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Abstract

What is common to the following situations: incentivizing collective action

in the presence of social preferences, monopoly pricing when consumers are loss

averse, arms races when players are privately informed of their armament costs?

We present a simple formalism, called X-games, which unifies these situations as

well as others, and use it to unify and extend the separate analyses that they

received in the literature.

1 Introduction

Consider the following problems.

1. A central planner designs an incentive scheme in order to encourage organ dona-

tions in a large population, when agents’ preferences exhibit conformism: their

preference for an action increases with the fraction of agents in the population

who take it. What is the cheapest way to implement donation by everyone as

the unique Nash equilibrium, assuming that the planner can use personalized

transfers conditional on donation?
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2. Two countries are engaged in an arms race, where armament costs are i.i.d. and

privately known. For which cost distributions is mutual armament the unique

Bayesian-Nash equilibrium?

3. A monopolist faces consumers who exhibit an "attachment effect": when they

encounter an unexpectedly high price, they are more willing to pay it if they

initially thought that the purchase is likely to take place. What is an optimal

sales (i.e., random price) policy for the monopolist?

4. A set of risk-averse agents with privately observed wealth shocks decide whether

to invest in a risky project. The probability of success increases with the pro-

portion of agents who invest. For which distributions of wealth will mutual

investment be the unique Bayesian-Nash equilibrium?

5. Firms in a large industry contemplate whether to switch to a new, superior tech-

nology, when there are positive network externalities. Under which distributions

of individual benefits from the superior technology will firms remain "locked" in

the old technology as a unique Nash equilibrium outcome?

These five problems are not only different in terms of economic content, but also

seem to involve different classes of models: complete-information population games

in problems 1 and 5, individual consumer choice with reference-dependent preferences

in 3, and two-player Bayesian game in 2 (between a consumer and himself) and 4.

Furthermore, items 1 and 3 are mechanism-design problems in which the planner’s

instrument is a distribution of monetary transfers, while problems 2, 4 and 5 are

descriptive game-theoretic models in which the questions are formulated in terms of

the distribution of player types.

Despite these differences, the stories do seem to share two common features. First,

agents’ preferences exhibit positive externalities (although in situation 3, the con-

sumer’s externality is "internal", in the sense that it is defined w.r.t. the expectations

he had about his own behavior). Second, all problems are concerned with uniqueness of

equilibrium outcomes (however defined). It is therefore natural to suspect that game-

theoretic analysis of these problems will have shared features, despite their different

interpretations and formal set-ups.

In this short paper we offer a simple formalism, called X-games, which unifies the

above problems as well as others. Some of these problems have been analyzed in the
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literature, while others are novel. Our contribution is fourfold: first, we believe that we

are the first to point out the connection among all these problems; second, we provide

a characterization result that extends previous treatments and we apply it to a number

of new problems; third, the X-game formalism covers the case of negative externalities

as well; and finally, the formalism may be of interest in its own right and suggest future

applications.

This paper emphatically builds on prior work. Rather than giving an overview of

the relevant literature now, we believe it is more effective to discuss the precedents

in detail as we go along. After stating our main results, we present a number of

applications; some of them are new, others literally replicate existing results; and yet

others are very close to existing works in terms of interpretation and underlying logic,

but provide new results or variations on existing results, simply because the questions

addressed by our main results were not posed in the original context.

2 The Model and the Main Result

An X-game is a pair    , where  : [0 1]×R→ R and  is an atomless  over

R with support .1 We use  and  to denote the first and second arguments of ,

respectively. We say that the X-game is linear if ( ) ≡ + −  for some   ∈ R,
 6= 0.
Let  be the set of integrable functions  : R→ {0 1}. For every  ∈ , define

( ) =

Z


()()

We say that ∗ ∈  is an equilibrium in the X-game     if for every  ∈ ,

∗() = 1 (0) whenever ((∗ ) )  0 ( 0).

