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Abstract

Using a simple model of firm borrowing with standard ingredients, we show that commonly used empir-

ical approaches in the literature do not recover the impact of credit supply shocks on loan-level lending,

on total firm-level borrowing or on real outcomes. We propose new estimators that recover these effects.

We apply our methodology to the 2011 credit crisis in Spain and show that it implies significantly smaller

effects of loan supply shocks than those generated by current empirical approaches.

1. Introduction

Disruptions to the financial sector are widely recognized as key drivers of macroeconomic fluctuations,

shaping business cycles, amplifying financial crises, and mediating the transmission of monetary policy

(see, e.g., Gertler and Gilchrist (1994); Bernanke and Gertler (1995); Kashyap and Stein (2000); Peek and

Rosengren (2000)). Understanding the effects of loan supply shocks – both on credit allocation and on

real economic outcomes – is therefore a central question in economics. At the heart of this inquiry lies a

core empirical challenge: disentangling shifts in credit supply from movements in credit demand. In this

paper, we revisit this central question. Using a simple theoretical framework, we show that commonly

*We thank Dominic Cucic, Nir Jaimovich, Asim Khwaja, David Matsa, Atif Mian, Ramana Nanda, Tarun Ramadorai and

Antoinette Schoar for useful discussions and comments. We thank Kemal Emre Macar for outstanding research assistance. Bergman

thanks the Pinchas Sapir Center for financial support. Casado has been supported by the Spanish Ministry of Science and Innovation

"PID2023-149802NB-I00" through "MCIN/AEI/10.13039/501100011033".
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used empirical approaches do not recover the impact of credit supply shocks on loan-level lending, on total

firm-level borrowing or on real outcomes. We then propose an alternative methodology to do so.

As is well known, understanding the impact of loan supply shocks requires distinguishing between two

fundamentally different effects – each tied to a distinct set of economic questions. The first is the effect

on a firm’s total borrowing across all its lenders (henceforth, total firm borrowing effect). This aggregate

response determines how credit supply disruptions transmit to investment, employment, and output, making

it the central object for macroeconomic analysis. The second is the effect of a shock to a specific bank on the

firm’s borrowing from that bank (henceforth, loan-level effect). This loan-level response, at times referred

in the literature as the "bank lending channel", is critical for evaluating bank behavior, credit reallocation,

and issues pertaining to financial stability (See, e.g., Allen and Gale (2000)). Crucially, these two effects are

distinct as firms can substitute borrowing across lenders.

To formalize and estimate these two objects – the impact of loan supply shocks on total firm borrowing

and on loan-level lending – we begin by developing a micro-founded framework with standard ingredients:

firms borrow from multiple banks to finance investments, banks are subject to different credit supply shocks,

and firms can substitute borrowing between banks in response to these supply shocks. The model gives rise

to two distinct effects through which credit supply shocks impact borrowing. The first is a scale effect,

which captures how a change in the average cost of credit impacts a firm’s total borrowing. The second

is a substitution effect, which reflects how a firm reallocates its borrowing across lenders in response to

relative changes in banks’ financing conditions. We use our framework to show how to map the scale and

substitution effects into the two objects of interest. In particular, we show that the impact of a loan supply

shock on total firm borrowing is given by the scale effect, while the impact of supply shocks on loan-level

lending to the firm is a combination of both the scale and the substitution effects.

We then analyze two common approaches used to estimate the impact of loan supply shocks. The first

is the well-known and commonly used estimator introduced in Khwaja and Mian (2008) (henceforth KM).

This seminal paper tackles the correlation between firm demand and bank supply shocks by using matched

bank-firm credit registry data and leveraging within-firm comparisons across multiple lending relationships.

Concretely, KM implements loan-level regressions that include firm fixed effects, which net out unobserved

firm-level demand shocks. We show that the KM estimator captures the elasticity of substitution of firm

borrowing across banks experiencing different shocks, i.e. the substitution effect. Thus, while a non-zero

KM estimate indicates that supply shocks to banks are transmitted to loans, it does not map to either the

loan level effect or the total firm borrowing effect.

A second common approach in the literature, first introduced by Amiti and Weinstein (2018), uses lending
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regressions with bank and firm fixed effects. An important conceptual contribution of this approach is its

focus on capturing the impact of total supply shocks, which reflect the full change in a bank’s cost and,

consequently, its ability to lend. Rather than focusing on an observed, specific supply shifter as the KM

method does – e.g., the impact of banks’ deposit shock on lending – this approach interprets the bank fixed

effect as capturing the total, idiosyncratic bank supply shock (i.e. the total shock not common among all

banks), and similarly, the firm fixed effect is interpreted as capturing the total, idiosyncratic firm demand

shock. These fixed effects are then typically used in firm real outcome regressions. We show that the bank

and firm fixed effects do not in fact correspond to demand and supply shocks; Part of the supply shock is

captured by the firm fixed effect rather than the bank fixed effect. This, in turn, implies that regressions of

real outcomes on bank and firm fixed effects misestimate the impact of loan supply shocks.

We continue by deriving novel estimators that consistently identify the scale and substitution effects of

specific loan supply shocks, and then use them to recover both the total firm-level and loan-level impact of

loan supply shocks. To do so, we introduce a "scale-substitution regression", which is derived from our theo-

retical framework; This regression analyzes changes in firm level borrowing from each bank and includes on

the right hand side terms that capture both the average supply shock faced by a firm (the scale component)

and the difference in supply shocks across its lenders (the substitution component). This regression allows

for unobserved variation in firm-level credit demand, which enters in the error term and may be correlated

with loan supply shocks. To obtain consistent estimates of the scale effect, we propose a strategy based on

comparing two versions of the substitution effect: (i) a biased estimate of the substitution term, obtained

from the scale-substitution regression, which embeds the covariance between supply and demand shocks,

and (ii) a consistent estimate of the same substitution term, obtained via the standard KM regression. The

difference between these two estimates thus isolates the bias term, allowing us to back out the covariance

between loan supply and demand and, in turn, correct the estimate of the scale effect in the scale-substitution

regression. Armed with the scale and substitution effect estimates, we can then recover the total firm-level

credit response, as well as the loan-level response, to specific loan supply shifters.

Next, we use our framework to recover the total loan supply shock (as opposed to a specific supply

shifter) experienced by each bank and the loan demand shocks experienced by firms. This allows us to

estimate the impact of total supply shocks on total firm level and loan-level lending, as well as on firm-level

real outcomes. We obtain total supply and demand shocks by appropriately combining the firm and bank

fixed effects from lending regressions with estimates of the scale and substitution elasticities derived from

the analysis using a specific supply shifter.

We apply our novel estimation framework to the 2011 Spanish debt crisis, a period when Spanish banks
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with real estate exposure faced negative supply shocks stemming from the collapse of the real estate market.

Using banks’ pre-crisis real estate exposure as a shifter of loan supply, we find that the standard KM method

overestimates the loan-level effect by 50%. We further find that the impact on total firm-level borrowing

is negligible, indicating that firms were able to mitigate the shock by reallocating borrowing. Finally, we

demonstrate that methodologies using bank fixed effects as a proxy for total loan supply shocks overestimate

the real effects of these supply shocks on firm-level outcomes by up to 100%.

Our paper revisits a foundational question in the credit supply literature: how to estimate the impact of

loan supply shocks. In doing so, we re-examine two of the most influential empirical approaches used to

estimate the effects of loan supply shocks: (1) the methodology introduced by Khwaja and Mian (2008),

which provides an important contribution by using firm fixed effects to control for unobserved firm loan-

demand and identify the existence of the bank lending channel; and (2) the methodology introduced by

Amiti and Weinstein (2018), which provides an important insight that bank fixed effects are informative of

the total supply shocks hitting banks.1 While these studies have provided crucial insights into the impact

of loan supply shocks, we show that in a framework where firms can substitute borrowing between lenders,

neither method recovers the key objects of interest: the effect of loan supply shocks on total firm-level

borrowing and on loan-level lending. We then propose an alternate methodology to estimate these objects

of interest.2

We proceed as follows. Section 2 provides our theoretical framework introducing the scale and substitu-

tion effects, and linking to the objects of interest – the impact of loan supply shocks at the total firm-level

and at the loan-level. Section 3 introduces the empirical counterpart to the model. Section 4 re-examines

existing methodologies for estimating the impact of loan supply shocks. Section 5 uses our framework to

present a methodology to estimate the impact of loan supply shocks – both observable supply shifters as

well as total supply shocks – on loan-level lending and total firm-level borrowing. Finally, Section 6 applies

our methodology to the case of the 2011 Spanish debt crisis. Section 7 concludes.

1See for example, Iyer et al. (2014), Chodorow-Reich (2014), Jiménez et al. (2017), and Greenwald, Krainer and Paul (forth-

coming) for KM applications, and Amiti, McGuire and Weinstein (2017), and Alfaro, García-Santana and Moral-Benito (2021) for

applications of regressions using both bank and firm fixed effects to estimate the impact of total loan supply shocks.
2There are of course studies which analyze the impact of credit supply shocks using other approaches, see for example Peek

and Rosengren (1997), Kashyap and Stein (2000), Paravisini (2008), Jiménez et al. (2012), Huber (2018), Greenstone, Mas and

Nguyen (2020), and Paravisini, Rappoport and Schnabl (2023).
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2. Understanding the Impact of Loan Supply Shifters: A Simple Model

To fix ideas, in this section we introduce a simple model which analyzes how loan supply shocks affect

lending. In considering supply shocks, we will distinguish between what we will call the "total supply

shock", which measures the total change in the cost of borrowing from a given bank, and a "specific supply

shifter", which is a particular variable that shifts loan supply, but does not necessarily capture the entire

shift in loan supply. Examples of such loan supply shifters in the literature include banks’ exposure to the

interbank lending market and the degree of credit line drawdowns experienced by banks. Empirically, total

supply shocks are not directly observed, while supply shifters, by definition, are.

