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Abstract 
 
 
We introduce the powerful, flexible and  computationally efficient  

nonparametric Classification and Regression Trees (CART) algorithm to the real estate  

analysis of mortgage data. CART.s strengths in dealing with large data sets, high  

dimensionality, mixed data types, missing data, different relationships between  

variables in different parts of the measurement space,  and outliers, is  particularly  

appropriate for our data  set. Moreover, CART is intuitive and  easy to interpret and  

implement. We discuss the pros and cons of CART vis-à-vis traditional methods such  

as linear logistic regression, nonparametric additive logistic regression, discriminant  

analysis, partial least squares  classification,  and neural networks, with particular  

emphasis on real  estate. We apply CART to produce the  first  academic mortgage  

default study of  Israeli data. We  find that borrowers. features, rather than mortgage  

contracts features, are the strongest predictors of default if accepting "bad" borrowers is  

more costly than rejecting .good. ones. If these costs are equal, mortgage features are  

used as well. The higher (lower) the ratio of misclassification costs of bad risks versus  

good ones, the lower (higher) are the resulting misclassification rates of bad risks and  

the higher (lower) are the misclassification rates of good ones. This is consistent with  

real world stylized facts of rejection of good risks in attempt to avoid bad ones.  
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1 Introduction 

We introduce the powerful, flexible and computationally efficient 

nonparametric Classification and Regression Trees (CART) [Breiman, Friedman, 

Olshen, and Stone (1998)1 (BFOS)] algorithm to the real estate analysis of mortgage 

data. CART’s strengths in dealing with large data sets, high dimensionality, mixed data 

types, missing data, different relationships between variables in different parts of the 

measurement space, and outliers, is particularly appropriate for our data set. Moreover, 

CART is intuitive and easy to interpret and implement. We discuss the pros and cons of 

CART vis-à-vis traditional methods such as linear logistic regression, nonparametric 

additive logistic regression, discriminant analysis, partial least squares classification, 

and neural networks, with particular emphasis on real estate. 

As far as we know this is the first application of CART in an academic study of 

real estate data and the first academic mortgage default study of Israeli data. We find 

that borrowers’ features, rather than mortgage contracts features, are the strongest 

predictors of default if accepting “bad” borrowers is more costly than rejecting “good” 

ones. If these costs are equal, mortgage features are used as well. The higher (lower) the 

ratio of misclassification costs of bad risks versus good ones, the lower (higher) are the 

resulting misclassification rates of bad risks and the higher (lower) are the 

misclassification rates of good ones. This is consistent with real world stylized facts of 

rejection of good risks in attempt to avoid bad ones. 

CART classifies individuals or objects into a finite number of classes on the 

basis of a collection of features, or independent variables. CART uses binary trees, a 

method that Morgan and Sonquist introduced in the sixties at the University of 

Michigan and Morgan and Messenger developed there in the seventies into an ancestor 

                                                 
1 The first version of this book is from (1984). 
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classification method. CART strengthens and extends these original methods. It was 

first introduced independently by Breiman and Friedman in 1973, who later joined 

forces with Stone and then with Olshen. CART was first introduced to the general 

reader and is fully described by BFOS.2 Although we use CART as a classification tool, 

it is also a regression tool. In fact, any guided classification, including the CART 

algorithm, may be regarded as a regression method where the response variable is 

categorical. Presented this way, it becomes evident that CART chief competitors are 

discrimination methods in general, and polytomous logistic regression in particular. 

Our main purpose in analyzing the mortgage data is the binary classification of 

borrowers into two risk classes: potential defaulters and those unlikely to default. We 

use a data base, which we refer to as a learning sample, to develop the decision rule for 

the classification. Our learning sample consists of data both on the predictors, which we 

also call independent variables or features, and on the binary outcome variable: 

defaulted, or did not default. Our learning sample consists of data on 3,035 mortgage 

borrowers. The features include asset value, asset age, mortgage size, number of 

applicants, the main applicant’s occupation, income, and family information, and other 

characteristics of the asset and the applicant: thirty three features in all. 

1.1 Why CART? 

A particularly important CART feature that deserves special mention is its 

treatment of missing data. Regression, including logistic regression, and other 

classification methods that use feature data to associate individual cases with one of two 

or more classes, require the elimination of whole observation vectors when even one of 

their elements is missing. CART seems to have introduced a novel way to deal with 

missing data efficiently, particularly for classification and prediction. First, the 

                                                 
2 The first version of this book is from (1984). 
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classification algorithm creates a simple binary tree structure. Then, it uses this tree 

structure to classify new cases. In the likely event that a case with missing features is 

presented to be classified, CART offers alternative trees for each combination of 

missing features. To describe this important feature of CART, we will schematically 

describe (in Section 2) the binary classification tree that CART produces, couching the 

description in our example of mortgage applicants’ risk assessment when necessary. 

Among the important facilities that CART offers is a weighting facility. This 

facility is particularly relevant when the learning sample does not represent a simple 

random sample from the population, e.g., when the sample is stratified. For example, 

when the tree is intended to discriminate between members of a very rare class in the 

population, and the remainder of the population, it is often advantageous to “over-

sample” the rare subset of the population. Weighting the different classes in a way that 

compensates for their proportion in the population allows CART to produce a consistent 

classification procedure. We have used this facility in analyzing the Mortgage data, 

because although the proportion of defaulters in the data is under 10%, in fact 

approximately equal numbers of defaulters and non-defaulters were selected from the 

bank database of mortgage customers. 

A Bayesian decision maker will also find a Bayesian classification feature in 

CART, where the user provides subjective class probabilities that the algorithm uses to 

evaluate error rates of candidate trees using its Cross Validation facility (see below), 

before making its final tree choice. These prior probabilities serve in effect as user-

selected class weights, and are therefore useful for analyzing data from complex 

samples, even when the researcher is not an avowed Bayesian. 

For selecting the best classification tree for a particular set of requirements, and 

to evaluate the classification performance of a selected tree, CART uses robust methods 
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such as Cross-Validation. As is well known, a naive classification error-rate that is 

computed directly on the entire data set tends to be over-optimistic. It is usually 

recommended that a certain portion of the data be kept out of the classification tool 

selection process, and then be used for testing the selected classification tool. When 

CART constructs a classification tree, it performs this procedure, usually called Cross-

Validation, automatically. CART divides the data into K (usually 10) equal parts, using 

K-1 parts to construct the tree, and testing it on the remaining data, repeating this 

procedure K times. Section 2 explains this procedure in more detail. 

CART handles independent categorical variables as easily as continuous ones, 

and is resistant to outlying values present in one or more continuous features. CART’s 

resistance to outliers is due to its use of splits of the form X≤s or X>s. Such splits hardly 

depend on outlying values. Furthermore, the splits considered by CART are invariant 

under monotone transformations. That is, any monotone transformation such as log or 

square root, of one or more of the features, does not alter the final tree. Therefore, 

CART does not require any pre-transformation of the data. 

Because the selection of candidate variables for splitting may be too limiting, 

CART permits the expansion of the set of candidate variables to include linear 

combinations of variables in the feature set. Naturally, any user who wishes to use a 

different function of existing features may define it and add it to the feature set. 

Moreover, the choice of features to be included in the feature space will depend on the 

subject matter, and is left to the user to select. 

The process of selecting the features to be included in the tree, and the structure 

of the binary tree itself is completely automatic. No expert statistician is required to 

reduce the number of features to a manageable number, and no transformations are 

required. 
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Another advantage of CART stems from the tree structure of the decision 

algorithm: decision processes of subgroups in the population may reveal themselves. In 

addition, CART is computationally efficient, and has unusual ability to find quasi-

efficient combinations of features for classification. 

