

=

(
ϕ′M
ϕM
− ϕ′R

ϕR
+ (ρ− 1)m′ (θ0)

)
∂ fA

∂τ
− (ρ− 1)

Rθ0

R

(
−ϕR

τ (θ1, τ)

ϕR (θ1, τ)
+

ϕR
τ (θ0, τ)

ϕR (θ0, τ)

)
< 0

For θ0 we have

∂θ0

∂τ
=

(
ϕ′A
ϕA
− ϕ′R

ϕR
+ (ρ− 1) a′ (θ1)

)
∂ fM

∂τ
− (ρ− 1)

Rθ1

R

(
−ϕR

τ (θ0, τ)

ϕR (θ0, τ)
+

ϕR
τ (θ1, τ)

ϕR (θ1, τ)

)
however, the sign of this expression could go both ways.

3. Among routine workers, σ > 1 implies that the largest decline in wages is for the
highest-skilled workers. Their wages also fall compared to those of abstract workers
since abstract workers see a change only in pA and at θ1:

∂ log pR

∂τ
+

∂ log ϕR

∂τ
(θ1)−

∂ log pA

∂τ
+ 0 < 0 (9)

as otherwise θ1 would not go down.

Finally, for manual workers, if dθ0
dτ ≥ 0 (employment in the manual occupation is

weakly increasing) then at θ0 we have

∂ log pR

∂τ
+

∂ log ϕR

∂τ
(θ0)−

∂ log pM

∂τ
+ 0 < 0

and since ∂ log ϕR
∂τ (θ1) <

∂ log ϕR
∂τ (θ0) we get

∂ log pR

∂τ
+

∂ log ϕR

∂τ
(θ1) <

∂ log pM

∂τ
(10)

and so wages at θ1 fall relative to all manual jobs.

If dθ0
dτ < 0 then dM

dτ < 0, and since dA
dτ > 0 it must be that

d(M
A )

ρ−1

dτ > 0. Using
pM
pA

=
(M

A
)ρ−1

we get that wages in the manual occupation increase faster than in
abstract occupation and using 9 we get that 10 also holds.
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Theorem 4 Assume a skill replacing technology (σ > 1), and∣∣∣ dF(θ1)
dτ

∣∣∣
dF(θ0)

dτ

>
E [θ|θ0 < θ < θ1]− θ0

θ1 − E [θ|θ0 < θ < θ1]
(11)

In the routine occupation, RBTC would generate a decrease in:

1. Employment (θ1 − θ0)

2. Within-occupation inequality (V [wi|θi ∈ [θ0, θ1]])

3. Mean skill level (E [θi|θi ∈ [θ0, θ1]]) .

Inequality within the abstract (V [wi|θi > θ1]) and manual occupation (V [wi|θi < θ0]) will
rise and so overall wage trend would be U-shaped (wage polarization), such that for
every θa < θb ≤ θ1

d wb
wa

dτ
≤ 0

and for every θ1 ≤ θa < θb
d wb

wa

dτ
≥ 0

Note that this is a more general version of the theorem in the main text. Specifically,
when θ ∼ U, condition 11 is equivalent to 0 < dθ0

dτ < dθ1
dτ .

Proof. Employment in the routine occupation decreases since θ1 decreases and θ0 in-
creases.

Within the routine occupation, inequality would decrease since the skill distribution
is now more equal (V [θi|θi ∈ [θ0, θ1]] decreases), and conditional on skill wage gaps are
smaller (Theorem 1). Same argument will also apply for other inequality measures.

Mean skill is E [θi|θi ∈ [θ0, θ1]] =

∫ θ1
θ0

θ f (θ)dθ∫ θ1
θ0

f (θ)dθ
. Taking the derivative yields

[
dθ1
dτ θ1 f (θ1)− dθ0

dτ θ0 f (θ0)
] ∫ θ1

θ0
f (θ) dθ −

∫ θ1
θ0

θ f (θ) dθ
(

dθ1
dτ f (θ1)− dθ0

dτ f (θ0)
)