The model will introduce two key parameters of interest governing the impact of loan supply shocks: the

impact on total firm-level borrowing, as well as the impact on loan-level borrowing. i.e. on the firm’s level

of borrowing from each of its lenders. In doing so, we consider both the impact of a specific loan supply

shifter as well as the impact of the total supply shock.

2.1. Model Setup

Consider a firm raising capital for a project. For simplicity, assume that the firm has no internal funds but

has the option of raising external finance from two different sources of financing, which we call banks.3 Let

L j denote the amount borrowed from bank j ∈ {1,2}, so that total borrowing (and hence total investment)

is L = L1 +L2. Investing an amount L in the project generates cash flow with present value given by R(L),

which is assumed to be concave.4

External borrowing is costly, with the deadweight cost associated with raising an amount L j from bank j

given by a jc(L j), with c(L j) = Lρ

j and ρ > 1.5 The parameters a j shift the cost of external finance obtained

from bank j, capturing bank-level credit supply shocks. Borrowing an amount L1 and L2 is thus associated

with a deadweight loss of C̃(L1,L2) =
(
a1Lρ

1 +a2Lρ

2

)
. These deadweight cost functions capture financial

frictions, such as those having to do with information or moral hazard frictions, in a reduced form way. In

what follows, we analyze the elasticity of loan-level lending, L j, and the elasticity of total firm borrowing,

L, to loan supply shocks, as captured by variation in a j.

In deciding its level of investment, the firm maximizes the second-best NPV, inclusive of the external

3These assumptions are easily generalizable for the case where the firm can partially rely on internal funds to invest in the

project, as well as the case where the firm can borrow from more than two banks.
4The results hold for the case where R is locally concave at the optimal level of investment.
5c(L j) is thus increasing and convex as in Stein (2003).
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financing costs:

max
L1,L2

{
R(L1 +L2)− (L1 +L2)−C̃(L1,L2)

}
with C̃(L1,L2) =

(
a1Lρ

1 +a2Lρ

2

)
.

(1)

As is standard, this problem can be written in two steps. The firm chooses total borrowing, L:

max
L

{R(L)−L−C(L)} , (2)

with C(L), the cost minimization function associated with (1):

C(L) := min
L1,L2

{
a1Lρ

1 +a2Lρ

2 |L1 +L2 = L
}
. (3)

Solving (3), it is straightforward to show (see appendix) that the cost minimization function associated

with borrowing a total amount L across both banks is given by:

C (L) = κCLρ , with κC :=
(

a
1

1−ρ

1 +a
1

1−ρ

2

)1−ρ

. (4)

2.2. Substitution vs. Scale Effects

The parameter ρ pins down the elasticity of substitution between borrowing from the two banks, where this

substitution elasticity is equal to 1
ρ−1 . To see this, note that the ratio of the first order conditions of the cost

minimization problem implies that the optimal borrowing from each bank satisfies:

log
(

L1

L2

)
=− 1

ρ −1
log
(

a1

a2

)
,

which, taking a1/a2 as the relative costs of bank 1 and bank 2 lending, yields 1
ρ−1 as the definition of the

elasticity of substitution.

The impact on total firm borrowing Next, we consider the impact of changes to the cost of external

finance on total firm borrowing. Denoting log changes over time (between periods t and t + 1) with the ∆

operator and log-linearizing the first order conditions, we show in the appendix that to the first order the

response of total firm lending across both banks to changes in the cost of external finance is given by:

∆ logL = θ (s1∆ loga1 + s2∆ loga2) , (5)

where s j =
L j
L is the pre-shock lending share of bank j.6

Equation (5) shows that total lending is determined by the weighted average of the loan supply shocks

across the two banks, with θ the elasticity that captures how change in total lending responds to the weighted

average change in lending costs.7 We call this effect (capturing how average loan supply shocks impact total
6Note that by the nature of the approximation, the shares s j are determined by the pre-shock levels of lending.
7Alternatively, it is the exact elasticity of lending to the weighted geometric mean of the cost.
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firm lending) the ’scale effect’.

What determines the size of θ? We show in the appendix that:

θ =
1

ηG′,L −ηC′,L
=

1(1+C′

C′

)
ηR′,L −ηC′,L

, (6)

where G(L) = R(L)−L is the first best NPV of investment (exclusive of the external financing cost) when

investing an amount L, G′ = dG(L∗)
dL , R′ = dR(L∗)

dL and C′ = dC(L∗)
dL are the marginal NPV, the marginal PV and

the marginal external finance cost at the optimal level of borrowing, L∗, receptively, and we use η to denote

the partial elasticity operator.8 As would be expected, the elasticity of total borrowing to financing costs is

negative, since marginal PV (R′) declines with L while marginal external finance cost (C′) rises with L.

The first equality in Equation (6) shows that θ depends on two forces: (1) the elasticity of the marginal

financing cost, ηC′,L, and (2) the elasticity of the project’s marginal NPV, ηG′,L. To gain intuition on these two

forces, it is useful to examine the problem through the firm’s FOC, which pins down total firm borrowing:

G′(L) = C′(L). Consider an upwards shift in the marginal cost curve C′(L), which results from a change

in the cost parameters a j. As a result, the firm will reduce total borrowing, L, until the FOC is restored.

Now, if the marginal NPV, G′(L), declines quickly with L – i.e., ηG′,L is large in absolute value – then a

relatively small change in borrowing generates a large increase in marginal present value, implying that the

firm reduces borrowing only modestly. Put differently, under these circumstances, demand for credit will be

relatively inelastic, and hence the upward shift in the marginal financing cost curve will not affect total firm

borrowing, L, by much: the magnitude of θ will be low. Analogously, if the marginal financing cost C′(L)

rises steeply with L – i.e., ηC′,L is large – then restoring the FOC requires a smaller reduction in L, and hence

the magnitude of θ will be small.

The second equality in (6) results directly from the fact that ηG′,L = 1+C′

C′ ηR′,L. It thus reveals a third

force that influences θ : the ratio of total marginal costs (1+C′) to marginal external financing costs (C′).9

As is intuitive, θ , the elasticity of total firm borrowing and investment to external finance costs, declines

in absolute value when external financing costs become relatively less important (i.e. when C′

1+C′ declines).

Indeed, when the relative importance of marginal external financing cost declines to zero, the elasticity of

investment to external financing cost goes to zero as well.

The loan-level effect Turning to the borrowing of the firm from a specific bank, we show in the appendix

that to the first order the response of lending from a specific bank j to changes in the cost of external finance

8Formally, given a function y and a variable x, we denote the partial elasticity of y with respect to x by ηy,x := ∂y
∂x

x
y .

9Concavity of R(L) at L∗ ensures that ηR′,L < 0, ruling out knife-edge cases such as linear R(L) where the project has infinite

NPV.
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is given by:

∆ logL j = θ (s1∆ loga1 + s2∆ loga2)−
1

ρ −1
s− j∆ log

(
a j

a− j

)
. (7)

Equation (7), which we refer to as the scale-substitution equation, decomposes the impact of shocks to the

cost of external finance on loan-level lending into two intuitive components, capturing scale and substitution

effects.10 The first term in the right hand side of the equation, θ (s1∆ loga1 + s2∆ loga2), is a scale effect

which captures the impact of the weighted average of the external finance shocks experienced by the banks

lending to a given firm, on individual bank lending. The second term in the right hand side of Equation (7),
1

ρ−1 s2∆ log
(

a1
a2

)
, reflects the substitution effect in lending, in that when the relative cost of lending from

bank 1 increases, borrowing from bank 1 declines according to the elasticity of substitution 1
ρ−1 .

Another instructive way to write the scale-substitution equation in (7) is

∆ logL j =

(
θs j −

1
ρ −1

s− j

)
∆ loga j +

(
θs− j +

1
ρ −1

s− j

)
∆ loga− j. (8)

This formulation shows the two effects of a bank-specific loan supply shock on loan-level lending. In

particular, a proportional change in a j (holding a− j constant) affects lending via two channels: a scale-

effect, given by θs j, reflecting the change in the cost of external finance, and a substitution effect, − 1
ρ−1 s− j,

reflecting the firm’s tilting of borrowing from the affected bank ( j) to the unaffected bank (− j). Note that

as the share of lending from bank j rises, the impact of loan supply shocks to bank j become dominated by

the scale effect.

Comparing magnitudes It is useful to compare the magnitudes of the three elasticities discussed above:

(1) the elasticity of substitution, 1
ρ−1 , (2) the scale elasticity, θ , and (3) the loan-level lending elasticity,

θs j − 1
ρ−1 s− j. To do this, note that Equation (4) implies that the elasticity of the marginal cost of external

finance, ηC′,L, is simply equal to ρ −1, which, together with (6), implies that

θ =
1(1+C′

C′

)
ηR′,L − (ρ −1)

. (9)

Given that ηR′,L < 0 and C′ > 0, it is easy to show that:

10The case of N banks is analogous, where, similar to equation (7), the impact of shocks to external finance on the lending of

bank j is given by:

∆ logL j = θ

(
N

∑
k=1

sk∆ logak

)
− 1

ρ −1

N

∑
k=1

sk∆ log
(

a j

ak

)
,

Once again, the impact of shocks to the cost of external finance on loan-level lending can be decomposed into scale and substitution

effects; scale effects driven by the impact of uniform supply shocks (across banks) on lending while substitution effects are driven

by how differential changes to the cost of external finance between lenders cause the firm to reallocate borrowing from one bank to

the other.
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− 1
ρ −1

< θs j −
1

ρ −1
s− j < θ < 0. (10)

That is, in absolute value, the elasticity of substitution is larger than the loan-level lending elasticity,

which is larger than the scale elasticity. Indeed, theoretically, these three values can be quite different from

each other.11 For example, as ρ approaches one – i.e. the cost function is close to linear – the elasticity of

substitution 1
ρ−1 goes to infinity, while θ will depend on the PV function and on the relative importance of

marginal cost (and can even tend to zero with small values of C′).

