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Similarity Nash Equilibria in Statistical Games†

By Rossella Argenziano and Itzhak Gilboa*

A statistical game is a game in which strategic interaction is mediated 
via a binary outcome  y , coupled with a prediction problem where a 
characteristic  x  of the game may be used to predict its outcome  y  
based on past values of   (x, y)  . In Similarity Nash Equilibria, players 
combine statistical and strategic reasoning, using an estimate of  y  
as a coordination device. They predict  y  by its  similarity-weighted 
frequency and learn the optimal notion of similarity from the data. 
We prove that the model captures the importance of precedents and 
the endogenous formation of sunspots. (JEL C72, C73)

The Soviet bloc started collapsing with Poland, which was the first country in the 
Warsaw Pact to break free from the rule of the Soviet Union (USSR). Once this 

was allowed by the USSR, practically all its satellites in Eastern Europe underwent 
democratic revolutions, culminating in the fall of the Berlin Wall in 1989. The single 
precedent of Poland generated a “domino effect.” This paper suggests a belief for-
mation process that explains how a single precedent can have such a dramatic effect 
even in the absence of informational spillovers and strategic dependency among 
games.

Revolution attempts are typically modeled as coordination games: the expected 
utility derived from taking part in an uprising increases in the probability of its 
success, which in turn increases in the number of participants.1 For a citizen trying 
to decide whether to join such an attempt, it is crucial to predict the outcome of the 
uprising. A natural piece of information to use for such a prediction is the outcome 
of past revolutions in similar contexts.2 We suggest that the importance of the suc-
cessful revolution in Poland lied not only in changing the relative frequency of suc-
cessful revolutions but also in changing the notion of which past revolution attempts 
were similar to current ones and, hence, relevant to predicting their outcomes.

Specifically, the case of Poland was the first revolution attempt after the 
“Glasnost”  policy was declared and implemented by the USSR.  Pre-Glasnost 
attempts in Hungary in 1956 and in Czechoslovakia in 1968 had failed. In 1989, one 

1 See, for example, Edmond (2013).
2 Steiner and Stewart (2008); Argenziano and Gilboa (2012); and Halaburda, Jullien, and Yehezkel (2020) pro-

vide models in which  similarity-weighted frequencies of past cases are used to form beliefs in coordination games.
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might well wonder, has Glasnost made a difference? Is it a new era, where older cases 
of revolution attempts are no longer relevant to predict the outcome of a new one, or 
is it “business as usual,” and Glasnost doesn’t change much more than does, say, a 
leader’s proper name, leaving  pre-Glasnost failed attempts relevant for prediction?

If the revolution attempt in Poland were to fail as did previous ones, it would seem 
that the variable “ post-Glasnost” does not matter for prediction: with or without it, 
revolution attempts fail. As a result, when a person wonders what is the “right” way of 
judging similarity between past cases, she would likely be led to the conclusion that 
the variable “ post-Glasnost” should be ignored and that, consequently, the statistics 
are zero successes out of three revolution attempts. By contrast, because the revolution 
attempt in Poland succeeded, it had a double effect on the statistics. First, it increased 
the frequency of successful revolutions from 0:2 to 1:3. While 1/3 is larger than 0, it 
still leads to pessimistic predictions about the successes of future attempts. However, 
if people also learn how to judge similarity, the single case of Poland leads them to 
the conclusion that “ post-Glasnost” is an important variable. Indeed, the frequency of 
successes  post-Glasnost, 1:1, differs dramatically from the  pre-Glasnost frequency, 
0:2. Once this is taken into account,  pre-Glasnost events are not as relevant for predic-
tion as they used to be. If we consider the somewhat extreme view that  post-Glasnost 
attempts constitute a class apart, the relevant empirical frequency of success becomes 
1:1 rather than 1:3. Correspondingly, other countries in the Soviet Bloc could be 
encouraged by this single precedent, and soon it wasn’t single any more.

Statistics and Equilibrium Selection: The example above illustrates the main 
ideas of the paper: if players share a common memory of similar games played by 
others, they can use this history to predict the outcome of the current game and, hence, 
to choose their optimal action. When considering past games, players need to make 
a relevance judgment: which cases are similar to the current one, in the sense that 
they are relevant to predicting its outcome? We argue that players learn the optimal 
notion of similarity from history itself. Learning the similarity function from the data 
is referred to as “ second-order induction.”

To capture this reasoning in a model, we follow three steps. First, we associate 
a statistical problem to a binary coordination game. Second, we propose a solution 
concept that combines statistical and strategic reasoning. Finally, we specify our 
solution concept by proposing  second-order induction as the form of statistical rea-
soning in which the players engage. We then prove that this simple model captures 
phenomena such as the importance of a single precedent and the endogenous emer-
gence of sunspots.

Binary Statistical Coordination Games: First, we introduce the notion of a binary 
statistical coordination game of regime change. The term refers to a binary coordina-
tion game accompanied by a statistical problem in which a variable  y  (the outcome of 
the game) is predicted based on an observed characteristic  x  and on past values of both  
x  and  y . The statistical problem interacts with the game in two ways: first, the value of  
y  is determined by the players’ strategy choices (and, possibly, by the current value 
of  x ); second, it affects the payoffs of the game. We assume that a player’s utility 
depends only on her own strategy and on the values of   (x, y)   in the current period. 
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That is, what matters to a player is not strategic uncertainty per se but the uncertainty 
about the outcome of the game. In this sense, the current value of  y  is a “ strategically 
sufficient statistic” for the game.

In our motivating example, each player chooses whether to join the revolution 
attempt or not. The characteristic  x  denotes the current state of the polity and, 
specifically, whether it occurs before or after Glasnost was declared. The outcome  
y  indicates the success or failure of the attempt. It depends on the players’ choices 
(with the probability of success increasing in the number of players who join the 
revolution) and affects the payoffs of the two strategies. Neither the characteris-
tics  x  nor the outcomes  y  of past revolutions affect current payoffs. In this paper 
we restrict attention to binary variables  x, y , which suffices to convey the main  
points.

Statistical and Strategic Reasoning: Next, we propose that when confronted with 
a statistical game, players combine statistical and strategic reasoning. To select her 
optimal choice, a player needs to make a prediction about the outcome  y . Pure sta-
tistical reasoning would estimate  y  based on the observed current value of  x  and 
on past values of both  x  and  y , ignoring the fact  y  will be determined by the play-
ers’ chosen strategies. Pure strategic reasoning, on the other hand, when commonly 
known, would focus on equilibria of the game and infer an estimate of  y  from the 
equilibrium strategy of all players. Strategic reasoning would thus ignore past values 
of the variables   (x, y)  , which are  payoff irrelevant, as well as the current value of  x  
if it is also  payoff irrelevant.

We propose a solution concept that combines both modes of reasoning and that 
is compatible with many possible assumptions about rationality and higher-order 
beliefs in rationality. In coordination games of regime change, there are typically 
two pure strategy Nash equilibria. In our motivating example, in one equilibrium, 
citizens participate in the revolution, which therefore succeeds with high probabil-
ity, and in the other one, they do not, and it likely fails. We assume that players start 
with a statistical estimate of  y  based on past values   (x, y)   and on the current value 
of  x , and choose a  best response to it. As a result, they play one of the two equi-
libria. The estimate of  y  thus acts as an equilibrium selection device: it singles out 
the equilibrium that can be justified by both strategic reasoning and pure statistical 
reasoning.

 Second-Order Induction: Finally, to complete the characterization of our solu-
tion concept, we propose  second-order induction as the statistical method used by 
players to estimate  y . Statistics and machine learning offer a wide range of esti-
mation and learning techniques, and in principle, each of these could be used as 
a way to define coordination devices.3 We seek a method that can also serve as a 
reasonable model of the way most people think about their strategic choice, as in the 
example of the revolution games.

3 One may embed the game in a reasoning game, where each player first chooses a method of reasoning and 
then plays a best response to the estimate that this method generates. If the original game is a coordination game, 
so will be the reasoning game.
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We start from the simplest prediction method—namely, estimating probabili-
ties by empirical frequencies in similar cases in the past. This begs the question, 
which cases are deemed similar? In particular: will  x  be used to predict  y , or will  x  
be ignored? In other words, will  x  act as a coordination device? Ignoring  x  would 
mean estimating the probability that  y  be 1 by the overall (unconditional) frequency 
of  y = 1  in the past; by contrast, taking  x  into account would estimate it by the 
(conditional) empirical frequency of  y  in the  subdatabase in which  x  had the same 
value currently observed. In this paper, we assume that players learn the optimal 
estimation method—i.e., they choose the method that would have performed best 
had it been used in the past. This is a special case of the “empirically optimal simi-
larity” as in Gilboa, Lieberman, and Schmeidler (2006) and Argenziano and Gilboa 
(2019). We label the equilibrium played by players forming an estimate of  y  based 
on  second-order induction “Similarity Nash Equilibrium” (SNE).

The Results: We prove that SNEs capture several phenomena having to do with 
equilibrium selection. First, the concept explains the importance of precedents and 
provides an account of a mechanism by which a single success sets a domino effect 
into motion. Second, the process by which agents learn the similarity function from 
the data can also explain why some conspicuous but immaterial signals affect the 
play of the game and others do not. Specifically, the model describes the difference 
between successful and unsuccessful currency redenominations, showing when the 
 seemingly irrelevant currency denomination might become a determinant of similar-
ity—and thereby change equilibrium selection—and when it will likely be ignored. 
Third, the results show that changing the similarity function becomes harder with 
experience. Finally, we provide an asymptotic result, showing that a “sunspot” may 
or may not emerge when the process is repeated. In our model, equilibrium selec-
tion is generically unique in each period, but external shocks would determine 
whether it converges to be a  signal-dependent selection (sunspot equilibrium) or a 
 signal-independent one.

The rest of the paper is organized as follows. In Section I we present the formal 
definition of binary statistical coordination games and of SNE. Section II presents 
our results. Section III discusses related literature, while Section IV concludes with 
a discussion.

I. Model

A. Statistical Games

By the term “binary outcome game,” we refer to a game in which each player has 
two possible actions, and her payoff is a function of her own action and a binary 
outcome that depends on all players’ actions. Formally, a binary outcome game is a 
triple  G =  (H, u, f )   where

(i)  H =  [0, 1]   is a continuum of players;
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(ii)  u :  {0, 1}  ×  {0, 1}  → ℝ  is a player’s payoff function, depending on her action 
and the outcome  y ∈  {0, 1}  ;

(iii)  f :  [0, 1]  →  [0, 1]   is a continuous function determining the distribution of the 
outcome as a function of the distribution of the players’ actions.

The game  G =  (H, u, f )   defines a standard game played by members of  H  as 
follows.

 • Stage 1: All players take simultaneous actions: player  h ∈ H  selects an 
action   a   h  ∈  {0, 1}  , determining  a =   ( a   h )  h∈H   ∈   {0, 1}    H  .

We assume that the set of players choosing each action is Lebesgue measurable.

 • Stage 2: Nature selects a value for the outcome  y ∈  {0, 1}   according to the 
distribution

  Pr (y = 1 | a)  = f  (α)  ,

where  α  is the proportion of players (in  H ) that chose   a   h  = 1 .

 • The game ends, and player  h ’s payoff is given by  u ( a   h , y)  .

Note that the game is symmetric across players: there is a single function  u  for 
all players, and the function  f  depends only on the proportion of players choosing 
each action.

We assume that in addition, players observe the realization of a characteristic  
x , which might or might not be  payoff relevant, and have access to data about past 
realizations of both  y  and  x .4 We restrict attention to the case in which  x  (like  y ) is 
a single binary variable. Formally, we define a binary statistical problem of size   

(t − 1)   as   B t   =  (  ( x i  ,  y i  )  i<t  ,  x t  )   where, for each  i < t ,   x i  ,  y i   ∈  {0, 1}   are past reali-
zations and, at time  t , the value   x t    is observed.

