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Abstract: We present and axiomatize a model that combines and gener-

alizes theory-based and analogy-based reasoning in the context of decision

under uncertainty. An agent considers a set of theories describing the data

generating process that she observes, and her beliefs over theories are given

by decision weights. She also remembers and puts weight on similarity to

past cases. When a case is added to her memory and a new problem is

encountered, two types of learning take place. First, the decision weight as-

signed to each theory is multiplied by its conditional probability (given the

realized case). Second, subsequent problems are assessed for their similarity

to past cases, including the newly-added case. If no weight is put on past

cases, the model is equivalent to Bayesian reasoning over the theories. How-

ever, when this weight is positive, the learning process continually adjusts

the balance between case-based and theory-based reasoning. In particular,

a “black swan” which is considered a surprise by all theories would shift the

weight to case-based reasoning.
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Theories and Cases in Decisions under Uncertainty

1 Introduction

1.1 Motivation

Savage’s (1954) derivation of expected utility maximization is a powerful

argument for the supposition that people behave as if they have subjective

probabilities, but it says little about the nature of such beliefs. This pa-

per models agents who form beliefs based on general theories as well as on

specific past cases.1 The two approaches to belief formation depict com-

plementary modes of reasoning and have been studied independently of one

another. By contrast, introspection, as well as some evidence, suggest that

individuals may take into account both criteria in their belief formation

process.

To illustrate, consider the attack on the World Trade Center on Septem-

ber 11, 2001; the New York Stock Exchange remained closed for the following

five days. A day before it was reopened, a prominent market analyst was

asked what the Dow Jones Industrial Average would do on the following

day. His answer (a seven percent decline) was based on the drop in the

Dow following similar attacks on the US, most notably Pearl Harbor. This

answer (which proved to be quite accurate, perhaps because other analysts

were focusing on the same past cases) was fully case-based. If we had asked

the same analyst for his predictions the day before the attack, it is likely

that his answer would have been based on theories describing distributions

of random variables, perhaps with a Bayesian beliefs over these theories.

However, each of these theories would almost certainly have given very low

probability to an attack like that of September 11. An agent who uses only

theories would have had to make predictions by appealing to those theo-

1There have been attempts to complement the general paradigm by a model of the

way that beliefs are formed. The works closest to ours are Gilboa and Samuelson (2012),

who address various ways in which similarity to past-cases can be used to assess proba-

bilities, and Gilboa, Samuelson, and Schmeidler (2013), who consider a unified model of

belief formation. However, the former ignores general rules, and the latter only models

deterministic ones. The present paper focuses on the combination of probabilistic theories

with case-based reasoning.
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ries that were least wrong, as it were. By contrast, the expert in question

switched to a completely different mode of reasoning. It seemed that, given

an event that was surprising to all theories, his weight of reasoning shifted

from the theories to cases. He wasn’t only learning which theory is more

trustworthy than others, but also how all theories taken together should be

weighed in relation to the less ambitious mode of reasoning by analogies.2

This paper develops a model of decision making that combines theory-

based and case-based reasoning and deals with some of their limitations.

When evaluating the probability of an outcome, our agent looks at the

probabilities of this outcome according to each theory she entertains, but

also at similar past cases in which this outcome has occurred. The relative

weight placed on theory-based, as compared to case-based reasoning depends

on several factors. First, it depends on past success of the theories the agent

entertains; if they all seem to do poorly, the relative weight of case-based

reasoning will be higher. Second, the similarity of past cases would also

matter; a very novel problem would be evaluated mostly by general theories,

in the absence of concrete experience. Finally, the balance between the two

modes of reasoning may also be a personal trait, which might depend on

cognitive style, education, and so forth.3

Section 2 presents the general model of belief formation and discusses

the way it captures learning. Section 3 provides an axiomatic foundation

and an attendant representation theorem. It assumes that, for the purposes

of elicitation, we may collect data on preferences over acts, each having a

specific history (associating payoffs to the problems in which the act has

indeed been chosen) and a specific payoff given each theory. Axioms on

preferences over such acts identify the agent’s (i) similarity function, between

the current problem and sets of past problems; (ii) beliefs over theories; (iii)

relative weight of the two modes of reasoning, and (iv) utility function.