2.3. Specific Supply Shifters versus Total Loan Supply Changes

Up to this point we have considered the impact of bank-level loan supply shocks (a j), which reflect changes

in the cost of financing banks’ provide to their borrowing firms. These shocks, however, are not observable

in empirical analysis. Consider, therefore, an observable variable w j, which shifts loan supply in bank

j. Examples of such an observable shifters analyzed in the literature include such variables as bank-level

deposit flows (Khwaja and Mian (2008)), exposure to the interbank lending market on the eve of a financial

crisis (Iyer et al. (2014)), credit line drawdowns (Greenwald, Krainer and Paul (forthcoming)), etc. Using a

linear projection, we can relate the total change in cost of external finance provide the bank, ∆ loga j, to the

bank-level shifter, w j:

∆ loga j = b0 +b1w j +χ j, (11)

where without loss of generality, we assume that the transmission coefficient, b1 is positive (so that a higher

supply shifter is associated with a higher cost of financing). In what follows, we refer to the bank-level loan-

supply shifter, w j, as a specific loan supply shifter to emphasize the fact that many such potential shifters

exist. Indeed, these other shifters are captured by χ j in equation (11).12 This is in contrast to variation in

the bank-level cost of external finance, a j, which captures the total change in loan supply at the bank (and is

hence unique over a given time period for any given bank). Note also that to more easily relate the analysis

to prior empirical work, we assume without loss of generality that it is the level of w, rather than changes in

w, that is correlated with the loan supply shock, ∆ loga j.

Analogously to Equation (5), it is then easy to show that to the first order the response of total firm

borrowing (i.e., across both banks) to the loan supply shifter satisfies:

∆ logL = constant+b1θ (s1w1 + s2w2)+ χ̃, with χ̃ = θ (s1χ1 + s2χ2) . (12)

11The only case where the three values coincide is when the PV function, R, is linear.
12By the properties of linear projection, χ j is uncorrelated with w j, and captures the other supply shifters orthogonalized to w j .
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That is, the change in total lending to the firm responds to the weighted average of the loan-supply shifter

across the two banks lending to the firm (s1w1 + s2w2), according to the scale effect elasticity θ , and the

transmission coefficient b1.

Similarly, analogously to Equation (8), it is also straightforward to show that the response of loan-level

lending of bank j to the specific loan supply shifter is given by:

∆ logL j = constant+
(

b1θs j −
b1

ρ −1
s− j

)
w j +

(
b1θs− j +

b1

ρ −1
s− j

)
w− j + χ̃ j; (13)

with χ̃ j = χ̃ + 1
(ρ−1)s− j (χ− j −χ j).

2.4. Taking Stock

Taken together, the four equations – (5), (8),(12), and (13) – describe the four objects of interest in under-

standing the impact of loan supply shocks on lending.

Equation (5) describes the impact of total supply shocks on total firm-level borrowing across both banks.

This effect is given by θ (s1∆ loga1 + s2∆ loga2).

Equation (8) describes the impact of total supply shocks on loan-level lending:
(

θs j − 1
ρ−1 s− j

)
∆ loga j+(

θs− j +
1

ρ−1 s− j

)
∆ loga− j, which includes both the direct effect,

(
θs j − 1

ρ−1 s− j

)
∆ loga j, and the cross

effect
(

θs− j +
1

ρ−1 s− j

)
∆ loga− j.

Equation (12) describes the impact of a specific supply shifter, w, on total firm-level borrowing. This is

given by b1θ (s1w1 + s2w2).

Finally, Equation (13) describes the impact of a specific supply shifter w on loan-level lending:(
b1θs j − b1

ρ−1 s− j

)
w j+

(
b1θs− j +

b1
ρ−1 s− j

)
w− j. Similar to Equation (8), this includes both the direct effect

of w j on bank j lending to the firm, as well as the cross effect of w− j on bank j lending.

3. Connecting the model to data

Our immediate goal is to relate the model to empirical analysis commonly performed in the literature. To

this end, we begin by introducing random components and explicit demand shifters to the model described

above (while making the time dimension explicit). We assume that the cost function for firm i in borrowing

an amount Li jt from bank j at time t can be written as:

c j (Li jt) = a jtui jtL
ρ

i jt , (14)

where a jt is the bank-level cost shifter, and ui jt captures a random time t bank-firm level component of

borrowing costs.
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Next, we allow the profitability of investment to change over time and across firms. In particular, we

assume that the present value function is of the form

Rit(Lit) = Bit R̃(Lit),

where Lit is firm i total borrowing (and investment) across both its banks, Bit is a time-varying, firm-specific

parameter that shifts investment opportunities, and R̃ is a time-constant investment function. This formula-

tion thus allows for cross-sectional and time-series variation in firm level demand for loans, and in particular

correlation between investment opportunities, Bit , and borrowing costs, a jt .

Log-linearizing the first order conditions, we show in the appendix that the empirical counterpart of

Equation (5), showing the response of total firm lending across both banks to the changes in the cost of

external finance, is given by:

∆ logLi = constant+∆ log B̃i︸ ︷︷ ︸
x∗d,i

+θ (si1∆ loga1 + si2∆ loga2)︸ ︷︷ ︸
x∗s,i

+ ν̃i, ν̃i = si1νi1 + si2νi2 (15)

where in this regression, ∆ log B̃i is a manipulation of the shock to investment opportunities, B, and νi j is an

error term which is linear in the logui j terms.13 Equation (15) decomposes the change in firm borrowing into

shifts due to demand and shifts due to supply effects. The demand component is given by x∗d,i := ∆ log B̃i,

whereas the supply component is given by x∗s,i := θ (si1∆ loga1 + si2∆ loga2), i.e., the weighted average of

the loan supply shifts multiplied by the scale elasticity, θ . Note that given that θ is negative, a negative cost

shock amounts to a positive supply shock, x∗s,i.

Similarly, the empirical counterpart of the scale-substitution equation in (8), which describes how lending

by bank j to firm i is affected by the total supply shocks ∆ loga j is given by:

∆ logLi j = constant+∆ log B̃i︸ ︷︷ ︸
x∗d,i

+

(
si, jθ − si,− j

1
ρ −1

)
∆ loga j︸ ︷︷ ︸

x∗s,i, j

+

(
si,− jθ + si,− j

1
ρ −1

)
∆ loga− j︸ ︷︷ ︸

x∗s,i,− j

+νi j. (16)

Equation (16) decomposes the change in bank j lending to the firm into four components: (1) the de-

mand component, x∗d,i; (2) a component capturing how bank j lending to the firm is influenced by the

total loan supply shock in bank j, given by x∗s,i, j :=
(

si, jθ − si,− j
1

ρ−1

)
∆ loga j; (3) a component captur-

ing how bank j lending to the firm is influenced by the total loan supply shock in bank − j, given by

x∗s,i,− j :=
(

si,− jθ + si,− j
1

ρ−1

)
∆ loga− j; and (4) a component capturing changes in borrowing costs at the

bank-firm level, νi, j.

13Specifically, without loss of generality, assume that E
(
logui jt

)
= 0, so that ∆ log B̃i is the deviation from the cross-sectional

mean of − R′
i(Li)

G′
i(Li)

θ∆ logBi. Further, νi, j =
1

(ρ−1)

(
si, j (1+θ(ρ −1))−1

)
∆ logui, j + si,− j

1
(ρ−1) (1+θ(ρ −1))∆ logui,− j.
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Finally, in analyzing the lending impact of the specific loan supply shifter w (as opposed to the total

supply shocks, a), the empirical counterparts of equations (12) and (13), are:

∆ logLi = constant+∆ log B̃i +b1θ (si1w1 + si2w2)+ ν̃i + χ̃i, (17)

and

∆ logLi, j = constant+∆ log B̃i +

(
b1θsi, j −

b1

ρ −1
si,− j

)
w j +

(
b1θsi,− j +

b1

ρ −1
si,− j

)
w− j +νi, j + χ̃i, j,

(18)

with χ̃i, j defined as in (13).

4. Common Estimation Methods through the Lens of the Model

In this section, we discuss the interpretation of the two main estimators used in the literature – the KM

estimator and lending regressions with bank and firm fixed effects. The common theme in both is the use

of firm fixed effects to capture unobserved firm level variation in the demand for credit. For each method,

we begin with a short discussion of the econometric framework and the interpretation of the estimators, and

then proceed to analyze each of the estimators through the lens of our model.

4.1. Loan Regressions with Firm Fixed Effects through the Lens of the Model

Consider the following canonical KM specification in a multi-firm, multi-bank environment. Assume that

between two periods, t and t + 1, banks are affected by loan supply shocks that are potentially correlated

with loan demand shocks to their portfolio firms.14 Following KM, a common method of estimating the

impact of loan supply shocks on bank lending is to run a regression of the form

∆ logLi j = βKMw j +δi + εi j, (19)

where w j is an observable, bank-level shifter of loan supply in bank j and δi is a firm-level fixed effect.