(∫ θ1
θ0

f (θ) dθ
)2

which is always positive when condition 11 holds.
Within the abstract and the manual occupation, inequality increases as there is a larger

variation in skill.
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The derivative d log w
dτ (θ) is U-shaped in θ with a minimum at θ1. This is because for

manual workers, the wage effect is d log pM
dτ . For routine workers, it is d log pR

dτ +
d log ϕR

dτ . And
for abstract workers, it is d log pA

dτ . The wage increase in the abstract occupation is larger
than that in the routine occupation close to θ1 because from the decrease in θ1 if follows
that

d log pR

dτ
+

d log ϕR (θ1)

dτ
<

d log pA

dτ

Among routine workers, wages increase relatively for lower-skilled since σ > 1. And
manual workers see a larger increase from the wage change in θ0 since

d log pR

dτ
+

d log ϕR (θ0)

dτ
<

d log pM

dτ

as otherwise θ0 would not increase.
Within the manual and abstract occupations, wage impact is the same.

Theorem 5 Assume a skill-replacing technology (σ > 1). There exists a τ̃ such that for
any τ ≥ τ̃ and for any θ

∂ log ϕR (θ; τ)

∂θ
<

∂ log ϕM (θ)

∂θ

When τ ≥ τ̃ routine workers earn the lowest wages. Any additional SR-RBTC (τ ↑)
decreases employment in the routine occupation ( dθ0

dτ <0), as well as wage gaps within
routine workers who do not switch occupations.

Proof. Let θmin be the lowest value of θ. Therefore, for every θi,

∂ log ϕR (θi; τ)

∂θ
≤ ∂ log ϕR (θmin; τ)

∂θ

By assumption ∃c s.t. ∀θi
∂ log ϕj(θ)

∂θ > c > 0. And by the definition of ϕR

lim
τ→∞

∂ log ϕR (θ; τ)

∂θ
= lim

τ→∞

1(
θ

σ−1
σ

i τ
1
σ + τ

) = 0

Therefore, there exists τ̃ such that for every τ ≥ τ̃ and every θi,

∂ log ϕR (θmin; τ)

∂θ
< c
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and using
∂ log ϕj(θ)

∂θ > c and ∂ log ϕR(θi;τ)
∂θ ≤ ∂ log ϕR(θmin;τ)

∂θ we get

∂ log ϕR (θi; τ)

∂θ
<

∂ log ϕM (θi)

∂θ

For the second part of the theorem (for τ ≥ τ̃ dθ0
dτ < 0) the equilibrium condition for θ0

is

log ϕM (θ0)− log ϕR (θ0, τ) = log pR − log pM = (ρ− 1) log R− (ρ− 1) log M

Defining

f (θ0, τ) = log ϕM (θ0)− log ϕR (θ0, τ)− (ρ− 1) log R + (ρ− 1) log M

and using the implicit function theorem we get

∂ f
∂τ

= −ϕR
τ (θ0, τ)

ϕR (θ0, τ)
− (ρ− 1)

Rτ

R
> 0

where the last inequality follows from Lemma 6 (for which now the upper bound of the
routine occupation is θ0).

Taking the derivative by θ0, we have

∂ f
∂θ0

=
ϕ′M
ϕM
− ϕ′R

ϕR
+ (ρ− 1)m′ (θ0)− (ρ− 1)

Rθ0

R
> 0

where m′ (θ0) < 0 as a result of the following lemma:

Lemma 7. When τ ≥ τ̃ sign
(

dM
dτ

)
= sign

(
dA
dτ

)
Proof. When τ ≥ τ̃, θ1 separates between manual and abstract workers. Using the equi-
librium condition we have

log ϕM (θ1)− log ϕA (θ1) = log pA − log pM = (ρ− 1) log A− (ρ− 1) log M

If dM
dτ > 0⇒ dA

dτ > 0; else
d pA

pM
dτ > 0⇒ d log ϕM(θ1)−log ϕA(θ1)

dτ > 0⇒ dθ1
dτ < 0, where the last

part is because

d log ϕM (θ1)− log ϕA (θ1)

dτ
=

∂ log ϕM (θ1)− log ϕA (θ1)

∂θ1

∂θ1

∂τ
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By this lemma, if θ0 increases and M increases, A increases as well, implying that θ1

decreases, which is a contradiction (M cannot increase if θ0 increases and θ1 decreases).
Taken together

dθ0

dτ
= −

∂ f
∂τ
∂ f
∂θ0

< 0

B Data Appendix

B.1 CPS-ORG

The CPS-ORG provides the most accurate representative sample of hourly wages (Lemieux,
2006).