Because the value of this formalism lies in its abstraction and variety of potential

applications, we refrain from giving the elements of the model a specific economic inter-

pretation. Instead, we illustrate it with a concrete example of a linear X-game (which

echoes the first problem mentioned in the Introduction). A measure one of agents

face a decision whether to participate in a government-provided program. Interpret 

as the (possibly negative) price for participation, such that () = 1 means that the

agent participates when he faces the price . Let  represent the fraction of agents in

1Allowing  to have atoms would make the exposition more cumbersome without changing any of

the results.
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the population who participate, and let ( ) = + −  be the agent’s net utility

gain from participation. The   represents a distribution of individualized prices

across the population. Equilibrium in the X-game corresponds to pure-strategy Nash

equilibrium in the population game.

The main problem we address in this paper is the following: For which X-games

    is it the case that (∗ ) = 1 in every equilibrium ∗? Note that in a linear

X-game an equilibrium ∗() is necessarily a threshold function, i.e., there is some ∗

such that ∗() = 1 for   ∗ and ∗() = 0 for   ∗. In Section 4 we introduce the

broader class of quasi-linear X-game which also have the feature that an equilibrium

is a threshold function. Therefore, in the class of X-games we study, if (∗ ) = 1 in

every equilibrium, then all equilibria are identical except for a zero -measure set of

values of  Hence, instead of stating that (∗ ) is equal to some constant ∗ (say,

1) in every equilibrium, we will say from now on that there is an essentially unique

equilibrium ∗ in which (∗ ) = ∗.

The following result provides a complete characterization for the case of linear X-

games. The result makes use of the notion of first-order stochastic dominance (FOSD).

For any pair of s  and  defined over R we say that  FOSD  if  () ≤ () for

every . If  ()  () for all  with  ()  1 and ()  0, then  is said to strictly

FOSD . We use U [ ] to denote the uniform distribution over an interval [ ].

Proposition 1 Let     be a linear X-game. If U [min{  + }  + ] strictly

FOSD , then there is an essentially unique equilibrium ∗ and this equilibrium satisfies

(∗ ) = 1. Conversely, if there exists an essentially unique equilibrium ∗ and in this

equilibrium (∗ ) = 1, then U [min{ + } + ] FOSD .

The proof of Proposition 1 will appear as a corollary of a more general result we

provide in Section 4. We discuss it now in terms of the above government-program

example. Suppose that the government wishes to implement full participation in its

program with the maximal possible revenue. When   0, it cannot do better than a

uniform price  = +−, where   0 is arbitrarily small. In contrast, when   0, the
uniform distribution U [ + ] attains the infimal cost over all price distributions that

implement (∗ ) = 1 in every equilibrium ∗, hence price discrimination is necessary

for optimality.

To see the intuition for the case of   0, suppose first that the government cannot

price-discriminate, i.e., it is restricted to degenerate . In this case, it would have

to set a price    in order to ensure that all agents participate in any equilibrium
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because otherwise, there would be an equilibrium  with ( ) = 0. Now suppose

that the government can price-discriminate. Then, it can assign a low price    to

a small group of agents, thus turning participating into a dominant strategy for them.

Having secured a positive mass of participating agents, the government can turn to

another small group and offer them to participate at a slightly higher price. Thanks

to the positive externality, this second group will accept the offer because the first

group is already known to participate. The government can proceed in this manner

and leverage the positive externality, targeting new groups of agents at ever higher

prices.

This argument is reminiscent of "infection" arguments introduced by Rubinstein

(1989) and developed in the literature on global games (see Morris and Shin (2003)).

Morris and Shin (2005) extended this type of argument to a somewhat broader class

of "interaction games". In several of the papers we cite in the sequel (Winter (2004),

Baliga and Sjöström (2004), Heidhues and Kőszegi (2012) and Sákovic and Steiner

(2012)), essentially the same quasi-infection logic plays a central role in the proof of

results, despite the fact that these papers employ distinct classes of games and solution

concepts. Finally, Blonski (1999, 2000) characterizes Nash equilibria in anonymous

binary-action games with a continuum of players.