The identifying assumption to obtain a consistent estimate of βKM is that w j is uncorrelated with εi j – i.e.,

conditional on the firm fixed effects, bank-level credit supply shocks, w j, are uncorrelated with unobserved

loan demand or supply shifters at the bank-firm level. This assumption allows for firm and bank matching –

generating correlation between bank supply shocks and firm demand shocks – so long as the demand shocks

14The extension from two to multiple periods is trivial.
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are at the firm level.15

The main coefficient of interest, βKM, is commonly interpreted in the literature as measuring the impact

of the loan supply shifter on a bank’s lending to the firm. A standard sentence used in interpreting the

coefficient is of the form, "a one standard deviation increase in the [loan supply shifter], reduces bank

lending by x%". This interpretation is inaccurate, though. Taking the difference in equation (19) between

the two banks yields

∆ log
(

Li2

Li1

)
= βKM(w2 −w1)+(εi2 − εi1) . (20)

Equation (20) readily shows that βKM captures the elasticity of substitution of borrowing between banks

with respect to the supply shifter, w. This is distinct from the loan-level effect, which measures the percent

change in bank lending due to the supply shifter. Consider the case where only bank 2 experiences a

negative shift in the loan supply shifter (so that the cost of borrowing from this bank rises). The coefficient

βKM captures how this shift translates into a change in the relative amounts of borrowing between bank 1

and bank 2: because the relative cost of borrowing from bank 2 rises, the firm substitutes borrowing from

bank 2 to bank 1. To the extent that such substitution exists, the effect on the relative amounts of borrowing

from the two banks (captured by βKM) will generally be different from the impact that the supply shifter has

on borrowing from the bank experiencing the supply shift.16

To connect the KM methedology to the model, we return to the maximization problem in (1), and write

the first order condition with respect to the level of borrowing from bank j:

Bit R̃′ (Lit) = 1+ρa jtui jtL
ρ−1
i jt (21)

Taking logs of this first order condition, rearranging, using Equation (11), and taking first differences yields

that for a specific supply shifter, w j:

∆ logLi j = constant+
1

(ρ −1)
∆ log(BiR̃′ (Li)−1)− b1

(ρ −1)
w j −

1
(ρ −1)

(∆ logui j +χ j) . (22)

15As discussed in Paravisini, Rappoport and Schnabl (2023), if firm production can be broken down into various activities, and

if banks specialize in financing different activities, firm fixed effects might not adequately address a correlation between demand

shocks at the activity level and loan supply shocks. However, as Paravisini, Rappoport and Schnabl (2023) shows, even in the

presence of specialization, if conditional on the firm fixed effects, the activity-level demand shocks are uncorrelated with the loan

supply shifter then the assumption that εi j is uncorrelated with w j will still hold.
16As such, the standard sentence used to interpret a KM regression should be instead along the lines of "a one standard deviation

increase in the [loan supply shifter], reduces the relative amount of borrowing by the bank experiencing the shift by x%".
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There is a natural correspondence between Equation (22) and the KM regression in Equation (19). Similar

to the KM assumption, we assume that the error term in (22), ∆ logui j, is uncorrelated with the credit supply

shock, w j. The error term χ j is uncorrelated with w j by construction given that Equation (11) is a linear

projection. Further, the first term in the right hand side of (22), i.e. ∆ log(BiR̃′ (Li)− 1), varies at the firm

level and so will be absorbed by the firm fixed effects in the KM regression in (19). Taking all this into

account, running the KM regression in (19) (and maintaining the usual assumption that w j is uncorrelated

with εi j) implies that:

βKM =− b1

ρ −1
. (23)

Put differently, the KM coefficient measures the elasticity of substitution in borrowing between banks, 1
ρ−1 ,

which is then scaled by b1, the transmission coefficient between the credit supply shifter (w j) and the bank-

level cost of external finance (a j).

What is the relation between scaled elasticity of substitution, βKM = − b1
ρ−1 , the loan-level and the firm-

level responses to the loan-supply shifter? As shown in Equation (12), the impact of the specific supply

shifter, w j, on total firm borrowing is given by the elasticity b1θ , whereas Equation (13) shows that the

impact of the specific supply shifter on loan-level lending to the firm is given by b1θs j − b1
ρ−1 s− j. Equation

(10) allows us to rank the relative magnitudes of these three elasticities. Given that b1 > 0:

− b1

ρ −1
< b1θs j −

b1

ρ −1
s− j < b1θ < 0 (24)

Thus, while informative of the existence of a loan-level effect, βKM = − b1
ρ−1 , overestimates the elasticity

of loan-level lending to the loan-supply shifter (b1θs j − b1
ρ−1 s− j) as well as the response of total firm-level

lending to the loan-supply shifter (b1θ ).17

4.2. Loan Regressions with Bank and Firm Fixed Effects through the Lens of the Model

In its essence, the bank and firm fixed effect strategy employs a regression of the following nature:

∆ logLi j = φi +ζ j +υi j, (25)

where ∆ logLi j is the log change in lending from bank j to firm i between t and t + 1, ζ j is a vector of

bank fixed effects, φi is a vector of firm fixed effects, and υi j is a loan-specific error term.18The fixed effects

17This result is different from that obtained in the theoretical model in KM. This is because the KM theoretical model does not

allow for substitution across banks by borrowers.
18There are many variants of this regression in the literature. Amiti and Weinstein (2018) conduct a comprehensive analysis that

formalizes how different variants of this regression – using percent change instead of log difference, using WLS instead of OLS, and
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are identified using banks that lend to more than one firm and using firms that borrow from more than

one bank. In this specification, the bank fixed effect are interpreted as capturing the change in lending

due to the total, idiosyncratic bank supply shock (i.e. the total shock not common among all banks), and

similarly, the firm fixed effect is interpreted as capturing the change in lending due to the total, idiosyncratic

firm demand shock (see, for example, Amiti, McGuire and Weinstein (2017), Amiti and Weinstein (2018),

Alfaro, García-Santana and Moral-Benito (2021)).

However, associating the firm and bank fixed effects with loan demand and loan supply shocks, respec-

tively, is inaccurate. Intuitively, the firm fixed effects capture all firm level variation in changes in borrowing.

As such, in addition to the firm level demand shock, these fixed effects will also capture the impact on bor-

rowing of an average supply shock across the firm’s banks. Because the firm fixed effects conflate loan

supply and loan demand effects, standard applications using these bank and firm fixed effects – for example

to measure the real effects of loan supply shocks – will be incorrect. That is, such regressions will not

provide estimates of the impact of loan supply shocks on real outcomes.

To formally illustrate these arguments, we return to the first order condition in (21). Log-linearizing once

again, we obtain a variant of equation (22) for total supply shocks (∆ loga j) rather than supply shifters (w j):

∆ logLi j =
1

(ρ −1)
∆ log(BiR̃′ (Li)−1)− 1

(ρ −1)
∆ loga j −

1
(ρ −1)

∆ logui j. (26)

Comparing this equation to the bank and firm fixed effects regression in (25), it is readily seen that the vector

of bank fixed effects correspond to the set of scaled bank-level cost shocks, − 1
(ρ−1)∆ loga j, where the scaling

parameter is the elasticity of substitution 1
(ρ−1) .

19 By the same argument, the firm fixed effect corresponds to
1

(ρ−1)∆ log(BiR̃′ (Li)−1). Importantly, in addition to the demand shock, this term also incorporates the firm-

level response to the loan supply shocks through the optimal choice of Li. As such, somewhat surprisingly,

the firm fixed-effect incorporates not just loan demand shocks, but also some of the response to loan supply

shocks.

Next, to decompose the change in loans, ∆ logLi j, to demand and supply effects, taking into account the

careful treatment of entry and exit of bank-firm lending relationships – have different aggregation properties. Furthermore, running

this regression in practice requires taking a stand on the normalization of the fixed effect, but this normalization is immaterial for

the conceptual point we make here.
19The elasticity of substitution scaling factor is explained by the fact that the bank fixed effects are estimated in the presence of

firm fixed effects, and so they are identified only from within firm substitution between banks.
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supply effect which shows up in 1
(ρ−1)∆ log(BiR̃′ (Li)−1), we rearrange Equation (16) to get:

∆ logLi j = constant+∆ log B̃i︸ ︷︷ ︸
x∗d,i

+

(
si, jθ − si,− j

1
ρ −1

)
∆ loga j︸ ︷︷ ︸

x∗s,i, j

+

(
si,− jθ + si,− j

1
ρ −1

)
∆ loga− j︸ ︷︷ ︸

x∗s,i,− j

+νi j

= constant+∆ log B̃i +

τi︷ ︸︸ ︷(
θ +

1
ρ −1

)
(si, j∆ loga j + si,− j∆ loga− j)︸ ︷︷ ︸

φi

+

(
− 1

ρ −1
∆ loga j

)
︸ ︷︷ ︸

ζ j

+νi j.

(27)

This equation introduces a new object, τi, which is only a function of the loan supply shocks, ∆ loga j, and

hence is a supply-driven component. This component is symmetric across the two banks – i.e, it changes at

the firm level. A direct result of Equation (27) is that the bank and firm fixed effect can be written as:

ζ j = x∗s,i, j + x∗s,i,− j − τi (28)

φi = x∗d,i + τi. (29)

Thus, the bank fixed effect ζ j is simply the sum of x∗s,i, j, the supply component capturing how bank j’s

lending to the firm is influenced by the supply shock to bank j, and x∗s,i,− j, the supply component capturing

how bank j’s lending to the firm is influenced by the supply shock to bank − j, net of the firm-level term τi.

By the same token, the firm fixed effect, is a sum of two components: the demand component, x∗d,i, and the

firm-level term, τi.

Typical applications in the literature that use the bank and firm fixed effect model proceed by using the

bank fixed effects to calculate a firm-level loan-supply shock measure. They do so by calculating for each

firm the share weighted average of the bank fixed effects, with shares calculated over the banks lending to

the firm. Thus, the literature calculates for each firm i: ζ̄i := s1,iζ1 + s2,iζ2. This measure, however, does

not map to the loan supply shock at the firm level. Indeed, Equation (15) shows that the supply shock at the

firm level amounts to x∗s,i = θ (s1,i∆ loga1 + s2,i∆ loga2), which is easy to show is different than ζ̄i. In fact,

similar to the loan-level case, ζ̄i is missing the firm-level term, τi:

ζ̄i = x∗s,i − τi.

Furthermore, given that the bank fixed effects correspond to ζ j =− 1
ρ−1 ∆ loga j, we have that at the firm

level:

ζ̄i =− 1
ρ −1

(s1,i∆ loga1 + s2,i∆ loga2) .

Note that since − 1
ρ−1 < θ < 0 (Equation (10)), the actual supply driven change in lending, x∗s,i, is smaller

in magnitude (i.e. less negative) than the erroneously calculated supply driven change in lending, ζ̄i.
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4.2.1. Applications of Regressions with Both Bank and Firm Fixed Effects

The fact that the firm fixed effects from regressions with both bank and firm fixed effects incorporate supply

effects, and that the bank fixed effects are off by a scaling factor imply that the two most common appli-

cations of the fixed effect specifications commonly employed in the literature yield biased results. First,

the aggregation (either to the bank level or to the economy level) of lending changes into supply versus de-

mand driven changes misattributes firm-level supply changes to the demand channel rather than the supply

channel.

