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Abstract

An agent is asked to assess a real-valued variable Yp based on cer-
tain characteristics Xp = (X1

p ; :::; X
m
p ), and on a database consisting

of (X1
i ; :::; X

m
i ; Yi) for i = 1; :::; n. A possible approach to combine

past observations of X and Y with the current values of X to gen-
erate an assessment of Y is similarity-weighted averaging. It suggests
that the predicted value of Y , �Y sp , be the weighted average of all previ-
ously observed values Yi, where the weight of Yi, for every i = 1; :::; n,
is the similarity between the vector X1

p ; :::; X
m
p , associated with Yp,

and the previously observed vector, X1
i ; :::; X

m
i . We axiomatize this

rule. We assume that, given every database, a predictor has a ranking
over possible values, and we show that certain reasonable conditions
on these rankings imply that they are determined by the proximity to
a similarity-weighted average for a certain similarity function. The ax-
iomatization does not suggest a particular similarity function, or even
a particular form of this function. We therefore proceed to suggest
that the similarity function be estimated from past observations. We
develop tools of statistical inference for parametric estimation of the
similarity function, for the case of a continuous as well as a discrete
variable. Finally, we discuss the relationship of the proposed method
to other methods of estimation and prediction.
JEL Codes: C1, C8, D8
Keywords: Similarity, Estimation
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1 Introduction

1.1 Motivation

Economic agents as well as various professionals are often required to assess

the value of a certain numerical variable. In many situations, available data

are relevant for the assessment problem, but they do not suggest a value

that is indisputably the only reasonable assessment to make. Consider the

following examples.

1. A home owner considers selling her house, and she wonders how much

she could get for it. Naturally, she should be basing her assessment on the

prices at which other houses were sold. Yet, every house has its idiosyncratic

characteristics. Hence the "market value" of her house is a variable that

needs to be assessed based on observations of other transactions, but cannot

be uniquely determined by these transactions in the same way that the price

of a ton of wheat can.

2. An art dealer wants to sell a painting by a reasonably famous painter.

Evidently, the market price of the painting is related to the prices at which

other, similar paintings were sold. Yet, the painting is unique, and its price

may di¤er from the prices of all other paintings, as well as from their average.

3. An analyst is asked to predict the rate of in�ation for the coming year.

Using past empirical frequencies of various in�ation rates is hardly an option

in this case, since every year di¤ers from past years in several ways. Yet, it

is obvious that past in�ation rates are informative and should somehow be

used for the prediction.1

4. The same analyst is now asked to assess the probability of a stock

market crash within the next six months. Again, she is expected to gener-

ate an assessment that is based on past observations. However, every two

situations would typically di¤er in the values of certain important economic

variables.
1This application was suggested by Raul Drachman.
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5. A physician is asked to assess the probability of success of an operation

to be performed on a certain patient. Past experience with other patients is

clearly relevant and should inform the assessment process. Yet, every human

body is unique, and simple relative frequencies of success do not summarize

all the relevant information.

6. A lawyer is asked by her client what are the chances of winning a

case. Clearly, every case is idiosyncratic. Yet, the rulings in similar cases

and under like-minded judges are relevant for the assessment.

In all of these problems one attempts to assess the value of a variable

Yp based on the values of relevant variables, Xp = (X1
p ; :::; X

m
p ), and on a

database consisting of the variables (X1
i ; :::; X

m
i ; Yi) for i = 1; :::; n. The

question is, how do and how should people combine past observations of X

and Y with the current values of X to generate an assessment of Y ?

This problem is extensively studied in statistics, machine learning, and

related �elds. Among the numerous methodologies that have been sug-

gested and used to solve such problems one may mention parametric and

non-parametric regression, neural nets, linear and non-linear classi�ers, k-

nearest neighbor approaches (Fix and Hodges (1951, 1952), Cover and Hart

(1967), Devroye, Gyor�, and Lugosi (1996)), kernel-based estimation (Akaike

(1954), Rosenblatt (1956), Parzen (1962), Silverman (1986), Scott (1992)),

and others. Each of these methodologies has considerable success in a va-

riety of applications. Moreover, each methodology can also be viewed as a

tentative model of human reasoning. How should we choose among these

approaches for descriptive and for normative applications?

Our approach to this problem is axiomatic and empirical. We start with

a system of axioms that characterizes a class of assessment rules. We do not

expect the axiomatic approach, or other theoretical considerations to fully

specify the parameters of the assessment rule. Rather, we suggest that these

parameters be estimated from data. This estimation is done in the context of

a probability model that allows statistical inference. We now turn to describe
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this approach in more detail.

1.2 Axiomatization of Similarity-Weighted Averaging

For the axiomatic model we assume that, given a database B = (Xi; Yi)i�n,

where n 2 N, Xi 2 Rm, and Yi 2 R, and a new data point Xp 2 Rm, the
agent has a ranking %B;Xp over the possible values of Yp. The interpretation
of � %B;Xp � is that, given the database B and the new data point Xp,

� is more likely to be observed than is �. We study the rankings %B;Xp
that the agent would generate given various possible databases, holding m

�xed. We formulate axioms on such rankings, and show that the rankings

satisfy these axioms if and only if they can be represented by similarity-

weighted averaging. Speci�cally, the axioms are equivalent to the existence

of a function s : Rm � Rm ! R++ = (0;1) such that, given a database
B = (Xi; Yi)i�n and a new data point Xp = (X

1
p ; :::; X

m
p ) 2 Rm, two possible

estimates of Yp are ranked according to their proximity to the similarity-

weighted average of all observations in the database, namely,

Y
s

p =

P
i�n s(Xi; Xp)YiP
i�n s(Xi; Xp)

(1)

This rule for generating predictions is reminiscent of kernel estimation. (See

Akaike (1954), Rosenblatt (1956), and Parzen (1962). See details in sub-

section 2 below.). We prefer the term "similarity" since it suggests a cognitive

interpretation of the function, as opposed to the more technical "kernel".

This is obviously only a matter of interpretation.2

The axioms we propose are not universal and they need not be satis�ed

by all types of human reasoning. Speci�cally, when people use the data to

develop theories, and then use these theories to generate predictions, they are

2Our axiomatization relies on that of Gilboa and Schmeidler (2001, 2003). Yet, the
former is not a special case of the latter. Moreover, the analysis conducted here employs
the fact that the variable Y is real-valued.
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unlikely to satisfy our axioms, or to follow (1). (We elaborate on this point

after the presentation of the axioms in Section 3.) Our axioms attempt to

describe the assessment of an agent who aggregates data, but who does not

engage in theorizing. When agents do reason by general rules, or theories, a

model such as regression analysis may be a better model than the similarity-

weighted averaging we discuss here.

We also axiomatize the relation "more likely than" that corresponds to a

set of agents, constituting a "market", and we show that, under our axioms,

one may replace all agents with their subjective similarity functions by a

"representative" agent with an appropriately de�ned similarity function.

1.3 The Empirical Similarity

The axiomatization we propose does not specify a particular similarity func-

tion, or even a particular functional form thereof.3 Where do the similarity

numbers come from? In this paper we do not attempt to provide a theoretical

answer to this question. Rather, we suggest an empirical approach: given a

database B = (Xi; Yi)i�n, we assume that past values Yi were also generated

in accordance with equation (1), adapted for p = i and n = i� 1, that is,

Y
s

i =

P
k<i s(Xk; Xi)YkP
k<i s(Xk; Xi)

(2)

relative to the similarity function s of the representative agent. We then

ask which similarity function s : Rm � Rm ! R++ can best �t the data B
under this assumption. This function, dubbed the empirical similarity, can

then be used to generate assessments of Y
s

p. These assessment will be more

objective than similar assessments based on a subjective similarity function.