2In a similar vein, Giacomini, Skreta and Turén (2020) report that professional infla-

tion forecasters typically act as if they are Bayesian, until forced by a financial crisis to

reconsider their models. Again, they may come up with probabilistic beliefs, but these are

not always obtained just by updating the relative probabilities of the theories; at times

of crisis the very possibility of theorizing is questioned, and the agent may rely on other

modes of reasoning.
3In this sense the preference for general theories (vs. specific analogies) is similar to

risk aversion, but it pertains to beliefs rather than to tastes.
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Section 4 presents some implications of the model. Section 4.1 explores

the comparative statics of the model, explaining how we can characterize

people as being relatively prone to rely on either theory-based or case-based

reasoning. Section 4.2 formulates the classic Likelihood Principle within

our framework by describing the revision of beliefs over theories as new

cases are added to the history. As an illustration of the learning process,

we discuss how the interplay between cases and theories may amplify the

recency effect. Section 5 presents an example of how different modes of

reasoning might affect play in finitely repeated games. Finally, Section 6

contains some concluding remarks and directions for future research. All

proofs are collected in the Appendix.

2 The Model

2.1 Belief Formation

Let P be a set of problems, A a set of acts, and R a set of outcomes. A

case is a triple (p, a, r), interpreted as follows: p denotes the circumstances

of a decision problem; a is the act chosen in it; and r is the outcome that

resulted. The set of all cases is C ≡ P×A×R. Histories are finite sequences

of cases, and the set of all histories is H ≡ ∪n≥0Cn. We will assume without

loss of generality that every problem can be encountered at most once in

every history H ∈ H. Formally, we are only interested in histories H =

(ci = (pi, ai, ri))i≤n where pi 6= pi′ for i 6= i′. It is therefore convenient to

think of P as an infinite set. However, in each history only finitely many

problems have been encountered. For simplicity, we also assume that A and

R are finite.

Let T be a finite set of theories, where each theory provides a probabilis-

tic prediction of the outcome r ∈ R given (i) a history H ∈ H; (ii) a new

problem p ∈ P ; and (iii) an act a ∈ A. Formally, a theory is a function

t : H× P ×A→ ∆ (R) .

We will only be interested in theories t (H, p, a) for which p does not appear

in history H (that is, if H = (ci = (qi, ai, ri))i≤n, the notation (H, p, a)
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implicitly assumes that p 6= qi for all i ≤ n).4

The agent faces a decision problem p and a history H. For each act a,

she would like to generate beliefs over the possible outcomes in R. In this

paper we consider probabilistic beliefs. The agent thus asks herself, given

history H = ((qi, ai, ri))i≤n and the theories contained in T , how likely is an

outcome r to result from act a in the current problem p? She finds support

for the beliefs that outcome r would indeed transpire from two sources: the

similarity of the current problem to past cases, and the likelihood of the

theories. More precisely, the agent has:

(i) A similarity function σ, which is defined over sets of past problems

and the current problem p, formally

σ : 2P × P → R+, (1)

where σ is non-decreasing in its first argument with respect to set

inclusion; and5

(ii) A probability measure ν, defined over theories:

ν : 2T → [0, 1].

These are used as follows. For a given history H = ((qi, ai, ri))i≤n and act

a ∈ A and for each r ∈ R, the agent considers the weight

σ({q ∈ P |(q, a, r) ∈ H}, p),

which is the similarity of all past problems in H in which a was chosen

and r resulted. We can think of the agent as taking into account all these

cases as supporting the prediction of r at the current problem p, should a

be chosen, whereas all other cases—in which a was chosen but a different

outcome (ri 6= r) transpired, or in which a has not been chosen to begin

with—do not provide support for this prediction.