3 Applications

In this section we apply Proposition 1 to a variety of settings, thereby showing its links

to the existing literature.

Application 1: Overcoming a habit

Consider the following principal-agent situation. In every time period, the agent makes

a static choice between two actions, 1 and 0. The agent has reference-dependent

preferences: he is basically indifferent between the two actions, but he suffers a “mental

switching cost” of 1 if he takes an action he is not used to. Specifically, the agent’s

utility from each action is equal to the long-run frequency that he takes it. In the

absence of monetary incentives, both actions are stable: given that the agent always

plays action , it is (strictly) optimal for him to stick to this habit. Kőszegi (2010) and

Kőszegi and Rabin (2006) introduced this notion of stability and called it “personal

equilibrium” (PE henceforth).

The principal would like the agent to choose action 1 at all times. Suppose that

he can give the agent a (possibly negative) transfer conditional on taking this action.
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The principal wants the agent to choose 1 in every PE, thus overcoming any habit that

the agent might have. If the principal is restricted to deterministic transfers, he must

commit to a transfer above 1 (the agent’s mental switching cost) in order to knock out

the PE in which the agent always plays 0.

Can the principal do better with a transfer that fluctuates over time? Imagine

that the principal adheres to a long-run distribution  over transfers, such that the

transfer the agent faces at each period is independently drawn from .2 Kőszegi (2006)

extended the definition of PE to such stochastic environments. A strategy for the agent

- namely, a function that assigns an action to every realized transfer - is a PE if for

every realized transfer, the agent’s action maximizes his expected reference-dependent

payoff, where the expectation is taken w.r.t the long-run frequency over his actions,

induced by  and his own strategy.

This model can be mapped into the linear X-game formalism, where  represents

the long-run frequency that the agent chooses the action 1, − is the transfer he receives
conditional on playing this action,  is the long-run distribution over , and ( ) =

−1 + 2 − . An equilibrium in our model corresponds to a PE. Proposition 1 then

implies that randomization indeed benefits the principal. In particular, a uniformly

distributed transfer with support [−1 +  1 + ] implements action 1 as a unique PE

outcome, where   0 can be arbitrarily small. Thus, the principal can attain his

objective at virtually no cost, as if the mental switching cost did not exist.

Application 2: Arms races with private armament costs

This example is literally taken from Baliga and Sjöström (2004), except for a neces-

sary change in notation. Two countries play the following 2 × 2 symmetric Bayesian
armament game. We present player ’s payoff only:

\  

 −  − 

 − 0

where the actions  and  represent building new weapons and refraining from build-

ing new weapons, respectively;   0 is the loss of a country that chooses  while its

rival chooses ;   0 is the gross gain of a country that chooses  while its rival

chooses  ; and  is the cost of armament, which is independently drawn from the 

, and constitutes country ’s private information.

2One interpretation is that the principal commits ex-ante to . A less literal, more interesting

interpretation is that  is a reduced form of a long-run price distribution, and that a patient principal

will have an incentive to develop a repulation for playing it.
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This model can be mapped into our X-game formalism, such that our notion of

equilibrium corresponds to symmetric Nash equilibrium in the Bayesian game. Let 

stand for the ex-ante probability that the opponent plays . The function  is the

net gain from playing  and is given by ( ) =  + ( − ) − . Proposition 1

thus implies that the unique symmetric Nash equilibrium strategy is “always ” if

armament costs are low in the sense that U [min{ } ] strictly FOSD . This result

is similar to Theorem 1 in Baliga and Sjöström (2004).