Second, the literature estimates real-effect regressions, relating firm-level outcomes (such as employment

changes) to the firm fixed effects, φi, and the share-weighted average of bank fixed effects, ζ̄i, interpreting the

coefficient on the latter as capturing the impact of the supply driven change in lending on the real effect being

examined. Given that, as shown above, φi and ζ̄i do not correspond to supply and demand driven changes in

lending, these regressions will generally yield biased estimates for the impact of loan supply shocks on real

outcomes. To formally see this, note that given (15), the correctly specified real effect regression is of the

form:

yi = γ
∗
0 + γ

∗
s x∗s,i + γ

∗
d x∗d,i +ϕ

∗
i (30)

where yi is the firm-level real outcome (e.g. investment or change in employment), while x∗s,i and x∗d,i are,

respectively, the supply- and demand-driven changes in lending as estimated above.

However, instead of the independent variables in (30), the literature uses on the right hand side the share

weighted average bank fixed effect, ζ̄i and the firm fixed effect φi. What is the result of running this regres-

sion? We have shown above that ζ̄i = x∗s,i − τi and φi = x∗d,i + τi, which when plugged into (30) yields:

yi = γ
∗
0 + γ

∗
s ζ̄i + γ

∗
d φi +ϕ

∗
i + τi (γ

∗
s − γ

∗
d ) .

In this equation, the composite error ϕ∗
i + τi

(
γ∗s − γ∗d

)
is correlated with the explanatory variables ζ̄i and

φi through the object τi. As such, a regression of yi on ζ̄i and φi would generally yield biased results for γ∗s

and for γ∗d .

5. Estimating the Impact of Loan Supply Shocks

In this section we describe a process for estimating the four objects of interest in analyzing loan supply

shocks. In particular, in the next subsection we show how to estimate the impact of a specific supply shifter

on total firm-level lending and loan-level lending. In the following subsection we then show how to estimate
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the impact of total supply shocks (i.e., not driven by a specific supply shifter) on total firm-level lending and

loan-level lending.

5.1. The Impact of Specific Supply Shifters

We are after the following two objects: first, b1θ , which given Equation (12), is the elasticity of total firm

level lending to the weighted average of the loan supply shifter experienced by the banks lending to the

firm (i.e. the scale effect); and second,
(

b1θs j − b1
ρ−1 s− j

)
, which given equation (13), is the elasticity of

bank j’s lending with respect to the specific loan supply shifter, w j. As shown above, the KM regression

consistently estimates the scaled elasticity of substitution, b1
1−ρ

. Thus, because bank lending shares are

observable, estimating the two desired elasticities boils down to estimating the scale elasticity b1θ .

To make progress, consider the empirical counterpart of the scale-substitution equation by re-arranging

Equation (18) in the following manner:

∆ logLi, j = constant+b1θ(si,1w1 + si,2w2)︸ ︷︷ ︸
xi,1

− b1

(ρ −1)
si,− j (w j −w− j)︸ ︷︷ ︸

xi, j,2

+∆ log B̃i +νi, j + χ̃i, j︸ ︷︷ ︸
ei, j

(31)

Note that if we could consistently estimate equation (31), we could recover the desired scale elasticity

b1θ . Of course, the model in equation (31) cannot be estimated using OLS: the firm level demand shocks,

B̃i, which are potentially correlated with the supply shocks, w j, are not observable and are part of the error

term, ei, j. Instead, what is estimatable is the following scale-substitution regression:

∆ logLi, j = d0 +d1xi,1 +d2xi, j,2 + ri, j. (32)

To the extent that the error term ei, j, which includes the demand shock, is uncorrelated with the scale and

substitution variables, xi,1 and xi, j,2, the OLS estimate for d1 in (32) is consistent for the elasticity of interest,

b1θ . However, when the demand shock is correlated with the loan supply shocks – the standard concern in

the literature – equation (32) suffers from classical omitted variable bias. For example, as is intuitive, when

increased credit cost is associated with decreased loan demand (cov
(
w j(i),∆ log B̃i

)
< 0), then d̂1 from the

empirical scale-substitution regression (32) would be downward biased – i.e. more negative than the true

loan supply effect, b1θ . In what follows we provide a method to estimate b1θ .

5.1.1. Estimating the Lending Elasticities of a Specific Loan Supply Shifter: A New Estimator

We show in the appendix that if E [xi, j,2 (νi, j + χ̃i, j)] = 0, i.e., the non-demand driven loan-level idiosyn-

cratic shocks are uncorrelated with the substitution term, we can recover a consistent estimate for the loan

18



supply effect b1θ . Specifically, combining estimates from the scale substitution regression (32) and the KM

regression, yields the following consistent estimator for b1θ :

b̂1θ = d̂1 −
1

δ̂x1,x2

(β̂KM − d̂2), (33)

where δ̂x1,x2 is the regression coefficient from the univariate regression of xi, j,2 on xi,1.

We sketch here the idea for the proof of Equation (33), providing the formal derivation in the appendix.

Using a symmetry argument, we show that xi, j,2 is not correlated with the demand shock ∆ log B̃i, and hence

the error terms ei, j is not correlated with xi, j,2. The bias in d1 therefore stems only from the correlation

between ei, j and xi,1. At the same time, the bias in d2 is determined by the correlation between ei, j and xi,1

and the correlation between xi,1 and xi, j,2. We can therefore use the difference between the unbiased βKM

estimator and the biased d2 estimator to recover the covariance between xi,1 and ei, j, and use it to debias

d1 to obtain an estimate of b1θ . As such, the obtained estimator in Equation (33) relies on the difference

between βKM and d2 and the regression coefficient δ̂x1,x2 , which measures the correlation between xi, j,2 and

xi,1.20

Before we turn to the empirical implementation of (33), it is useful to discuss the identification assumption

E [xi, j,2 (νi, j + χ̃i, j)] = 0. This assumption is in the same spirit as the typical assumption made: while bank

supply shocks, w j, are correlated with the demand component, they are uncorrelated with the non-demand

driven idiosyncratic shocks. In this particular context, the assumption is that the idiosyncratic shocks are

uncorrelated with the share weighted difference in the supply shifter w j −w− j.

To empirically implement the new estimators and to obtain standard errors, it is useful to run equations

(20) and (32), along with the regression of x1 on x2, as a linear system. The estimators for b1θ is then given

by a combination of coefficients as in (33). Given that an observation in the scale-substitution regression

(32) is a bank-firm, while the demand shocks are at the firm-level, it is important to cluster at the firm-level.

In sum, this process results in (1) a consistent estimator of the scale elasticity b1θ ; (2) by using the KM

regression to obtain − b1
ρ−1 , a consistent estimate of

(
b1θsi, j − b1

ρ−1 si,− j

)
, the elasticity of firm i’s borrow-

ing from bank j with respect to bank j’s specific loan supply shifter, w j; (3) a consistent estimate of the

average elasticity of firm borrowing from a given bank with respect to the bank’s loan supply shifter given

by 0.5
(

b1θ − b1
ρ−1

)
, which is the average of the scale elasticity and βKM; and (4) standard errors for all

estimators.
20The idea that recovering or bounding the covariance is useful in the estimation of the total borrowing effect goes back to KM

and is formalized in Jiménez et al. (2020). However, using our framework, we show that the estimator derived in the latter does not

capture the impact of loan supply shocks on total firm lending (see appendix for further details).
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5.2. The Impact of Total Supply Shocks

In this section we estimate the impact of total loan supply shocks – as opposed to the impact of a specific

supply shifter – on each bank’s lending to the firm and on total firm lending. Equation (5) shows that the

impact of total supply shocks on total firm lending across the two banks is given by x∗s,i = θs1∆ loga1 +

θs2∆ loga2. Further, as shown in Equation (8), the impact of total supply shock to bank j on borrowing

from bank j is given by x∗s,i, j =
(

θs j − 1
ρ−1 s− j

)
∆ loga j. Note that these two objects are not elasticities

of lending to supply shocks. It is natural to look at the total impact of the supply shock, rather than the

elasticity, given that the total supply shocks, loga j, themselves are unobservable.

We estimate these two objects by combining estimators from the bank and firm fixed effects regression

in (25) together with estimators of the lending elasticity of specific supply shocks discussed in Section 5.1

in the following manner. As shown in equation (27), . Since the loan shares si, j are observed, the only

thing remaining to recover in order to estimate x∗s,i and x∗s,i, j is θ∆ loga j. This latter object is proportional

to the bank fixed effect, ζ j, but is off by a scaling factor of −θ(ρ − 1). We thus need to rescale the bank

fixed effects. This is easily done by using the estimates obtained from a specific loan supply shock, b1θ and

βKM =− b1
ρ−1 , discussed in Section 5.1, and dividing one by the other. In particular, we have that

θ∆ loga j =− 1
(ρ −1)

∆ loga j︸ ︷︷ ︸
ζ j

b1θ

βKM
. (34)

Having estimated θ∆ loga j and − 1
ρ−1 ∆ loga j, we can then easily estimate the two objects of interest(

θs j − 1
ρ−1 s− j

)
∆ loga j and θs1∆ loga1+θs2∆ loga2, which measure the impact of total loan supply shocks

on total firm-level and loan-level lending, respectively.

In sum, by combining results from the regression with bank and firm fixed effects together with informa-

tion from a specific, bank-level shock to loan supply, w j, we can estimate the change in lending to firms as

a result of the sum total of loan supply shocks experienced by banks (and not just due to the specific loan

supply shock captured by w j).

5.2.1. Applications Using Total Supply Shocks

In the prior section we have shown how our framework can be used to recover the change in total lending

to firm i due to all loan supply shocks experienced by the banks that lend to it. This was captured by the

variable x∗s,i = θs1∆ loga1 + θs2∆ loga2. It is then straightforward to recover the change in total lending

to the firm driven by changes in demand. Indeed, as shown in (27), the change in lending due to demand
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factors is given by x∗d,i = φi−τi, and from the discussion above τi = x∗s,i− ζ̄i. We thus have both demand and

supply side effects.