I use the same sample definitions as Acemoglu and Autor (2011), who kindly made
their cleaned data files available online. See Acemoglu and Autor (2011) data appendix
for exact definitions of the sample and sample sizes. Observations with missing wages are
dropped. The main results hold when using imputations instead. Sampling weights are
used in all CPS-ORG analyses. Education categories are equivalent to those employed by
Autor et al. (2003) based on the consistent classification system proposed by Jaeger (1997).

One important limitation of the CPS data is its relatively high level of measurement
errors. This problem is particularly severe at both tails of the distribution. Misreporting
of working hours could lead to extremely high or extremely low values of hourly wages.
Moreover, the CPS applies top coding to prevent the identification of individuals with
extremely high income. Therefore, I drop the top and bottom 5% of the positive wages.
Similar methods have been applied in previous work that used this data (Katz and Mur-
phy, 1992; Autor et al., 2006, 2008; Acemoglu and Autor, 2011).

Since my analysis focuses on hourly wages, I multiply the CPS weights by the number
of hours worked to obtain the real price of an hour of labor, as explained in Lemieux
(2010). This procedure is also consistent with the literature.

B.2 PSID

I use information from both the individual survey and the family survey. The over-
sampling of low-income households and immigrants samples are not used as it was
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added only in the 1990s. Therefore, I do not use sampling weights (similar to Cortes,
2016). However, as the analysis focuses on hourly wages, I weight observations by the
number of weekly hours to obtain the real price of an hour of labor, similar to the CPS
exercise.

I drop observations with hourly wages at the top or the bottom 5%, as with the CPS.
Observations in which wage is imputed are also omitted.

The education variable is defined based on a survey question that inquiries about
the highest grade/years of schooling that the respondent has completed. A value of 16
indicates a college graduate. This variable is capped at 17.

Occupations are coded using the Autor and Dorn (2013) occupational crosswalk for
census coding.

B.3 O*NET

Routine Index: Acemoglu and Autor (2011) construct two indices: routine-manual and
routine-cognitive. These indices are based on occupational averages of survey responses
in the O*NET database. I take the average of both (standardized) indices. The routine
manual index includes questions on:

• Pace determined by speed of equipment.

• Controlling machines and processes.

• Spend time making repetitive motions.

The routine cognitive index includes questions on:

• Importance of repeating the same tasks.

• Importance of being exact or accurate.

• Structured v. unstructured work (reverse).

I thank the authors for sharing their data with me.

C Multidimensional Skill

I estimate Equation 3 allowing θi to vary by j for the three broad occupational categories
(abstract, routine, manual). This allows for a different skill to be used in each occupational
category, as in a Roy model.
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I find that the correlations between θij for a given value of i are between 0.69–0.83 as
shown in Table A1. The correlations are estimated for workers that chose to switch occu-
pations (51% of the sample). Since θij is measured with a high level of noise, the results
are downward biased. This high level of correlation suggests that the one-dimensional
skill restriction is a reasonable approximation for this exercise. For the rest of the paper, I
assume that θi is fixed.

D Decomposing by More Than One Category

Similar to variance decomposition, skewness decomposition can also be easily extended
to accommodate linear models. Assume the following simple linear model when Y is
standardized:

Y = ∑
i

Xi

Using simple algebra we get

µ3 (Y) = ∑
i

µ3 (Xi) + ∑
i

∑
j 6=i

COV
(

X2
i , Xj

)
+ ∑

i
∑
j 6=i

∑
k 6=i,j

E
[
XiXjXk

]
(12)

Therefore, we can decompose the skewness of Y into a linear combination of: (i) the
skewness of the linear components, (ii) the covariance of the linear components second
and first moments, and (iii) the triple multiplication of all three distinguished compo-
nents. Though this decomposition includes a large number of different terms, many of
them are constant at zero.