Given a binary outcome game  G =  (H, u, f )   and a binary statistical problem   
B t   =  (  ( x i  ,  y i  )  i<t  ,  x t  )  , we think of   (G,  B t  )   as a (binary) statistical game.5 A statistical 
game differs from a standard game in two ways. First, it is augmented by a statistical 
problem   B t   =  (  ( x i  ,  y i  )  i<t  ,  x t  )  . This problem is implicitly assumed to be commonly 
known to all players, as are the sets of players, their strategies, etc.6 Past values of  

4 The general definition is silent on whether these past values of  x  and  y  were related to a game played at the 
time. In particular, it is possible that  y  reflects actions that were not a matter of choice—for example, if no other 
options were available at the time.

5 A statistical game is therefore defined in the context of a given   x t   . It follows that for a different value of   x t   , we can 
have a different game (or no game at all). In particular, the definition allows for the possibility that   x t    is  payoff relevant.

6 We implicitly assume that all the players encode information in the same way and that they agree on the 
meaning of statements such as “  x  i  

  j  = 0 ” or “  y i   = 1 .” If, for instance, different players think of a given case as 
a “success” (  y i   = 1 ) and others as a “failure” (  y i   = 0 ), without a  1:1 mapping between the different languages 
they use, we cannot assume a common process of statistical learning. See Sugden (1995), who proposes a theory of 
labeling in the context of coordination games.
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x  and  y  are  payoff irrelevant but can serve as a coordination device. Second, the cur-
rent values of  x  and  y ,   ( x t  ,  y t  )  , summarize the strategic aspect of the game. A player 
is assumed to know   x t   , and if she also knew what   y t    is about to be, she could ignore 
the strategy choices of the other players. Although   y t    is stochastic and its distribution 
depends on all players’ choices, its realization can be thought of as a “ strategically 
sufficient statistic” for the game  G .

We are interested in the selection of equilibria in coordination games. Formally, 
a binary outcome coordination game is a binary outcome game  G =  (H, u, f )   with 
the normalized payoff matrix

   
u ( a   h ,  y t  ) 

  
 y t   = 1

  
 y t   = 0

     a   h  = 1  1  0   

 a   h  = 0

  

d

  

c

   ,

where (i)  0 < c, d < 1,  (ii)  f  is an increasing function, and (iii)  f  (0)  = ε  and 
 f  (1)  = 1 − ε  for some  ε ∈  (0,  ε –  )  , with   ε –   <   1 − d _ 

1 − d + c
  ,   c _ 

1 − d + c
   .

Condition (i)  guarantees that   a   h  =  y t    is the best response to   y t   , condition 
(ii) guarantees that the game has strategic complementarities, and condition (iii) 
guarantees that the game has two strict Nash equilibria in which all players play   
a   h  = 0  and   a   h  = 1 , respectively. The corresponding statistical game will be 
referred to as a binary statistical coordination game.

In section IID we will consider sequences of statistical games   ( G t  ,  B t  )   where the 
games   G t   =  ( H t  , u, f )   are identical but each is played by a different set of players 
(to be precise, we assume that   H t    are pairwise disjoint and the payoff function  u  is 
the same for the two possible realizations of   x t   ). The statistical problems are related, 
with   B t    being the continuation of   B t−1   , so that the game   G t    has a longer history of 
past    ( x i  ,  y i  )  i<t    to consult than does   G t−1   .

As in repeated games, sequences of statistical games allow players to use history 
as a coordination device. But given that each player participates in only one statisti-
cal game, they do not have any  long-run strategic considerations.

B. Similarity Nash Equilibria

How does a player  h ∈ H  choose her action in game  G ? There are at least two 
approaches to the player’s problem. The first relies on the fact that the player’s pay-
off does not depend on the others’ choices beyond the realization of   y t   . Thus, the 
player can ask herself what   y t    is likely to be, given   x t    and previous values    ( x i  ,  y i  )  i<t   , 
and directly  best respond to her estimate of the outcome. We refer to this as “statisti-
cal reasoning.” The second approach, which we label “strategic reasoning,” requires 
that the player take into account not only the dependence of her payoff on   y t    but 
also the dependence of the latter on all the players’ actions, thus focusing on Nash 
equilibria of the game.

Formally, suppose players use pure statistical reasoning. Denote by

    y –  t   =   y –  t   (  ( x i  ,  y i  )  i<t  ,  x t  )  
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the players’ statistical estimate (to be specified shortly) of the probability that   
y t   = 1 , given   x t    and previous values    ( x i  ,  y i  )  i<t     . A player using pure statistical rea-
soning would play an action   a   h  ∈  {0, 1}   that maximizes

    y –  t   (  ( x i  ,  y i  )  i<t  ,  x t  ) u ( a   h , 1)  +  [1 −   y –  t   (  ( x i  ,  y i  )  i<t  ,  x t  ) ] u ( a   h , 0)  ,

as if  Pr ( y t   = 1)   did not depend on her action   a   h   or the action of any other player. In 
a binary coordination game, if all players use pure statistical reasoning and compute 
the same statistical estimate of   y t   , the resulting profile of actions   a   ∗  =   ( a   h )  h∈H    is 
a Nash equilibrium of  G . Therefore,   a   ∗   is also compatible with the assumption that 
players use pure strategic reasoning, ignoring the past. Our solution concept pro-
poses to use the external observer’s statistical analysis as an equilibrium selection, 
or coordination device, that selects the outcome of the game compatible with both 
pure statistical reasoning and pure strategic reasoning.

To complete the characterization of our solution concept, we need to specify how 
players form the statistical estimate    y –  t   . The most fundamental method to estimate   y t    
from the commonly known history of past games would be its empirical frequency:

    y –  t   =   1 _ 
t − 1

    ∑ 
i<t

  
 

     y i   .

However, in line with Hume’s (1748, 36) dictum, “from causes   [x]   which appear 
similar, we expect similar effects   [y]  ,” we should ask ourselves, are all past games 
“similar”  to the current one—i.e., relevant to predict its outcome? Or should one 
only take into account periods  i  in which   x i   =  x t   ? In other words, should one look 
at the overall empirical frequency of  y  or only at the conditional one? More formally, 
if players predict   y t    by a  similarity-weighted average7

    y –   t  
s  =   

 ∑ i<t  
 
    s ( x i  ,  x t  )  y i  

  ____________  
 ∑ i<t  

 
    s ( x i  ,  x t  ) 

   ,

would players use the similarity defined by   s 0   ( x i  ,  x t  )  = 1  for all   x i  ,  x t    or by   s x   ( x i  ,  x t  )  
= 1 { x i   =  x t  }   ? 8

Psychological evidence suggests that people learn the notion of similarity between 
data points from the database itself.9 We therefore assume that players choose the 
similarity function that, had it been used to predict the existing data points, where 
each is estimated based on the others, would have performed best.10

7 For cases where   ∑ i<t  
     s ( x i  ,  x t  )  = 0,  we define    y –   t  

s  = 0.5. 
8 Observe that we only consider two similarity functions here. One could allow for a variety of other func-

tions—for example, letting  s (1, 0)  = s (0, 1)  = α  for  α ∈  (0, 1)   while retaining the normalization  s (1, 1)  = 
s (0, 0)  = 1 .

9 See Nosofsky (1984, 1986, 1991).
10 See Argenziano and Gilboa (2019) for similar definitions in a continuous model.
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Formally, we use a  leave-one-out  cross-validation technique.11 For a similarity 
function  s  and  i < t , define

    y ˆ    i  
s  =   

 ∑ r≠i  
 
    s ( x r  ,  x i  )  y r  

  _____________  
 ∑ r≠i  

 
    s ( x r  ,  x i  ) 

   

and consider the sum of squared errors,

  SSE (s)  =   ∑ 
i=1

  
t−1

     (  y ˆ    i  
s  −  y i  )    2  .

We assume that players estimate   y t    by    y –   t  
s   using an empirically optimal similarity, 

which we define as a similarity function (between   s 0    and   s x   ) that minimizes the  SSE . 
In case of a tie, we assume that   s 0    is selected, as it is simpler, using fewer variables 
in the similarity judgment.12

Using the similarity function   s x    allows one to make distinct predictions    y –  t    for two 
 subdatabases (depending on the value of   x t   ). Intuitively, this additional freedom 
should result in a lower  SSE  overall. However, with a relatively small database, 
the freedom to select    y –  t    comes at a cost: some observations may be relatively “iso-
lated” in their  subdatabase, implying a loss in accuracy.13

We conclude this section by formally defining our solution concept: we define 
SNE of the statistical game   (G,  B t  )   to be any action profile   a ̃    such that for each 
player  h ∈ H , the following two conditions hold:

    a ̃     h  ∈  arg max  
 a   h 

  
 
    [ f ( α ̃  ) u ( a   h , 1)  +  [1 − f  ( α ̃  ) ] u ( a   h , 0) ]  ,

    a ̃     h  ∈  arg max  
 a   h 

  
 
    [  y –  t   (  ( x i  ,  y i  )  i<t  ,  x t  ) u ( a   h , 1)  +  [1 −   y –  t   (  ( x i  ,  y i  )  i<t  ,  x t  ) ] u ( a   h , 0) ]  ,

where   α  ̃   denotes the measure of players playing action 1 in action profile   a ̃   .

II. Results

It will be convenient to use the following notation: there are   (t − 1)   points in the 
database, and they are divided into four types according to the values of  x  and  y . Let 
the number of cases of each type be given by the following  case-frequency matrix:

   
# of cases

  
x = 0

  
x = 1

    y = 0  L  l   
y = 1

  
W

  
w

   .

11 The  leave-one-out cross validation technique is widely used in machine learning and in statistics. We use it 
here as an idealized model of the way that people learn which similarity function is the most appropriate to use in 
making predictions.

12 The preference for fewer variables is similar to the simplicity criteria implicit in the adjusted   R   2  , Lasso, the 
Akaike information criterion, etc. Standard arguments for the preference for simplicity apply here. In particular, 
using fewer variables results in lower memory and computation costs. The similarity   s 0    has the additional advantage 
over   s x    of having fewer cases of an empty database. However, the choice of a  tie-breaking rule is immaterial for the 
results that follow.

13 While we only consider here one dimension, the basic logic is identical to that of “the curse of dimensionality.”
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In the motivating example of our introduction, let  y = 1  (or 0) denote the success 
(or failure) of a revolution attempt ( w  for “win,” and  l  for “lose”), while  x = 1  (or 
0) denotes whether or not it occurred  post-Glasnost. Consider citizens in Hungary in 
1989. They lived in a  post-Glasnost world—i.e.,  x = 1 . After the successful revo-
lution in Poland, they observed two failed revolutions  pre-Glasnost and a successful 
one  post-Glasnost:   (L, W, l, w)  =  (2, 0, 0, 1)  . At this point, if they had ignored  x , 
they would have predicted failure as the most likely outcome of a revolution attempt 
(with a relative frequency of 2/3) and therefore, for reasonable choices of  c, d, f , 
would have found it optimal not to take part in one. Instead, by taking into account  
x , they would have considered only the case of Poland as relevant for their predic-
tions, expected a success, and therefore participated in the attempt.  Second-order 
induction is consistent with the fact that Glasnost was indeed considered relevant 
for predictions and a revolution was therefore attempted (successfully) in Hungary. 
Ignoring  x  yields  SSE ( s 0  )  = 1.5  while taking it into account reduces the sum of 
squared errors to  SSE ( s x  )  = 0.25 . Thus, the single case of a successful revolution 
made the variable “ post-Glasnost” informative enough to enter the similarity judg-
ment. Note that had the case of Poland ended in a failure,  SSE ( s 0  )  = 0  would hold, 
and the empirically optimal similarity would ignore the  post-Glasnost variable.