Application 3: Technology adoption in industries with network externalities

Many technological innovations exhibit network externalities, in the sense that a user’s

benefit from switching to a new technology depends (because of compatibility issues)

on the proportion of other users who also switch. Because these externalities have im-

portant implications for market competition between firms that offer such innovations,

they have received much attention in the I.O. literature. The following is a reduced

form of Farrell and Saloner (1985). There is a unit mass of firms in the industry. Each

firm chooses whether to switch to a new technology (action 0). The firm derives an

intrinsic benefit  from switching, which is independent of the other firms’ behavior.

This benefit is the firm’s private information and is i.i.d. across firms according to a

  over R. The gain from retaining the old technology for a firm of type  when a

fraction  of firms also retain it is ( ) = −  with   0.

Network externalities naturally give rise to a coordination problem that can result

in multiple equilibria. The above situation can be written as an X-game, where our

notion of equilibrium corresponds to Nash equilibrium in the population game. Using

Proposition 1, we can derive tight conditions for technology lock-in to emerge as the

unique equilibrium outcome. Specifically, if U [0 ] strictly FOSD  then all firms

remain locked in the old technology in Nash equilibrium. If U [0 ] does not FOSD ,

there exist Nash equilibria in which some firms switch to the new technology.

4 Quasi-Linear X-Games

In this section we extend our analysis to a larger class of X-games. We say that an

X-game h i is quasi-linear if ( ) satisfies the following properties:
(P1) ( ) is continuous in  and linear in 

(P2) For every  there is a unique () that solves ( ()) = 0.

(P3) ( ) · [− ()]  0 for every  6= ().
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Clearly, every linear X-game is also a quasi-linear X-game with () = + . Note

that the above properties imply that for any equilibrium , there exists a unique cutoff

∗ such that () = 1 (0) if   ∗ (  ∗). In addition, these properties also have the

following implication. Note that since  is linear in , it is either strictly increasing,

strictly decreasing or constant in .

Lemma 1 If  is strictly increasing / strictly decreasing / constant in , then () is

strictly increasing / strictly decreasing / constant (respectively).

Proof. Assume first that ( ) is strictly increasing in . Then 0   implies

(0 )  ( ) for any . In particular, (0 ())  0. Hence by (P3), () 

(0) Since by (P2), (·) is a function, we conclude that it must be strictly increasing.
Similarly, if ( ) is strictly decreasing in  then (·) is a strictly decreasing function.
Finally, if  is constant in , then by definition () is constant.

Define the following auxiliary function

̃ () =
(0 )

(0 )− (1 )

By (P1), ̃ is continuous. By (P2)-(P3), ̃ () ∈ [0 1] for every  ∈ [min{(0) (1)} (1)],
with ̃ ((0)) = 0 and ̃ ((1)) = 1. However, ̃ is not necessarily an increasing function.

Define the following continuous  over [min{(0) (1)} (1)]:

 () = max
∈[min{(0)(1)}]

̃ ()

Thus,  is the lowest non-decreasing function that lies weakly above ̃ .

Proposition 2 Let h i be a quasi-linear X-game. If  strictly FOSD  then there

exists an essentially unique equilibrium ∗ and this equilibrium satisfies (∗ ) = 1.

Conversely, if there exists an essentially unique equilibrium ∗ and this equilibrium

satisfies (∗ ) = 1, then  FOSD .

Proof. We consider two cases.

Case 1.  is strictly increasing in  (i.e., (0)  (1)).

(Sufficiency). Assume  strictly FOSD . Let ∗() = 1 for all  ∈  Then

((∗ ) ) = (1 ), and by (P3), (1 ) ≥ 0 for all  ≤ (1). By strict FOSD, any
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  (1) is not in . It follows that (1 ) ≥ 0 for all  ∈ , implying that 
∗ is an

equilibrium.