For example, writing Y as the sum of its conditional expectation in X and a residual ε

Y = E [Y|X] + ε

and using Equation 12 yields Equation 6, by the law of iterated expectations over X.
Linear skewness decomposition can be applied to decompose any linear model. This

is useful for comparing occupations directly to other categories, such as industry and
education. I show this for the equation

ln wi = occi + indi + εi (13)

where occi and indi are occupation and industry dummies. I then decompose the increase
in skewness using Equation 12. Figure A18 presents the results. Most of the increase
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in skewness is generated by the increase in the correlation between the occupation pre-
mium occi and the residual variance ε2

i . The equivalent component for industries (in
green) is negligible. All other components, such as the skewness between occupations or
industries, the correlation between the occupation premium and the industry premium
variance and others are aggregated and plotted in red. Altogether, they comprise only a
small share of the increase.

To do the same exercise for occupations with observable skills I estimate a Mincer
equation with occupational dummies

ln wi = occi + βXi + εi (14)

where Xi includes years of schooling, experience and experience squared.
In this estimation, the occupation premiums are conditional on the workers’ observed

skills. Therefore, I decompose βXi into mean occupation skill level and within-occupation
skill difference

E [βXi|occi] + (βXi − E [βXi|occi])

such that the first component captures the average skill level in an occupation and the
second component captures the skill part that is orthogonal to the occupation.

I implement a linear skewness decomposition into four components using the follow-
ing equation

ln wi = occi + E [βXi|occi] + (βXi − E [βXi|occi]) + εi

I find that the two main components are the correlation of ε2 with both occi and E [βXi|occi].
This means that the correlation of the inequality of the unobservables (the variance of ε)
with occupational wage levels is due to both occupation premium (occi) and the mean
skill level at the occupation (E [βXi|occi]). Hence, inequality is large in occupations that
pay more and have higher-skilled workers, consistent with the SR-RBTC model. Cate-
gories that are unrelated to occupations are still negligible.

59



E Appendix Figures
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Figure A1: Routine Intensity of Occupation by Wage Percentile – 1990
This figure plots the average routine intensity index by wage bins for 20 equal size bins. Bins are based on workers’ hourly wages in
1990. The routine index is calculated at the occupational level as in Acemoglu and Autor (2011). It is the average of routine manual and
routine cognitive indices, both standardized, such that the population average is 0. More details in Appendix B. I use the occupation
classification in Autor and Dorn (2013) for consistency across decades. Sample weights are used.
Source: CPS Outgoing Rotation Groups and O*NET

θ0 θ1

log wage

log(pM) + logϕM(θ)

log(pR) + logϕR(θ)

log(pA) + logϕA(θ)

θManual Routine Abstract

Figure A2: Equilibrium Log Wage by Skill
Sorting into occupations in a Jung and Mercenier (2014) model. The bold line represents equilibrium log wages as a function of θ.
Dashed lines are off-equilibrium wages in other (suboptimal) occupations. θ0, θ1 are the threshold skill levels in which workers are
indifferent between two occupations.
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Figure A3: Derivative of EIF on Skewness for Standard Normal Distribution
The empirical influence function is a function from the value of a given observation xi to some statistic Tn (x) (in this case, the
empirical skewness), taking the other observations x−i as given. I calculate this for a sample of n = 100. I sample 1,000 samples of 100
observations from a standardized Normal distribution, and calculate numerically the derivative at the kth-order statistic at the sample
point. The figure shows the mean over the 1,000 samples of this derivative.
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Figure A4: Education Premium in Routine Occupations
This figure plots the change in wage gaps between workers with different years of schooling relative to 1980. Education premium
is estimated with coefficient γt in Equation 7. Data includes all routine workers in the PSID. See Section 4 for a definition of routine
occupations.
Source: PSID
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Figure A5: IFEM Expected Log Wage by Occupational Category
This figure plots the expected log wage as a function of the standardized worker fixed effect θ and occupational category for the years
1987 and 2011 using the estimation of the IFEM (Equation 3). The slope in each occupation is determined by the parameter αj,t, where
a higher slope implies a larger return to skill. Worker fixed effects are standardized to have a mean of zero in every cohort and a
standard deviation of 1 overall. In Panel A the bold line represents the highest expected wage for each skill level. The dashed vertical
lines mark the indifference points between two occupational categories that correspond to θ0 and θ1 in the model. Panel B focuses on
the routine and manual categories. The bold line represents the highest expected wage between these two categories. θ0 represents
the indifference point between them. The abstract category is also drawn for reference (in blue). In contrast to the model prediction,
the wage in the abstract category dominates wages in the manual category (see discussion in footnote 26).
Source: PSID
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(a) Females
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Figure A6: Return to Skill (ajt) by Occupational Category
This figure presents the return to skill (αjt) in log units for the three occupational categories separately by gender. Return to skill is
calculated using an interactive fixed-effects model (Equation 3). The log return to skill in the abstract occupation in 1980 is fixed to zero,
hence all other values are relative to that year and occupational category. Routine workers are defined as workers in administrative,
production, or operator occupations, classified by the first occupational coding digit. Abstract workers include managers, technicians,
and professionals. Manual includes service, sales and agricultural occupations. Autor and Dorn (2013) occupational crosswalk is used
for a consistent definition of occupations over time.
Source: PSID
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(b) Professional