Real Effect Regressions As discussed in section 4.2.1, a typical use of regressions with both bank and firm

fixed effects is to analyze how changes in loan supply affect real outcomes (such as employment changes,

investment, etc). The standard approach in the literature is to proxy for supply and demand shocks with

the bank and firm fixed effects, respectively. As we have shown in section 4.2.1, the firm fixed effect

captures both loan demand and loan supply side effects, which implies that the impact of loan supply shocks

is mismeasured. However, with the decomposition of firm level lending into loan demand and loan supply

effects provided above, it is straightforward to analyze how total loan supply shocks affect various firm-level

real outcomes, by running regression (30) using estimates for x∗d,i and x∗s,i.

Decomposing Aggregate Lending to Demand and Supply Next, we use our framework to decompose

the bank level changes in lending into demand and supply effects. Following Amiti and Weinstein (2018),

we have that the firm and bank fixed effects can be used to decompose the change in bank level in the

following manner:21

D j = ζ j + ∑
i∈I j

qi jφi, (35)

where D j is the average change in bank j’s loans to all the firms it lends to; ζ j and φi are the bank and firm

fixed effects, respectively, obtained from the firm and bank fixed effect regression; qi j =
Li j,t−1

∑i∈I j Li j,t−1
is the

share of lending to firm i out of total lending bank j, and I j is the set of firms borrowing from bank j.

To obtain a decomposition of the change in lending into demand and supply effects, the following calcu-

21To obtain the exact aggregation results from Amiti and Weinstein (2018), note that the set of ζ j and φi should be obtained

from an OLS regression where the dependent variable is the percent change in loans rather than their log difference. Furthermore,

to obtain aggregate growth in bank j’s lending (rather than the average), one needs to run the regression with WLS. Because we

assume two banks per firm, with no entry or exit, the Amiti and Weinstein (2018) corrections for such events are not relevant.
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lation needs to be applied to the bank and firm fixed effects:

D̄ j = ζ j + ∑
i∈I j

qi jφi

= ζ j + ∑
i∈I j

qi j
(
x∗d,i + τi

)
= ∑

i∈I j

qi j(τi +ζ j)+ ∑
i∈I j

qi jx∗d,i

= ∑
i∈I j

qi jx∗s,i, j︸ ︷︷ ︸
Own Supply

+ ∑
i∈I j

qi jx∗s,i,− j︸ ︷︷ ︸
Peer Supply

+ ∑
i∈I j

qi jx∗d,i︸ ︷︷ ︸
Demand

, (36)

The first line is the Amiti and Weinstein (2018) decomposition into firm and bank fixed effects, while the

subsequent lines are algebraic manipulations directly from Equation (28). Equation (36) provides the true

decomposition of bank level lending into supply and demand elements, where the fact that the firm fixed

effects also include loan supply effects (as captured by τi; see equation (27)) have been accounted for.

The loan supply component is divided into two: (1) The "own supply" element which captures how bank

j’s total lending is influenced by supply shocks experienced by bank j itself, and (2) The "peer supply"

element which captures how bank j’s total lending is influenced by supply shocks experienced by bank j’s

"co-lenders" – i.e., the banks which lends to the firms to which bank j lends to.22

Finally, one can also decompose the average loan growth in the economy into demand and supply effects

relying on D̄ = ∑ j z jD̄ j, where z j =
∑i∈I j Li j,t−1

∑ j ∑i∈I j Li j,t−1
.

6. Application: The 2011 Spanish Debt Crisis

6.1. Background and Data

In this section, we apply our framework to the 2011 Spanish sovereign debt crisis. The bursting of the hous-

ing bubble in the late 2000s in Spain burdened Spanish banks with distressed real estate assets, triggering

financial instability (see for example Baudino, Herrera and Restoy (2023)). We apply our methodology to

this setting to measure the impact of loan supply shocks and contrast our results against those that would be

generated with common empirical strategies used in the existing literature.

We employ a detailed dataset from Bank of Spain’s confidential credit register (CIR) which includes

loan-level credit registry data in Spain, combined with firm-level financial information available from the

22Note, that as is clear from (36) that the corrected decomposition inherits the aggregation properties shown in Amiti and Wein-

stein (2018).
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Spanish Mercantile Register. We use the degree of banks’ exposure as of the end of 2011 to real estate loans

as a ’specific supply shifter’ to proxy for the severity of lending constraints. Our analysis proceeds in two

steps: first, we estimate the impact of loan supply shocks resulting from this specific real-estate-exposure

supply shifter, and then, we estimate the impact of the total loan supply shock affecting banks. In doing so,

we analyze both lending and real effects.

To match the analysis to our model and empirical framework, we consider only firms with two lenders

in 2011 and 2012.We further limit our analysis to firms that have the same two lenders in 2011 and 2012

and also that have data on firm-level characteristics. Table 1 presents the descriptive statistics. There are a

total of 29,964 firms. The average decline in lending between the period 2011 and 2012 is approximately

15%. In our analysis, we use real estate exposure of banks as the loan supply shifter. Real estate exposure

is measured as the ratio of a bank’s total real estate lending to its total lending. The sample is comprised of

115 banks, which on average have a real estate exposure of 57%.

6.2. The Impact of Real-Estate Exposure

Table 2 presents the estimates for the impact of real estate exposure obtained using our empirical framework

and compares them to results obtained using the standard empirical techniques in the literature. The first

row in the table reports the result of a standard KM lending regression, which uses the log change in lending

at the bank-firm level between 2011 and 2012 as the dependent variable, the real estate exposure as the

loan supply shifter, and which includes firm fixed effects to control for unobservable loan demand. As our

framework shows, the KM coefficient on the real estate exposure (-0.183), captures only the substitution

effect − 1
ρ−1 , scaled by b1.

Rows 2 and 3 of Table 2 show the results of the scale-substitution regression, equation (32). The coeffi-

cients of interest d1 and d2 are -0.039 and -0.178, respectively. These coefficients are potentially biased for

the scale and substitution effects since the demand shocks are not accounted for in the regression. We then

apply equation (33) and obtain the estimate of b1θ , shown in the fourth row of Table 2. Because the differ-

ence between the biased (d2) and unbiased (βKM) estimates of the substitution effect is small, the estimated

covariance term, cov(xi, j,1,ei, j), which captures the correlation between demand and supply shocks, is close

to zero. This implies that b1θ is close to the biased scale effect d1.

Finally, the last row of Table 2 reports the estimate of the average loan level elasticity to be -0.116. As

shown by the theoretical discussion, indeed this value is smaller (in absolute value) compared to βKM, the

latter of which is typically treated as the loan-level effect. The difference between the coefficients is 0.067

– i.e., βKM overestimates the loan-level effect by over 50%. Estimated at -0.052, the firm level effect, b1θ ,
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is even closer to zero and is not statistically significant at conventional levels.

6.3. The Impact of Total Supply Shocks on Real Outcomes

We turn now to estimate the impact of total supply shocks on lending and real outcomes. We start with

the estimation of a lending regression with bank and firm fixed effects (equation (25)). Using our estimates

of b1θ and βKM, along with equation (34) we recover the total supply shocks experienced by different

banks, x∗s, j. Figure 1 compares the distribution of supply shocks at the bank level (x∗s, j) to the distribution

of bank fixed effects (ζ j). Given our theoretical framework, which implies that true supply shocks are a

scaled version of the bank fixed effects (equation (34)), the distribution of supply shocks in the figure is

a compressed version of the distribution of bank fixed effects. This highlights that the bank fixed effects

overstate the extent of total supply shocks experienced by banks.

Next, following the discussion in 5.2.1 we recover estimates for the firm level supply and demand shocks,

x∗s,i and x∗d,i. This allows us to examine the impact of supply shocks on real outcomes including investment,

employment, and value added. As discussed in section 4.2.1, the regression of real outcomes on the esti-

mated bank and firm fixed effects from the lending regression delivers biased estimates for the impact of

supply shocks. The results in Table 3 demonstrate that in our sample, the difference between the biased and

unbiased estimates is large. In particular, from column (1), a one standard deviation change in averaged bank

FE (ζ̄i) is associated with 0.86 percent increase in investment. Correcting for the bias, column (2) shows

that a one standard deviation increase in total supply (x∗si
) is associated with only a 0.41 percent increase

in investment – less than half the magnitude of the biased coefficients.23 Columns (3) to (6) reveal similar

patterns for employment and for value added growth.

7. Conclusion

This paper revisits a foundational question in the credit supply literature: how to measure the impact of loan

supply shocks on firm borrowing. We show that two widely used empirical strategies – the Khwaja and

Mian (2008) approach and the bank and firm fixed effects regression approach as in Amiti and Weinstein

(2018) – do not recover the firm- or loan-level impact of supply shocks.

We then provide a methodology to estimate total firm-level and loan-level effects of loan supply shocks.

We do so for both specific loan supplier shifters as well as for total supply shocks. This methodology is

particularly relevant for understanding how shocks to the financial system propagate to investment, employ-

23Recall that a more positive x∗si
reflects a larger positive supply shock.
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ment, and output, and thus for informing the design of policies aimed at promoting financial stability and

mitigating the amplification of crises. Applying our methodology to the case of the Spanish 2011 debt crisis,

we show that our new estimators yield substantially smaller real effects of loan supply shocks.
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Table 1: Descriptive Statistics

mean s.d.