3Billot, Gilboa, and Schmeidler (2004) o¤er an axiomatization of a particular functional
form of a similarity function. Assuming that an agent employs a similarity-weighted
averaging as suggested here, they impose additional axioms on the agent�s assessments
given various databases and various new data points, which are equivalent to the existence
of a norm on Rm such that the similarity function is a negative exponent of this norm.
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In this paper we address a parametric version of the question of estimation

of the similarity function. We suggest a functional form of s, and estimate

its parameters by maximum likelihood estimator in a statistical model that

we de�ne shortly. However, an "empirical similarity function" may be any

function that is estimated from the data, or that is chosen to �t the data

according to equation (2).

Further discussion of our estimation methodology and the assumptions

underlying it is deferred to section 6. We now proceed to describe a statistical

model within which this estimation can be analyzed.

1.4 Statistical Analysis

The empirical similarity we obtain can be viewed as a point estimate of a

similarity function, if we embed equation (1) in a statistical model. Specif-

ically, we are interested in similarity functions that depend on a weighted

Euclidean distance,

dw(x; x
0) =

sX
j�m

wj(xj � x0j)2 (3)

where x = (x1; :::; xm) and x0 = (x01; :::; x0m). The similarity function may be

expected to decrease in the distance dw, to obtain the value 1 for dw = 0 and

to converge to 0 as dw !1. Natural candidates for such a function include
sw = e�dw or sw = 1

1+dw
. Billot, Gilboa, and Schmeidler (2004) assume

that an agent generates assessments according to (1), and take an axiomatic

approach to the problem of selecting the functional form of the similarity

function. Speci�cally, they show that certain conditions on the assessments

Yp generated given various databases are equivalent to the existence of a

norm k�k on Rm, such that sw(x; x0) = e�kx�x
0k. Since dw is a norm on Rm

when wj > 0 for all j � m, sw = e�dw may be viewed as a special case of the
similarity function axiomatized in Billot et al. (2004).
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Observe that the weights (wj)j are not restricted to sum to 1. This

allows some �exibility in the relative weight of closer versus more remote

observations. For instance, multiplying all weights (wj)j by a constant �
2 > 0

is tantamount to multiplying dw by � > 0. If � > 1, this transformation

reduces the relative impact of remote points.

For t = 2; :::; n, we assume that

Yt = Y
s
t =

P
i<t s(Xi; Xt)YiP
i<t s(Xi; Xt)

+ "t (4)

where "t
i:i:d:� N(0; �2), and Y1 is an arbitrary random variable.

In such a model it makes sense to ask whether the point estimates of the

unknown parameters are signi�cantly di¤erent from a pre-speci�ed value,

and in particular, from zero. In this paper we focus on maximum likelihood

estimation of the parameters (wj)j, and we develop tests for such hypotheses.

For some applications, including examples 5 and 6 above, the observed

values of Yt are categorical. In this case one cannot assume a model such as

(4), and the latter should be replaced with a model of the form

P (Yt = 1 jX1; Y1; :::; Xt�1; Yt�1) = F (Y
s
t )

where F is a cumulative distribution function, Xi is an m-vector, and Yi 2
f0; 1g, with Yi = 1 denoting success and Yi = 0 denoting failure in exam-

ples 5 and 6. This model di¤ers from discrete choice models in a way that

parallels the di¤erence between our model for a continuous Y st and linear

regression. Speci�cally, the probability that Yt assumes the value 1 depends

on the weighted relative frequency of 1 among past values fYigi<t, where
the weight of the value Yi depends on the similarity between the vector Xi

observed in the past and the current observation Xt. We provide a statistical

model for this case, and develop tests for hypotheses about the values of the

parameters (wj)j in this model as well.
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The rest of this paper is organized as follows. In Section 2 we discuss the

relationship between our methodology and existing statistical methodologies.

Section 3 provides the axiomatization of similarity-weighted averaging, for a

single agent and for a set of agents. In Section 4 we develop the statistical

theory for the continuous case, whereas Section 5 deals with the discrete case.

Finally, Section 6 concludes.

2 Related Techniques

Our main focus is on human reasoning. We are interested in data that are

generated by people, and we take the similarity-weighted average as a possible

model of how people generate assessments. That is, we interpret our model

as describing a causal relationship.

Our methodology can be applied also to databases in which the vari-

able Y is not a result of human reasoning. In this case our model should

not be interpreted causally, but one may still �nd a similarity function that

best �ts the data. Moreover, one may even conduct hypotheses tests for the

parameters of the similarity function, to the extent that one believes that

the data generating process may be in agreement with one of the models

speci�ed above. In other words, the empirical approach suggested here, cou-

pled with the statistical inference that accompanies it, may be viewed as a

general-purpose statistical technique dealing with the prediction of a variable

Y based on variables X1; :::; Xm and past observations of all these variables

in conjunction.

Viewed from this perspective, one might wonder how our prediction tech-

nique compares with established ones, such as regression analysis. An obvious

weakness of our approach is that it does not attempt to identify trends. For

instance, assume that there exists a single variable X which denotes time,

and that the data lie on a line Y = X. This obvious trend will not be recog-

nized by our technique, which will continue to expect the next value of Y
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to be a weighted average of past values of Y . The prediction technique we

suggest makes sense especially when one might believe that past observations

were obtained under similar circumstances.

2.1 Non-Linear Regression

Our approach di¤ers from non-linear regression in that we do not assume

that the data generating process follows a basic functional relationship of the

form Y = f(X1; :::; Xm). Rather, we assume that Y is distributed around a

weighted average of its past values, where the X�s determine these weights.

If, however, one does assume that there exists an underlying functional

relationship Y = f(X1; :::; Xm), our technique may still be used for predic-

tion of Y . As long as f is su¢ ciently smooth, one may hope that, with a

large number of observations that are evenly scattered in terms of their X

values, the similarity-weighted averaging will result in reasonable predictions.

Indeed, the similarity-weighted average is reminiscent of Nadaraya-Watson�s

estimator of a non-parametric functional relationship. Observe that, as op-

posed to Nadaraya-Watson�s technique and related literature, we do not at-

tempt to �nd an optimal kernel function based on theoretical considerations,

but �nd the kernel/similarity function that best �ts the data.

Observe that our estimation of the similarity function s is parametric.

This does not imply that we restrict the function f to a parametrized family

of functions, should a relationship Y = f(X1; :::; Xm) actually exist. Any

function s may be used to generate predictions in a non-parametric prob-

lem. To simplify our estimation problem, we restrict attention to functions

s within a parametrized family of similarity functions. Thus, we try to para-

metrically estimate how to best perform non-parametric estimation.

2.2 Kernel Estimation and Case-Based Reasoning

If we think of similarity-weighted averaging as a model of human reasoning,

we �nd that a case-based reasoner, as modeled by this formula, can be viewed
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as someone who believes in a general rule of the form Y = f(X1; :::; Xm) but

does not know the functional form of f and therefore attempts to estimate

it by non-parametric techniques.