4We exclude from consideration a host of objects that intuitively lie between cases and

theories. For example, one might think of incorporating ambiguity by examining functions

that map from H× P ×A into capacities (rather than probability measures) over R.
5In fact, we will only use the function σ for pairs (P0, p) such that P0 is finite and does

not include p.

5



Next the agent considers all theories, where each theory t ∈ T predicts

that r will occur with probability t (H, p, a) (r). The agent’s belief in the the-

ory is captured by ν (t |H ) ≥ 0 and the weighted sum of the supports is thus∑
t∈T ν (t |H ) t (H, p, a) (r). Taken together, the support for the prediction

of r is

W ( r |H, p, a) ≡ σ({q ∈ P |(q, a, r) ∈ H}, p) +
∑
t∈T

ν (t |H ) t (H, p, a) (r) .

(2)

Assuming that (2) is positive for at least one r, we may also normalize the

vector of weights to obtain a probability vector over R:

w ( r |H, p, a) =
W ( r |H, p, a)∑
r∈RW ( r |H, p, a)

.

Two comments are in order. First, at this point we have no insight

into the relative magnitudes of the similarity function σ and the probabil-

ity measure ν, and hence of the weights σ({q ∈ P |(q, a, r) ∈ H}, p) and∑
t∈T ν (t |H ) t (H, p, a) (r) attached to the various outcomes by cases and

theories. These relative magnitudes will be uniquely determined in our

representation theorem, and can be interpreted as capturing the decision

maker’s cognitive style, i.e., her tendency to rely relatively heavily on either

cases or theories in her reasoning.

Second, the way past cases are used in this model is more general than the

case-based model of Gilboa and Schmeidler (1995). In the latter, similarity

is evaluated between pairs of problems, and is aggregated additively over

problems in history. That is, it is assumed that

σ (P0, p) =
∑
q∈P0

s (q, p)

for some similarity function s : P × P → R+.6 The main reason to consider

non-additive aggregation is that learning in general, and statistical learning

in particular, doesn’t follow linear formulas. For example, if a specific out-

come r resulted in all cases in history in which act a was chosen, the agent

6In fact, the term “similarity” is more intuitive in the original usage. A new problem

is similar to each of past problems, not to a set of problems. However, in the context of

the general model it seems clearer to retain the familiar term “similarity” rather than to

introduce a new one.
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would have support for the supposition that a would also lead to r in the

present problem. But this support would not grow linearly in the number of

cases in which a was chosen. The first 100 cases would reach near certainty,

while the following 100 would add little to the belief in this prediction. This

is captured by a set function σ (·, p) which need not be additive with respect

to disjoint unions of its first argument.

2.2 Learning

Learning is performed by the addition of cases to history, and the attendant

updating of the probability weights of the theories. Consider a history H =

((qi, ai, ri))i≤n, leading to a probability assessment ν ∈ ∆(T ), and a new

problem p. Assume that, in this problem, act a was chosen and outcome r

resulted. The first component of learning is simply the addition of the new

case (p, a, r) to history, so that the new history is

H ′ = ((qi, ai, ri))i≤n+1

with (qn+1, an+1, rn+1) = (p, a, r). The second component is the updating

of the agent’s beliefs on theories:

ν
(
t
∣∣H ′ ) =

ν ( t |H ) t (H, p, a) (r)∑
t∈T ν ( t |H ) t (H, p, a) (r)

.

This second component is akin to Bayesian updating: given the realized

outcome r at the observed (p, a), the agent revises her assessment of theory

t by multiplying her initial belief of t by the conditional probability that

the theory used to assign to outcome r (at problem p following history H)

should act a be chosen. If ∅ denotes the empty history, then ν ( t |∅) is

the agent’s prior belief in theory t, whereas ν ( t |H ′ ) is her posterior belief.