In the rest of this section, we will focus on larger databases, assuming that there 
is a  nontrivial history in which  x = 0 . Specifically, we assume throughout that  
L, W > 2 . This assumption means that (i) history contains a  nontrivial number of 
cases overall and that (ii) the prediction of the outcome  y  is a  nontrivial task: there 
are a few (at least three) cases with  y = 0  as well as with  y = 1 .

A. A New Value

We start by looking at SNEs of statistical games for which there is a  nontrivial 
history of cases with different outcomes but the characteristic  x  had a constant value  
x = 0  in all of them:  L, W > 2 , and  l = w = 0 . Consider classical examples 
of coordination games such as a revolutionary attempt, a bank run, or a currency 
attack. Suppose that in a sequence of such games,  x = 1  is observed for the first 
time: a new political leader appears, or a new policy is announced. History includes 
cases with various outcomes of analogous attempts to attack a government, a bank, 
or a currency. Some succeeded; some failed. But in all these cases, the new leader or 
policy was not in place ( x  was constantly equal to 0). As a result,  x  doesn’t have any 
predictive power in the existing database; hence, the first time that  x = 1  appears, 
it is ignored.14 The natural question then is: what will it take for players to start pay-
ing attention to it? Starting from a clean slate, what does it take for a new leader or 
policy to be taken seriously, to be considered something that separates history into 
two periods: a past regime, which is not relevant anymore, and a new regime, which 
contains cases relevant for predicting the outcome of the current game?

14 Observe that since all past cases have  x = 0 , the characteristic does not affect their similarity to each other. 
Thus, one obtains exactly the same  in-sample predictions whether one considers the variable  x  or not. This means 
that  SSE ( s 0  )  = SSE ( s x  )  . However, the similarity function   s x    cannot be used for  out-of-sample prediction, as it 
defines an empty database. As mentioned above, the  tie-breaking rule favors   s 0   .
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Our first two results answer this question. Proposition 1 says that even a single 
case is sufficient to convince players that they are under a new regime, if and only 
if the observed outcome  y  is the one that had been less frequently observed in the 
past. This result is rather intuitive: in order to be noticed, one needs to be different.

PROPOSITION 1: Let  L, W > 2 . If   (l, w)  =  (1, 0)  , any15 SNE is selected by   s x    if  
L < W , and by   s 0    otherwise. Symmetrically, if   (l, w)  =  (0, 1)  , any SNE is selected 
by   s x    if  L > W , and by   s 0    otherwise.

Thus, a new feature (leader, policy, etc.) that results in the modal outcome will 
not be considered relevant for prediction. However, if it is consistently the case 
that  x = 1  is associated with a particular value of  y , we would expect players to 
“notice” this regularity by taking  x  into account in the similarity judgment. The fol-
lowing result corroborates this intuition and shows that “consistently” need not be 
more than twice, provided that there are no  counterexamples:

PROPOSITION 2: Let  L, W > 2 . If either ( l > 1  and  w = 0 ) or ( l = 0  and  
w > 1 ), then any SNE is selected by   s x    .

The importance of this proposition lies in the comparison of  case-based and 
 rule-based reasoning: while our model does not equip players with the language in 
which general rules can be stated, learned, or acted upon, the  empirically optimal 
similarity function can mimic this type of reasoning. If it so happens that the asso-
ciative rule “If   x i   = 1 , then   y i   = b ” (for  b ∈  {0, 1}  ) is valid in the database, the 
players will notice this regularity: the empirically optimal similarity function will 
be   s x   , and in any SNE of the game, if  x = 1 , players will expect  y = b  and play   
a   h  = b . By contrast, if  x = 0 , they will expect  y  to be equal to the average value 
of  y  in the past cases with   x i   = 0  and play accordingly.

As an example of Proposition 1, consider a central bank that redenominates its 
currency in an attempt to restrain inflation. Inflation is an equilibrium phenomenon: 
an economic agent who expects others to raise prices of goods and services would 
be wise to do so herself. Thus, one can think of the inflation game as a  price-setting 
game with multiple equilibria, and of redenomination as an attempt to switch from 
a hyperinflation equilibrium to a low-inflation equilibrium16. If  x  denotes the new 
currency, then   x i   = 0  throughout all cases in history ( i < t ), and setting   x t   = 1  is 
an attempt to signal a new regime and to coordinate on the  noninflationary equilib-
rium. Will economic agents use  x  in their belief formation, or will they dismiss the 
redenomination as a “cosmetic change” and believe that inflation will continue to 
run high? Proposition 1 suggests that the answer depends on the first period: if, in 

15 Recall that for each similarity function, the corresponding Nash equilibria are generically unique. In our 
setup there is always a unique  empirically optimal similarity function (either   s 0    or   s x   ), and  nonuniqueness can only 
follow from ties.

16 See Mosley (2005, 1): “Redenominations often occur after economic crises, as governments attempt to con-
vince citizens and markets that hyperinflation is a thing of the past. In some cases, the timing is correct, in that 
redenomination caps off high levels of inflation. In other cases, governments are not able to reign in inflation imme-
diately after redenomination, and they may make multiple efforts.”
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this period, inflation is low—namely,  y  takes the value that was less frequent in the 
past—the characteristic will be used for prediction, and a new,  low-inflation equilib-
rium can be reached. By contrast, if, in the first period, the inflation rate continues to 
be high, the redenomination will be judged irrelevant. Israel switched from a lira to 
a shekel (worth 10 liras) in 1980 and then to a new shekel (worth 1,000 shekels) in 
1985. In 1980 the change was not accompanied by fiscal policy changes, and infla-
tion spiraled into  hyperinflation. By contrast, the change in 1985 was accompanied 
by budget cuts, and inflation was curbed in the following years. These two exam-
ples seem to corroborate the intuition behind Proposition 1: a change of currency is 
a  payoff-irrelevant but  perceptually conspicuous difference that might change the 
equilibrium selected; whether it succeeds in doing so depends on the realization 
of a  payoff-relevant variable ( y ). In these examples, psychological considerations 
suggest potential sunspots, but rational learning of the optimal similarity function 
implies that economic outcomes will determine which sunspots are used for coordi-
nation and which get ignored.

B. The Power of a Single Precedent

Suppose now that after a  nontrivial history ( L, W > 2 ) of cases with  x = 0 , 
a new leader appeared,  x = 1 , and established herself as relevant for prediction 
either through a series of consistent outcomes, as in Proposition  2, or through a 
single, “surprising” outcome, as in Proposition 1. The next proposition asks what it 
would take for the new leader to lose her role as a coordination device. Would a sin-
gle inconsistency, a single precedent with the opposite outcome, be enough for the 
players to stop paying attention to the characteristic  x ? The result is rather intuitive: 
a single precedent can make a characteristic irrelevant for prediction if the number 
of consistent outcomes of the opposite sign that have established its relevance is not 
too large.

PROPOSITION 3: Let  L, W > 2 . If either ( l = 1  and  0 < w ≤  ⌊W/L⌋  + 1 ) or, 
symmetrically, ( w = 1  and  0 < l ≤  ⌊L/W⌋  + 1 ), then any SNE is selected by   s 0   .

Consider the first statement (the second is symmetric): if relevance for prediction 
had been established with a single surprising outcome—i.e., if  W < L  and  w = 1 
—a single case ( l = 1 ) makes the characteristic irrelevant again. Similarly, it makes it 
irrelevant if relevance had been established with multiple, but not too many, outcomes 
of the type most frequent in the past—i.e., if  W > L  and  1 < w ≤  ⌊W/L⌋  + 1 . 
Finally, note that if  W > L  and  w = 1 , we already know by Proposition 1 that the 
empirical similarity is   s 0    for  l = 0 , and Proposition 3 shows that this is the case also 
for  l = 1 : if, in the first case in which the new leader was in office, the outcome of 
the game was the one most frequent in the past, the new leader does not become a 
coordination device, and that is still true even if a second case ends up having the 
opposite outcome.
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C. The General Case

We now turn to the more general case, where a new leader ( x = 1 ) appeared after 
a  nontrivial history with  L, W > 2 , and outcomes of both types have been observed:  
l, w > 0 . We ask what it will take for players to take into account the change in 
leadership when they form their beliefs. The basic intuition is simple: if the ratio  
w/l  is close to  W/L , the change of leadership will seem immaterial, and players will 
ignore it when forming beliefs: the empirically optimal similarity is   s 0    . If, however, 
the relative frequency of  y = 1  in the  subdatabase corresponding to  x = 1  is very 
different from that corresponding to  x = 0 , players will be convinced that they are 
under a “new regime,” and the empirically optimal similarity will be   s x   .

Proposition 4 starts from a scenario in which the  subdatabase with  x = 1  has, 
up to integrality constraint, the same ratio of cases with  y = 0  and  y = 1  as the 
 subdatabase with  x = 0 . In this case,  x  is irrelevant for predicting  y  (part (i) of the 
Proposition 4). Suppose that we now increase  w . We find that this improves the per-
formance of the similarity function that takes  x  into account, up to a point where it 
outperforms the similarity function that does not (part (ii)). As could be expected, 
the minimum   w   ∗  > lW/L  for which this inequality holds increases in the number 
of cases with the opposite outcome,  l  (part (iii)). Moreover, up to details of inte-
grality constraints, the number of additional cases needed to get to this minimum 
(  w   ∗  −  (lW/L)  ) is also  nondecreasing in  l  (part (iv)).

Formally, let   [ ]  : ℝ → 핑  be the nearest integer function, selecting the ceiling in 
case of a tie. (That is, for all  x ∈ ℝ  and  z ∈ 핑 , we have   [x]  = z  if  x = z + ε  and  
ε ∈  [−0.5, 0.5)  .) We prove the following:

PROPOSITION 4: Let  L, W, l, w  be any four integers such that  L, W > 2 ,  l > 0 , 
and  w =  [lW/L]  ≥ 0 . The following hold:

 (i) For databases   (L, W, l, w)   and   (L, W, l, w + 1)  , the unique SNE is the one 
selected by   s 0   .

 (ii) There exists an integer   w   ∗  (L, W, l)  ≥ w + 2  such that for every  q ≥ w , the 
unique SNE is the one selected by   s 0    for  q <  w   ∗  (L, W, l)   and by   s x    for  q 
≥  w   ∗  (L, W, l) .  (Clearly, if such an integer exists, it is unique.)

 (iii)   w   ∗  (L, W, l)   is  nondecreasing in  l .

 (iv) If  W/L  is an integer,   ( w   ∗  (L, W, l)  − w)   is  nondecreasing in  l .

Thus, our model captures the fact that it is harder to  reestablish relevance than to 
establish it at the outset. Suppose that a new leader whose identity is characterized 
by  x = 1  wishes to associate herself with successes—that is, to make others predict 
that  y = 1  when  x = 1 . Let us assume that in the past, successes were less fre-
quent than failures ( W < L ), so that if the leader does not single herself out, players 
will expect failures, and such beliefs will be  self-fulfilling. On this background, 
Proposition  1 guarantees that starting off with a single success ( w = 1 ,  l = 0 ) 
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suffices to establish relevance of  x  and thereby to place the leader in a class apart. In 
the  subdatabase defined by  x = 1 , only the less frequent outcome  y = 1  has been 
observed, and thus the leader is associated with success.