Suppose there exists an equilibrium 0 with (0 )  1. Therefore, there must

exist some 0  (1) such that 0 ∈  and 0() = 0 for all  ≥ 0. By (P3) and the

definition of equilibrium, this implies that ((0) )  0 for all   0. By (P1), ( )

is linear in  and so,

((0) 0) = (0 0) + (0)((1 0)− (0 0)) (1)

By the definition of ̃  (̃ (0) 0) = 0, i.e.,

(0 0) +
(0 0)

(0 0)− (1 0)
· ((1 0)− (0 0)) = 0

Since  strictly FOSD , we have (0)   (0). By definition,  (0) ≥ ̃ (0). Because

(1 0)  (0 0), it follows that ((0) 0)  0. By continuity, ((0) 0 + )  0 for

any small enough  a contradiction.

(Necessity). Assume that there exists an essentially unique equilibrium ∗ and that

this equilibrium satisfies (∗ ) = 1. This means that  must satisfy the following

two properties: (1 ) ≥ 0 for all  ∈ , and ((1)) = 1 In order not to have an

equilibrium  in which () = 0 for all  ∈ , it must be that (0 )  0 for some  ∈ .

This means that  must include values strictly below (0) Hence, ((0))  0 and  is

strictly above  at (0) and weakly above it at (1). Since  is a  it is upper-semi-

continuous. Hence, either  is strictly above  for all  ∈ ((0) (1)) (in which case
our proof is complete) or there exists ∗ ∈ ((0) (1)) such that  (∗) = (∗). Let us

show that this implies the existence of some ∗∗ ∈ ((0) ∗] such that ̃ (∗∗) = (∗∗).

If  (∗) = ̃ (∗), this is immediate. Now suppose  (∗)  ̃ (∗). Since  is an

increasing function, by the definition of  , there must be some 0 ∈ ((0) ∗) such
that ̃ (0) =  (∗) ≥ (0). By the intermediate value theorem, there must be some

∗∗ ∈ [0 ∗] such that ̃ (∗∗) = (∗∗). Plug the definition of ̃ (∗∗) into (1), and obtain

(̃ (∗∗) ∗∗) = ((∗∗) ∗∗) = 0. But this means that in contradiction to our initial

assumption, there exists an equilibrium 0 in which 0() = 1 if and only if  ≤ ∗∗.

Case 2.  is not strictly increasing in  (i.e., (0) ≥ (1)).

(Sufficiency). In this case  is a degenerate distribution that puts a mass of one on

(1). If  strictly FOSD  then  ≤ (1)  (0) for all  ∈ , with a strict inequality

for some  ∈ . Hence, (1 ) ≥ 0 for all  ∈ , with a strict inequality for some
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 ∈ . Therefore, a function ∗ that satisfies ∗() = 1 for all  ∈  is clearly an

equilibrium.

Suppose there exists an equilibrium 0 with (0 )  1. Consider equation (1).

Since 0  (1)  (0), both (0 0) and (1 0) are positive, and therefore ((0) 0) 

0. The continuity of  in  then implies that ((0) 0 + )  0 for any small enough

 a contradiction.

(Necessity). Since the support of  is {(1)}, we have that  FOSD 

When  is interpreted as a price for participation, Proposition 2 has a simple implica-

tion for the random price scheme that maximizes revenues subject to full participation.

Corollary 1  is a solution to the problem

sup


Z


∗()()

subject to the constraint that ∗ is an essentially unique equilibrium of ( ) and

(∗ ) = 1.

The following applications illustrate the value of extending our framework from

linear to quasi-linear X-games.

Application 4: Moral hazard in teams

Consider a project which is carried out by a team of two agents, who need to choose

between exerting effort and shirking. Exerting effort entails a cost of 1 while shirking

is costless. The probability that the project succeeds depends on the agents’ effort

decisions: if both exert effort the project succeeds with probability one; if only one

exerts effort the probability of success is   1
2
; and if both shirk the project fails for

sure. An agent’s payoff matrix is as follows:

\  

 −− 1 −− 1
 − 0

Now suppose that a principal employing the agents pays a transfer of − to agent 
conditional on a successful project, where  is  according to some   that the

principal commits to ex-ante. A stochastic transfer captures occasional bonuses, and

the identity of the transfer distribution for the two agents may represent an ex-ante

fairness norm.
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This situation can be described as a quasi-linear X-game, where  is the probability

that the opponent exerts effort, and an agent’s gain from exerting effort is

( ) = (2 − 1)− (+ 1)

It is straightforward to verify that ( ) satisfies properties (P1)-(P3). In addition,

the function ̃ is defined over the interval [−1−1(1− )], and given by

̃ () =
+ 1

2− 

Note that  = ̃ . By Proposition 2, if  strictly FOSD , then  induces a unique

Bayesian Nash equilibrium in which both agents always exert effort. If  does not

FOSD , there exist Nash equilibria under  in which agents shirk with positive prob-

ability.

The expected transfer in absolute terms according to  is

1

1− 2 ln(
1− 


)

By comparison, if the principal were restricted to deterministic transfer, he would have

to commit to a transfer above 1 (in absolute terms) in order to induce effort in every

equilibrium. For illustration, when  = 1
4
, randomization reduces the expected transfer

by roughly 45%.

This example is similar to the moral hazard problem studied in Winter (2004),

where a group of agents independently decide whether to make a costly investment in

a project, where the probability of the project’s success increases with the number of

agents who invest. Instead of a personalized random transfer (conditional on success)

which is ex-ante identical, Winter (2004) considered a profile of personalized determin-

istic transfers (representing ex-post discrimination among agents). He showed that the

profile of transfers that induces a unique Nash equilibrium in which all agents invest is

discriminatory if the success probability is supermodular in the number of agents who

invest. (For related models, see Spiegler (2000) and Sákovic and Steiner (2012).)

Application 5: Investment by risk-averse agents

There is a unit mass of agents. Each agent  has initial wealth , which is only known

to him. The distribution of initial wealth is common knowledge. The agent’s utility

from a prospect that gives a payoff of  is ln(+). Each agent has to decide whether

to invest in a risky project. If he invests, then with probability (1 + ) the project

11



results in a bonus   0 (i.e.,  = ), where   1
2
and  is the total fraction of agents

who invest. With probability 1−(1+), the project results in a loss of   (1−)
(i.e.,  = −). Assume the distribution of wealth satisfies  ≥  for each  and that

 is large enough such that an agent with initial wealth  will strictly prefer to

invest even if no one else does.3 If an agent does not invest, his total wealth remains

equal to his initial wealth. We are interested in the following question: for which

distributions of initial wealth does this game have a unique symmetric Bayesian Nash

equilibrium in which all agents invest?

To address this question, we map this investment game into a quasi-linear X-game.

Let  = − (minus the agent’s initial wealth), and use the above definition of . Then,
( ) is the gain from investing for an agent with initial wealth − when a total
fraction  of the agents invest:

( ) = (1 + ) ln(
−

+ 
) + ln(

+ 


)

Clearly, ( ) is continuous in . Since  = − and  ≥  it follows that the function

is linear and increasing in  in the relevant domain. To verify (P2) and (P3) note that

( ) asymptotes to zero as → −∞, is increasing up to  = −(−(1−)) and
then decreases thereafter approaching −∞ as →−. This implies that if ( )  0
for some  then for any   0 the function ( ) will cross the horizontal axis only

once and from above. Properties (P2) and (P3) then follow from our assumption that

(0−)  0 and from the fact that ( ) increases in 

By Proposition 2, if the wealth distribution strictly FOSD (recall that  = −)

 () =
1


· ln(+ )− ln()
ln(+ )− ln(−)

− 1

then all agents invest in equilibrium, whereas if the wealth distribution does not FOSD

 , there are equilibria in which some agents do not invest. It can be verified that the

function  is increasing over the interval [(0) (1)].