The notion that people reason by analogies dates back to Hume (1748) at

the latest. In arti�cial intelligence, this idea was reincarnated as case-based

reasoning by Schank (1986) and Schank and Riesbeck (1989). Inspired by

this work, Gilboa and Schmeidler (1995, 2001, 2003) developed a formal,

axiomatically-based theory of decision and prediction by analogies. In this

literature it has been mentioned that case-based reasoning is a natural and

�exible mode of thinking and decision making. Our statistical approach

strengthens this intuition by pointing out that case-based reasoning may be

a way to estimate a functional rule.

Taking an evolutionary viewpoint, assume that nature programs the mind

of an organism who needs to operate in an unknown environment. The organ-

ism will need to learn certain functional rules of the form Y = f(X1; :::; Xm),

but it is not yet known what form the function f might take. The statistical

viewpoint suggest case-based assessment by similarity-weighted averaging as

a procedure to predict Y , which may perform well in a variety of possible

environments f . Moreover, it turns out that the similarity-weighted aver-

aging does not explicitly resort to general rules and theories, and thus does

not require abstract thinking. Case-based reasoning therefore appears to be

a �exible methodology of learning rules, which can be implemented on sim-

ple machines. Admittedly, this methodology is limited and human reasoning

requires also abstract thinking and the development of explicit general theo-

ries. Yet, the evolutionary viewpoint seems to support case-based reasoning

as a simple but powerful technique.

2.3 Interpolation

Our prediction methodology can also be viewed as a type of interpolation.

Consider �rst the case m = 1, that is, a single variable X. Every past
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case is a point (xi; yi) 2 R2, and we are asked to assess the value of Y
for a new point xp 2 R. Assume for simplicity that xp is in the interval
[mini xi;maxi xi]. Linear interpolation would generate a prediction by the

line segment connecting (xi; yi) and (xk; yk) for the two values xi and xk that

are closest to xp in either direction. This approach may be a bit extreme

since it uses only the y values for the closest x�s. In this respect, it is similar

to a (single) nearest neighbor technique. Other types of interpolation, such

as polynomial interpolation, would take into account also other points (xl; yl)

for xl that is not necessarily the closest to xp on either side.

These interpolation techniques implicitly assume that the values observed

are the actual, precise values of an unknown function. If, however, we recog-

nize that there is some inherent randomness in the process, that we may not

measure certain hidden variables, or that there are measurement errors, we

might opt for a technique that is less sensitive to each particular value of

Y . Following this line of thought, our approach can be viewed as perform-

ing statistical interpolation: every observation is used in the interpolation

process, where closer points have a higher impact on the predicted value.

As opposed to interpolation by high-order polynomials, when many points

have been observed, no particular point would have a large impact on the

predicted value.

When we consider the case m > 1, generalizing this interpolation tech-

nique requires a multi-dimensional distance function. Our methodology might

therefore be conceptualized as a multi-dimensional statistical interpolation

technique, where the distance function is empirically learnt.

2.4 Bayesian Updating

A special case of the formula (1) is when s is constant (say, s � 1), and the
formula boils down to the simple average (of Y ) over the entire database.

This could be viewed as an estimator of the unconditional expectation of Y ,

having not observed any X�s.
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By contrast, one may consider an extreme similarity function given by

s(Xi; Xp) = 1fXi=Xpg, where 1 denotes the indicator function. That is, two

data points are considered to be perfectly similar if they have exactly the

same X values, and absolutely dissimilar otherwise.4 In this case, the for-

mula (1) yields the average of Y over the sub-database de�ned by the values

Xp, and it can be viewed as an estimate of the conditional expectation of Y ,

given Xp.

Thus, the formula (1) provides a continuum between conditional and

unconditional expectations. When s(Xi; Xp) = 1fXi=Xpg, the reasoner only

considers identical cases as relevant, and all of them are then deemed equally

relevant. By contrast, if s � 1, the reasoner considers all cases as identically
relevant. In between, (1) allows for various cases to have a varying degree of

relevance. Given the new datapoint Xp, past points Xi are judged for their

relevance, but not in a dichotomous way. In other words, Bayesian updating

may be viewed as a special case of (1), where similarity is evaluated in a

binary way: two observations are similar if and only if they are identical in

every possible known aspect.

As compared to Bayesian updating, a reasoners who employs (1) might

be viewed as a less extreme assessor of similarity. She does not use only the

observations with identical X values, but also other, less relevant ones. Why

would she do that? Why should she contaminate her assessment of Y for Xp

with Y that were observed for other X�s?

The answer is, presumably, the scarcity of data. If we are faced with

a database in which the very same Xp values appear a very large number

of times, it would seem reasonable to assess the conditional expectation of

Y given Xp based solely on the observations that share the exact values of

Xp. But one may �nd that these exact values were encountered very few

times, if at all. Indeed, the X�s might include certain variables, such as

4In our model the similarity function is positive everywhere. This simpli�es the formula
and the axiomatization alike. But one can extend the model to include similarity functions
that may vanish, or consider zero similarity values as a limit case.
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time and location, that uniquely identify the observation. In this case, no

two observations ever share the exact X values, and conditioning on Xp

leaves one with an empty sub-database. Even in less extreme examples, the

resulting sub-database may be too meager for generating predictions. In

those cases, the formula (1) o¤ers an alternative, in which the similarity of

the observations is traded o¤ for the size of the database.

Viewed thus, the formula (1) may deserve the title "kernel updating".

As in other kernel-based techniques, the relevance of an observation (Xi; Yi)

is not restricted to identical datapoints Xp = Xi, but is extended to other

datapoints Xp, to an extent determined by the kernel values s(Xi; Xp). The

use of a kernel function in this case is justi�ed by the paucity of the data, that

is, by the fact that observations with precisely the same Xp are scarce. This

parallels the motivation for the use of kernel functions in kernel estimation

of a density function and in kernel classi�cation.

Finally, we observe that the use of observations (Xi; Yi) whereXi 6= Xp for

the prediction of Yp may also follow from Bayesian updating if one assumes

that the X variables are observed with noise.5

2.5 Auto-Regression Models

>From a mathematical viewpoint, the similarity-weighted average can be

regarded as a type of an auto-regression model. In auto-regression models,

as well as in our case, Yt is distributed around a linear function of past

values of Y .6 Yet, the similarity-weighted average formula di¤ers from auto-

regression models in several important ways. Mathematically, the weights

that past values fYigi<t have in the equation of Yt do not depend on the
time di¤erence (t � i), but on the similarity of the corresponding X values,

that is on s(Xi; Xt). In particular, observe that the weights of fYigi<t in the
5This comment is due to Mark Machina.
6As pointed out to us by an anonymous referee, when the similarity function is allowed

to vanish, the i.i.d. process is a special case of our process when s(X1; Xt) = 1 and
s(Xj ; Xt) = 0 for 1 < j < t, and Y1 = 0.
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determination of the expectation of Yt are not known before time t, because

these weights depend on Xt. Observe also that in our case each Yt depends

on all past observations. Thus, our model is an auto-regression model whose

order is not bounded a-priori. Another important di¤erence is that in our

case the index t has no cardinal signi�cance. We use it only to order the

data, but our procedure does not rely on the fact that the time di¤erence

between observations t� 1 and t is the same as the time di¤erence between
observations t� 2 and t� 1.7

Conceptually, our model assumes that similar situations in the past might

have a signi�cant impact on current values of Y , even if they occurred a

long time ago. When one discusses natural phenomena, such as population

growth, one expects the weight of past observations to be increasing as a

function of their recency. But when we deal with human reasoning, as in the

case of in�ationary expectations, less recent, but more similar situations in

the past may have a greater impact on the future than would more recent

but less similar situations. In a sense, human memory may serve as a channel

through which past periods can a¤ect future periods without the mediation

of the periods in between.