1.2 CART and Its Competitors 

The task of predicting a binary outcome from a collection of relevant features is 

traditionally carried out using well known tools such as logistic regression. There are 

two main types of logistic regressions: the completely parametric linear one, and the 

nonparametric additive one, see Hastie, Tibshirani, and Friedman (2001). In the latter, 

functions of the features are inserted into the logit function3 additively, and the form of 

each function is left open and is estimated by the data. In our case, the logit would have 

been the log of the odds of being classified a likely defaulter. These two logistic 

procedures may be considered complementary. When the dependence of the logit on the 

collection of features is patently nonlinear, the additive logistic procedure is usually 

adopted. Another class of classifiers are the linear, quadratic, or nonparametric 

discriminant analyzers4 [see Hastie, Tibshirani, and Friedman (2001)]. The first two 

procedures divide the feature space into two complementary subspaces assuming 

normality of the features. This assumption is unlikely to hold in most cases, particularly 

when many of the features are ordinal or nominal categorical variables, as is common in 

business data. The nonparametric procedures include K-nearest neighbor rules,5 partial 

least squares classifiers, or neural networks. 

                                                 
3 The logit function is the log of odds function. Thus if the odds are n:k (p/1-p), the logit function is 
log(n/k) [log(p/(1-p))]. The logit function is also the inverse function of the logistic cumulative 

distribution function, ( ) 1

( ) 1
x

f x e
µ

σ
− −

−= + . 
4 Roughly speaking, linear, non-linear, and non-parametric analyzers divide the space of features, 
linearly, non-linearly, and by ordinal ranking, respectively.  
5 The K-nearest neighbor rule due to Fix and Hodges (1958) may be succinctly defined as follows: Let 
d(X,Y) be a distance function, say Euclidian distance, between two points, X,Y in the feature space. Fix 
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When we compare CART to traditional methods, we note that, as is the case of 

CART (see below), traditional methods do not truly search for an optimum model in an 

organized fashion. Consider logistic regression, or discriminant analysis (of any type). 

Given a group of features, these procedures will find the optimal coefficients for the 

linear or quadratic function that will split the feature space into subsets that are predicted 

to belong to different classes. But ‘optimality’ here is definitely model-dependent. Model 

parameters that are optimal under the assumption of a logistic model, are not, strictly 

speaking, optimal under a probit6 model. Thus optimality is contingent on the model 

assumed. In order to find the optimal model, logistic regression and discriminant 

analysis may, depending on the software used, search for the optimal subset of 

independent variables that minimizes the Akaike information criterion (AIC),7 or similar 

criteria, among all models built on the given features. In the case of logistic regression 

for example, that choice, optimal for estimating the probability of belonging to a given 

class (e.g., being a potential defaulter in our example) provided the logistic model is 

correct, may not be optimal for predicting class identity (e.g., potential defaulter). As is 

well known, the use of logistic regression for classification usually involves the 

application of ROCs (Receiver Operating Curves),8 and the use of the latter is not fully 

understood in terms of optimal classification. The curve helps determine the cutoff 

probability p* that separates class predictions (in the binary classification case). If the 

estimated conditional probability of being a ‘case’ exceeds p*, the individual is classified 

as a ‘case’, and a ‘non-case’ otherwise. However, the rules governing the choice of p* 

are not clearly associated with any single optimality criterion. It is also unclear that the 

                                                                                                                                            
an integer K>0. Classify a new point X into class j if the largest number of points among the K points 
nearest to X that belong to one class, belong to class j. 
6 The probit function is the inverse normal cumulative distribution function. 
7 AIC is a likelihood related criterion used to compare parametric statistical models (particularly non 
nested ones). 
8 A ROC curve is a plot of the sensitivity versus one minus the specificity as a function of the splitting 
value, for a binary classifier. See next paragraph for the definitions of sensitivity and specificity. 
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optimal estimated logits, and the subset of features selected, lead directly to ‘optimal’ 

classification.  

The various discriminant procedures lead directly to classification, without the 

estimation procedure required by logistic regression. Nonetheless, the latter is usually 

found to be more efficient when the specificity (the probability of classifying non-cases 

as such) and sensitivity (the probability of classifying cases as such) achieved by the 

two procedures are considered. The fact that linear and quadratic discriminant analysis 

are based on the assumption of normal data may explain their lack of efficiency in real 

data. 

Several authors have addressed the question of the relative efficiency of tree-

based methods such as CART, neural networks classifiers, and logistic regression, 

including spline-based logistic regression.9 For comparative studies of the various 

methods, see for example Rousu, Flander, Suutarinen, Autio, Kontkanen, and Rantanen 

(2003), and Moisen and Frescino (2002). Of the many remaining traditional 

classification methods, we mention in particular those that are reported in the literature 

as being particularly effective (See Breault, Goodall, and Fos (2002) for a study that 

considers probably most methods of classification in use, but uses a questionable 

method of comparison on real data). Two that we find particularly interesting are the 

Partial Least Squares (PLS) discrimination procedure, and neural networks for 

Discrimination. Both methods start out with the complete set of features to predict a 

response variable with a finite number of classes, but create a smaller set of “factors” on 

which they define a classification rule. PLS sequentially selects “factors” that maximize 

the correlation between the response (corrected for previously extracted factors) 
                                                 
9 In the spline based logistic regression, spline functions (piecewise polynomial functions) are fitted to 
each independent variable before it is entered into the linear form in the logit function. This may 
increase the efficiency of the method as a classifier, although this has not been definitely shown, but it 
certainly renders the method even more remote from practical experience, and renders interpretation far 
harder than traditional linear logistic regression. 
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variable and the features (also corrected for previously extracted factors). The number 

of factors thus defined is usually left to the user. Neural networks algorithms for 

discriminations usually build a simple feed-forward network, in which variables are 

divided into layers. The input layer contains all the features, or independent variables. 

The output layer contains all the response variables, and the sandwitched layer contains 

the unobservable, or latent, variable layer. Arcs connecting variables in different layers 

describe the general functional structure of the neural networks that optimizes the 

prediction of the output layer from the input layer by a nonlinear function of weighted 

linear combinations of input variables. The structure is reminiscent of factor analysis, 

with the important difference that the latter does not allow non-linear functions. See 

Goel, Prasher, Patel, Landry, Bonnell and Viau (2003) for a detailed comparison of 

CART with neural networks in the field of agricultural economics. Markham, Mathieu, 

and Wray (2000), analyzed a just-in-time kanban production system using CART and 

neural networks. They found the two methods “comparable in terms of accuracy and 

response speed, but that CARTs have advantages in terms of explainability and 

development speed.” (There, abstract.) 