However, if it so happens that one starts out with a failure ( w = 0 ,  l = 1 ), the 
task will be harder: by Proposition 1, the leader’s identity won’t be considered rele-
vant after the initial failure, and parts (i) and (ii) of Proposition 4 show that for the 
leader to be noticed and associated with successes, at least two or three successes 
will be needed (depending on how unusual successes were in the past). More gener-
ally, for any number of adverse outcomes  l > 0 , there is a sufficiently large number 
of successes  w  that would eventually make  x  a coordination device followed by the 
players (part (ii)), but the number of successes required (part (iii)), and even the 
additional number of such successes (part (iv)), weakly increase (up to integrality 
constraints in part (iv)). One does get a second chance to make a first impression, 
but it becomes costlier.

D. Sequences of Statistical Games

We consider now a sequence of binary statistical coordination games and assume 
that the only relevant statistics are the past plays of these games. The payoffs are

   
u ( a   h ,  y t  ) 

  
 y t   = 1

  
 y t   = 0

     a   h  = 1  1  0   

 a   h  = 0

  

d

  

c

   ,

and we assume that  c  and  d  are independent of   x t   . This assumption simplifies the 
computations, though similar results would hold without it. More importantly, this 
assumption allows us to study the pure coordination role of  x : should we find a con-
vergence to playing at period  t  an equilibrium that depends on   x t   , we will think of   x t    
as a sunspot—that is, a coordination device that does not affect payoffs at all. Our 
question is, therefore, will  x  become a sunspot that determines equilibrium selec-
tion, or will it be ignored?

We assume that for each  t ,   x t    is exogenously determined according to an i.i.d. 
process. Specifically,

   x t   =  { 
0,

  
with probability 1 − β;

    
1,

  
with probability β;

    

independently of    ( x i  ,  y i  )  i<t    with  β ∈  (0, 1)  . At time  t , after   x t    is realized, all players 
in   H t    observe   x t    as well as the history that can be summarized by

   
# of cases

  
x = 0

  
x = 1

    y = 0  L   t    l   t     
y = 1

  
W   t  

  
w   t  

   ,
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where   L t   +  l t   +  W t   +  w t   = t − 1 . We will be interested in the limit of the relative 
frequencies, and observe that with probability 1,

    
 L t   +  W t   _ 
t − 1

   →  t→∞   1    − β ,

    
 l t   +  w t   _ 
t − 1

   →  t→∞    β    ,

so that the question is how often each equilibrium will be played when   x t   = 0  and 
when   x t   = 1 .

Consider the following four candidates for limit frequency matrices:   

where in matrices  I  and  IV , history suggests that the equilibrium does not depend on  
x , and in matrices  II  and  III , that it does. We can now state:

PROPOSITION 5: Under the assumptions above:

 (i) The relative frequencies   ( L t  ,  l t  ,  W t  ,  w t  ) / (t − 1)   converge to one of the matrices  
I, II, III, IV  with probability 1. Moreover, each of the matrices above is the 
limit with positive probability.

 (ii) The optimal similarity converges to a limit with probability 1: it is   s x    from some  
t  onward if the relative frequencies converge to matrix  II  or  III , and it is   s 0    from 
some  t  onward if the relative frequencies converge to matrix  I  or  IV .

Thus, we find that for all games that satisfy our assumptions, the variable  x  may 
or may not determine equilibrium selection in the limit. Clearly, in case the limit is 
one of the matrices  II  or  III , the ratios   L t  / W t    and   l t  / w t    become very different (one 
approaching  ε/ (1 − ε)   and the other – (  (1 − ε) /ε ), so that the empirically optimal 
similarity function is bound to be   s x   . By contrast, if the limits are matrices  I  or  IV  , 
both ratios converge to the same limit point ( ε/ (1 − ε)   or   (1 − ε) /ε ). This means 
that the optimal choice of the players is determined to be the same, and thus the 
same equilibrium is selected for both values of  x . However, this does not yet imply 
that the empirically optimal similarity is   s 0   : it is possible that the rate of convergence 
of the two ratios is different and that, along the way to the limit, they are suffi-
ciently different so as to make   s x    the optimal similarity. Part (ii) of the Proposition 
states that this is not the case. Thus, we obtain the following result: the process may 

I x = 0 x = 1 II x = 0 x = 1

y = 0 (1 − ε) (1 − β) (1 − ε)β y = 0 (1 − ε) (1 − β) εβ

y = 1 ε (1 − β) εβ y = 1 ε (1 − β) (1 − ε)β

III x = 0 x = 1 IV x = 0 x = 1

y = 0 ε (1 − β) (1 − ε)β y = 0 ε (1 − β) εβ

y = 1 (1 − ε) (1 − β) εβ y = 1 (1 − ε) (1 − β) (1 − ε)β
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converge to a limit in which there is a sunspot  x , so that the players coordinate on   
a   h  = x  or on   a   h  = 1 − x . It is also possible that the players ignore the sunspot 
and play   a   h  = 0  or   a   h  = 1  independently of  x . In the latter case, the empirically 
optimal similarity will indeed reflect the fact that the players make the same choices 
whether  x = 0  or  x = 1 .

III. Related Literature

Statistical games are reminiscent of “aggregative games”  (Selten 1970) and  
“congestion games” (Rosenthal 1973; Schmeidler 1973) in that a player’s payoff 
depends only on a summary statistic of the others’ choices. In the former, strategies 
are real numbers, and the statistic is their sum. In the latter, there are typically finitely 
many strategies, and the statistic is the relative frequencies of choice. In both, each 
player finds the others interchangeable. Similarly, in statistical games, each players 
should only bother about the prediction of  y , and the others’ choices only matter to 
the extent that they affect  y . The definition of statistical games brings the summary 
statistic  y  to the fore, allowing for a variety of ways in which it is determined by 
players’ choices, encapsulated in the function  f .17 Moreover, statistical games are 
equipped with a history of past observations of  x  and  y , which has no counterpart in 
the standard models of aggregative or congestion games.

Statistical games are similar to correlated equilibria (Aumann 1974) in that 
we assume that Nature sends a signal to each player before the game is played. 
However, in our context, the signal is commonly known. Thus, the correlation 
device  x  (coupled with the database    ( x i  ,  y i  )  i<t   ) selects an equilibrium but does 
not allow  nonequilibrium plays. In this sense, our correlating signal,  x , brings to 
mind “sunspots” (Cass and Shell 1983). In particular, if one imposes the additional 
assumption that in a statistical game,  x  is  payoff irrelevant, it does function, like 
sunspots, as a mere public correlation device. Viewed thus, our suggestion to use 
 second-order induction to find the similarity function can be considered a theory of 
sunspot selection.

Kets and Sandroni (2021) suggest a notion of equilibrium selection that is based 
on impulses, which are attended to by introspection and used as coordination 
devices. SNEs bear resemblance to their equilibrium selection process, in particular 
by using some  nonstrategic hunch that is also compatible with strategic reasoning. 
However, SNEs focus on statistical learning rather than on cultural impulses, and 
the notion of  second-order induction suggests which signals will be used for equi-
librium selection and which might be ignored.

When considered as a method of equilibrium selection in coordination games, sta-
tistical games cannot fail to remind one of “global games” (Carlsson and van Damme 
1993). Like global games, our approach attempts to embed the game in context 
in order to predict equilibrium selection. However, in global games, equilibria are 
chosen ex ante, simultaneously for all games, whereas in statistical games, they are 
chosen sequentially, highlighting the role of statistical learning. Global games rely 

17 Note that if we were to allow  y  to assume values in larger spaces, aggregative games and congestion games 
could be embedded in our model (by allowing  y  to be  real valued or a point in a corresponding simplex, respectively).
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on some uncertainty about the game played, while a statistical game is commonly 
known among its players, and the variable  x  only serves as a coordination device.

In a 2×2 symmetric coordination game, SNEs are related to  risk-dominant equi-
libria (Harsanyi and Selten 1988). Specifically, assume that there is no history to 
be considered ( t = 1 ) and that players use an initial guess of  Pr (y = 1)  = 0.5 . 
When players best respond to this guess, they will select the  risk-dominant equilib-
rium. Indeed, even when a history    ( x i  ,  y i  )  i<t    is available, the players may choose to 
ignore it, use  Pr (y = 1)  = 0.5  as a starting point, and select the  risk-dominant 
equilibrium. By contrast, SNEs assume that the initial statistical estimate is a func-
tion of history, where the values of   (x, y)   are used for weighted averaging, as well as 
for determining the weights in the averaging formula.

As mentioned above, one can also view SNEs as a possible formalization of 
Schelling’s (1960) focal points: estimating  y  based on its past values and finding the 
equilibrium that consists of best responses to this estimate can be viewed as a proce-
dure to determine focality. In the simplest case, assume that a game is played repeat-
edly and that a given equilibrium is played in the vast majority of past observations. 
It then stands to reason that a statistical prediction function would estimate a value 
of  y  that gives rise to the same equilibrium played in the past. In this sense, SNEs 
capture “statistical focality.” We view this analysis as complementary to Sugden 
(1995), who focuses on the labeling in pure coordination games.

 Similarity-weighted relative frequencies are formally equivalent to kernel esti-
mation of probabilities (Akaike 1954; Rosenblatt 1956; Parzen 1962; see Silverman 
1986), and they are also reminiscent of exemplar learning in psychology (Shepard 
1957, 1987; Medin and Schaffer 1978; Nosofsky 1984, 1988). The formula has also 
been axiomatized in Billot et al. (2005) (if  y  takes at least three values) and in 
Gilboa, Lieberman, and Schmeidler (2006) (for the case of two values discussed 
here).

As previously mentioned, Steiner and Stewart (2008); Argenziano and Gilboa 
(2012); and Halaburda, Jullien, and Yehezkel (2020) deal with Nash equilibria 
selected by appropriately defined similarity functions. As opposed to this literature, 
in this paper we assume not that a similarity function is given a priori but that it 
is learned from the data themselves. This notion of “second-order induction”  (in 
the terms of Gilboa, Lieberman, and Schmeidler 2006 and Argenziano and Gilboa 
2019) appeared in both the statistical literature (Hardlë and Marron 1985) and the 
psychological one (Nosofsky 2011).

IV. Discussion

For binary statistical coordination games, at least one SNE exists for any database   
B t   , and it is consistent with a gamut of assumptions on the players’  higher-level rea-
soning. For example, they may all be strategic and be aware of the fact that statistics 
only serves as a coordination device, or they may all be statistical and ignore the fact 
that other players are optimizing relative to their beliefs too. Moreover, there could be 
a fraction  η ∈  (0, 1)   of statistical players, and the strategic players might or might 
not be aware of this fact. Since each  Nash equilibrium action is a best response to a 
range of beliefs, as long as the different modes of reasoning concur on the same best 



370 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS AUGUST 2023

response, equilibrium behavior may result even in case of disagreement on beliefs. 
For example, a statistical player may think that the probability of  y = 1  is just high 
enough to choose action 1, whereas a strategic player may think that  y = 1  will occur 
with a (say, higher) probability  f  (1)  . Yet, their best response is the same.

Alternatively, suppose that each player in a binary statistical coordination game 
is capable of Level- K  reasoning for a given  K ≤ ∞  (see Nagel 1995; Stahl and 
Wilson 1995). There may be players at level  K = 0  who are incapable of strategic 
reasoning, and they estimate  Pr ( y t   = 1)   by    y –  t    and respond optimally to this esti-
mate. There are others who are at level  K = 1  and compute    y –  t    as well as the best 
response to this estimate, and believe that this best response would be the choice 
made by all the other players, and so forth. Eventually, we may also find players of 
level- ∞  reasoning, who can compute equilibria. These players may also be sophis-
ticated enough to have beliefs over the distribution of levels of reasoning in the pop-
ulation. Because an SNE consists (by definition) of strategies that are best response 
to the initial guess,    y –  t   , and to themselves, all levels of reasoning would lead to the 
same choices, namely the equilibrium strategies. Similarly, even if all the players are 
in fact capable of level- ∞  reasoning but this fact is not common knowledge among 
them, we might be led to an SNE again. Thus, SNEs are rather robust to assump-
tions about rationality and common belief thereof in binary statistical coordination 
games.