The above need not imply that our model ignores time completely. One

may introduce time as one of the variables Xj. This would allow more recent

periods to have greater impact on the prediction than less recent ones, simply

because the time di¤erence is translated, via the variable Xj, to a distance

in the X space, and thus to a lower degree of similarity.

2.6 How to Analyze Time Series

We conclude that the relationship between our model and auto-regression

models is super�cial. Yet, our model can be adapted to deal with time series

7In fact, our procedure can be easily adapted to the case in which observations are only
partially ordered. As we brie�y mention below, a di¤erent variant of our model can deal
with situations in which the observations are not ordered at all.
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in a way that resembles auto-regression in a more profound way. Auto-

regression can be viewed, in bold strokes, as explaining a variable by its own

past values, with statistical techniques such as linear regression. The nat-

ural counterpart in our case would be to predict the variable Y by equation

(1) where the variables (Xj)j include lagged values of Y itself. For exam-

ple, assume that Yt is a quarterly growth rate. Introducing Yt�1; :::; Yt�k as

X1
t ; :::; X

k
t would suggest that the predicted rate of growth at period t be

a (weighted) average of the rates of growth in similar periods in the past,

where similarity is de�ned by the pattern of growth rates in the most recent

k periods. Our technique would �nd weights w1; :::; wk that best �t the data

when one uses the equation

Y
s

t =

P
i<t sw((Yi�k; :::; Yi�1); (Yt�k; :::; Yt�1))YiP
i<t sw((Yi�k; :::; Yi�1); (Yt�k; :::; Yt�1))

(5)

where

sw((Yi�k; :::; Yi�1); (Yt�k; :::; Yt�1)) = e
�
pP

j�k wj(Yi�j�Yt�j)2

This estimation technique could be interpreted as follows. We �rst ask,

what determines the similarity of patterns of growth? That is, is a "pattern"

de�ned by the most recent period, or by several most recent periods, how

many of these, and what are the relative weights? The estimation of the

weights wj attempts to answer this question. While the resulting weights

need not be monotonically decreasing in j (the time di¤erence), one would

expect that these weights would become small for large values of j. In fact, in

determining the number of periods that de�ne a "pattern", k, one implicitly

assumes that periods more distant than k are not part of the "pattern".

The selection of this k may be compared to the selection of the order p in

auto-regression models of order p (AR(p)).

Once the weights wj have been determined, we search the entire database

for periods i such that the pattern preceding i, (Yi�k; :::; Yi�1), resembles the
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current pattern, (Yt�k; :::; Yt�1). For such periods, the value Yi would have a

higher weight in the prediction of Yt than would the value corresponding to

periods for which (Yl�k; :::; Yl�1) resembles (Yt�k; :::; Yt�1) to a lesser degree.

Again, one may also add time as an additional variable Xk+1 to make sure

that the prediction discounts the past.

3 Axiomatization

3.1 Single Agent

The axiomatization does not require that past data points range over all of

Rm. We assume that they belong to a non-empty subset � � Rm. However,
we do assume that every possible data point in � may have been observed

together with every value y 2 R any �nite number of times. We therefore
model the database as a vector of counters, denoted I, rather than the set of

observations B used in the introduction.

Speci�cally, let C = � � R denote case types. A case type (x; �) 2 C is

interpreted as an observation of a data point x 2 � coupled with the value
� 2 R. Memory is a non-zero function I : C ! Z+ (where Z+ denotes the
non-negative integers) such that

P
c2C I(c) < 1, specifying for every case

type c how many cases of that type have appeared. Let I be the set of all
memories.

We are currently presented with a new data point xp 2 �. The task is
to estimate the value � 2 R that corresponds to xp. We assume that the

predictor does not only choose one such �, but has a likelihood ranking over

all possible predictions. Formally, for I 2 I, let %I� R � R be a binary

relation over the reals. As usual, �I denotes the asymmetric part of %I . For
�; � 2 R, � %I � is interpreted as �Given memory I, � is a more likely value
for the variable Y at the new data point xp than is ��. Observe that in the

formal notation we suppress xp. This new data point is �xed throughout this

section.
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We now state axioms on f%IgI2I . The �rst three are identical to those
appearing in Gilboa-Schmeidler (2001, 2003).

A1 Order: For every I 2 I, %I is complete and transitive on R.
A2 Combination: For every I; J 2 I and every �; � 2 R, if � %I � (� �I �)
and � %J �, then � %I+J � (� �I+J �).
A3 Archimedean Axiom: For every I; J 2 I and every �; � 2 R, if � �I �,
then there exists l 2 N such that � �lI+J �.
Observe that in the presence of Axiom 2, Axiom 3 also implies that for

every I; J 2 I and every �; � 2 R, if � �I �, then there exists l 2 N such
that for all k � l, � �kI+J �.
Axiom A1 is rather standard. It requires that, given any memory, the

"more likely than" relation be a weak order.

Axiom A2 is the main axiom of Gilboa-Schmeidler (1997, 2001, and 2003).

Roughly, it states that, if � is more likely than � given each of two memories,

then � should also be more likely than � given their union. This axiom

is satis�ed by a variety of statistical techniques, such as kernel estimation,

kernel classi�cation, and maximum likelihood rankings. Yet, it is by no

means universal. To illustrate its limitations, consider the following example.

Suppose that there is only one predictor (m = 1) and that the database

consists of f(1; 1); (2; 2); :::; (5; 5)g, and the new datapoint is X6 = 6. Given

each observation (i; i) for i = 1; :::; 5, the value 6 might seem less likely than

the value 5. But given the entire database, where 5 points lie exactly in

the line Y = X, the value 6 seems a much more reasonable prediction for

X6 = 6. Indeed, the similarity-weighted average formula that we axiomatize

is doomed to predict some weighted average of the values f1; :::; 5g, and will
not be able to predict a value higher than 5.

This example shows a major limitation of the similarity-weighted formula,

for which axiom A2 carries most of the blame: this formula is incapable of

identifying trends and generating predictions based on them. Axiom A2 sug-

gests that a conclusion that holds in two databases has to hold in their union.
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But if there is a trend, or a pattern in the data, it may be identi�ed only

when data is amassed. A2 rules out the possibility that the union of two

memories would generate new insights. Similarly, if the similarity function

is being learnt by the predictor while she produces predictions, or if the es-

timator uses both inductive and deductive reasoning, then the combination

axiom should not be expected to hold. Moreover, if the predictor knows

that the data are generated by a particular model, such as a linear regres-

sion model, or a speci�c Bayesian model, she will generate predictions based

on that model. In this case she is likely to satisfy the combination axiom

when estimating the parameters of the model (and, in particular, maximum

likelihood estimation will satisfy the axiom), but not at the level of speci�c

predictions generated by the model. However, A2 appears reasonable as a

requirement on simple aggregation of evidence, in the absence of a theory on

the way the data are generated.