De'ath and Fabricius (2000) analyzed ecological data of soft coral taxa from 

the Australian central Great Barrier Reef. They found that for their data, CART 

dominated its competitors, primarily linear models in their case, because (see, there, 

page 3178), 

“1) the flexibility to handle a broad range of response type, including 
numeric, categorical, ratings, and survival data; invariance to monotonic 
transformations of the explanatory variables; 2) ease and robustness of 
construction; and 5) ability to handle missing values in both response 
and explanatory variables. Thus trees complement or represent an 
alternative to many traditional statistical techniques, including multiple 
regression, analysis of variance, logistic regression, log-linear models, 
linear discriminant analysis and survival models.” 
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The circumstances under which CART is particularly recommended are 

precisely the circumstances that stomp CART’s major traditional competitor, logistic 

regression. The traditional competitors to CART do not in general handle well data 

sets that include a large number of explanatory variables relative to the number of 

cases; they also require data homogeneity, i.e., the same relations among the features 

all over the measurement space. Another compelling reason for adopting CART over 

traditional model-based classifiers is its intuitive appeal. Most statistics consumers 

would find nonlinear, generalized regression, such as logistic regression, far less 

intuitive, and far more indirectly related to their application than CART’s 

classification tree. The latter represents in a simple and accessible tree structure the 

decision process associated with the classification. Generally the tree involves only a 

small fraction of the features available in the data, and gives a clear indication of the 

importance of the various features in predicting the outcome. CART requires no 

intensive interpretation for understanding the output, as is the case, for example, in 

logistic regression. 

We do not argue, however, that under any circumstances, using CART 

dominates using one of CART competitors, or a combination of CART and alternative 

methods. For many data sets CART produces trees that are not stable. A slight change 

in the learning sample data may alter the structure of the tree substantially, although it 

will not alter its discrimination ability very much. This property exists in data sets with 

markedly correlated features. This property is of course shared by other methods, and is 

well recognized by users of linear or logistic regression. In CART, the problem 

translates into the existence of several splits at a single node that are almost equivalent 

in reducing the total diversity of the daughter nodes. The selection of a particular split is 

then rather arbitrary, but may lead to widely different trees. This instability implies that 
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users must beware of over-interpreting the location of certain features in the tree 

produced by CART, despite the temptation to do so (see BFOS). On the other hand, this 

property implies the availability of different trees of similar discrimination capacity 

which allows flexibility in the choice of the features used by the tree, an advantage 

under many circumstances. 

CART is not a fully efficient (in the statistical decision sense) alternative to 

traditional classification methods. CART’s occasional reduced relative efficiency stems 

primarily from its recursive nature, which is also the secret to its transparency and 

simplicity, and the fact that it does local optimization on single variables at a time. At 

each node, CART considers all available features, and all possible splits on those 

features, to choose the best feature and the best split that will create the least internally 

diverse pair of daughter nodes.10 This is done with complete disregard for the history of 

splits carried out in previous tree nodes, leading to the present node. The recursive 

nature of the CART algorithm then, and its consideration of one feature at a time, 

instead of working on multiple features at a time, as most other parametric and 

nonparametric methods do, suggests that CART cannot be as efficient in predicting 

class affiliation as truly multivariate methods. However, the truly multivariate methods 

will also tend to be more opaque than the recursive, single-variable at a time CART. It 

is important to note here, however, that CART does allow the user to select linear 

combinations of features, precisely to overcome the locally single-variable feature of 

the method. 

When should CART be preferred to traditional methods then? For small data 

sets CART tends to provide somewhat less accurate classifications, when compared to 

logistic regression for instance. For most users, however, and certainly in applications 

                                                 
10 See Section 2, first paragraph. 
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such as default risk classification, where transparency and ease of use are of paramount 

importance, a small loss in accuracy is not decisive. In simulation experiments carried 

out by BFOS, it was shown that in most simulated learning samples CART performed 

(in terms of true misclassification rate) as well or better that the K-nearest neighbor 

rule, except for one data set. They also compared CART to a stepwise (in deciding 

which features to retain in the discriminant function) linear discriminant rule. The latter 

was found slightly more accurate than CART, but of course its form is less appealing 

than CART’s decision tree rule. 

1.3 CART and Traditional Classification Methods in Management 
Applications 

Classification has found various applications in business areas both as a sole 

tool of analysis and in combination with other analysis tools. Frydman, Altman, and 

Kao (1985) report on the use of decision trees for financial analysis of firms in 

distress, and compare it to discriminant analysis. Trostad and Gum (1994) describe 

the use of CART following a dynamic programming solution to a range cows culling 

decisions. Finally, CART is used as a data pre-processor, before the data is submitted 

to systems such as neural networks. Kennedy (1992) discusses the importance of 

classification in accounting, and examines the performance of seven methods of 

multiple classification, including classification trees. He stresses that the comparison 

of classification trees with logistic regression have yielded mixed results. That 

situation remains true to this day. Simulation results seem to prefer logistic regression, 

but in real data the differences are minimal, and not all research appears to use robust 

methods, such as cross validation, to carry the comparisons in real data. In the field of 

Health Care management, Fu (2003) reports on combining CART with log-linear 

analysis of birth data, where CART was used to select variables to do the log-linear 

analysis on. Abu-Hanna and de Keizer (2003) have used CART and compared it to 
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logistic regression classification in evaluating the efficacy of intensive care models 

for predicting patients’ survival from important indicators assessed at admission to the 

intensive care unit. Here the authors suggest using CART to split the patient 

population into subpopulations where a local logistic regression may be used to do 

better prediction. Faraggi, LeBlanc, and Crowley (2001) report on an interesting use 

of CART following a neural networks analysis of censored regression data. The 

output (predictions) from the neural networks was fed into CART, and a classification 

procedure resulted, despite the incompleteness of the data. For more on the topic of 

hybrid methods, see Michie, Spiegelhater and Taylor (1994), Kuhnert, Do, and 

McClure (2000), and Averbook, Fu, Rao, and Mansour (2002). 

In Marketing, CART could be useful in analyzing data consisting of price, 

product information, and consumer information together with brand choice. O’Brien 

and Durfee (1994) use and compare classification tree software for market 

segmentation. Haughton and Oulabi (1997), compare CART and CHAID (Chi-Square 

Automatic Interaction Detector) in analyzing direct marketing data and find them 

comparable. CART has been extensively used in the fast developing field of Data 

Mining, and the field of Medical diagnosis. Pomykalski, Truszkowski, and Brown 

(1999), suggest an approach to developing an expert classification system. 

In the finance literature, Hoffman (1990) reports (in German) on the use of 

tree methodology for credit scoring. Chandy and Duett (1990) use CART, multiple 

discriminant analysis, and logistic regression to rate commercial paper and report 85% 

success. Mezrich (1994) uses CART to develop a decision rules for the attractiveness 

of buy-writes.11 DeVaney (1994) used CART and logistic regression to examine the 

usefulness of financial ratios as predictors of household insolvency and Sorensen, 

                                                 
11 The simultaneous writing of a stock call option and purchase of the underlying stock. 
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Miller, and Ooi (2000) use CART to select outperforming stocks. In addition, The 

Salford Systems web site reports on the use of CART software in the financial 

services industry to retain customers by making preemptive offers to mortgage 

holders identified as most likely to refinance their homes. Additional practitioners 

applications are in Gerritsen (1999) and Thearling (2002), and additional references in 

Komorad (2002).  

Kolyshkina and Brookes (2002), use CART to evaluate insurance risks in 

workers compensation and hospital costs. In the first case they find that CART 

performs better than Logistic regression and in the second case they use MARS 

(Multivariate Adaptive Regression Splines) a modification of the CART methodology 

designed to improve performance where the response is continuous rather than binary 

or categorical. For more information on MARS, see Friedman (1991). 

1.4 Our Application: Mortgage Default in Israel 

Our analysis of the mortgage data is of some interest in its own right. 