By contrast, in more general coordination games, SNEs might fail to exist. 
For example, consider a modified version of the coordination game described in 
Section I. Suppose that there is a continuum of heterogeneous players where player  
h ’s payoff is given by

   
 u   h  ( a   h ,  y t  ) 

  
 y t   = 1

  
 y t   = 0

     a   h  = 1  1 +  ε   h   0   

 a   h  = 0

  

0

  

1 −  ε   h 

   ,

and   ε   h  ∼ U (−1, 1)  , so that her best response is to join the revolution attempt if and 
only if she thinks that the probability of success is at least   (1 −  ε   h ) /2 ∼ U (0, 1)  . 
For any initial belief  Pr ( y t   = 1)  =  p 0   ∈  (0, 1)  , the best response would be to 
join the revolution for a fraction   α 0   =  p 0    of the population and not join it for the 
remaining fraction. If, for example,  f  (α)  =  α   2  , no SNE exists. One may generalize 
the  statistical-strategic reasoning process and the notion of SNE, allowing for an 
iterative process of  best response to initial beliefs. In the example above, the best 
response to the initial belief  Pr ( y t   = 1)  =  p 0   ∈  (0, 1)   would be to join the revo-
lution for a fraction   α 0   =  p 0    of the population. This in turn would generate beliefs   
p 1   = f  ( p 0  )  =  p  0  

2  <  p 0   , to which the best response would be to join the revolution 
for an analogous fraction   p 1    of the population. Such an iterative process would con-
verge to an equilibrium with  α = 0  for any initial belief  p ∈  (0, 1)  . Note that an 
iterative process of best responses is at the heart of equilibrium selection in global 
games (Carlsson and van  Damme 1993). Thus, an extension of our equilibrium 
selection to iterative best responses can simultaneously generalize global games (by 
allowing different games) and our analysis above.



VOL. 15 NO. 3 371ARGENZIANO AND GILBOA: SIMILARITY NASH EQUILIBRIA IN STATISTICAL GAMES

Another class of games where SNEs need not exist are statistical games where the 
two modes of reasoning lead to conflicting best responses. For example, consider 
a simple binary congestion game with a continuum of identical players with payoff

    

 

  

u ( a   h ,  y t  ) 

    a   h  = 0   y t     

 a   h  = 1

  

1 −  y t  

   ,

in which the distribution of a continuous outcome  y ∈  [0, 1]   is determined by the 
fraction  α  of players choosing action  1 , and  E [y]  = α . The game has a unique sym-
metric Nash equilibrium, in which all players choose the mixed strategy   (0.5, 0.5)  . 
A statistical player’s best response to belief   y –   is   a   h  = 1  if   y –  ≤ 0.5  and   a   h  = 0  if   
y –  ≥ 0.5 . Therefore, if at least some players use statistical reasoning, SNE almost 
never exists. More precisely, it exists only for databases   B t    that generate a belief   
y –  = 0.5 .

Finally, another example of conflict between the two modes of reasoning and 
 nonexistence of SNE can arise in centipede games. In these games, strategic rea-
soning leads to the unique equilibrium outcome, in which the first player stops the 
game (“play Down”). On the other hand, statistical reasoning can lead a player to 
continue the game (“play Across”) if a given history of centipede games played by 
other players leads her to believe with high enough probability that the next player 
will also do so for at least one more stage.

Appendix: Proofs

For the following proofs, it is useful to define  Δ (L, W, l, w)  ≡ SSE ( s x  )  − SSE ( s 0  ) ,  
where  Δ (L, W, l, w)  > 0  implies that the variable  x  should not be included in the 
empirically optimal similarity function, whereas  Δ (L, W, l, w)  < 0  implies that it 
should. Clearly,  Δ (L, W, l, w)  = Δ (W, L, w, l)   and  Δ (L, W, l, w)  = Δ (l, w, L, W)  , 
as the  SSE  calculations do not change if we switch between 0 and 1 either for a pre-
dictor  x  or for the predicted variable  y .18

PROOF OF PROPOSITION 1:
We need to show that

 (i) If  L < W ,  Δ (L, W, 1, 0)  < 0  and  Δ (L, W, 0, 1)  > 0 ;

 (ii) If  L > W ,  Δ (L, W, 1, 0)  > 0  and  Δ (L, W, 0, 1)  < 0 ;

 (iii)  Δ (L, L, 1, 0) , Δ (L, L, 0, 1)  > 0 .

18 Whenever needed, we use partial derivatives to derive inequalities. In doing so, we obviously extend the defi-
nition of the function  Δ (L, W, l, w)   to all  nonnegative real numbers   (L, W, l, w)   by the function’s algebraic formula, 
whenever  well defined.
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We first show that  Δ (L, W, 1, 0)   is positive for  L ≥ W  and negative for  L < W . 
By symmetry, this implies that  Δ (L, W, 0, 1)   is positive for  L ≤ W  and negative for  
L > W , together completing the proof.

The  SSE s are given by  SSE ( s 0  )  = W  (1 −   W − 1 _ L + W  )    
2
  +  (L + 1)   (−   W _ L + W  )    

2
   and 

 SSE ( s x  )  = W  (1 −   W − 1 _ 
L + W − 1  )    

2
  + L  (−   W _ 

L + W − 1  )    
2
  + 0.25  (where the  subdatabase 

for which  x = 1  yields  SSE = 1/4 ).
It follows that  Δ (L, W, 1, 0)   is equal to

(1)    [ L   4  +  L   3  (4W − 2)  +  L   2  (2 W    2  + 2W + 1)  + L (2W − 4 W    3  + 6 W    2 )  

 − 3 W    4  + 2 W    3  + 5 W    2  − 4W] / [4  (L + W − 1)    2   (L + W)    2 ]  .

The denominator of expression (1) is positive. Let  a (L, W)   denote the numer-
ator. First, we observe that  a (L, L)  = 4L (2 L   2  + 2L − 1)  > 0.  This establishes 
part (iii) and will also be a useful benchmark for parts (i) and (ii). Indeed, to prove 
that  a (L, W)  > 0  (and thus that  Δ (L, W, 1, 0)  > 0 ) for  L > W , we will consider 
the partial derivative of  a (L, W)   relative to its first argument, and show that it is 
positive for  L ≥ W . (Clearly,  a (L, W)   is a polynomial in its two arguments, and it 
is  well defined and smooth for all real values of   (L, W)  .) To see this, observe that 
 ∂ a (L, W) /∂ L  is equal to

(2)   4 L   3  +  (12W − 6)  L   2  +  (4 W    2  + 4W + 2) L +  (−4 W    3  + 6 W    2  + 2W)  .

Since  W > 2  implies  12W − 6 > 0 , the only negative term in (2) is  −4 W    3  . 
However, for  L ≥ W  it is true that  4L W    2  − 4 W    3  ≥ 0 , and thus for  L ≥ W  we 
have  ∂ a (L, W) /∂ L > 0 . Because for  L ≥ W ,  a (L, W)   is strictly increasing in  L  and  
a (L, L)  > 0 , we also have  a (L, W)  > 0  for  L > W .

We now turn to the case  L < W , where expression (2) might be negative (and, 
indeed, will become negative if  L  is held fixed and  K → ∞ .) Again, the strat-
egy of the proof is to use direct evaluation at a benchmark and partial derivative 
arguments beyond, though a few special cases will require attention. The bench-
mark we use is the case  W = L + 1 . Here, direct calculations yield  a (L, L + 1)  
= −4L (2 L   2  − 1)  < 0 .

This time, we consider the partial derivative of  a (L, W)   with respect to to its sec-
ond argument, and would like to establish that it is negative. If it were, increasing  K  
from   (L + 1)   further up would only result in lower values of  a (L, W)  , and therefore 
the negativity of  a (L, W)   (and of  Δ (L, W, 1, 0)  ) for  L < W  would be established.
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Consider, then,

(3)    
∂ a (L, W) 

 _ ∂ W
   = 4 L   3  + 4 L   2 W + 2 L   2  − 12L W    2  + 12LW

 + 2L − 12 W    3  + 6 W    2  + 10W − 4

 = 4 L   3  +  (4W + 2)  L   2  +  (12W − 12 W    2  + 2) L

 +  (6 W    2  − 12 W    3  + 10W − 4) 

 < 4 W    3  +  (4W + 2)  W    2  + 12 W    2  + 2W − 12L W    2  + 6 W    2 

 − 12 W    3  + 10W − 4

 < 4 W    3  +  (4W + 2)  W    2  + 12 W    2  + 2W + 6 W    2 

 − 12 W    3  + 10W − 4

 = −4 (−3W − 5 W    2  +  W    3  + 1)  ,

where the first inequality follows from the fact that  L < W , and the second from 
the fact that  L, W > 0 .

We now observe that that expression is negative for  W ≥ 6 , and thus the par-
tial derivative  ∂ a (L, W) /∂ W  is indeed negative for all  W ≥ 6 ,  L < W . Coupled 
with the fact that  a (L, L + 1)  < 0 , we obtain  a (L, W)  < 0  for all  W ≥ 6  (and  
2 < L < W ).

We now wish to show that  a (L, W)  < 0  holds also for lower values of  W . 
However, as  W > L > 2 , only a few pairs of values   (L, W)   are possible:   (3, 4)  
,   (3, 5)  ,   (4, 5)  . Direct calculation shows that  a (L, W)   is negative for all these pairs. 
Specifically,  a (3, 4)  = −204 ,  a (3, 5)  = −1, 424,  and  a (4, 5)  = −496.  This con-
cludes the proof of parts (i) and (ii). ∎

PROOF OF PROPOSITION 2:
Let there be given  l > 1 . We wish to prove that for any  L, W > 2, 

  Δ (L, W, l, 0)  < 0  (where the case  l = 0 ,  w > 1  is obviously symmetric).
The  SSE s are given by  SSE ( s 0  )  =  (L + l)   (−   W _ 

l + L + W − 1
  )    

2
  + 

W  (1 −   W − 1 _ 
l + L + W − 1

  )    
2
   and  SSE ( s x  )  = L  (−   W _ 

L + W − 1  )    
2
  + W  (1 −   W − 1 _ 

L + W − 1  )    
2
  

(where the  subdatabase for which   x     j  = 1  yields  SSE = 0 ). Straightforward cal-
culation yields

  Δ (L, W, l, 0) 

  = −Wl   
 [L (W − 2)  +   (W − 1)    2 ] l +  (L + W − 1)  [L (W − 2)  + W (W − 1) ] 

      ________________________________________________________    
  (L + W − 1)    2   (l + L + W − 1)    2 

   ,
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which is clearly negative. ∎

For convenience, we prove Proposition 4 before Proposition 3.

PROOF OF PROPOSITION 4:
First, observe that if  w =  [lW/L]  = 0 , then the first result in part (i)—namely 

that for databases   (L, W, l, 0)  , the unique SNE is the one selected by   s 0   —follows 
directly from Proposition 1. To prove the rest of the Proposition, it will be conve-
nient to extend the definition of  Δ  to  real-valued arguments and use calculus. We 
will only resort to (first- and second-order) partial derivatives with respect to the last 
two arguments. Note that for positive integers  L, W, l, w , the  SSE  formulae are

(4)  SSE ( s 0  )  =  (L + l)    
  (W + w)    2 

  ___________________  
  (L + W + l + w − 1)    2 

  

 +   (L + l)    2    W + w  ___________________  
  (L + W + l + w − 1)    2 

   ,

(5)  SSE ( s x  )  = LW   L + W ____________  
  (L + W − 1)    2 

   + lw   l + w ___________  
  (l + w − 1)    2 

   .