∆ logL -0.153 0.413

Real Estate Exposure (w j) 0.568 0.115

Number of firms 29,964

Number of banks 115

Table 2: Impact of Loan Supply Shock: Spanish Debt Crisis

Interpretation Source Estimate (s.e)

βKM Substitution effect (− b1
ρ−1 ) Standard KM reg -0.183 (0.020)

d1 Biased scale effect SUR (scale-substitution) -0.039 (0.019)

d2 Biased substitution effect SUR (scale-substitution) -0.178 (0.020)

Implied elasticities

b1θ firm-level effect on total lending SUR applying section 5.1.1 -0.052 (0.035)

0.5b1θ −0.5 b1
ρ−1 average loan-level effect on total lending SUR applying section 5.1.1 -0.116 (0.020)

Table 3: Real Effect Regressions

Long Term Assets Growth Employment Growth Value Added Growth

(1) (2) (3) (4) (5) (6)

Bank FE Supply Bank FE Supply Bank FE Supply

(ζ̄i) Shock (x∗s,i) (ζ̄i) Shock (x∗s,i) (ζ̄i) Shock (x∗s,i)

Total Supply Shock ×100 0.858 0.413 0.149 -0.095 1.024 0.786

(s.e.) (0.162) (0.162) (0.230) (0.231) (0.341) (0.340)

Observations 29,939 26,472 26,837

Notes: The table reports regressions of firm level outcomes on supply shocks. In columns (1) and (2) the dependent variable log

change in long term assets. In columns (3) and (4) the dependent variable is employment growth rate. In columns (5) and (6) the

dependent variable is value added growth, defined as log change in value added. In Columns (1), (3) and (5) the explanatory variable

is the Bank FE (ζ̄i), controlling also for the firm FE (φi). In Columns (2), (4) and (6) the explanatory variable is x∗si
, controlling also

for x∗di
.
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Figure 1: Bank Level Total Supply Shock Distribution
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A. Proofs

A.1. Section 2 Proofs

A.1.1. Cost Minimization

Cost minimization problem is given by equation (3) in the paper:

C(L) := min
L1,L2

{
a1Lρ

1 +a2Lρ

2

∣∣ L1 +L2 = L
}
, ρ > 1. (3)

Since L1 +L2 = L, minimize the one–variable objective:

f (L1) := a1Lρ

1 +a2(L−L1)
ρ over L1 ∈ [0,L].

First-order condition.

a1 Lρ−1
1 = a2 (L−L1)

ρ−1.

Rearranging:

L1

L−L1
=

(
a1

a2

) 1
1−ρ

⇐⇒ L1

L2
=

(
a1

a2

) 1
1−ρ

. (A.1)

Solving for the optimizer:

L1

L2
=

a
1

1−ρ

1

a
1

1−ρ

2

=⇒ L1 =
a

1
1−ρ

1

a
1

1−ρ

1 +a
1

1−ρ

2

L, L2 =
a

1
1−ρ

2

a
1

1−ρ

1 +a
1

1−ρ

2

L.

Value at the minimizer. Plugging this in, we get:

a1Lρ

1 = a1

 a
1

1−ρ

1

a
1

1−ρ

1 +a
1

1−ρ

2

L

ρ

= Lρ
a

1+ ρ

1−ρ

1(
a

1
1−ρ

1 +a
1

1−ρ

2
)ρ

= Lρ
a

1
1−ρ

1(
a

1
1−ρ

1 +a
1

1−ρ

2
)ρ

,

and similarly,

a2Lρ

2 = Lρ
a

1
1−ρ

2(
a

1
1−ρ

1 +a
1

1−ρ

2
)ρ

.

Adding both terms:

C(L) = a1Lρ

1 +a2Lρ

2 = Lρ
a

1
1−ρ

1 +a
1

1−ρ

2(
a

1
1−ρ

1 +a
1

1−ρ

2
)ρ

= Lρ
(

a
1

1−ρ

1 +a
1

1−ρ

2

)1−ρ

.

Therefore,

C(L) = κC Lρ , κC =
(

a
1

1−ρ

1 +a
1

1−ρ

2

)1−ρ

.

which is equation (4) in the paper.
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A.1.2. Elasticity of Substitution Between Banks

First-order condition of the cost minimization problem gives:

L1

L2
=

(
a1

a2

) 1
1−ρ

, ρ > 1.

Taking logs on both sides:

log
(

L1

L2

)
= − 1

ρ −1
log
(

a1

a2

)
.

A.1.3. Impact on Total Firm Borrowing

The firm solves:

max
L

R(L)−L︸ ︷︷ ︸
G(L)

−C(L) with C(L) = κCLρ , κC =

(
a

1
1−ρ

1 +a
1

1−ρ

2

)1−ρ

,

where L = L1 +L2 and s j =
L j
L .

The first order condition yields G′(L) =C′(L). Taking logs and differencing between time t and t +1:

∆ logG′(L) = ∆ logC′(L) (A.2)

Taking the first-order approximation of the left hand side of (A.2):

∆ logG′(L)≈ ηG′,L∆ logL. (A.3)

Similarly, for the right hand side of (A.2):

∆ logC′(L) = ∆ logκC +(ρ −1)︸ ︷︷ ︸
ηC′ ,L

∆ logL.

Moreover,

∆ logκC = ∆ log
(

a
1

1−ρ

1 +a
1

1−ρ

2

)1−ρ

≈ (1−ρ)
2

∑
j=1

a
1

1−ρ

j

a
1

1−ρ

1 +a
1

1−ρ

2

∆ log
(

a
1

1−ρ

j

)

=
2

∑
j=1

a
1

1−ρ

j

a
1

1−ρ

1 +a
1

1−ρ

2

∆ log
(
a j
)
=

2

∑
j=1

s j∆ log
(
a j
)

since s j =
L j
L =

a
1

1−ρ

j

a
1

1−ρ

1 +a
1

1−ρ

2

from (A.1).

Thus:

∆ logC′(L)≈ s1∆ loga1 + s2∆ loga2 +ηC′,L∆ logL. (A.4)

Plugging in (A.3) and (A.4) into (A.2), we arrive at:

ηG′,L∆ logL ≈ s1∆ loga1 + s2∆ loga2 +ηC′,L∆ logL

Rearranging:

∆ logL ≈ 1
ηG′,L −ηC′,L

(s1∆ loga1 + s2∆ loga2) . (A.5)
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Defining θ = 1
ηG′ ,L−ηC′ ,L

, we arrive at equation (5) in the paper.

Also notice that:

ηG′,L =
∂G′(L)

∂L
L

G′(L)
=

∂R′(L)
∂L

L
R′(L)−1

=
R′(L)

R′(L)−1

(
L

R′(L)
∂R′(L)

∂L

)
︸ ︷︷ ︸

ηR′ ,L

.

At the optimum R′(L) =C′(L)+1. Therefore:

ηG′,L =
1+C′

C′ ηR′,L.

Hence, we can express θ also as:

θ =
1(

1+C′

C′ ηR′,L −ηC′,L

) .
This is equation (6) in the paper.

A.1.4. Impact on Loan Level Borrowing

By definition:

L j = s jL, where j ∈ {1,2} and s j + s− j = 1.

Taking logs and time difference between t and t +1:

∆ logL j = ∆ logs j +∆ logL. (A.6)

Since we know the first-order approximation of ∆ logL (see (A.5)), we only need to find first-order approximation of ∆ logs j.

From (A.1), we know that:

s j =
a

1
1−ρ

j

a
1

1−ρ

j +a
1

1−ρ

− j

.

Taking logs and differentiating:

d logs j = d log(a
1

1−ρ

j )−d log(a
1

1−ρ

j +a
1

1−ρ

− j ). (A.7)

Right-hand side terms of (A.7):

d log(a
1

1−ρ

j ) =
1

1−ρ
d log(a j)

d log(a
1

1−ρ

j +a
1

1−ρ

− j ) =
1

1−ρ

a
1

1−ρ

j d log(a j)+a
1

1−ρ

− j d log(a− j)

a
1

1−ρ

j +a
1

1−ρ

− j


=

1
1−ρ

(
s jd log(a j)+ s− jd log(a− j)

)
Then:

d logs j =
1

1−ρ
d log(a j)−

1
1−ρ

(
s jd log(a j)+ s− jd log(a− j)

)
=

1
1−ρ

(1− s j)︸ ︷︷ ︸
s− j

d log(a j)−
1

1−ρ
s− jd log(a− j)

=− 1
ρ −1

s− jd log
(

a j

a− j

)

3



Taking the first-order approximation:

∆ logs j ≈− 1
ρ −1

s− j∆ log
(

a j

a− j

)
. (A.8)

Substituting (A.8) and (A.5) into (A.6), we arrive at:

∆ logL j ≈ θ(s1∆ loga1 + s2∆ loga2)−
1

ρ −1
s− j∆ log

(
a j

a− j

)
,

which is equation (7) in the paper.

A.2. Section 3 Proofs

The cost minimization problem of firm i at time t is:

Cit(Lit) := min
Li1t ,Li2t

{
a1tui1tL

ρ

i1t +a2tui2tL
ρ

i2t

∣∣ Li1t +Li2t = Lit
}
, ρ > 1.

Solving the minimization problem as in Section A.1.1, we will arrive at:

Cit(Lit) = κC,itL
ρ

it where κC,it =

(
2

∑
j=1

(a jtui jt)
1

1−ρ

)1−ρ

.

Moreover, the bank shares at the optimum satisfies:

si jt =
Li jt

Lit
=

(a jtui jt)
1

1−ρ(
(a jtui jt)

1
1−ρ +(a− jtui− jt)

1
1−ρ

) . (A.9)

Firm i then maximizes:

max
Lit

Bit R̃(Lit)−Lit︸ ︷︷ ︸
Git (Lit ,Bit )

−Cit(Lit) where Cit(Lit) = κC,itL
ρ

it .

First-order condition yields:
∂Git(Lit ,Bit)

∂Lit
=C′

it(Lit).

With some abuse of notation, we denote ∂Git
∂Lit

with G′
it . Taking logs and time difference between t and t +1:

∆ logG′
it = ∆ logC′

it(Lit). (A.10)

log linearizing the left-hand side of A.10, and recalling that G′
it is a function of Lit and Bit yields:

∆ logG′
it ≈ ηG′,L∆ logLit +ηG′,B∆ logBit . (A.11)

Next, we log-linearize the right-hand side of A.10. Start from:

C′
it(Lit) = ρκC,itL

ρ−1
it .