Mortgage financing is an essential decision for both borrowers and lenders. Not only is 

this decision qualitatively important, it is quantitatively significant: aggregate 

outstanding mortgage balances, and thus the capitalization of various mortgage related 

securities, is in the trillions.12 No wonder that the various aspects of mortgage 

contracting have been one of the most extensively researched topics in real estate 

finance and economics, both theoretically and empirically. Amongst these aspects, 

mortgage default has been one of the leading topics. Understanding mortgage default is 

necessary for appropriately valuing mortgages and for borrowers’ and lenders’ 

optimization. Indeed, there is a steady flow of theoretical and empirical studies 

including new approaches, methodologies, and perspectives in mortgage default 

                                                 
12 Rough extrapolation of Miles’s (1990) several estimates of U.S. real estate value puts today’s value 
at the order of magnitude of 7 trillion dollars. 
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research and there seems to be a general consensus that more research is needed beyond 

accounting for the dynamic changes in markets. In this paper, we attempt to contribute 

to this effort by suggesting a new approach: the use of the CART methodology in 

analyzing mortgage default. 

For related results and references, please see the following very partial sample 

of recent related works: Foster and Van Order (1984), Clauretie (1990), Kau, Keenan, 

Muller, and Epperson (1992), Kau and Keenan (1993), Lekkas, Quigley, and Van 

Order (1993), Vandell (1993), Kau, Keenan, and Kim (1994), Quigley and Van Order 

(1995), Vandell (1995), Ambrose, Buttimer, and Capone (1997), Deng (1997), 

Capozza, Kazarian, and Thomson (1997), Capozza, Kazarian, and Thomson (1998), 

Karolyi and Sanders (1998), Stanton and Wallace (1998), Ambrose and Buttimer 

(2000), Deng, Quigley, and Van-Order (2000), Ambrose, Capone, and Deng (2001), 

Sanders (2002), and Ambrose and Sanders (2003). 

For reasons that we discuss below, there does not seem to be a previous 

academic mortgage default study that uses Israeli data. As we also discuss below the 

data that we received is comprehensive on one hand but suffers from some limitations 

on the other, and the Israeli market has particular characteristics and nuances. Our 

choice of CART, by and large, neutralizes the limitations of the data and fits some of 

the particular characteristics of the Israeli market, see Section 3. 

The rest of the paper is organized as follows. In Sections 2 we elaborate on 

CART structure and methodology. In Section 3 we describe and analyze the Israeli 

mortgage data as an illustration of the use of CART in a real estate setting, report the 

results and discuss its conclusions. In Section 4 we present some general discussion and 

conclusions. 
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2. Classification Trees: Structure and Method 

The CART binary tree consists of a root node, internal nodes and leaf (terminal) 

nodes. Each root and internal node is a parent node with two daughter nodes. Each 

node, say t, is described by the subset of the original learning sample that it contains. 

For all but the leaf nodes, this subset is divided into two groups, going to daughter 

nodes tl and tr. The split at each node is described by a rule that depends on one selected 

feature. Let this feature be X, and assume, first, that the X is continuous. Then, the split 

is of the form X≤s or X>s, for some constant s. If X is categorical, then the split is of the 

form X∈S or X∉S, where S is some nonempty subset of X’s possible categories. The 

feature X is selected among all possible ones, and s (or S) is selected among all possible 

splits, with a view towards minimizing the diversity of the resulting subsamples 

forwarded to the two daughter nodes. Diversity of a subsample, roughly speaking, is a 

measure of its heterogeneity. We define specific measures of diversity below. As we 

will see Section 3.1 below, CART offers several splitting methods. We point out at the 

outset that none of these splitting methods corresponds to an optimal test that 

controls/optimizes error probabilities in any known way. 

Initially, CART produces a large maximal tree and then prunes it into a simpler 

final tree. Although node splits are selected by maximizing the local reduction in 

diversity, this procedure also minimizes the overall tree diversity, please see Section 

3.2. It does not necessarily, however, minimize the risk or cost of misclassification. 

CART offers several pruning procedures that we will discuss in Section 4. The choice 

of a splitting rule and the choice of a pruning procedure are both important for 

achieving a stable tree yielding as small a risk/cost of misclassification, as is possible 

for a given data. It turns out that the class assignment problem is relatively simple. The 

critical choices are those of selecting splits and in determining when to stop splitting. 
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We now provide a more detailed description of the classifier CART that we use 

on our mortgage data. We use general terms, and refer the reader to BFOS for more 

technical details. Our description aims to provide the reader with sufficient 

understanding of the method to make educated decisions in selecting the CART options 

that are appropriate for a certain data set. We will then specify the particular options in 

CART that we applied to our data. In the following section we describe the data and the 

results. 

As we explained in the introduction, the CART algorithm is a recursive 

procedure; starting at the root node, and then at every internal node, it selects a single 

feature, and a threshold value s to split the group of individuals at the node into two 

groups to be placed at two new daughter nodes. CART grows the largest tree possible, 

called a maximal tree, that is the tree whose leaves (terminal nodes) cannot be split any 

further. A node may not be split any further either because it contains only cases that 

belong to a single class, or because no reduction in total diversity can be obtained by 

further splitting. 

CART provides three possible splitting methods: Entropy, Gini, and Twoing. 

Each of these choices may be adopted along with a structure of classification error 

costs, ( | )C i j , the cost of classifying a case into class i, when in fact it belongs to class 

j. CART’s user chooses levels of misclassification costs, ( | )C i j , with great flexibility 

to fit the particular application. Once the tree is complete, CART offers various options 

for pruning the large tree and reducing it to a tree with far fewer nodes but with a 

similar discrimination ability. 
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2.1 Splitting Rules 

We first assign a prior probability, , 0 1,j jp p≤ ≤  to every class j into which 

cases are classified, 1,..., ,j J= , with 
1

1.
J

j
j

p
=

=∑  In case the user does not provide prior 

probabilities, the relative frequencies of the classes in the learning sample are used as 

prior probabilities. In order to create a tree one needs to specify: 

1. A criterion of diversity. 

2. A goodness of split criterion function at node t, for feature X, and threshold 

split value s, ( , )d s t∆ , that determines how good the split is in reducing 

diversity of the two daughter nodes for feature X. 

3. A splitting rule. 

4. A “stop splitting” rule. 

5. A rule for assigning a terminal node (a leaf) into one of the J classes. 

6. A misclassification cost structure for evaluating the resulting tree 

performance. 

The splitting rules are of the form X≤s or X>s, for some constant s when the 

feature X is quantitative or at least ordinal. When X is qualitative with L categories, 

CART tries all possible distinct binary splits, 12 1L− −  in number13. At each node of the 

tree the program searches through the features one by one, determines the best split for 

each X, and then the best X to split on at that node. Each split causes the resulting 

groups into which the data is split to be more homogeneous (less diverse) than the 

parent group. 

A splitting rule is derived from a diversity function (called impurity function by 

BFOS). Let the cost, ( | )C i j , of misclassifying a case that belongs to class j into class i, 

                                                 
13 There are 2L  total combinations, when order does not matter and excluding the “all-nothing” split 
we have 12 1L− − . 
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obey ( | ) 0C i j ≥  and ( | ) 0C i i = , and let ( | ), 0 ( | ) 1p j t p j t≤ ≤ , 1,...,j J= , be the 

proportion of class j cases present at node t of the tree. J denotes the number of classes. 

Thus, for each node t, 
1

( | ) 1
J

j

p j t
=

=∑ . 

We shall now present the three major diversity functions that CART uses at 

some node t. We shall distinguish between two different cases. In the first case, the cost 

of misclassification of any item, regardless of its actual class, and regardless into which 

class it was misclassified, is uniform. In the second case, the cost of misclassifying a 

case belonging to class j into class i, denoted by ( )C i j , may depend both on i and on j. 