It is therefore natural to define, for positive integers  L, W , and any  l, w ∈ ℝ  such 
that  l + w ≠ 1 −  (L + W)   and  w ≠ 1 − l ,

  Δ (L, W, l, w)  = LW   L + W ____________  
  (L + W − 1)    2 

   + lw   l + w ___________  
  (l + w − 1)    2 

  

 −  (L + l)    
  (W + w)    2 

  ___________________  
  (L + W + l + w − 1)    2 

   

 −   (L + l)    2    W + w  ___________________  
  (L + W + l + w − 1)    2 

   .

Clearly, the function  Δ  is a rational function in its four arguments, and apart from 
these points of singularity, it is  well defined and smooth. Note that we are interested 
in  l, w  that are positive integers; hence  l, w ≥ 1 . In particular,  l + w ≥ 2  while  
1 −  (L + W)  < −3  and  w ≥ 1  while  1 − l ≤ 0 , so that none of the two singular 
points of  Δ  are within or even on the boundary of the range of values that is of inter-
est to the statement of the proposition, apart from the special case discussed in the 
first paragraph of this proof. However, these points will prove useful in analyzing 
the function.

Next, because our focus is on the behavior of  Δ  as we change its fourth argument, 
starting from the critical point  w = lW/L , it will simplify notation if we shift the 
fourth variable to center it around that point. Formally, let  ω ∈ ℝ , and define a 
function  b :  ℤ  +  2   ×  ℝ   2  → ℝ  by  b (L, W, l, ω)  = Δ (L, W, l,  (lW/L)  + ω) . 

The statements in the Proposition are about the value of the  Δ ( ⋅ )   function evalu-
ated at points where the third argument is a positive integer and the fourth argument 
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is an integer larger or equal than   [lW/L]  . It is therefore useful to notice that for any 
positive integers  L, W, l  and integer  z , we can write

(6)  Δ (L, W, l,  [  lW _ 
L

  ]  + z)  = Δ (L, W, l,   lW _ 
L

   + ε + z)  = b (L, W, l, z + ε)  ,

where  ε =  [lW/L]  −  (lW/L)  . Note that  ε ∈  [−0.5, 0]   if   [lW/L]  =  ⌊lW/L⌋   and  
ε ∈  [0, 0.5)   if   [lW/L]  =  ⌈lW/L⌉  .

We prove the proposition as follows:

 1. We first show that  b (L, W, l, ω)   is strictly decreasing in  ω  for  ω ≥ 1  
(Lemma 1).

 2. Next, we prove that  b (L, W, l, ω)   has a limit as  ω → ∞  and that it is a nega-
tive number (Lemma 2).

 3. Direct calculation shows that  b (L, W, l, 1.5)  > 0 , and from this, we con-
clude that as a function of  ω ,  b (L, W, l, ω)   has a unique root larger than 1.5 
(Lemma 3).

 4. We prove that  b (L, W, l, ω)  > 0  for  ω ∈  [−0.5, 1.5]   if   [lW/L]  ≥ 1,  and 
for  ω ∈  [0.5, 1.5]   if   [lW/L]  = 0  (Lemma 4).

 5. Next, we show that    
∂ b (L, W, l, ω) 

 _ ∂ l
   > 0  for  ω ≥ 2  (Lemma 5).

 6. We then show that for all   l ′   > l > 1 ,   w ̃   >  l ′  W/L , if  Δ (L, W, l,  w ̃  )  ≥ 0 , 
then  Δ (L, W,  l ′  ,  w ̃  )  ≥ 0  (Lemma 6).

Before we proceed to formally state and prove these lemmas, let us explain why 
they prove the result:

Part (i) follows from Lemma 4. For   [lW/L]  ≥ 1 , we need to show that (for all  
L, W > 2,    l > 0 ), we have  Δ (L, W, l, w) , Δ (L, W, l, w + 1)  > 0 . In terms of the 
function  b  ,  Δ (L, W, l, w)  = b (L, W, l, ε)   and  Δ (L, W, l, w + 1)  = b (L, W, l, ε + 1)   . 
Thus, we have to show that  b (L, W, l, ε) , b (L, W, l, ε + 1)  > 0   where  
 ε =  [lW/L]  −  (lW/L)  ∈  [−0.5, 0.5)  . Clearly, this follows from Lemma  4. 
Similarly, for   [lW/L]  = 0 , we need to show that (for all  L, W > 2,    l > 0 ) we 
have  Δ (L, W, l, w + 1)  = b (L, W, l, ε + 1)  > 0 ,  where  ε =  [lW/L]  −  (lW/L)   
∈  [−0.5, 0.5)  . Clearly, this also follows from Lemma 4.

Part (ii) follows from Lemmas 1 and 3 because  b  is a smooth function of  ω  in the 
range  ω ≥ 1 .

Part (iii) follows from Lemma 6: If   l ′    is such that   [ l ′  W/L]  ≥  w   ∗  (L, W, l)  − 2 , the 
claim follows from the fact that   w   ∗  (L, W,  l ′  )  ≥  [ l ′  W/L]  + 2 . Thus, we focus on the case 
  [ l ′  W/L]  <  w   ∗  (L, W, l)  − 2 .

Using part (i) and the definition of   w   ∗  ,  Δ (L, W, l, q)  ≥ 0  for any integer  q  such 
that  0 ≤ q ≤  w   ∗  (L, W, l)  − 1 . Lemma 6 implies that for the same values of  q,   Δ 
(L, W,  l ′  , q)  ≥ 0 . It follows that the smallest integer   w ″    (  w ″   >  [ l ′  W/L]  ) for which  
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Δ (L, W,  l ′  ,  w ″  )    becomes negative is greater than or equal to   w   ∗  (L, W, l)    and thus 
  w   ∗  (L, W,  l ′  )  ≥  w   ∗  (L, W, l)  .

Finally, for part (iv), assume that  W/L  is an integer, and consider integers   l ′   > l 
> 1 . Let  w =  [lW/L]   and   w ′   =  [ l ′  W/L]  —that is,  w = lW/L  and   w ′   =  l ′  W/L , as 
these are integers. Lemma 5 implies that if  b (L, W, l, ω)  = Δ (L, W, l, w + ω)  > 0  for  
ω ≥ 2 , then  b (L, W,  l ′  , ω)  = Δ (L, W,  l ′  ,  w ′   + ω)  > 0  (for the same  ω ). It follows 
that the smallest integer  ω > 1  for which  Δ (L, W,  l ′  ,  w ′   + ω)   becomes negative is big-
ger than that for which  Δ (L, W, l, w + ω)   becomes negative; thus,   w   ∗  (L, W,  l ′  )  −  w ′   
≥  w   ∗  (L, W, l)  − w .

We start by providing the explicit formula for  b (L, W, l, ω)  :

(7)  b (L, W, l, ω)  =   
LW (L + W) 

  ____________  
  (L + W − 1)    2 

   +   
l (lW + L ω)  [l (L + W)  + L ω] 

   ________________________   
  [lW + L (l + ω − 1) ]    

2
 
   

  −   
 (l + L)  (lW + LW + L ω)  (lL +  L   2  + lW + LW + L ω) 

     ____________________________________________    
  (−L + lL +  L   2  + lW + LW + L ω)    

2
 
   .

This is a rational function in  ω , with two vertical asymptotes where either the 
denominator of the first term or the denominator of the third term in (7) vanishes. 
We denote these singular points by   ω 

¯
    and   ω –   , respectively:

   ω –   = 1 −   
l (L + W) 

 _ 
L

   = 1 − l −   lW _ 
L

   < 0 ,

   ω 
¯
   = 1 −   

 (l + L)  (L + W) 
  ______________ 

L
   <  ω –   .

Thus, for  ω >  ω –   ,  b (L, W, l, ω)   is a smooth function.
We can now establish:

LEMMA 1:  b (L, W, l, ω)   is strictly decreasing in  ω  for  ω ≥ 1 .

PROOF:
Differentiate  b (L, W, l, ω)   with respect to  ω :

    
∂ b (L, W, l, ω) 

  ____________ ∂ ω   =   
 {2L (l + L)  [lW + L (W + ω) ]  [l (L + W)  + L (L + W + ω) ] } 

     __________________________________________________    
  [ L   2  + lW + L (−1 + l + W + ω) ]    

3
 
   

  −   
 {L (l + L)  [l (L + 2W)  + L (L + 2 (W + ω) ) ] } 

    _______________________________________    
  [ L   2  + lW + L (−1 + l + W + ω) ]    

2
 
   

  +   
 {l L   2  [−2lW +  l   2  (L + W)  + lL (−1 + ω)  − 2L ω] } 

     __________________________________________   
  [lW + L (−1 + l + ω) ]    

3
 
   .
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The above expression can be rewritten as

(8)   −   
 L   3  [ z 0   (L, W, l)  +  z 1   (L, W, l) ω +  z 2   (L, W, l)  ω   2  +  z 3   (L, W, l)  ω   3  +  z 4   (L, W, l)  ω   4 ] 

      _______________________________________________________________      
  [lW + L (l + ω − 1) ]    

3
   [ L   2  + lW + L (l + W + ω − 1) ]    

3
 
   ,

where we define   z 0   (L, W, l) ,  z 1   (L, W, l) ,  z 2   (L, W, l) ,  z 3   (L, W, l) ,  z 4   (L, W, l)   as

   z 0   (L, W, l)  = −2 l    4  (L − W)   (L + W)    3  −  l    2  L   2   (L + W)    2  [6 + L (2L − 9)  − 2 W    2 ] 

 − 2 l    3 L  (L + W)    2  [L (2L − 3)  − 2 W    2 ]  +  L   4  [2W − L (L + W − 1) ] 

 + l L   3  {L [2 + 3 (L − 2) L]  + 4W + 6 (L − 2) LW 

 + 3 (L − 2)  W    2 }  ,

   z 1   (L, W, l)  = L { L   3  [2  (l − 1)    4  + 4  (l − 1)    3  L +  (3 − 4l + 2 l    2 )  L   2 ] 

 + W [6 (l − 1) l (2 − l +  l    2 )  L   2  + 6 (2l − 1)  (1 − l +  l    2 )  L   3 

 + 3 (1 − 2l + 2 l    2 )  L   4  + 6lL (l + L)  (1 +  l    2  + lL) W

 + 2l (l + L)  (2l +  l    2  + L + lL)  W    2 ] }  ,

   z 2   (L, W, l)  = 3 L   2  {2 l    3  W    2  + L [ (−2 + 4l − 4 l    2  + 2 l    3 ) L

 +  L   2  [2 − 4l + 3 l    2  +  (l − 1) L]  

 +  [4l (1 − l +  l    2 ) + 2L + l (6l − 4) L

 +  (2l − 1)  L   2 ] W +  (3 l    2  + lL)  W    2 ] }  ,

   z 3   (L, W, l)  =  L   3  [ L   3  + 2l (3l − 2) W +  L   2  (−4 + 6l + W) 

 + L (6 − 8l + 6 l    2  − 2W + 6lW) ]  ,

   z 4   (L, W, l)  =  L   4  (−2 + 2l + L)  .