Taking differential:

d logC′
it(Lit) = d logκC,it +(ρ −1)︸ ︷︷ ︸

ηC′ ,L

d logLit .

Using the same algebra as in Section A.1.1, we can find d logκC,it as:

d logκC,it =
2

∑
j=1

si jtd log(a jtui jt) =
2

∑
j=1

si jtd loga jt +
2

∑
j=1

si jtd logui jt .
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Taking the first-order approximation using time t as the point of linearization:

∆ logC′
it(Lit)≈ (si1t∆ loga1t + si2t∆ loga2t)+(si1t∆ logui1t + si2t∆ logui2t)+ηC′,L∆ logLit . (A.12)

Substituting A.11 and A.12 into A.10 and rearranging, we arrive at:

(ηG′,L −ηC′,L)∆ logLit ≈ si1t∆ loga1t + si2t∆ loga2t + si1t∆ logui1t + si2t∆ logui2t −ηG′,B∆ logBit .

Defining θ = 1
ηG′ ,L−ηC′ ,L

as before, we get:

∆ logLit ≈ θ(si1t∆ loga1t + si2t∆ loga2t)+θ(si1t∆ logui1t + si2t∆ logui2t)︸ ︷︷ ︸
ν̃it

−θηG′,B∆ logBit .

Without loss of generality, assume that E
(
logui jt

)
= 0, and define the constant as the cross-sectional mean of

−θηG′,B∆ logBkt ,i.e. constantt = 1
N ∑

N
k=1
(
−θηG′,B∆ logBkt

)
. Define ∆ log B̃it =−θηG′,B∆ logBit − constantt , then:

∆ logLit =constantt +∆ log B̃it︸ ︷︷ ︸
x⋆d,i

+θ(si1t∆ loga1t + si2t∆ loga2t)︸ ︷︷ ︸
x⋆s,i

+ν̃it . (A.13)

which is Equation (15) in the paper.

Finally, note that ηG′,B =
R′

it (Lit )
G′

it (Lit )
, as G′

it = Bit R̃′(Lit)−1 (and Bit R̃′(Lit) = R′(Lit)).

Next, we have that by definition:

Li jt = si jtLit .

Taking logs and differencing between time t and t +1:

∆ logLi jt = ∆ logsi jt +∆ logLit . (A.14)

Since we know the first order approximation of ∆ logLit (see A.13), we only need to find the first-order linear approximation of

∆ logsi jt .

From A.9, we know that:

si jt =
(a jtui jt)

1
1−ρ

(a1tui1t)
1

1−ρ +(a2tui2t)
1

1−ρ

, ρ > 1,

Taking logs and totally differentiating:

d logsi jt = d log
(
(a jtui jt)

1
1−ρ

)
− d log

(
(a1tui1t)

1
1−ρ +(a2tui2t)

1
1−ρ

)
=

1
1−ρ

d log(a jtui jt) −
1

1−ρ
(a jtui jt)

1
1−ρ d log(a jtui jt)+

1
1−ρ

(a− jtui,− jt)
1

1−ρ d log(a− jtui,− jt)

(a jtui jt)
1

1−ρ +(a− jtui,− jt)
1

1−ρ

=
1

1−ρ

[(
1− si jt)

)
d log(a jtui jt) − si,− jt d log(a− jtui,− jt)

]
=

si,− jt

1−ρ

[
d log(a jtui jt)−d log(a− jtui,− jt)

]
=−

si,− jt

ρ −1
d log

(
a jtui jt

a− jtui,− jt

)
.

Taking the first-order approximation:

∆ logsi jt ≈ −
si,− jt

ρ −1

[
∆ loga jt −∆ loga− jt +∆ logui jt −∆ logui,− jt

]
. (A.15)
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Substituting A.15 and A.13 into A.14:

∆ logLi jt ≈ constantt +∆ log B̃it + θ
(
si1t∆ loga1t + si2t∆ loga2t

)
−

si,− jt

ρ −1

[
∆ loga jt −∆ loga− jt

]
+ ν̃it −

si,− jt

ρ −1
(
∆ logui jt −∆ logui,− jt

)
︸ ︷︷ ︸

νi jt

.

which, collecting terms, is Equation (16) in the paper.

A.3. Section 5 Proofs

A.3.1. Derivation of the Estimator of the Scale Elasticity b1θ

First, we prove that E[xi, j,2ei, j] = 0. By assumption E[xi, j,2(νi j + χ̃i j)] = 0, hence it is left to show that E[xi, j,2∆ log B̃i] = 0.

We have:

E
[
xi, j,2∆ log B̃i

]
= E

[
si,− j

(
wi, j −wi,− j

)
∆ log B̃i

]
= E

[
E
[
si,− j

(
wi, j −wi,− j

)
∆ log B̃i

]
|si,− j

]
= E

[
si,− jE

[(
wi, j −wi,− j

)
∆ log B̃i

]
|si,− j

]
= E

{
si,− j

(
E
[
wi, j∆ log B̃i|si,− j

]
−E

[
wi,− j∆ log B̃i|si,− j

])}
= E

{
si,− j

(
E
[
wi, j∆ log B̃i|si, j

]
−E

[
wi,− j∆ log B̃i|si,− j

])}
= E

{
si,− j

(
E
[
wi, j∆ log B̃i|si, j

]
−E

[
wi, j∆ log B̃i|si, j

])}
= 0,

where the penultimate line results from si j + si,− j = 1, and the last line from symmetry.

Next, we turn to the derivation of equation (33) in the paper. Define the linear projection:

ei, j = π0 +π1x1 +π2x2 + ri, j (A.16)

Plugging (A.16) into (31) and collecting terms, yields:

d2 = βKM +π2.

From the definition of multivariate regression (and applying to the case of 2 variables):

π2 =
var(x1)cov(x2,ei, j)− cov(x1,x2)cov(x1,ei, j)

var(x1)var(x2)− cov(x1,x2)2 .

Since cov(x2,ei, j) = 0, we have:

d2 = βKM −
cov(x1,x2)cov(x1,ei, j)

var(x1)var(x2)− cov(x1,x2)2 ,

cov(x1,ei, j) =

[
var(x1)var(x2)− cov(x1,x2)

2]
cov(x1,x2)

(βKM −d2).

In an analogous manner:

d1 = b1θ +π1,

where as before (using cov(x2,ei, j) = 0):

d1 = b1θ +
var(x2)cov(x1,ei, j)

var(x1)var(x2)− cov(x1,x2)2

6



Finally, plugging in the expression for cov(x1,ei, j):

d1 = b1θ +
var(x2)

var(x1)var(x2)− cov(x1,x2)2

[
var(x1)var(x2)− cov(x1,x2)

2]
cov(x1,x2)

(βKM −d2)

= b1θ +
var(x2)

cov(x1,x2)
(βKM −d2)

= b1θ +
1

δx1,x2

(βKM −d2)

where δx1,x2 is the population regression coefficient of x1 on x2. Replacing population values with estimates, a consistent estimator

for b1θ is thus given by equation (33) in the paper:

b̂1θ = d̂1 −
1

δ̂x1,x2

(β̂KM − d̂2).

B. Relation to the Estimator in Jiménez et al. (2020)

Jiménez et al. (2020) develop an estimator for the elasticity on total-firm lending – i.e. for what we denote by b1θ .1 However, as

we show below, their estimator does not in fact identify the total firm level effect as intended to. Similar to our approach, the

method in Jiménez et al. (2020) seeks to identify the covariance between supply and demand shocks in order to capture the total

firm-level lending effect. Their method involves running the following regression with and without firm fixed effects:

∆ logLi j = k0 + k1w j +µi + εi j, (A.17)

where µi is a firm-level fixed-effect meant to capture unobserved demand shocks. With the fixed-effect, this specification is a

standard KM regression, implying that k1,FE = βKM . Jiménez et al. (2020) assert that the regression without the fixed effects

estimates k1,FE with a bias that depends on the covariance between demand and supply effects. In particular, they claim:

k1,NoFE = k1,FE +
cov(w j,µi)

var(w j)
, (A.18)

which implies that estimates of k1,NoFE and k1,FE along with estimates of var(w j), can be used to recover the covariance term.

With an estimate of the covariance between supply and demand in hand, they then devise an estimator for the firm borrowing

elasticity.

However, using our framework, it is straightforward to show that equation (A.18) does not reflect the relation between k1,NoFE ,

k1,FE , and cov(w j,µi), which implies that it does not recover the covariance term. To see this, it is instructive to compare equation

(A.17) to (18), the latter of which describes how the change in lending is affected by the two loan supply shifters (one for each

bank) as well as the demand shock. This comparison reveals two issues with (A.18). First, because (A.17) does not include the

supply shifter for the second bank,
(

si,− jθ + si,− j
1

ρ−1

)
w− j , this term is included in the error term epsilon, εi j. To the extent that

w j and w− j are correlated, this is going to create an additional omitted variable bias not captured in (A.18). Second, it is clear

from equation (18) that the coefficient on the supply shifter w j is the loan-level supply effect
(

si, jθ − si,− j
1

ρ−1

)
rather than

1Jiménez et al. (2020) do not distinguish between what we call specific loan supply shifters (w) and total loan supply shocks (a).

However, they apply their framework to Spanish banks’ exposure to real estate, which corresponds to a specific loan supply shifter.
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k1,FE = βKM . Thus, even if w j and w− j are uncorrelated, k1,NoFE will still not be equal to k1,FE plus a bias term as in equation

(A.18). Because of these two reasons, (A.18) does not recover the covariance term between loan supply and demand shocks.2 In

turn, this means that the estimator in Jiménez et al. (2020) does not identify the firm borrowing elasticity, b1θ .

2In a similar spirit, prior literature has compared k1,FE and k1,NoFE as an informal test to examine whether the covariance term

is zero (interpreting a small difference as indicating no correlation between loan supply and demand). Based on the discussion

above, it can be shown that this test is invalid.
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