5 Revenue Maximization

In this section we interpret  as a monetary transfer from an agent to a “planner”

conditional on the agent “participating” (() = 1). The planner’s payoff depends

on the participation rate and on the expected transfer he receives. The planner’s

3I.e.,  is large enough such that  ln(2) + (1− ) ln(1− 

)  0
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objective is to design a transfer scheme that maximizes his expected payoff subject to

the constraint that the transfer induces a unique equilibrium participation rate.

To solve this design problem the planner first needs to derive for each possible

participation rate  the optimal distribution of transfers  that induces an essentially

unique equilibrium in which a fraction  of the agents choose 1 The planner can then

choose the pair ( ) with the highest expected payoff. The previous sections focused

on the case in which the planner wished to implement  = 1, but there are situations

in which   1 may be optimal. Recall the government-program example of Section

2. If the government faces capacity constraints, it may wish to implement only partial

participation.

We focus on quasi-linear X-games. We say that  implements ∗ ∈ [0 1] in ( ) if
there exists an essentially unique equilibrium ∗ and this equilibrium has the property

that (∗ ) = ∗. Let (∗) denote the set of s  that implement ∗. For a given

∗, the planner’s problem is

sup
∈(∗)

Z


∗()()

subject to the constraint that ∗ is an equilibrium in ( ). (By the definition of(∗),

∗ is thus the essentially unique equilibrium.) Thus, a  that solves the planner’s

problem implements the participation rate ∗ at the highest possible revenue.

Fix ∗ ∈ (0 1), and define

̃∗() =
(0 )

(0 )− (∗ )

For every  ∈ [min{(0) (∗)} (∗)], define

∗() = max
∈[min{(0)(∗)}]

̃∗()

As in the previous section, it can be verified that ∗ is a well-defined  .

Proposition 3 Fix ∗ ∈ (0 1). The following distribution solves the planner’s prob-
lem. With probability ∗, it chooses a value  from [min{(0) (∗)} (∗)] according to
the cdf ∗(), and with probability 1− ∗, it chooses a value  above max{(0) (1)}.
Proof. Consider a solution  ∈(∗), and fix an equilibrium ∗ such that (∗ ) =

∗. Thus, there are values of  for which ∗() = 0. Specifically,Z
|∗()=0

() = 1− ∗
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Construct a  0 that shifts all the weight on {|∗() = 0} into values of  above
max{(0) (1)}. Define 0 as follows:

0() =

(
1  ∗() = 1

0    max{(0) (1)}

We need not pin down 0 for other values of  because they lie outside the support of

0. Note that (0 0) = ∗.

Let us show that 0 is an equilibrium. First, by the monotonicity of () and the

definition of (0) and (1), we have 0() = 0 for every   max{(0) (1)}. Second,
since ∗ is an equilibrium in h i and since (0 0) = (∗ ) = ∗ and the supports

of  and 0 coincide over the set { ≤ max{(0) (1)}|∗() = 1}, it must be the case
that for every  ≤ max{(0) (1)} in 0, (

∗ ) ≥ 0. It follows that w.l.o.g we can
restrict attention to ’s that assign probability 1−∗ to   max{(0) (1)}. Our task
now is to derive the structure of such a solution  conditional on  ≤ max{(0) (1)}.
Given any , define the  ∗() = min{1 ()∗} over (−∞max{(0) (1)}].

Let  = ∗, and define ̃( ) ≡ ( ). Define ̃() by ̃( ̃()) = 0. Note that

since  is proportional to , if ( ) is a quasi-linear X-game, then so is (̃ ∗). By

construction, ( ∗) = 1 for every equilibrium  in (̃ ∗) if and only if  implements

∗ in ( ). By Corollary 1, the 

∗() = max
∈[min{̃(0)̃(1)}]

̃(0 )

̃(0 )− ̃(1 )

defined over [min{̃(0) ̃(1)} ̃(1)] solves the optimization problem

sup
̃

Z


∗()̃()

subject to the constraint that ∗ is an essentially unique equilibrium in (̃ ̃) andZ


∗()̃() = 1

Using the definitions of , ̃ and ̃, we obtain ∗() = ∗() over the interval

[min{(0) (∗)} (∗)].