1. The Entropy function under uniform costs is 

 
1

( ) ( ) log[ ( )]
J

E
j

d t p j t p j t
=

= −∑ , (1) 

 and is, under non-uniform costs 

 
1 1,

( ) ( ) ( ) log[ ( )]
J J

E
j i i j

d t C i j p j t p j t
= = ≠

= −∑ ∑ , (2) 

 where i stands for the class into which the case is classified and j stands for its 
true class. 

 
2. The Gini index of diversity under uniform costs is 

 
1

2

1 1 1

1( ) ( | ) ( | ) 1 ( | )
2

J J J

G
j i j

d t p i t p j t p i t
−

= = =

 
= = − 

 
∑∑ ∑ , (3) 

 which, in the binary case, simplifies to 

 ( ) (1| ) (2 | )Gd t p t p t= , (4) 

 and is, under non-uniform costs 

 
1

1 1

( ) ( ) ( )[ ( ) ( )]
J J

G
j i

d t p j t p i t C i j C j i
−

= =

= +∑∑ . (5) 
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3. The twoing function, with daughter nodes tL and tR, and where the 

probabilities Lp  and Rp  are the proportions of cases going to nodes tL and tR 

respectively, is 

 1

( ) ( ) ( )
4

J
L R

T L R
j

p pd t p j t p j t
=

= −∑ . (6) 

We remark that the Entropy and the Gini index diversity functions refer to the 

diversity of cases at a given node. Therefore as a tool for splitting cases at a node, a 

change in diversity from that of the parent node, to the sum of diversity at the daughter 

nodes is required. The twoing function, on the other hand, measures a class-prevalence 

distance between the daughter nodes, anticipating that the diversity within the daughter 

nodes will decline when the split achieves a higher degree of difference in the 

prevalence of the different classes in the two daughter nodes. Thus, to achieve the 

highest reduction in diversity, one chooses the split s that maximizes the towing 

function. 

 Note that both the Entropy function and the Gini index achieve their maximum 

value at node t when the distribution of cases to classes is uniform. Both achieve their 

minimum, zero, when all cases at the node fall into a single class. In contrast, the 

twoing function which measures the heterogeneity between the daughter nodes, 

achieves its minimum when the daughter nodes contain exactly the same distribution of 

classes, and its maximum when all cases belonging to a given class are found in one 

node. Thus if there are two nodes, all cases of class 1 belong to one node, and of class 2, 

to the other node. 

Once the Gini or Entropy diversity functions is chosen, a splitting rule, that is a 

splitting value s* is adopted at node t that maximizes the reduction in diversity obtained 

by the split. Using the notation just developed, we define the gain in (reducing) 
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diversity reduction obtained by splitting node t into two nodes, L and R using the 

threshold s, for some feature, as 

 ( , ) ( ) ( ) ( )L L R Rd s t d t p d t p d t∆ = − − , (7) 

where Lp  and Rp  are the proportions of cases going to nodes tL and tR respectively. 

This gain in diversity reduction is also referred to as the goodness of the split s for node 

t. Splitting is continued as long as the goodness of the best split at t is positive. We 

reemphasize that this procedure applies to the Gini index and Entropy functions only. 

2.2 Selecting and Pruning a Tree 

Suppose that a tree T has been generated with terminal nodes Tt, we then define 

the tree diversity as 

 ( ) ( , )
tt

D T d s t
∈Τ

= ∑ . (8) 

As was pointed out by BFOS, although we select a tree by choosing the best 

splitting feature, and the best split for that feature at each node, the resulting tree is also 

the tree that minimizes the diversity D(T). It is not necessarily the best tree from the 

point of view of misclassification. 

The goodness of the tree as a classification instrument may be characterized in 

terms of its estimated misclassification rate. When misclassification costs are not 

uniform, a reasonable definition of the (generalized) expected misclassification cost is 

 
1 1,

( ) ( ) ( ) ( )
J J

j i i j
R T C i j Q i j jπ

= = ≠

= ∑ ∑ , (9) 

where Q(i|j) denotes the proportion of class j cases misclassified into class i, and π(j) is 

the prior probability of a case being in class j. 

 Of course these estimated misclassification rates are highly underestimated, 

because they depend on the data that produced the classification rules to begin with. 
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Two better methods of estimating misclassification costs are available in CART: The 

Cross-Validation method, and the Test-Sample method. In the former, the learning 

sample is randomly split into K equal size subsamples. K is usually set to be ten, but 

may be changed for very small or very large data sets. A CART tree is produced K 

times, each time from a different group of K-1 (usually 9) subsamples. The rule is used 

to classify the cases in the tenth subsample left out in the tree construction, and the 

resulting misclassification rates are noted. The K (usually 10) misclassification rates 

thus obtained are then averaged to obtain the Cross-Validation misclassification rates 

QCV(i|j). These are then plugged into the R(T) formula above to obtain the overall Cross-

Validation misclassification rate RCV(T) that takes into account prior probabilities and 

non-uniform misclassification costs. 

 When the data set is sufficiently large we do not have to resort to Cross-

Validation to produce a misclassification rate estimate that is not severely downward 

biased. In that case we simply take a single random test subsample from the learning 

sample and take the misclassification rates of the cases not included in the Test-Sample 

as our estimates of Q(i|j). The resulting overall misclassification rate estimate is denoted 

by RTS(T). 

 BFOS proceed to estimate the standard errors (SE) of RCV(T) and of RTS(T). 

Here standard errors refer to the distribution of RCV(T) and of RTS(T) produced by the 

random selection of subsamples in both the Test-Sample case and in Cross-Validation. 

The purpose of these SE estimates is to be used in pruning the maximal trees. A 

maximal tree is initially produced by splitting nodes until they are pure in the sense that 

each terminal node contains only cases that belong to a single class, or nodes whose 

diversity cannot be reduced by further splitting.  
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It turns out that in trying to select a subtree of the maximal tree that minimizes 

the estimated misclassification cost, a large number of subtrees will yield approximately 

the same estimated misclassification cost. It is then reasonable to stop the search for the 

best pruned tree once a subtree is found that is within one SE of the minimum estimated 

misclassification cost subtree. This is called in CART the 1 SERULE. Once the subtree 

is selected, that is pruning is completed, CART uses another Cross-Validation to 

estimate the expected misclassification error of the pruned tree. In simulation 

experiments carried out by BFOS the final RTS came within one SE of RCV. 

It is evident that using different diversity measures, different misclassification 

cost structures, Cross-Validation versus Test-Sample, and various levels for SERULE 

(0 or 1), generally, various classification trees are obtained. Criteria for selecting the 

‘best’ tree are then required. One criterion is the cost-complexity of a tree. 

The cost-complexity of a tree is defined by 

 t(T) (T) TR Rα α= + , (10) 

where α  is a complexity coefficient, 0< α , and tT  is the number of terminal nodes of 

the tree. Because the estimated misclassification rate tends to decrease as the number of 

terminal nodes of a tree increases, the proposed cost-complexity measure penalizes a 

tree for the proliferation of its terminal nodes; the complexity parameter α  may be 

thought of as complexity per node. This cost-complexity may then be used to compare 

the small number of trees obtained via the carefully selected methods described above. 

Another useful comparison of classification trees in the binary case uses the 

concepts of sensitivity and specificity, commonly used in statistical test evaluation. In 

binary classification, we identify as “bad” the category that we most want to identify. In 

our example, that category would be the more likely-to-default category. The other 

category will be referred to as “good.” Sensitivity and specificity now split the overall 
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correct classification rate into its essential components. Sensitivity of the tree is the 

(estimated) probability that a new “bad” case will be classified as “bad” when processed 

by the tree. Specificity (of the tree) is the (estimated) probability that a new “good” case 

will be identified as “good” by the tree. 