1980 1985 1990 1995 2000 2005 2010

−
0.

2
0.

2
0.

4
0.

6
0.

8

years

R
et

ur
n 

to
 S

ki
ll 

−
 L

og
 S

ca
le

(c) Technicians
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(d) Administrators
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(f) Production
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(g) Sales
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Figure A7: Return to Skill (αjt) by1-Digit Occupation
Returns to skill are calculated in an interactive fixed-effects model (αjt, using Equation 3). αjt varies by 1-digit occupation and year.
The Autor and Dorn (2013) occupational crosswalk is used for a consistent definition of occupations over time.
Source: PSID
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(a) Females

1980 1985 1990 1995 2000 2005 2010

−
0.

1
0.

0
0.

1
0.

2
0.

3

M
ea

n 
F

ix
ed

 E
ffe

ct

Abstract Routine Manual

(b) Males

Figure A8: Mean Skill Level (θ̂i) by Occupational Category
Mean level of θ̂i by gender, occupational category and year. θ̂i is calculated using Equation 4 estimated separately by gender, and
demeaned at the cohort level, where cohorts are defined based on year of entry into the labor market. Routine workers are defined
as workers in administrative, production, or operator occupations, classified by the first occupational coding digit. Abstract workers
include managers, technicians, and professionals. Manual workers include service, sales, and agricultural occupations. Autor and
Dorn (2013) occupational crosswalk is used for a consistent definition of occupations over time.
Source: PSID
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(c) Technicians
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(h) Services

●
●

●

●

●

● ●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

1980 1985 1990 1995 2000 2005 2010

−
0.

30
−

0.
20

−
0.