Note that our updating rule allows for the possibility of experiencing a new

case which rules out particular theories. In this context, an agent would be

expected to have a smaller set of theories, consisting only of those that were

not ruled out by evidence. In turn, the relative importance of theories may

well decrease.

Observe that in our formulation theories predict neither the problem p

which may arise nor the agent’s choice a. The former limitation may be
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relaxed with no difficulty: we may let the theories predict also the circum-

stances that the agent would encounter, and penalize them for “wrong”

predictions as we do for “wrong” predictions of outcomes. The latter limi-

tation is inherent to the model: as the agent has beliefs over the theories, if

these suggest probabilities over acts, the agent would have beliefs over the

act she is about to be taking. This is a type of circularity that we would

like to avoid, as is standard in decision theory.

If the agent ignores similarity to (sets of) past cases, so that σ ≡ 0, our

model boils down to a Bayesian model in which beliefs are generated by

general theories, as is standard in Bayesian statistics. The agent starts with

prior beliefs over theories and updates them according to Bayes’s law. The

introduction of the similarity function makes the model non-Bayesian. The

similarity function σ (·, p) is defined for each problem p independently, and

we have not imposed any constraints on its magnitude relative to ν. Thus,

it is possible that the agent encounters a very novel situation p, so that

σ (·, p) ≡ 0 and she behaves at p as if she had Bayesian beliefs generated

by the theories. It is also possible that σ takes very large values relative to

those of ν, so that case-based reasoning is much more important at p than

is theory-based Bayesian reasoning.

3 Elicitation

Given a history H = ((qi, ai, ri))i≤n and a new problem p, we wish to elicit

the agent’s subjective parameters that feed into the belief formation process

and the agent’s utility function. These former include (i) the similarity

function over sets of past problems (to the current problem p) and (ii) the

subjective probability of theories. Observe that, by eliciting their values

we also implicitly elicit the relative weight of case-based and theory-based

reasoning.

3.1 Payoffs

Savage (1954) begins with the primitive concepts of a set of states and a set of

outcomes. Acts are then functions that map from the set of states to the set

of outcomes. Savage’s elicitation result requires that the agent’s preferences
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rank the set of all possible acts, i.e., the set of all possible functions from

states to outcomes. This requirement poses no formal difficulties, though

tension can arise when intuitive interpretations are attached to some of the

acts.7 Our elicitation result will similarly require preferences over a rich set

of alternatives, with tensions again arising out of the fact that we think of

each case specifying an intuitively interpreted act.

We introduce a set of payoffs G. Our basic requirement (Assumption 1)

is that G be a connected topological space. This will be the case if G is

a convex subset of R, allowing us to interpret elements of G as monetary

payoffs, or a convex subset of Rd (for a natural number d), allowing us to

think of elements of G as commodity bundles.

The set of outcomes R and the set of payoffs G are distinct. We interpret

the elements of R as material outcomes. For example, an outcome ri may

specify that a politician was caught in scandalous circumstances or that a

financial asset increases in value. An element of G identifies the payoff to

the agent associated with this outcome, such as the loss of one’s income if

the scandal is ruinous, or the financial windfall if the scandal facilitates a

lucrative book deal, or the financial gain or loss if one has either purchased or

shorted the asset. Importantly, the agent can imagine different payoffs in G

associated to any outcome in R. Just as with the umbrella in Savage’s world,

once we allow the possibility that an agent may earn a positive payoff from

the outcome increased-asset-value and a negative payoff from the outcome

decreased-asset-value, we must also consider possibilities such as a negative

payoff from the outcome increased-asset-value and a positive payoff from

the outcome decreased-asset-value. The description of the case specifies the

material outcome, but leaves the agent free to (perhaps counterfactually)

consider different payoffs that could be associated with this outcome.