A3 states that, if memory I contains evidence that � is more likely than

�, then, for each other memory J there exists a large enough number, l, such

that l repetitions of I would be su¢ cient to overwhelm the evidence provided

by J , and suggest that � is more likely than � also given the union of J and

l times I. Thus A3 precludes the possibility that one piece of evidence is

in�nitely more weighty than another.

Gilboa-Schmeidler (1997, 2001, and 2003) also use a diversity axiom,

which we do not use here. Instead, we impose a new axiom that is speci�c

to our set-up. It states that, if memory I consists solely of cases that relate

to the same data point x, then the ranking %I is consistent with simple
averaging. Observe that for such databases there is nothing to be learnt

from the values of x since they do not change at all. In this case, it makes

sense that the most likely value of y be the average of its observed values, and

that possible values be ranked according to their proximity to this average.8

8As pointed out to us by an anonymous referee, one may obtain axiomatizations of
similarity-weighted versions of other statistics, such as the median. Any statistic that,
in the absence of predictors, minimizes a convex cost function (summed over the given
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For x 2 �, de�ne Ix to be the set of memories in which only data point
x has been observed. Formally, Ix = f I 2 I j I((x0; y)) = 0 for x0 6= xg. For
I 2 Ix, de�ne the average yI 2 R by

yI =
P
(x;y)2C I((x;y))yP
(x;y)2C I((x;y))

.

The last axiom we employ is:

A4 Averaging: For every x 2 �, every I 2 Ix, and every �; � 2 R,
� %I � i¤ j � � yI j � j � � yI j.

Our result can now be stated:

Theorem 1 Let there be given �, and f%IgI2I. Then the following two

statements are equivalent:

(i) f%IgI2I satisfy A1-A4;
(ii) There is a function s : �! R++ such that:

(�)

8<:
for every I 2 I and every �; � 2 R,

� %I � i� j � � ys;I j � j � � ys;I j ,

where ys;I =
P
(x;y)2C s(x)I((x;y))yP
(x;y)2C s(x)I((x;y))

Furthermore, in this case the function s is unique up to multiplication by
a positive number.

3.2 Discussion

The theorem states that, if we rank possible predictions of Y by their prox-

imity to the average of past values of Y whenever the values of X1; :::; Xm

are �xed, and we wish to extend it to general databases in a way that satis-

�es our axioms (notably, the combination axiom), we are bound to do it by

proximity to weighted averages.

observations) may be viewed as the most likely value according to a relation %I that
satis�es A1-A3, and can then be generalized to a statistic that minimizes the similarity-
weighted sum of that cost function.
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The axiomatization we provide can be interpreted descriptively or nor-

matively. From a descriptive point of view, the theorem suggests that, if an

agent�s rankings of possible values of a variable y given various databases

satisfy our axioms, she can be ascribed a similarity function s such that

her rankings are determined by proximity to a similarity-weighted average

of past values of y, calculated by the similarity function s. >From a nor-

mative viewpoint, the axiomatization might be used to convince an agent

that similarity-weighted averaging is a reasonable way to assess the variable

y given a database of past observations. Finally, the axiomatization also sug-

gests a de�nition of an agent�s similarity function, and method of elicitation

for it.

A weighted averaging formula is also axiomatized in Billot, Gilboa, Samet,

and Schmeidler (2003). In their model a reasoner is asked to name a prob-

ability vector based on a memory I. Billot et al. impose an appropriate

version of the combination axiom to conclude that the probability vector

given a memory I is the weighted average of the vectors induced by each

case separately. Unfortunately, the result of Billot et al. only applies if there

are at least 3 states of the world, that is, if the probability vector has at least

two degrees of freedom. For the special case of a single-dimension probabil-

ity simplex, their theorem does not hold. In this sense, the present paper

complements Billot et al. (2003).

3.3 Representative Agent

The theorem above shows under what conditions an agent�s "more likely

than" relation will follow the similarity-weighted average formula for an ap-

propriately chosen similarity function. It relates the theoretical concept of

"similarity" to the relation "more likely than", which is assumed to be ob-

servable.

In practice, however, one can often observe only aggregate data. For in-

stance, one may observe market prices of houses or paintings, but not the
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assessments of these prices by agents. What properties should such assess-

ments satisfy? How are individual assessments aggregated over agents? Can

such aggregates also be described as similarity-weighted averages?

To answer these questions, we extend the model presented above to in-

corporate more than one agent. Speci�cally, let P = f1; :::; pg be a set of
agents, and re-de�ne the case types to be C = P � � � R. Case of type
(i; x; y) is interpreted as "agent i 2 P has observed a data point x 2 � and
a corresponding value of y 2 R". Thus, every observation in this model
speci�es the observer, and not only the observed.

We continue as before to de�ne memory as a non-zero vector I : C ! Z+
such that

P
c2C I(c) < 1. Let I be the set of all memories. We now think

of memory I is a matrix of counters, specifying how many times each agent

has observed any possible (x; y) 2 �� R combination.
The relation %I is interpreted as follows. For �; � 2 R, � %I � means that,

if I speci�es how many times each agent has seen each pair (x; y), then � is

more likely than � to be the assessment of the set of agents. This assessment

is supposed to re�ect some collective opinion, and it does not re�ect economic

power or strategic considerations. If, for instance, we discuss the value of a

painting by van Gogh, every agent is expected to have some assessment of

the value of the painting, regardless of their ability or willingness to pay for

it.

The axioms we use are the same axioms verbatim. The logic behind

the axioms mirrors that of the single agent case, though, naturally, in the

multi-agent case the axioms are more demanding.

We �rst state the theorem as applied to this case:

Corollary 2 Let there be given P;�, and f%IgI2I. Then the following two
statements are equivalent:

(i) f%IgI2I satisfy A1-A4;
(ii) There exist functions fsi : �! R++gi2P such that:
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(��)

8<:
for every I 2 I and every �; � 2 R,

� %I � i� j � � ys;I j � j � � ys;I j ,

where ys;I =
P
(i;x;y)2C si(x)I((i;x;y))yP
(i;x;y)2C si(x)I((i;x;y))

Furthermore, in this case the functions fsigi2P are unique up to joint mul-
tiplication by a positive number.

We wish to show that, if we assume that all information is shared, then a

set of agents P , characterized by functions fsigi2P , is indistinguishable from
a representative agent whose similarity function is the average of fsigi2P . To
this end, de�ne Ish as the set of memories in which all agents have the same
information, that is: Ish = f I 2 I j I((i; x; y)) = I((i0; x; y)) for all i; i0 2 P g.
We now have

Corollary 3 Let there be given P;�, and f%IgI2I. Assume that f%IgI2I
satisfy A1-A4. Then there exists a function s : �! R++ such that:

(� � �)

8<:
for every I 2 Ish and every �; � 2 R,

� %I � i� j � � ys;I j � j � � ys;I j ,

where ys;I =
P
(i;x;y)2C s(x)I((i;x;y))yP
(i;x;y)2C s(x)I((i;x;y))

Furthermore, in this case the function s is unique up to multiplication by
a positive number.

Observe that the identi�cation of individual similarity functions si re-

quires that memories I =2 Ish be considered, that is, memories in which
di¤erent agents may have observed di¤erent cases. Measuring %I for I =2 Ish
and testing our axioms may be done in controlled experiments in a labora-

tory. It is more challenging to observe %I for I =2 Ish in empirical data. Yet,
one may imagine that such relations exist, and satisfy our axioms.