 This completes our concise description of the main components of CART. For a 

more accurate and detailed description of the method please see BFOS or Hastie, 

Tibshirani, and Friedman (2001). See also Bloch, Olshen, and Walker (2002) work on 

misclassification estimation, which contains some illuminating general comments on 

CART. We also recommend the latter for further references. 

 
3 Data Analysis with CART 

Our data consists of end of the year 1998 information regarding fixed rate 

residential mortgage contracts that were issued during the years 1993 through 1997 by a 

major Israeli mortgage bank. The bank contracted the consulting firm GStat Ltd. to 

analyze these data, providing them with some electronic but mainly paper files of 

several dozens of thousands mortgage contracts. About 1500 of these contracts were 

delinquent during the period. Out of the of non-delinquent mortgages, GStat Ltd. chose 

about 1500 mortgage contracts at random. This defined a set of 3,035 mortgage 

contracts. GStat Ltd., keyed in a subset of mortgage and borrowers and features from 

the bank’s paper files, and merged it with electronic bank data and created the data 

base. Following a suggestion from the bank, GStat Ltd. gave us all these data records 

excluding in each record some identifying features such as names, addresses, etc. 

complying with banking privacy legal acts. 

Our study seems to be the first Israeli academic mortgage default study. The 

surprising absence of previous studies stems probably from lack of mortgage default 

data, which, in turn, is probably a consequence of the non-competitive nature of the 
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Israeli banking industry in general, and mortgage banking in particular. The two largest 

Israeli banks control about 80% of the Israeli banking retail market. The data that we 

received suffers however from some important limitations. For example, although a 

single mortgage contract could have several delinquencies (being late in paying for at 

least ninety days), no information on the time, size, and number of these contract 

delinquencies was available in our data. For that reason, delinquency became a binary 

attribute, with no time dimension. In addition, because of the monopolistic nature of the 

Israeli banking market no credit histories are available. In fact, the major banks opposed 

the establishment of a national credit history data base. 

There were no prepayments in our data. This is a consequence of the Bank of 

Israel regulation that allows the banks to charge borrowers a prepayment fee which is 

equal to the economic benefit of refinancing the unpaid principal under the prevailing 

rate of interest.14 This fee sets the value of prepayment and refinancing to zero. Adding 

to this fee stamp duty on the new loan which is about half a percent of the principal, and 

fixed bank fees for “opening a new loan file,” the value of prepayment and refinancing 

to the borrower becomes negative. Thus, in Israel, the option to prepay a fixed rate loan 

is usually worthless. The Bank of Israel regulation actually constitutes a ceiling on the 

fee but this ceiling is the realized market fee, reflecting, probably, the (low) level of 

competition. Unlike banks, insurance companies when engaged in mortgage loans are 

not bound by Bank of Israel regulations. In their case, however, these regulations would 

not have been binding. They many times offer loans with no prepayment fees 

whatsoever, but their market share is insignificant. 

There were no foreclosures in our data. This probably is a consequence of three 

factors. First, the relatively low LTV ratio of Israeli mortgage loans. Second, the fact 

                                                 
14 See the Appendix of the Bank of Israel Banks Supervisor Circular No. 1673-06-H pp. 87-92. 
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that borrowers are responsible for their loans, thus banks can enforce the use of 

borrowers’ non mortgaged property and various sources of income for paying the 

mortgage loan. Third, the common requirement, particularly for the higher LTV loans, 

that guarantors, in additional to the borrowers, sign the mortgage loan. 

Despite its limitations, the data provided a very good example of the use of the 

CART methodology, as well as a first, albeit limited, analysis of the Israeli mortgage 

market. We note that Israeli banks require mortgage borrowers to have property and life 

insurance to cover mortgage liability, and Israeli law now, calls a mortgage delinquent 

only if delinquency lasted at least ninety days. 

We first ran a descriptive analysis of the features: means, univariate analyses, 

and frequencies. Then, we checked correlations to assess the pair wise associations 

among the features. We also examined the relationships between the dependent variable 

and each of the independent variables using t-tests, or nonparametric tests. These did 

not raise any particular issue with any of the features. We then ran the CART analysis 

using the CART program that Salford Systems (www.Salford.com) distributes. 

The thirty three features were: 

Features related to the mortgage size and type 

CSUM –   mortgage total size 

CROOMS –   number of rooms in the property 

MONTHRET –  monthly payment 

GRANT_PR –  % of the property value given to borrower as a grant 

RETINC_P –   % of monthly payment from monthly income 

VALNECSN –  present value of property 

YTR_HA –   balance of the mortgage 

YTR_HA_O –  balance of the government supplementary mortgage 
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YIT_SILK –   balance of the mortgage including late fees and penalties 

VAL_NECS –  original value of the property 

SHETACH –   area of the property 

SIL_MUKD –   1 if mortgage prepaid, 0 otherwise 

NGUARANT –  number of guarantors 

PERIOD –   term to maturity of mortgage 

CDESIG –   designation of property 

 1 –   living quarters 

 2 –   apartment to rent 

 3 –   property for business use 

CTARGET1 –  purpose of mortgage 

1 –   buy an apartment 

2 –   buy an apartment second-hand 

3 –   build own apartment 

4 –   other real estate purpose 

5 –   renovation purpose 

6 –   refinancing mortgage 

7 –   not for living or remodeling 

8 –   other 

Features describing the borrower(s) 

CLOANERS –  number of borrowers on the mortgage 

FCHILD –   number of children of first borrower 

FINCOME –   monthly income of first borrower 

NETINCOM –  monthly net income 

AGE1 –   age of first borrower 
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CSPOUSE -  1 if first borrower is married, 0 otherwise 

EDUC1 –   education of first borrower 

 1 –   elementary 

 2 –   high school 

 3 –   some college 

 4 –   college degree 

 5 –   other 

FCODE2 –   first borrower's occupation 

 1 –   teacher 

 2 –   driver 

 3 –   engineer 

 4 –   academic: social sciences 

 5 -   practical engineer 

 6 –   professional (worker) laborer 

 7 –   unprofessional laborer 

 8 –   salesman 

 9 –   clerical worker 

 10 –   clerical/religious student 

 11 –   agricultural worker 

 12 –   pilot 

 13 –   medical doctor 

 14 –   paramedical worker 

 15 –   sales worker 

 16 –   policeman 

 17 –   army personnel 
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 18 –   care giver 

 19 –   businessman 

FEXP –   first borrower's work experience 

FDUTY –   first borrower job's managerial capacity 

 1 –   top manager 

 2 –   manager 

 3 –   not a manager 

FFAMCON –   first borrower’s marital status 

 1 –   married 

 2 –   divorced 

 3 –   widow/widower 

FSTABLE –   first borrower job permanence 

 1 –   permanent worker 

 2 –   not permanent 

 3 –   other 

FSTATUS –   first borrower job status 

 1 –   employee 

 2 –   self-employed 

 3 –   both 1 and 2 

 4 –   student 

 5 –   Yeshiva student 

 6 –   house-person (housewife) 

 7 –   retired 

 8 –   on (public assistance) some assistance 

 9 –   receives alimony 
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 10 –   unemployed 

 11 –   not working 

 12 –   other 

RUSSIA –   borrower from Russia? 

 1 –   yes 

 2 –   no 

ETHIOPIA –   borrower from Ethiopia? 