If, like Savage (1954), we were concerned only with characterizing pref-

erence orders without mentioning learning, we could dispense with the out-

come set R and work only with the set of payoffs G. If we were concerned

7To echo a well-known example, the state space {rain, sun} and outcome space {wet,

dry-and-encumbered, dry-and-unencumbered} allows one to examine actions interpreted

as carrying an umbrella (rain→dry-and-encumbered, sun→dry-and-encubered) and not

carrying an umbrella (rain→wet, sun→dry-and-unencumbered), but then also requires

the agent to evaluate the act (rain→dry-and-unencumbered, sun→dry).
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only with beliefs and their updating without mentioning preferences, we

would dispense with the payoffs in G and work only with the set of out-

comes R. Given our aspiration to not only characterize preferences but

examine the nature and updating of the beliefs behind these preferences, we

need both sets. Intuitively, one may think of R as identifying features of the

external world about which the agent may learn, and G as identifying the

implications of these features for the agent’s payoff.

For each act a we consider the set of cases in which it has been chosen

(in the given history H),

Ha = ((qi, ai, ri))i≤n,ai=a

and attach a payoff vector xa : Ha → G to these cases. We also attach

a payoff vector to the theories, ya : T → G. As Section 3.2 explains, we

then ask the agent to rank profiles of the form (xa, ya) that are payoff (G)-

valued vectors in the appropriate space. (Explicitly, (xa, ya) ∈ Gm where

m = |Ha|+ |T |.)
The interpretation of a vector of payoffs xa is as follows. We ask the

agent to imagine an act that was chosen precisely in the cases Ha, and

yielded payoffs xa ∈ G|Ha| in those cases. The agent is capable of assessing

various vectors xa. For example, we may consider a financial crisis as the

outcome ri, but ask the agent to consider either a high payoff (from an appro-

priately contrarian strategy that flourishes in a crisis) or a low payoff (from

a risky strategy and subsequent bankruptcy). Notice that when the agent

is asked to consider the payoffs in xa that might be attached to the cases

Ha, she is not asked to imagine different outcomes ri. The outcomes ri are

determined by the cases actually experienced, and are relevant for updating

the agent’s beliefs over her theories. However, the agent is capable of eval-

uating arbitrary payoff vectors that might be attached to these outcomes,

giving us the sufficiently rich preference domain needed for a representation

result.

The vector of payoffs ya is to be interpreted as specifying, for each theory

t ∈ T , the payoff ya(t) that will materialize should theory t be correct and

action a taken. Observe that, as opposed to pulling balls out of urns, the

resolution of this uncertainty is not immediate. It may only be in the limit

that we can tell which theory is true. Yet, there is no conceptual difficulty
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in imagining contracts that will guarantee given payoffs in the limit. For

example, uncertainty about global warming or the success of autonomous

cars will only be resolved years hence. Economic agents buy and sell assets—

ranging from real estate to equity—that are contractual agreements over

payoffs in the long run. Observing whether someone purchases a coastal

house below sea level may give us a hint about one’s belief in the extent of

global warming. This economic decision can be made at present, and reflect

beliefs in theories that will only be proven true or false in the long run.

3.2 Profiles

Given history H = ((qi, ai, ri))i≤n and the set T of theories, for each act

a ∈ A we consider the set of all a-profiles

Fa ≡ GHa∪T = { f | f = (xa, ya) : Ha ∪ T → G} .

For any two distinct acts a, b ∈ A, the agent is assumed to have prefer-

ences between any two profiles, f ∈ Fa, g ∈ Fb. We also define

F = ∪a∈AFa.

The agent’s preferences thus allow her to answer questions of the fol-

lowing form: “Assume that act a resulted in the past profile xa in those

problems in which it was chosen, and that it will yield future profile ya for

the theories. Assume further that act b resulted in the past profile xb in

those problems in which it was chosen, and that it will yield profile yb for

the theories. Would you rather choose a or b?” The agent thus calls upon

both her past experience and her future expectations in evaluating the two

acts. The agent is capable of reasoning about the desirability of a boxing

match with the reigning boxing champion under the presumption (or the

future profile) that the agent will thereby win a great deal of money, even

if she has no box-office drawing power, and the agent is similarly capable of

reasoning about such an act under the presumption (or the past profile) that

she has won a great deal of money in each of her previous boxing matches,

even if she did not.