Application 1 revisited

Recall the linear X-game described in Application 1, where ( ) = −1 + 2 − .

Unlike the original application, assume that the principal derives direct utility from
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the agent’s behavior. Specifically, the principal’s net payoff under ( ) is

(( )) +

Z


()()

where () is the principal’s gross payoff when the agent’s long-run frequency of action

1 is . We assume that  is concave, twice differentiable and attains a unique interior

maximum. This captures a trade-off between the benefit from inducing a "good" habit

and the cost of accommodating such a habit (for instance, the socially optimal level of

recycling may be interior due to processing costs).

By Proposition 3, the least costly random transfer scheme that implements a given

interior ∗ has the following structure: with probability 1 − ∗,   1 (the agent will

choose action 0 when faced with such realizations of , independently of ); and with

probability ∗,  is uniformly distributed over the interval [−1 2∗− 1]. It follows that
the optimal ∗ will be chosen to maximize

(∗) + ∗(∗ − 1)

If  is sufficiently concave (say, 00  −2), ∗ is given by the FOC 0(∗) = 1− 2∗.

Application 7: Selling to a consumer with reference-dependent preferences

The following is a variation on Heidhues and Kőszegi (2012). A monopolist interacts

with a single consumer with reference-dependent preferences, who chooses according

to the concept of PE (as in Application 1). The monopolist faces a constant marginal

cost  ≥ 0. It commits ex-ante to a random price strategy. The consumer’s utility from
not buying is 0, and his utility from buying is 1 +  · Pr(buying), where Pr(buying) is
the long-run frequency of buying induced by the monopolist’s random price strategy

and the consumer’s own purchase strategy (namely, his decision whether to buy as a

function of the price realization he faces).

This model can be written as a linear X-game, where  is the product price, 

is the random price strategy, () = 1 means that the consumer buys at the price ,

 = Pr(buying), and ( ) = 1 +  − . Thus, () = 1 + . An equilibrium

in the X-game corresponds to a PE defined w.r.t the consumer’s reference-dependent

preferences. The monopolist’s profit given ( ) is
R

(− )()().

Let us first consider the case of   0 (studied by Heidhues and Kőszegi (2012)).

This captures an "attachment effect", i.e., an increase in the consumer’s willingness

to pay for the product as a result of being accustomed to buying it. By Proposition

3, the most profitable random price strategy that implements Pr(buying) = ∗ has
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the following structure: with probability 1 − ∗,   1 +  (the consumer will not

buy when faced with such a price realization, independently of ); with probability

∗,  is uniformly distributed over the interval [1 1 + ∗]. The induced profit for the

monopolist is

∗
∙
1 + (1 + ∗)

2
− 

¸
Therefore, if   1+2, the monopolist will charge a price that is uniformly distributed

over the interval [1 1 + ], and the consumer will always buy. This strategy extracts

(in expectation) the consumer’s bare willingness to pay plus half the attachment-effect

term. If   1 + 2, the monopolist will opt out.4

Now suppose that   0. Here the consumer exhibits an "anti-attachment" or

"boredom" effect: his willingness to pay for the product is a decreasing linear function

of the long-run frequency of buying. Because (0)  (1) in this case, an optimal

random price strategy that implements Pr(buying) = ∗ assigns probability 1− ∗ to

  1 and probability ∗ to (∗) = 1+∗. The monopolist will choose ∗ to maximize

∗ [1 + ∗ − ]

Hence, as long as   1, ∗ = ( − 1)2 and (∗) = (1 + )2, whereas if  ≥ 1 the
monopolist will opt out. Thus, the product price will fluctuate between two levels: a

high price for which not buying is a dominant action, and a lower price for which buying

is the only optimal action given the upper bound on the long-run buying frequency

implied by the high price.
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