 1 –   yes 

 2 –   no 

FINC_CHI –   first borrower monthly income divided by number of children 

FSUM_CHI –   first borrower mortgage size divided by number of children 

The original data included variables associated with the second borrower. 

Because these contained much missing data and because we could not tell whether there 

was a second borrower in these cases, we decided to eliminate them from the analysis. 

We believe that this elimination has no systematic implications. Also, the last two 

variables were added on the suspicion that they may turn out to be more predictive of 

default than FINCOM and NETINCOM, respectively. Generally speaking, our data 

includes features related to property values, loan values, payments, income, and 

demographics that are commonly used in mortgage default studies. 

We ran CART on the n=3,035 borrowers data using different options for 

creating and pruning the final trees. Our aim was to classify these borrowers into good: 

non-defaulters, and bad: defaulting borrowers. 

We ran CART five times creating five trees, each under different option 

combinations, as follows. 

First option combination 
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Misclassification costs: uniform 

Splitting criterion: Gini index 

Misclassification estimation: Cross-Validation 

Pruning criterion: SERULE=0 (search for ‘best’ subtree with minimum 

estimated weighted misclassification rate) 

Second option combination 

All options remain as in 1, save for SERULE=1 (search for subtree that is 

within 1 SE of the ‘best’ subtree). This change was expected to lead to a tree 

that shares many of the qualities of the tree obtained under 1, but is less 

expensive to obtain and implement. 

Third option combination 

All options remain as in 1, except that the following non-uniform 

misclassification costs were used: 

C(classify as bad | borrower is good) = 1 

C(classify as good | borrower is bad) = 1.5 

Here the cost of misclassifying a bad borrower as a good risk is considered 1.5 

times more costly than the reverse. With this misclassification cost structure, 

the same tree was obtained with pruning using SERULE=1. 

Fourth option combination 

All options remain as in 1, save for Cross-Validation being replaced by Test-

Sample. With a large sample, such as we have, it was deemed possible to 

replace the more costly Cross-Validation misclassification estimation by the 

Test-Sample method. 

Fifth option combination 
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All options remain as in 4 (Test-Sample method), but with cost structure as in 3 

(non-uniform cost structure) and pruning using SERULE=1. The tree obtained 

using these specifications with SERULE=0 was too unwieldy (36 terminal 

nodes, or leaves) and was dropped. 

Several points are raised by the results displayed in Table 1. 

• Trees possessing high sensitivity relative to specificity are obtained when 

the misclassification cost of a ‘bad’ borrower into a ‘good’ one is taken to be 

higher than the reverse misclassification. Trees 3 and 5 display this 

characteristic. 

• The smallest tree, tree number 3, also possesses the smallest overall 

(penalized) cost complexity. It possesses remarkably high sensitivity, as 

measured by Cross-Validation, and relatively low specificity. In risk-control 

application, such as ours, this ratio of sensitivity to specificity may be 

desirable. 

• If a more balanced treatment of the two possible misclassification: ‘bad’ to 

‘good’ and ‘good’ to ‘bad’ is desired, then tree number 2, which has a 

slightly higher overall cost-complexity, may be the proper choice. 

• The estimated cost-complexity, sensitivity and specificity of the fourth tree 

were obtained via a random sample of borrowers, rather than by the more 

robust Cross-Validation method. Since it does not have any particular 

feature to recommend it over trees 3 and 2, we did not attempt to estimate its 

cost-complexity, sensitivity and specificity using Cross-Validation. 

• CART’s analysis is, of course, blind to political concerns. Classification 

Trees, thus, might be “politically incorrect,” and, therefore, hard to 
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implement. It is likely, however, that politically correct trees with similar 

properties exist. 

• Regarding features that have surfaced as predictive in many of the trees: 

1. Most of the primary features are associated with the borrower and not 

with mortgage attributes. 

2. EDUC1 (some college versus no college) appears as the first splitting 

variable in all five trees. 

3. If we select the most parsimonious tree 3, only borrower characteristics 

really matter, and the second feature is FDUTY (manager or top 

manager, versus non-manager). Surprisingly, managers (with some 

college education) are classified as bad risk, as are borrowers with no 

college education. FDUTY appears as a significant splitting variable in 

tree 1. In trees 2, 4, and 5 it appears to be replaced by other work 

features associated with it: FSTATUS, borrower job status, and 

FCODE2, borrower's occupation. 

4. The period of the mortgage appears as the second splitting feature in all 

trees that use uniform costs. It seems that non-uniform costs, such as 

those used for trees 3 force borrower features in, and mortgage features 

out. Re: trees 1 and 2. In this risk identification application, this may be 

very desirable. This is not quite the case with tree 5, but the use of Test-

Sample there, makes all cost evaluations and variable choices somewhat 

suspect. 

5. Important borrower features appear to be: education, status at work: 

FSTATUS, FCODE2 or FDUTY, # of children (FCHILD) or income 

per child: FINC_CHI. Finally, AGE1 appears in trees 1 and 2. 
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6. One has to be careful in interpreting our results because our paper does 

not allow for a changing environment. If the real-world equilibrium is 

dynamic, the sample will capture dynamic effects as well as endemic 

cross-sectional attributes during the sample period. Examining the 

sample period, we could not think of events that could be considered 

"regime switching" during the sample period. Neither could we think of 

events that would have changed the nature of the Israeli real estate 

market. In addition, the atemporal nature of the data makes it less than 

ideal to evaluate conditional dependency of default. However, judging our 

conclusions ex post, none of our findings seem especially sensitive to 

dynamic effects. 

7. Our data looks at the status and history of many contracts at a certain 

date. Thus, one has to be concerned with truncation consequences. If the 

probability distributions are iid or even if the population is in steady 

state with respect to the measured attributes, then we should not have a 

truncation bias problem. Moreover, although a measure of contract age 

might have helped reduce (not eliminate) a possible truncation bias, this 

is not a relevant issue here because of special characteristics of the 

Israeli real estate market and of our data set. Israeli lenders tend to avoid 

foreclosures at all costs. Thus, guarantors are co-signed on the each 

mortgage contract. In case of delinquency, the bank captures the owed 

value from the guarantors. Consequently, none of the roughly 1500 

delinquent properties in our sample were repossessed, and delinquency 

is therefore an ageless, binary attribute in our data. 
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8. Based on this study, we would recommend tree 2 or 3 for classification 

of future borrower into ‘good’ or ‘bad’ risks. Tree 3 is more 

conservative, but seems so parsimonious that its intended users of the 

procedure may shy away from it. 

9. It is interesting to study the two candidate classification trees 2 and 3. 

Briefly, classification via tree 2 prescribes the following rule sequence:  

i. If applicant has at least some college education, stop and rate him a 

good risk. 

ii. Otherwise, if the period of the mortgage is over 27.5 years, stop and 

declare the applicant a bad risk. 

iii. If the applicant has at most high school education (or other for 

EDUC1), and the mortgage period is under 27.5 years, then if the 

applicant is either a student, or a housewife, or self employed (or 

other for variable FSTATUS) then stop and declare the applicant a 

bad risk. 

iv. Otherwise (to  i iii) check applicant’s job classification FCODE2. If 

applicant is employed by the army, Yeshiva student, care taker, or a 

para-medical worker, then stop and declare the applicant a good risk. 

v. Otherwise (to  iv), if he has three or more children (FCHILD), stop 

and declare him a bad risk. 

vi. If he has 2 or fewer children, and is under 32.6 years of age (AGE1), 

then stop and declare him a bad risk. If he is over 32.6 years of age 

with 2 or fewer children, declare him a good risk. 