For any act a ∈ A, the set of all possible past profiles is given by GHa . A

typical case (qi, a, ri) ∈ Ha has actually occurred, in which the agent chose
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act a, the outcome was ri, and the agent received some payoff. However, we

ask the agent to imagine the desirability of the act had the payoff in this

case been different. We can interpret this as reflecting the agent’s ability to

engage in counterfactual reasoning.

In presenting classical axiomatic results such as Savage’s (1954), one

thinks of elicitation of beliefs given preferences between acts, i.e., functions

from states of the world to outcomes, which are equivalent to our payoffs.

It is usually assumed that the attendant payoffs will soon be known. Thus,

in Savage’s omelette example, one will learn whether the sixth egg is rotten

just after the agent makes the decision. By contrast, our payoff profiles allow

a more nuanced relationship with time: past profiles involve replacing the

payoffs, which are known to have occurred, by counterfactual ones, whereas

theory-dependent, future profiles will have their payoffs determined only in

the long run.

Both of these may seem to be problematic for tests of our axioms, and

they may suggest that the axiomatization is more of a gedankenexperiment

than an actual elicitation procedure. Notice, however, that similar prob-

lems arise with applying Savage’s model to many set-ups that go beyond

the omelette example. When Savage (1954) is cited as a reason to believe

that agents have a common prior over their types (as in Harsanyi (1967-68)),

which they update to posteriors once each knows her own type, the Savage

questionnaire required to elicit preferences also involves hypothetical ques-

tions. And, similarly, when Savage’s model is used to justify prior beliefs

over outcomes such as global warming, one needs again to imagine uncer-

tainty that will not be resolved in the near future. More importantly, these

limitations do not render the preferences we deal with inherently unobserv-

able. Acts with different past payoffs than those actually experienced can

be used in experiments.8 For example, an agent may be asked to make in-

vestment decisions in assets, where all the information provided about them

is their past performance in given cases. And betting about long-run payoffs

can be observed when agents purchase assets such as real estate.

8Bleichrodt, Filko, Kothiyal and Wakker (2017) show how payoffs from past cases can

be engineered so as to elicit the preferences associated with case-based decision theory.
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3.3 Preferences

Our primitive is a binary relation %H,T on F describing preferences over

profiles for a fixed problem p, which depends on the history H of experienced

cases and the set T of envisaged theories.

We do not assume that this binary relation is complete. Since the agent

is asked to imagine different payoffs of acts in problems in which they were

actually chosen, we will not ask her to compare pairs of vectors of payoffs

defined over the history of the same act. In particular, we do not assume

the agent ranks two profiles such as f = (xa, ya) , f
′ = (x′a, y

′
a) : Ha∪T → G

that are defined over the history of the same act. Beyond this restriction,

we will assume that preferences are complete, so that, for any distinct acts

a, b, the vectors (xa, ya), (xb, yb) can be compared for any xa, xb, ya, yb.

Returning to our example, the agent is allowed to consider whether she

would rather fight the reigning boxing champion (act a) or not (act b) under

the presumption that she has won great sums of money in the previous

problems Ha in which she chose to fight. She is also allowed to consider

whether she would rather fight the reigning boxing champion (act a) or

not (act b) under the presumption that she has lost disastrously in the

previous problems Ha in which she chose to fight. However, she is not asked

to choose between (i) fighting under the presumption that she has been

earned great sums in the previous problems Ha and (ii) fighting under the

presumption that she has lost disastrously in the previous problems Ha.

Under some richness conditions, preferences between such profiles f and f ′

will follow from the preferences between profiles defined over different acts

and transitivity.