10

M
ea

n 
S

ki
ll 

Le
ve

l

(i) Agriculture

Figure A9: Mean Skill Level (θ̂i) by1-Digit Occupation
Mean level of θ̂i by occupational category and year. θ̂i is calculated using Equation 4, and demeaned at the cohort level, where cohorts
are defined based on year of entering the labor market. The Autor and Dorn (2013) occupational crosswalk is used for a consistent
definition of occupations over time.
Source: PSID
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Figure A10: Bin Scatter Plot - Change in Log Wages 1992–2002
Change in log wages in each of 20 equal-sized quantiles. Quantiles are calculated separately for both 1992 and 2002. The x-axis shows
the value of the mean log wage in each quantile. The y-axis plots the difference in mean log wages in each of the 20 quantiles between
1992–2002. Sample weights are used.
Source: CPS Outgoing Rotation Groups
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Figure A11: Skewness Decomposition by 3-Digit Occupation with Imputed Wages
Skewness decomposition based on Equation 6. This figure replicates the results in Figure 9 including imputed wages. Changes in
each component are plotted relative to the baseline year (1992). Wages at the top and bottom 5% were dropped (see Section 4).
Source: CPS Outgoing Rotation Groups
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Figure A12: Skewness Decomposition by 3-Digit Industry
Skewness decomposition (Equation 9) by 3-digit industry categories. Changes in each component are plotted relative to the baseline
year (1992). Wages at the top and bottom 5% were dropped (see Section 4).
Source: CPS Outgoing Rotation Groups
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Figure A13: Skewness Decomposition by Education and Experience
Skewness decomposition (Equation 9) by the interaction of years of schooling and years of experience. Changes in each component
are plotted relative to the baseline year (1992). Wages at the top and bottom 5% were dropped (see Section 4).
Source: CPS Outgoing Rotation Groups
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Figure A14: Skewness Decomposition by Occupation 1988–2012
This figure repeats the exercise of Figure 9 for a longer time period. Decomposition is based on Equation 13. Vertical lines represent
changes in 3-digit occupational coding. Occupational coding is based on the Autor and Dorn (2013) crosswalk. Changes are reported
relative to the baseline year (1988), which is approximately the beginning of the rise in skewness. Wages at the top and bottom 5%
were dropped (see Section 4).
Source: CPS Outgoing Rotation Groups
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Figure A15: Changes in Occupational Inequality 1992/3–2001/2 by Mean Log Wages
This figure plots all occupations with at least 0.5% of the total working hours (top 47 out of 501 occupations that include 53% of the
total working hours). The expected log wage (X-axis) is the average log wage in an occupation during the entire period (1992–2002).
Change in Variance (Y-axis) is the difference between the average of the first and last two years (I pool two years together to reduce
errors due to small sample size). The line is the best linear fit to the points. Wages at the top and bottom 5% were dropped (see Section
4).
Source: CPS Outgoing Rotation Groups
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Figure A16: Binned Changes in Occupational Inequality by Mean Log Wages
This figure plots the change in occupational variance as a function of occupation mean for three periods. The periods were chosen
such that occupational coding is held fixed: 1979–1991, 1992–2002, 2003–2012. In each period I divide occupations into 10 equal size
bins of occupations based on occupation mean log wage, weighted by occupation size. Each point calculates the mean log wage in the
baseline year, and the change in within occupation variance in this period. The distribution of log wages is demeaned separately in
each period.
Source: CPS Outgoing Rotation Groups
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Figure A17: Binned Changes in Occupational Inequality by Mean Log Wages 1992-2002
This figure plots the change in occupational variance as a function of occupation mean separately for routine and non-routine 3-digit
occupations. Occupations are binned based on occupation mean log wage separately for routine and non-routine occupations using
10 equal-sized bins (deciles) of occupations, weighted by occupation size. Each point displays the mean log wage in the baseline year
1992, and change in the variance between 1992–2002 when occupational coding is fixed. Routine occupations include all occupations
classified as administrators, operators, and production workers based on 1-digit occupation coding.
Source: CPS Outgoing Rotation Groups
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Figure A18: Skewness Decomposition by Occupation and Industry
Linear skewness decomposition (See Appendix D) by occupation and industry (Equation 13). COV

(
occ, ε2) (in blue) and

COV
(
ind, ε2

i
)

(in green) are the covariance of occupation and industry premiums with the unexplained variance and are plotted
separately. All other terms are aggregated (in red). Changes in each component are plotted relative to the baseline year (1992). Wages
at the top and bottom 5% were dropped (see Section 4).
Source: CPS Outgoing Rotation Groups
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Figure A19: Skewness Decomposition by Occupation, School, Experience
Linear skewness decomposition (see Appendix D) by occupations, years of schooling and years of experience, where education and
experience premiums are separated into the occupation mean and a residual (Equation 14). The covariances with the unexplained
variance are plotted separately while all other terms are aggregated. occ is the occupation premium for each 3-digit occupation
(conditional on education and experience), E [βX|iocc] is the mean of education and experience premiums in each 3-digit occupation,
and βXi − E [βXi |occi ] are the demeaned premiums for education and experience. Changes in each component are plotted relative to
the baseline year (1992). Wages at the top and bottom 5% were dropped (see Section 4).
Source: CPS Outgoing Rotation Groups
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F Appendix Tables

Abstract Routine Manual

Abstract 1

Routine .74 1

Manual .83 .69 1

Table A1: Correlation of Occupational Skills
Pearson correlation coefficient between θ̂ij0 , θ̂ij1 for pairs of occupational categories. The values of θ̂ij are estimated using Equation
3, allowing θi to vary by the three occupational categories. Routine workers are defined as workers in administrative, production
or operator occupations, classified by the first occupational coding digit. Abstract workers are defined as workers in managerial,
professional and technician occupations. Manual workers are defined as workers in service, sales, and agriculture. Each correlation is
calculated using all workers who ever worked in both categories.
Source: PSID
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