As long as we restrict attention to shared information, namely, to memo-

ries in Ish, we only observe the average similarity function. Attributing this
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average similarity to a representative agent, we conclude that the assessment

made by a set of agents will be equivalent to that made by the representative

agent.

The observability of %I mirrors the observability of a utility function in
economics: in principle, one may measure each agent�s utility function. In

reality, often only aggregate data are available. Under certain conditions,

one may assume that the decisions of a set of agents can be described by

the decision of a single, representative agent. Similarly, in our case one may,

in principle, measure each agent�s similarity function. In practice, we often

observe only aggregate assessments. However, under the conditions speci�ed

above, we may replace the set of agents by a single, representative agent,

and obtain the same assessment for shared information. It is this similarity

function, of a representative agent, that we attempt to estimate.

4 Statistical Inference for a ContinuousModel

4.1 The Model and the Likelihood Function

If we assume the initial condition to be Y1 = "1, then equation (4) can be

written in matrix form as

Sy = ";

where S = S (w) = I �BwAw, I is the identity matrix of order n,

Aw =

0BB@
0 :::

sw;2;1 0
::: :::
sw;n;1 sw;n;n�1 0

1CCA ;

Bw =

0BB@
0 0 ::: 0

0 (e02Aw1)
�1 :::

::: ::: 0

0 ::: 0 (e0nAw1)
�1

1CCA ;
sw;i;j = sw(Xj; Xi) = e

�dw(xj ;xi), d is based on (3), 1 is an n� 1 vector of 10s,
ej is the canonical vector of 0�s, apart from the j-th position where it is set
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to unity, y = (Y1; :::; Yn)0 and " is an n� 1 vector of i.i.d. Gaussian variables
with zero mean and variance �2. Note that S is a lower triangular matrix

that does not depend on the variables Yi.

We set � = (�1; :::; �m+1) = (�2; w1; : : : ; wm) and observe that � 2 � �
Rm+1+ . The maximum likelihood estimator (MLE) of �, �̂n, maximizes

l (�) = �n
2
log (2��1)�

1

2
y0H (�) y;

where H = S 0S=�2.

Note the di¤erence between nonparametric regression and our approach.

In the former, the postulated relationships are of the form y = g (x) + " and

the Nadaraya�Watson estimator of the unknown g (x) has precisely the same

form as the term
P

i<t sw (Xi; Xt)Yi=
P

i<t sw (Xi; Xt) appearing in (4). In

our set-up this term is part of the data generating process. In addition, in

nonparametric regression the bandwidth is selected so as to minimize some

criterion, such as mean integrated square error, whereas we use maximum

likelihood to estimate the weights wj.

4.2 Hypotheses Tests

Rejecting the null hypothesis H0 : wj = 0 implies that the variable Xj

contributes to the determination of Y , in the sense that the distance function,

according to which Yt is determined in (4), does not ignore the j-th variable.

Under general conditions on the similarity function which are satis�ed

for exponential similarity, Lieberman (2005) proved that the MLE is weakly

consistent, is locally asymptotically mixed normal and

p
nF�1=2 (�0) (�Pn (�0))

�
�̂n � �0

�
!d N (0; Im+1) ; (6)

where

F (�0) = lim
n!1

E�0

�
1

n

@ln (�0)

@�

@ln (�0)

@�0

�
;

Pn (�) =
1

n

@2ln (�)

@�@�0
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and �0 is the true value of �. For simple hypotheses tests for which the

parameter is at the interior of the parameter space under the null, (6) can

be used to apply any of the conventional likelihood based tests (likelihood

ratio, Lagrange Multiplier and Wald) in a straightforward manner. For an

hypothesis of the form H0 : wr = 0 vs. wr > 0 (r = 1; :::;m), the parameter

is on the boundary under H0. For this case, Chant (1974, equation (8))

showed that the distribution of the normalized MLE is half-normal. Hence,

for a one-sided t-test of the form above we reject H0 as we do in the usual

case when t is large (e.g., when it exceeds 1.645, if a 5% signi�cance level is

desired).

5 Statistical Inference for the Discrete Case

5.1 The Model and the Likelihood Function

We now deal with the case in which each Yt is categorical. In particular,

consider examples 5 and 6 above, in which an expert is asked to estimate

the probability of a certain event, and the observed values of Y can only be

f0; 1g. A probability estimated by our formula with the empirical similarity
function may be viewed as �objective�in that it does not rely on subjective

similarity judgments, while still allowing di¤erent datapoints to have di¤ering

relevance to the estimation problem at hand.

When assessing probabilities, the assessed values can be anywhere in the

interval [0; 1]. Indeed, the formula (2) may generate any value in [0; 1]. But

in this case one cannot assume that previously observed values of Y were

generated by a Normal distribution centered around a similarity-weighted

average such as in model (4).9

9Other reasons for which model (4) is inappropriate in this case are that the R2 of
regression would typically be low and that, because of the non-Gaussian nature of the
observations, OLS would be ine¢ cient.
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We therefore assume the following model10

P (Yt = 1jFt�1) = Ft (zt (w)) ; t = 1; :::; n; (7)

where Ft is a continuous conditional distribution function with density ft,

Ft�1 = � (Yt�1; :::; Y1;Xt; :::; X1) and

zt =

P
i<t sw (Xi; Xt)YiP
i<t sw (Xi; Xt)

: (8)

In this setting the X�s are taken to be �xed. Letting Ft be the standard

normal cumulative distribution function (cdf) leads to a probit type model

whereas letting Ft be the logistic distribution leads to a logit type model.

Since zt 2 [0; 1], it might be sensible to let Ft be a beta distribution, or quite
simply, the uniform distribution. Note that in the classical case, correspond-

ing to the rule based model, it is postulated that P (Yt = 1jX) = F (X�).

Unlike our case, no Yj�s appear on the right hand side and the model (7) is

nonlinear through both Ft and zt.

In view of (7) and (8)

@P (Yt = 1jFt�1)
@sw (Xj; Xt)

= ft (zt)

P
i<t sw (Xi; Xt) (Yj � Yi)�P

i<t sw (Xi; Xt)
�2 ;

which is non-negative if Yj = 1 and non-positive when Yj = 0. In other words,

when the similarity between Yt and Yj increases, the conditional probability

that Yt = 1 will not fall when Yj = 1 and will not rise when Yj = 0. The

model thus makes sense at least in this respect.

Given our setup, the log-likelihood is given by

l = ln (L) =

nX
t=1

(Yt ln(Ft(zt)) + (1� Yt) ln(1� Ft(zt)))

10The categorical variables we discuss here may only assume the values 0 or 1. However,
the analysis that follows can be extended to the case of a categorical variable assuming
more than two categories.
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and the MLE�s are the solutions of

@l

@wj
=

nX
t=1

Yt � Ft
Ft (1� Ft)

ftvt;j = 0; j = 1; :::;m

where

vt;j = @zt=@wj

=

�P
i<t _sw;j (Xi; Xt)Yi

� �P
i<t sw (Xi; Xt)

��P
i<t sw (Xi; Xt)

�2
�
�P

i<t _sw;j (Xi; Xt)
� �P

i<t sw (Xi; Xt)Yi
��P

i<t sw (Xi; Xt)
�2

_sw;j (Xi; Xt) =
@sw;t;i
@wj

= �sw;t;i (Xji �Xjt)
2

2d(Xi; Xj)

and d is given in (3). As in the previous section, any likelihood based proce-

dure can be employed for hypothesis tests of the form H0 : w = w0.