First, notice that   L   3   and the denominator of expression are strictly positive; 
hence, the sign of is equal to the opposite sign of the polynomial in  ω  on its numer-
ator. Second, notice that   z 1   (L, W, l) ,    z 2   (L, W, l) ,    z 3   (L, W, l) ,  and   z 4   (L, W, l)   are strictly 
positive for all admissible values of   {L, W, l}  . It follows that the derivative of the 
polynomial in  ω  on the numerator of is strictly positive for positive values of  ω . 
Hence, if we can show that the polynomial is positive for some positive value of  ω , 
then it is positive for all larger values of  ω  as well. Finally, we evaluate the polyno-
mial at  ω = 1  and show that it is positive.
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   z 0   (L, W, l)  +  z 1   (L, W, l)  (1)  +  z 2   (L, W, l)  (1)  +  z 3   (L, W, l)  (1)  +  z 4   (L, W, l)  (1) 

   = 2l (l + L)   (L + W)    3  [ L   2  +  l    2 W + lL (2 + W) ]  > 0 .

This allows us to conclude that  ∂ b (L, W, l, ω) /∂ ω < 0  for all  ω ≥ 1 .  ∎

LEMMA 2:  ∃  lim  ω→∞   b (L, W, l, ω)  < 0 .

PROOF:

    lim  ω→∞   b (L, W, l, ω)  =   
LW (L + W) 

  ____________  
  (L + W − 1)    2 

   + l − l − L

 =   
−L  (L − 1)    2  −  (L − 2) LW

   _______________________  
  (L + W − 1)    2 

   < 0 . ∎

LEMMA 3:  b (L, W, l, ω)   has exactly one root in  ω ∈  (1.5, ∞)  .

PROOF:
We know that the singular points of  b  are negative. This means that for  ω ≥ 0  ,  

b (L, W, l, ω)   is a smooth function. Further, algebraic calculations19 show that 
 b (L, W, l, 1.5)  > 0  for all  L, W > 2,   l > 0.  Since we established that  b (L, W, l, ω)   
is negative for  ω  large enough, it has to have a root at some  ω > 1.5 . Further, it is 
unique because  b  is strictly decreasing in  ω  over this range. ∎

LEMMA 4:  b (L, W, l, ω)  > 0  for  ω ∈  [−0.5, 1.5]   if   [lW/L]  ≥ 1 , and for  ω ∈ 
 [0.5, 1.5]   if   [lW/L]  = 0 .

PROOF:
We need to consider two cases.

Case 1:  l = 1 
In this case, the vertical asymptotes are at    w 

¯
   = − (W/L)  −  (W + L)   and   ω –   

= − (W/L)  , so for  ω ≥ − (W/L)  , the function is smooth. Algebraic calcula-
tions20 show that for  l = 1  and for all  L, W > 2 ,  ∂ b (L, W, l, ω) /∂ ω  is strictly neg-
ative for all  ω ≥ − (W/L)  . This, together with the fact that  b (L, W, l, 1.5)  > 0  , 
proves that  b (L, W, l, ω)  > 0  for  ω ∈  (− (W/L) , 1.5]  . If   [lW/L]  ≥ 1,  the fact 
that  − (W/L)  < 0.5  proves that  b (L, W, l, ω)  > 0  for  ω ∈  [−0.5, 1.5] .  Similarly, 
if   [lW/L]  = 0 , the fact that  − (W/L)  < 0  proves that  b (L, W, l, ω)  > 0  for 
 ω ∈  [0.5, 1.5]  .

Case 2:  l > 1 

19 See online Appendix part (a).
20 See online Appendix part (c).
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Algebraic calculations21 show that  b (L, W, l, −0.5)  > 0  for all  l > 1  ,  
L, W > 2  such that   [lW/L]  ≥ 1 , and show that  b (L, W, l, 0.5)  > 0  for all  l > 1 ,  
L, W > 2  such that   [lW/L]  = 0 . Consider first the case   [lW/L]  ≥ 1.  To study the 
sign of  b (L, W, l, ω)   for  ω ∈  [−0.5, 1.5]  , we observe that it is positive at  ω = −0.5  
and at  ω = 1.5 , and that it is continuous on the interval. Thus, to prove that it is 
positive throughout the interval, it suffices to show that it has no roots in it.

Observe that  b (L, W, l, ω)   is a rational function in  ω  with a fourth-degree polyno-
mial (in  ω ) in its numerator. Every root of  b  is a root of this polynomial, and thus  b  
can have at most four real roots. We claim that it has at least one real root in each of 
the following intervals:

 (a)   ( ω 
¯
  ,  ω –  )  , (b)   ( ω –  , −0.5)  , (c)   (1.5, ∞)  .

To see that there is a root in (a), observe that

    lim  
ω → +   ω –  

  
 
   b (L, W, l, ω)  =   lim  

ω → −   ω –  
  

 
   b (L, W, l, ω)  

  =   
LW (L + W) 

  ____________  
  (L + W − 1)    2 

   −   
 L   2  l (l − 1) 

 _ 
0
  

 −   
L (L + l)  (L + LW − Ll)  (L + W + 1) 

   _______________________________  
 L   2   (L + W)    2 

   = −∞ ,

    lim  ω → +   ω 
¯
    

 
   b (L, W, l, ω)  =   

LW (L + W) 
  ____________  

  (L + W − 1)    2 
   +   

l [−L (L + W + l − 1) ]  [−L (L + W − 1) ] 
    __________________________________   

 L   2   (L + W)    2 
   

  −   
− L   2  [l (L + 2l − 1)  + l (l − 1) ] 

   __________________________  
 0   + 

   = +∞ .

Thus,  b , which is continuous over   ( ω 
¯
  ,  ω –  )  , goes from  +∞  to  −∞  and has to cross 0 

over the interval.
As for interval (b), observe, again, that   lim  ω → +   ω –     b (L, W, l, ω)  = −∞  and that 

 b (L, W, l, −0.5)  > 0 . Finally, it was established in Lemma 3 that there is a root in (c).
We can now consider the interval of interest,   [−0.5, 1.5]  . We know that  b  is pos-

itive at the two endpoints. If it were  nonpositive at some point over this interval, 
the numerator of  b  would have to have two roots in the interval—either two distinct 
roots or a multiple one. In either case, we would have a total of five real roots for a 
polynomial of degree 4, which is impossible, and thus we conclude that  b  is strictly 
positive throughout   [−0.5, 1.5]  .

Next, consider the case   [lW/L]  = 0.  We need to study the sign of  b (L, W, l, ω)   
for  ω ∈  [0.5, 1.5] .  The proof is analogous to the one for the previous case. In par-
ticular, it has been shown that  b (L, W, l, ω)  > 0  at the two endpoints of the interval 

21 See online Appendix part (b).
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and is continuous over the interval. Moreover,  b ( ⋅ )   has at least one real root in each 
of the following intervals: (a)   ( ω 

¯
  ,  ω –  )  , (b)   ( ω –  , 0.5)  , (c)   (1.5, ∞)  . Since the numer-

ator of  b ( ⋅ )   can have at most four real roots, there are no roots in the interval  ω ∈  

[0.5, 1.5]  , and the function is positive over the whole interval. ∎

LEMMA 5:  b (L, W, l, ω)   is strictly increasing in  l  for  ω ≥ 2 .

PROOF:
The derivative of  b (L, W, l, ω)   with respect to  l  is

(9)   L   3    
 ζ 0   (L, W, ω)  +  ζ 1   (L, W, ω) l +  ζ 2   (L, W, ω)  l    2  +  ζ 3   (L, W, ω)  l    3 

     _________________________________________________     
  (−L + lL + lW + L ω)    3   (−L + lL +  L   2  + lW + LW + L ω)    

3
 
    ,

where   ζ 0   (L, W, ω)  ,   ζ 1   (L, W, ω)  ,   ζ 2   (L, W, ω)  ,   ζ 3   (L, W, ω)   are defined as

   ζ 0   (L, W, ω)  =  L   3  (ω − 1)  { L   3   ω   2  + W [4  (ω − 1)    2 ω +  W    2  (2 ω − 1)  

 + 3W (1 − 3ω + 2  ω   2 ) ] 

 +  L   2  [3 (ω − 1)  ω   2  + W (2ω (1 + ω)  − 1) ] 

 + L [2  (ω − 1)    2 ω (1 + ω)  +  W    2  (ω (4 + ω)  − 2) 

 + 3W (1 + ω (−3 + ω +  ω   2 ) ) ] }  ,

   ζ 1   (L, W, ω)  =  L   2  { W    2  [12W  (ω − 1)    2  +  W    2  (2 ω − 3)  + 6  (ω − 1)    2  (2 ω − 1) ] 

 +  L   4  (ω − 2) ω + 3 L   2  [2  (ω − 1)    2  ω   2  + 4W  (ω − 1)    2  (1 + ω)  

 +  W    2  ( ω   2  − 3) ] 

 + LW [−6 + 6W  (ω − 1)    2  (4 + ω)  + 6ω (4 − 4ω +  ω   3 )  

 +  W    2  (−9 + ω (4 + ω) ) ] 

 +  L   3  [6  (ω − 1)    2 ω + W (−3+ ω (3ω − 4) ) ] }  ,

   ζ 2   (L, W, ω)  = 3L  (L + W)    2  {L [L (ω − 2)  + 2  (ω − 1)    2 ] ω +  W    2  (2 ω − 3) 

 + W [4  (ω − 1)    2  + L ( ω   2  − 3) ] }  ,

   ζ 3   (L, W, ω)  = 2  (L + W)    3  [L (ω − 2) ω + W (2 ω − 3) ]  .

First, notice that   L   3   and the denominator of expression are strictly positive. Second, 
notice that   ζ 0   (L, W, ω)  ,   ζ 1   (L, W, ω)  ,   ζ 2   (L, W, ω)  ,   ζ 3   (L, W, ω)   are strictly positive for 
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all admissible values of   {L, W}   and  ω ≥ 2 . Since  l  is an integer, it follows that the 
polynomial in  l  on the numerator of is strictly positive for  ω ≥ 2 . This allows us to 
conclude that  ∂ b (L, W, l, ω) /∂ ω > 0  for all  ω ≥ 2 . ∎

LEMMA 6: For all   l ′   > l > 1 ,   w ̃   >  l ′  W/L , if  Δ (L, W, l,  w ̃  )  ≥ 0 , then  Δ (L, W,  l ′  , 
 w ̃  )  ≥ 0 .

PROOF:
If   w ̃   =  [ l ′  W/L]   or   w ̃   =  [ l ′  W/L]  + 1 , the conclusion  Δ (L, W,  l ′  ,  w ̃  )  ≥ 0  follows 

from either part (i) or Proposition 1.
Assume, then, that   w ̃   ≥  [ l ′  W/L]  + 2 ≥  [lW/L]  + 2 . Recall that  w =  [lW/L]   

with  ε =  [lW/L]  −  (lW/L)  , and denote   w ′   =  [ l ′  W/L] ,  ε ′   =  [ l ′  W/L]  −  ( l ′  W/L)  . 
Next, let  ω =  w ̃   − w  and   ω ′   =  w ̃   −  w ′  .  Thus,   w ̃   = w + ω = lW/L + ε + ω =  
w ′   + ω ′   =  l ′  W/L +  ε ′   +  ω ′   .

Clearly, as   l ′   > l , we have   w ′   ≥ w  and therefore   ε ′   +  ω ′   ≤ ε + ω . Note that  ω,  
ω ′   ≥ 2  and thus  ω + ε,  ω ′   +  ε ′   ≥ 1 .