For tree 3 the decision process proceeds as follows: 
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i. If the applicant has at most a high school education, (or is other for 

EDUC1), stop and rate him a bad risk. 

ii. Otherwise, check his employment type FDUTY. If he is a manager 

or a senior manager, stop and declare him a bad risk. Otherwise stop 

and rate him a good risk. 

10. Tree 3 described above is rather surprising: a manager or senior manager 

with at least some academic education is considered a bad risk, but a 

non-manager with the same educational level is considered a good risk. 

However, as might be expected, an applicant with at most a high school 

education is considered a bad risk. An explanation of the classification 

of senior and regular managers as bad risks and of non-managers as 

good ones is consistent with higher rate of ruthless default of the former. 

This, in turn, is consistent with lower reputation default costs of the 

managers vis-à-vis non-managers. Non-managers might find ruthless 

default too costly in the long run. 

11. Tree 2 seems to conform to expectations, except possibly for some 

results such as: A business person, a policeman, or a professional 

electrician, without college education, with a mortgage for under 27.5 

years, and at least 3 children is considered a bad risk, but an academic 

with any number of children, and any length mortgage is considered a 

good risk. 

12. The decision processes described in points 9 and 10 are clearly attractive 

for direct application in a bank or lending institution setting. It is also 

clear that decision tree 3, because of its limited use of both mortgage and 

applicant characteristics, may not find many takers. Tree 2 on the other 
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hand contains fewer surprising choices, and is far more likely to be 

chosen. 

We remark that the CART analysis we have performed directly on the data 

without any pre-analysis that might narrow down the field of potential predictors of 

good risk customers, may now itself be used as input to other classifiers. For example, 

logistic regression that would be stomped by the number of features in the data, by the 

huge number of categories in some of the nominal categorical predictors, and by the 

large number of missing values, can now be attempted using predictors that have been 

identified as useful by CART. This post-processing by another classifier could 

potentially improve somewhat the accuracy of the CART classifier. Here we mention 

also the post-processing proposed by Freund and Schapire (1997) called boosting, and 

bagging proposed by Breiman (1996); both procedures enhance the accuracy of the 

CART classifier. 

Finally, we would like to comment about prepayment in relation to default. As 

we explained above, absent idiosyncratic reasons, the option to prepay in our sample is 

worthless. Thus, we can safely say that in our data prepayment is not a substitute for 

default. We cannot say the opposite, however. Actually, the higher rate of default of 

managers versus non-managers of the same education level suggests that default may 

sometime substitute prepayment. 

 
4 Conclusion 

We have provided a concise introduction of CART, its main features, and 

guidelines for its implementation as a classification tool. We have also applied the 

method to mortgage default data from a major Israeli bank. Our data had special 

features, most of which are intimately connected to the nature of the rules governing 

the Israeli mortgage market. Valuable information was gleaned from the data using 
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CART with various option choices. We emphasized the process of selecting a final 

classification tree, which depends both on the CART method, and the particular 

subject matter at hand. We consider this work preliminary, and hope to receive more 

complete data in the future that will enable us to refine our findings and perform a 

comparative analysis of parametric and nonparametric methods. 

If the cost of accepting bad risks exceeds that of rejecting good ones CART 

uses borrowers’ features only. If the cost of accepting bad risks equals that of 

rejecting good ones, CART uses mortgage features such as term and property value as 

well. The higher (lower) the ratio of misclassification costs of bad risks versus good 

ones, the lower (higher) are the resulting misclassification rates of bad risks and the 

higher (lower) are the misclassification rates of good ones. This is consistent with real 

world stylized facts of rejection of good risks in attempt to avoid bad ones. 

The classification process allows the examination of hypotheses. For example, 

Tree 3 is consistent with higher rate of ruthless default by senior and regular managers 

vis-à-vis non-managers. This is consistent, for example, with lower reputation 

penalties of default for managers. Moreover, as we elaborated earlier, CART 

generates many trees that are of similar quality, on the one hand, but that use different 

features and splits on the other. Thus, one could examine those trees and determine 

whether they negate various insights/hypotheses or are consistent with them. 
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Table 1 
Summary of the main characteristics of the five trees we selected for consideration 

 

TREE SPECIFICATIONS # Internal Nodes: 
# Terminal Nodes 

α=0.004, Cost 
Complexity 

ˆ (0 | 0)p , “0”=“bad” 
Sensitivity 

ˆ (1|1)p , “1”=“good” 
Specificity 

Splits on Variables 

1 
C(1|0)=C(0|1)=1 

GINI, CV, 
SERULE=0 

12 : 13 .4475 .587 .662 

EDUCI, PEIROD, FSTATUS, 
FCODE2, FCHILD, AGE1, 
VAL_NECS, FINC_CHI, 

YIT-SILK, FDUTY, ECODE2 

2 
C(1|0)=C(0|1)=1 

GINI,CV, 
SERULE=1 

6 : 7 .4300 .619 .577 EDUC1, PEIROD, FSTATUS, 
FCODE2, FCHILD, AGE1 

3 

C(1|0)=1.5 
C(0|1)=1 

GINI, CV, 
SERULE=0 or 1 

2 : 3 .4250 .840 .334 EDUC1, FDUTY 

4 

C(1|0)=C(0|1)=1 
GINI, TEST-

SAMPLE, 
SERULE=0 

4 : 5 .4385 .446 .717 EDUC1, PERIOD, FSTATUS, 
VALNECSN 

5 

C(1|0)=1.5, 
C(0|1)=1 

GINI, TEST-
SAMPLE, 

SERULE=1 

5 : 6 .4620 .890 .234 
EDUC1, RETINC_P, 
FINC_CHI, FCODE2, 

FSTATUS 
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Tree #2 

Node 1 ≜ Root Node 
N = 3,035 

Split by: EDUC1 ≜ Education 
At least some college → 

← Elementary, High School, Other 
Node 2 

N = 2,040 
Split by: PERIOD 

< 27.941 → 
← ≥ 27.941 

TERMINAL NODE 7 
N = 995 

Classification: GOOD Node 3 
N = 1,756 

Split by: FSTATUS 
All other categories → 

← Self Employed, Student, Housewife

TERMINAL NODE 6 
N = 284 

Classification: BAD 

TERMINAL NODE 1 
N = 312 

Classification: BAD 

Node 4 
N = 1,444 

Split by: FCODE2 
Military Personnel, Care Giver, 
Clerical/Religious Student → 

← Other

TERMINAL NODE 5 
N = 118 

Classification: GOOD

Node 5 
N = 1,328 
Split by: 
FCHILD 
> 2.5 → 
← ≤ 2.5 TERMINAL NODE 4 

N = 480 
Classification: BAD 

Node 6 
N = 848 

Split by: AGE1
> 32.562 → 
← ≤ 32.562

TERMINAL NODE 3 
N = 326 

Classification: GOOD 

TERMINAL NODE 2 
N = 520 

Classification: BAD 
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Tree #3 

 

Node 1 ≜ Root Node 
N = 3,035 

Split by: EDUC1 ≜ Education 
At least some college → 

← Elementary, High School, Other 

TERMINAL NODE 1 
N = 2,040 

Classification: BAD 

Node 2 
N = 995 

Split by: FDUTY ≜ Job Managerial Capacity
Non Manager → 

← Manager or Senior Manager

TERMINAL NODE 2 
N = 221 

Classification: BAD 

TERMINAL NODE 3 
N = 774 

Classification: GOOD 