6 Concluding Remarks

In the statistical analysis we assumed that each observation Yt is distributed

around a weighted average of past Yi, or that P (Yt = 1) depends on such a

weighted average. Such an ordering is necessary for a causal interpretation of

our models. But if we consider a non-causal relationship, one may assume a

model in which the distribution of each Yi conditional on the other variables

fYkgk 6=i is, say, normal around the weighted average of fYkgk 6=i. Indeed, such
a model may be more natural for applications in which the data are not

naturally ordered. For this case, one should adapt the statistical model and

the estimation of the similarity function accordingly.

The assumptions underlying our estimation process call for elaboration.

The axiomatic model aims to describe how an assessment of Yp, Y
s

p, is gen-

erated based on actually observed values of the variable in question, namely,
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past values (Yi)i�n, such as selling prices of houses or of paintings. Applied

to each past observation Yi, it suggests that the assessment of Yi, Y
s

i , is

generated by (2) for actually observed past values (Yk)k<i. That is, when we

explain Yi by past observations (Yk)k<i, we treat Yi as if it were an assess-

ment. When we explain Yl for l > i, we treat Yi as if it were an actual value.

What justi�es this confusion between the actual value of a variable and an

assessment thereof?

For many applications of interest the answer lies in the notion of equilib-

rium. If all economic agents agree in their assessment of the price of a house

or a painting, this joint assessment will indeed be its market price. Similarly,

the price of a �nancial asset would equal its own assessment, if all agents

agree on the latter. In these cases, one may assume that, as a feature of

equilibrium, actually observed data coincide with their assessments.11

There may be applications in which one has direct access to, or indirect

measurement of both actual values (Yi) and to their assessments, say (Zi).

In these cases one may �nd the similarity function s that best �ts the data

according to

Z
s

i =

P
k<i s(Xk; Xi)YkP
k<i s(Xk; Xi)

(9)

namely, a function s that provides values
�
Z
s

i

�
i
that are close to (Zi)i, and

then use this function to generate an estimate of Zp, Z
s

p, using actual values

Yk by equation (9) applied to i = p.

Yet another class of applications involves only the assessments (Zi). As-

sume, for instance, that one only observes asking prices, (Zi), and not ac-

tual selling prices, (Yi). (This is the case in Gayer, Gilboa, and Lieberman

(2004).) If everyone has access only to the asking prices (Zi), one may apply

our axiomatization to these variables, and conclude that the asking price of

a new observation Zp will be a similarity-weighted average of past asking

prices (Zi)i�n. Moreover, it makes sense to assume that the same similarity

11To a lesser degree, the rate of in�ation and the probability of a stock market crash
are also in�uenced by what economic agents assess them to be.
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function governed the generation of past values Zi as a function of their past,

(Zk)k<i. Hence one may estimate the similarity function in equation (2) with

Zi instead of Yi, and use the estimated similarity for the prediction of Zp.

Finally, there are situations in which one does not have access to the

assessments (Zi), and in which there is no theoretical reason to assume that

Zi = Yi. In these cases our empirical approach could still be applied. That

is, one may still ask, which function s : Rm � Rm ! R++ can best �t the
data under the assumption that there were generated by equation (2), and

the function can then be used for prediction of Yp by equation (1). In this

type of application, (Yi) can be viewed as proxies for (Zi). Observe that it

is only in the estimation of s that we replace (Zi) by (Yi). In the generation

of the prediction Z
s

p using the estimated s, we use the actual values (Yi) as

indeed we should.

This paper is devoted to the theory of similarity-weighted averaging. This

technique is used in Gayer, Gilboa, and Lieberman (2004) for the assessment

of real estate prices, as in example 1. Their paper compared this method, rep-

resenting case-based reasoning, to linear regression, representing rule-based

reasoning.

7 Appendix: Proofs

Proof of Theorem 1
We begin by proving su¢ ciency of the axioms (that is, that (i) implies

(ii)), and the uniqueness of the function s. Consider a pair �; � 2 R. Re-
stricting f%IgI2I to f�; �g, one notices that they satisfy the conditions of
the representation theorem in Gilboa and Schmeidler (2001, Theorem 3.1, p.

67, or 2003, Theorem 2, p. 16). Indeed, the �rst three axioms follow directly

from A1-A3, whereas the diversity axiom for two alternatives follows from

the averaging axiom, A4. To apply this theorem we have also to de�ne the

trivial relation for the memory I = 0: %0= R� R. Hence there exists a
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function v�� : ��R! R, unique up to multiplication by a positive number,
such that, for every I 2 I,

� %I � i�
P

(x;y)2C I((x; y))v
��(x; y) � 0.

Next consider a triple f�; �; &g � R. Restricting f%IgI2I to f�; �; &g will
no longer satisfy the diversity axiom in Gilboa and Schmeidler (2001). This

axiom would state that for every permutation of the triple f�; �; &g there
exists I 2 I such that �I agrees with that permutation. This condition
does not follow from our A4. Indeed, the diversity axiom is too strict for our

purposes. If � > � > &, then no%I represented by (�) will satisfy � �I & �I �.
However, the proof of Gilboa and Schmeidler�s theorem does not require

the full strength of their diversity axiom. All that is required for three alter-

natives f�; �; &g is that v�� not be a multiple of v�& . To this end, it su¢ ces that
there be three di¤erent permutations in f�IgI2I (restricted to f�; �; &g). This
latter condition is guaranteed by our A4. Speci�cally, by the averaging axiom

A4, for every distinct (�; �; &), there exists I 2 I such that � �I �; &. Hence
there are at least three permutations in f�IgI2I (restricted to f�; �; &g), and
the representation theorem for triples holds. Observe also that this argu-

ment does not employ all the relations f%IgI2I , and it can also be used for
a restricted domain f%IgI2Ix for any x 2 �.
It follows that, for every triple f�; �; &g, one can �nd v�; v�; v& : ��R! R

such that, for every a; b 2 f�; �; &g, for every I 2 I,

a %I b i�
P

(x;y)2C I((x; y))v
a(x; y) �

P
(x;y)2C I((x; y))v

b(x; y)

,
P

(x;y)2C I((x; y))[v
a(x; y)� vb(x; y)] � 0. (B1)

In this case, the matrix
�
v�; v�; v&

�
is unique up to multiplication by a

positive constant and addition of a constant to each row. Fix one such matrix�
v�; v�; v&

�
.

Fix x 2 � and consider Ix. Restrict attention to f%IgI2Ix. Since (B1)
applies to all I 2 I, it de�nitely holds for all I 2 Ix � I. However, we

30



claim that, even on this restricted domain, the matrix
�
v�; v�; v&

�
is unique

as above. To see this, recall that our derivation of (B1), coupled with the

uniqueness result, holds true for f%IgI2Ix for any x 2 �.
Observe that the relations f%IgI2Ix are completely speci�ed by A4. Specif-

ically, for every a; b 2 R, for every I 2 Ix,

a %I b i� j a� yI j � j b� yI j (B2)

where

yI =
P
(x;y)2C I((x;y))yP
(x;y)2C I((x;y))

.