We assume that  Δ (L, W, l,  w ̃  )  = Δ (L, W, l, w + ω)  = b (L, W, l, ω + ε)  ≥ 0  
and need to show  Δ (L, W,  l ′  ,  w ̃  )  = Δ (L, W,  l ′  ,  w ′   +  ω ′  )  = b (L, W,  l ′  ,  ω ′   +  ε ′  )  ≥ 
0.  Indeed,  b (L, W, l, ω + ε)  ≥ 0,   coupled with Lemma  5, implies that  b (L, W,  
l ′   , ω + ε)  ≥ 0 . Further, as   ω ′   +  ε ′   ≤ ω + ε , Lemma 1 (with  ω + ε,  ω ′   +  ε ′   ≥ 1 ) 
implies that  b (L, W,  l ′  ,  ω ′   +  ε ′  )  ≥ 0 , which completes the proof of the lemma. ∎ 

PROOF OF PROPOSITION 3:
The proof relies on the analysis used to prove Proposition 4. Here, we prove only 

the first statement. The second holds by symmetry of the  Δ  function.
Let us denote by   w –    the closest integer to  W/L  ( = lW/L  because we deal with the 

case  l = 1 )—that is,   w –   =  [W/L]  .
We need to show that for every  0 < w ≤  ⌊W/L⌋  + 1 ,  Δ (L, W, 1, w)  > 0 .
In (6) we had

  Δ (L, W, l,  [  lW _ 
L

  ]  + z)  = Δ (L, W, l,   lW _ 
L

   + ε + z)  = b (L, W, l, z + ε)  ,

which, by setting  l = 1 , becomes

  Δ (L, W, 1,  [  W _ 
L

  ]  + z)  = Δ (L, W, 1,   W _ 
L

   + ε + z)  = b (L, W, 1, z + ε)  .

For  0 < w ≤  ⌊W/L⌋  + 1 , denoting  z = w −  w –   , we have  w =  w –   + z = 
 [W/L]  + z . We can then write

  Δ (L, W, 1, w)  = Δ (L, W, 1,  [  W _ 
L

  ]  + z)  = Δ (L, W, 1,   W _ 
L

   + ε + z) 

   = b (L, W, 1, z + ε)  ,

where  ε =  [W/L]  −  (W/L)  ∈  [−0.5, 0.5)   and  z ∈  {1 −  [W/L] , …, 1}   if   [W/L] 
=  ⌊W/L⌋   and  z ∈  {1 −  [W/L] , …, 0}   if   [W/L]  =  ⌊W/L⌋  + 1 .
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Denoting the fourth argument of  b  by  ω = z + ε , we observe that because  
z ≥ 1 −  [W/L]  ,  ω ≥ 1 −  (W/L)  . Further, as  z ≤ 1  and  ε < 0.5 ,  ω < 1.5  . 
Thus, it suffices to show that  b (L, W, 1, ω)  > 0  for  ω ∈  [− (W/L)  + 1, 1.5]  . 
We know that  b (L, W, 1, ω)   is continuous and differentiable for  ω > − (W/L)  , 
that  ∂ b (W, L, 1, ω) /∂ ω < 0   for all  ω ≥ − (W/L)  , and that  b (L, W, 1, 1.5)  > 0  . 
Therefore,  b (L, W, 1, ω)  > 0   for all  ω ∈  [− (W/L)  + 1, 1.5]  . This concludes the 
proof. ∎

PROOF OF PROPOSITION 5:

Consider the vector   (W/ (W + L) , w/ (w + l) )   in the square    [0, 1]    2   as depicted 
in Figure 1. If   (W/ (W + L) , w/ (w + l) )   is near the diagonal, the optimal empiri-
cal similarity is   s 0   , and it is   s x    when  W/ (W + L)   and  w/ (w + l)   differ significantly 
(where the exact bound depends both on where they are on the diagonal and on  t , 
which is not graphically represented in the figure). We wish to focus on the optimal 
choice for a player who has observed   (W, L, w, l)  =  ( W t  ,  L t  ,  w t  ,  l t  )  . Assume that the 
player were to use the similarity   s x    and therefore to compute empirical frequencies 
of   y τ   = 1  ( τ < t ) separately for   x t   = 0  and   x t   = 1 . The choice   a   h  = 1  is optimal 
for   x t   = 0  if and only if  W/ (W + L)  ≥ c/ (1 + c − d)  , and for   x t   = 1 ,   a   h  = 1  is 
optimal for   x t   = 0  if and only if  w/ (w + l)  ≥ c/ (1 + c − d)  .

Define auxiliary random variables   A t  ,  D t    as follows:

   A t   =  (1 − d)  W t   − c L t   ,   D t   =  (1 − d)  w t   − c l t   .

  A t  / ( W t   +  L t  )   is the difference between the expected payoff of   a   h  = 1  and of   
a   h  = 0  for a player who believes that   y t   = 1  with probability   W t  / ( W t   +  L t  )  . 

Figure 1

w
w + l

W
W + L

c
 1 + c − d

c
 1 + c − d

1

1
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Indeed,   A t   ≥ 0  if and only if   W t  / ( W t   +  L t  )  ≥ c/ (1 + c − d)  . Similarly,   D t    is the 
corresponding difference for the probability   W t  / ( W t   +  L t  )  .

Consider first the fictitious auxiliary process    ( A t  ,  D t  )  t    that would correspond to 
the assumption that the players always use   s x   —that is, that they compute empirical 
similarities for   x t   = 0  and for   x t   = 1  separately regardless of   ( W t  ,  L t  ,  w t  ,  l t  )  . In this 
case, we would have a  two-dimensional biased random walk, where, for each  t , with 
probability  β  only   D t    changes its value, and we would have

   A t+1   =  A t   ,

   D t+1   =  { 
 D t   +  (1 − d) 

  
1 − ε

   
 D t   − c

  
ε
   , if  D t   ≥ 0 ,

   D t+1   =  { 
 D t   +  (1 − d) 

  
ε
   

 D t   − c
  

1 − ε
  , if  D t   < 0 ,

and with probability   (1 − β)  , only   A t    changes, and we would have

   A t+1   =  { 
 A t   +  (1 − d) 

  
1 − ε

   
 A t   − c

  
ε
   , if  A t   ≥ 0 ,

   A t+1   =  { 
 A t   +  (1 − d) 

  
ε
   

 A t   − c
  

1 − ε
  , if  A t   < 0 ,

   D t+1   =  D t   .

Thus, if we condition   A t    on the periods in which it is active (  x t   = 0 ), it is a 
Markov process, where on the  nonnegative reals, it is the sum of i.i.d. variables

   z t   =  { 1 − d  1 − ε  −c  ε    ,

which have strictly positive expectation, and on the negative reals, it is the sum of

   v t   =  { 1 − d  ε  −c
  

1 − ε   .

By standard arguments,

 (i) with probability 1, both processes will change values infinitely often and with 
fixed relative frequencies of   (1 − β, β)  ;

 (ii) with probability 1, each process will cross 0 only finitely many times, con-
verging to  ∞  or to  −∞ , each with positive probability.

We now consider the actual process, in which the players do not optimize rela-
tive to    

 W t   _______ 
 ( W t   +  L t  ) 

    or to    
 w t   _ 

 w t   +  l t  
   , but relative to one of these (depending on   x t   ) or relative 
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to    
 W t   +  w t   ____________  

 W t   +  w t   +  L t   +  l t  
   , where the latter choice depends on the similarity function that 

obtains the lower  SSE  (i.e., on  Δ ( L t  ,  W t  ,  l t  ,  w t  )  ). Fix  δ > 0  (which we will later 
shrink to zero). Consider a band of width  2δ  around the diagonal, as depicted in 
Figure 2.

In the region marked at  I , where (dropping the  t  subscript)    W _ W + L  ,   w _ 
w + l

   <   c _ 
1 + c − d

   , 
we have  A, D < 0 . Notice that this region is defined independently of the relation 
between    W _ W + L    and    w _ 

w + l
    and of  δ . The optimal choice for the players in this region is 

  a   h  = 0  irrespective of the similarity function, as    W + w ___________ 
W + w + L + l

    is a weighted aver-
age of    W _ W + L    and    w _ 

w + l
   . As long as   A t  ,  D t   < 0 , the process thus behaves as the auxil-

iary process. Importantly, for any   A t  ,  D t   < 0 , the process has a positive probability, 
bounded away from 0, of remaining negative (  A τ  ,  D τ   < 0  for all  τ ≥ t ), and this is 

true also of the actual process. In this event,   (  
 W t   _  W t   +  L t  

  ,   
 w t   _ 

 w t   +  l t  
  )  →  (ε, ε)  . In a com-

pletely symmetric way, the process can only leave region  IV  finitely many times 
with probability 1: either it leaves it forever from some  t  on, or it stays there forever, 
with   (  

 W t   _  W t   +  L t  
  ,   

 w t   _ 
 w t   +  l t  

  )  →  (1 − ε, 1 − ε)  .

Next, consider regions  I I δ    and  II I δ   . They are defined by the optimal choice for the 
players in each subhistory, as well as by a distance from the diagonal. Specifically, region  
I I δ    would correspond to    

 W t   _  W t   +  L t  
   >   c _ 

1 + c − d
   >   

 w t   _ 
 w t   +  l t  

    and    
 W t   _  W t   +  L t  

   >   
 w t   _ 

 w t   +  l t  
   + δ  . For 

large enough  t , the latter inequality implies that  Δ ( L t  ,  W t  ,  l t  ,  w t  )  < 0  and that the 
optimal empirical similarity is   s x   . Therefore, in this region the process again behaves 
as the auxiliary process. This implies that, again, with probability 1, the process will 
leave region  I I δ    only finitely many times; it will either leave it forever or stay there 

Figure 2
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from some point on, with   (  
 W t   _  W t   +  L t  

  ,   
 w t   _ 

 w t   +  l t  
  )  →  (1 − ε, ε)  . Symmetrical arguments 

apply to region  II I δ    .
Consider now a converging sequence of  δ ’s—say,   δ k   = δ/ 2   k  . The intersection 

of all these regions ( ∩  V  δ k      as well as  ∩ V  I  δ k     ) is empty, and thus, with probability 1, 
the process will leave them forever at some point. This establishes part (i) of the 
Proposition (including the claim that each of the four limit matrices can be obtained 
with positive probability).

We now turn to part  (ii). It is immediate that, should the process converge to 
matrices  II  or  III , the optimal similarity will be   s x   . Consider, for example, conver-
gence to the matrix  IV . We know that both    

 W t   _  W t   +  L t  
    and    

 w t   _ 
 w t   +  l t  

    converge to  1 − ε , but 
can they differ from each other, along the way to the limit, and so justify   s x    as the 
optimal empirical similarity function?

To analyze this case, we consider the  SSE  formulae 4 and 5. We can approximate   
( W t  ,  L t  ,  w t  ,  l t  )   by   ( (1 − β)  (1 − ε) t,  (1 − β) εt, β (1 − ε) t, β εt)   and observe that

  SSE ( s 0  )  ≃   
ε   (1 − ε)    2    t   3 

 ___________ 
  (t − 1)    2 

   

and

  SSE ( s x  )  ≃   
ε  (1 − ε)    2   β    3   t   3 

  _____________ 
  (β t − 1)    2 

   +   
ε  (1 − ε)    2   (1 − β)    3    t   3 

  __________________  
  [ (1 − β) t − 1]    

2
 
   .

So that

  SSE ( s 0  )  ≃ ε  (1 − ε)    2    1 _ 
1 −   2 _ t   +   1 _ 

 t   2 
  
   

and

  SSE ( s x  )  ≃ ε  (1 − ε)    2  
[

  1 ___________  
1 −   2 _ β t   +   1 _ 

 β    2   t   2 
  
   +   1 ____________________  

1 −   2 _ 
 (1 − β) t

   +   1 _ 
  (1 − β)    2    t   2 

  
  
]

  .

It follows that  SSE ( s 0  )  < SSE ( s x  )  .
Thus, we establish the intuitive result that when the play of the game is identical, 

at the limit there is no sunspot. ∎
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