That is, a %I b i¤ a is closer to the average yI than is b. Consider

fI(�) =
P

(x;y)2C I((x; y))(�� y)2.

The function fI(�) is quadratic (in �), and it has a minimum at � = yI .

It follows that for every a; b, for every I 2 Ix,

fI(a) � fI(b) i� j a� yI j � j b� yI j.

Combining this fact with the de�nition of fI and with (B2), we conclude

that, for every a; b 2 f�; �; &g and for every I 2 Ix,

a %I b i�
P

(x;y)2C I((x; y))(a� y)2 �
P

(x;y)2C I((x; y))(b� y)2

,
P

(x;y)2C I((x; y))[(a� y)2 � (b� y)2] � 0. (B3)

The uniqueness of the representation in (B1) and (B3) imply that there

exists a constant s(x) > 0 such that

va(x; y)� vb(x; y) = �s(x)[(a� y)2 � (b� y)2] (B4)
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for every a; b 2 f�; �; &g and for every y 2 R. Obviously, once va(x; y); vb(x; y)
are �xed, s(x) is uniquely determined by (B4).

We now turn to discuss various x�s, while still focusing on the triple

f�; �; &g. Consider I in I (but not necessarily in Ix for any x). Combine
(B1) and (B4) to conclude that, for a; b 2 f�; �; &g and for all I 2 I,

a %I b i�
P

(x;y)2C I((x; y))s(x)(a� y)2 �P
(x;y)2C I((x; y))s(x)(b� y)2

,
P

(x;y)2C I((x; y))s(x)[(a� y)2 � (b� y)2] � 0. (B5)

De�ne

gI(�) =
P

(x;y)2C I((x; y))s(x)(�� y)2.

As the function fI above, the function gI(�) is also quadratic (in �), and

it has a minimum at

� = ys;I =
P
(x;y)2C s(x)I((x;y))yP
(x;y)2C s(x)I((x;y))

.

It follows that for every a; b, for every I 2 I,

gI(a) � gI(b) i� j a� ys;I j � j b� ys;I j. (B6)

Combining (B5) with (B6) we obtain

a %I b i� ja� ys;I j � jb� ys;I j,

that is, fs(x)gx satis�es (�) for the triple f�; �; &g.
Observe that fs(x)gx are unique up to multiplication by a positive num-

ber. In fact, we argue that if s and s0 both satisfy (�) for particular a; b 2 R,
a 6= b, then there exists � > 0 such that s0(x) = �s(x) for all x 2 �. In-
deed, assume that s and s0 both satisfy (�) for particular a; b. This would
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imply that they both satisfy (B5) for these a; b, and then the uniqueness

of va(x; y) � vb(x; y) in (B1), combined with (B4), implies that there exists
� > 0 such that s0(x) = �s(x) for all x 2 �.
It remains to show that the function s(x) does not depend on the choice

of the triple f�; �; &g � R. Consider the triple f�; �; �g where � 6= &. Since
(B6) applied to � and � holds both for the function s of the triple f�; �; &g and
that of the triple f�; �; �g, these two functions have to be positive multiples
of each other. Using this argument inductively implies that all functions s

derived from di¤erent triples di¤er only by a constant. Since s can always

be multiplied by a positive constant and still satisfy (�), one may choose an
s of one triple f�; �; &g arbitrarily and use it for all other triples as well.
We need to prove the necessity of the axioms, that is, that (ii) implies

(i). The necessity of A1, A2, and A3 is proved as in Gilboa and Schmeidler

(2001, 2003), whereas the necessity of A4 follows directly from (�). �

Proof of Corollary 2
This result is a re-writing of Theorem 1 for the special case in which C

is the product of two sets.�

Proof of Corollary 3
Use Corollary 2 and de�ne s(x) = 1

p

P
i2P si(x). For I 2 Ish,

P
(i;x;y)2C si(x)I((i;x;y))yP
(i;x;y)2C si(x)I((i;x;y))

=
P
(i;x;y)2C s(x)I((i;x;y))yP
(i;x;y)2C s(x)I((i;x;y))

= ys;I

which concludes the proof.�

33



References
Akaike, H. (1954), �An Approximation to the Density Function�, Annals of

the Institute of Statistical Mathematics, 6: 127-132.

Basawa, I. V., P. D. Feigin, and C. C. Heyde (1976), �Asymptotic Properties

of Maximum Likelihood Estimators for Stochastic Processes�, Sankhya A 38:
259-270.

Billot, A., I. Gilboa, D. Samet, and D. Schmeidler (2005), "Probabilities as

Similarity-Weighted Frequencies", Econometrica, 73, 1125-1136.

Billot, A., I. Gilboa, and D. Schmeidler (2004), �An Axiomatization of an

Exponential Similarity Function�, mimeo.

Chant, D. (1974), �On Asymptotic Tests of Composite Hypotheses in Non-

standard Conditions�, Biometrika 61: 291-298.

Cover, T. and P. Hart (1967), �Nearest Neighbor Pattern Classi�cation�,

IEEE Transactions on Information Theory 13: 21-27.

Devroye, L., L. Gyor�, and G. Lugosi (1996), A Probabilistic Theory of Pat-

tern Recognition, New York: Springer-Verlag.

Fix, E. and J. Hodges (1951), �Discriminatory Analysis. Nonparametric Dis-

crimination: Consistency Properties�. Technical Report 4, Project Number

21-49-004, USAF School of Aviation Medicine, Randolph Field, TX.

� � � �(1952), �Discriminatory Analysis: Small Sample Performance�. Tech-

nical Report 21-49-004, USAF School of Aviation Medicine, Randolph Field,

TX.

Gayer, G., I. Gilboa, and O. Lieberman (2004) �Rule-Based and Case-Based

Reasoning in Housing Prices�, mimeo.

Gilboa, I. and D. Schmeidler (1995), �Case-Based Decision Theory�, Quar-

terly Journal of Economics, 110: 605-639.

34



� � � �(1997), "Act Similarity in Case-Based Decision Theory", Economic

Theory, 9, 47-61.

� � � �(2001), A Theory of Case-Based Decisions, Cambridge: Cambridge

University Press.

� � � �(2003) �Inductive Inference: An Axiomatic Approach�, Economet-

rica, 71, 1-26.

Hume, D. (1748), Enquiry into the Human Understanding. Oxford, Claren-

don Press.

Lieberman, O. (2005), �Asymptotic Theory for Empirical Similarity Models�,

mimeo.

Parzen, E. (1962), �On the Estimation of a Probability Density Function and

the Mode�, Annals of Mathematical Statistics, 33: 1065-1076.

Riesbeck, C. K. and R. C. Schank (1989), Inside Case-Based Reasoning.

Hillsdale, NJ, Lawrence Erlbaum Associates, Inc.

Rosenblatt, M. (1956), �Remarks on Some Nonparametric Estimates of a

Density Function�, Annals of Mathematical Statistics, 27: 832-837.

Schank, R. C. (1986), Explanation Patterns: Understanding Mechanically

and Creatively. Hillsdale, NJ: Lawrence Erlbaum Associates.

Scott, D. W. (1992), Multivariate Density Estimation: Theory, Practice, and

Visualization. New York: John Wiley and Sons.

Silverman, B. W. (1986), Density Estimation for Statistics and Data Analy-

sis. London and New York: Chapman and Hall.

35