The set of future profiles GT is a subset of all profiles, and it represents

the profiles of acts with empty histories. Because preferences are defined

directly on profiles, we implicitly assume that two acts with empty histories

and the same predicted consequences are identical. The restriction of %H,T
to GT is denoted by %T . Moreover, we will use the notation % to refer to

a binary relation defined on G as usual: For every α, β ∈ G, α % β if and

only if (α, α, . . . , α) %T (β, β, . . . , β). For α ∈ G, the element α stands for

the constant profile which yields α on the appropriate domain.

For a ∈ A, f ∈ Fa, α ∈ G, and s′ ∈ Ha ∪ T , we denote by α{s′}f the
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profile in Fa which yields α in s′ and f(s) for all s 6= s′. This definition can

be used recursively, so that, for α, β ∈ G and s′, s′′ ∈ Ha ∪ T, s′ 6= s′′, the

profile α{s′}β{s′′}f in Fa yields α in s′ and (β{s′′}f)(s) for all s 6= s′.

For any a ∈ A, we say that s ∈ Ha∪T is null on F ⊆ Fa if α{s}f ∼H,T f
for all α{s}f and f in F .

3.4 Assumptions

A few mathematical notions are needed. First, we recall that a capacity

is a monotone and normalized set function that is not necessarily additive.

That is, a capacity on a finite set S is a set function σ : 2S → [0, 1] such

that: (i) σ(∅) = 0; (ii) A ⊆ B implies σ(A) ≤ σ(B); and, (iii) σ(S) = 1.

We say that a set function σ : 2S → R+ is a pseudo-capacity if it satisfies

conditions (i) and (ii) and σ(S) ∈ [0,∞). It is convenient to condition on

the fixed problem p and note that the function σ in (1) induces a pseudo

capacity σ : 2P → R+ (for which we retain the name σ) and for a history H

to adopt the shorthand notation σ(H) for σ({q ∈ P : (q, ai, ri) ∈ H}).
Second, we assume throughout the following:

Assumption 1 The set G is a connected topological space (Simmons 1983,

p. 143) and, for every a ∈ A, the set Fa is endowed with the product topology.

In our leading interpretations of G as the set R of monetary payoffs or the

set Rd of commodity bundles, G is a connected topological space.

Finally, we assume that the set of acts is nontrivial and that there is at

least one act that was never chosen in the past:

Assumption 2 (Richness) There exist at least two acts, and at least one

a′ ∈ A such that Ha′ = ∅.

3.5 Axioms on Preferences

We impose the following axioms on %H,T . The first is the weak order axiom,

restricted to profiles that belong to different acts. The second is a mono-

tonicity assumption, stated in a way that takes into account the possibility

that preferences may not be defined between profiles that belong to the same

act. The continuity axiom is standard.
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Axiom 1 (Restricted Weak Order) The binary relation %H,T on F is

reflexive and transitive. For every a, b ∈ A, a 6= b, every f ∈ Fa and g ∈ Fb,
f %H,T g or g %H,T f .

Axiom 2 (Monotonicity) For every a, b ∈ A, a 6= b, f, f ′ ∈ Fa with

f(s) % f ′(s) for all s ∈ Ha ∪ T , and every g ∈ Fb,

• f ′ %H,T g implies f %H,T g,

• g %H,T f implies g %H,T f ′.

Axiom 3 (Continuity) For every a, b ∈ A, a 6= b, and every f ∈ Fa, the

sets {g ∈ Fb : f �H,T g} and {g ∈ Fb : g �H,T f} are nonempty and open in

Fb.

Observe that, given an act a′ with an empty history (whose existence is

ensured by Assumption 2), Axiom 3 implies that there exists at least one

non-null theory (because for any a ∈ A and f ∈ Fa, the sets {g ∈ Fa′ :

f �H,T g} and {g ∈ Fa′ : g �H,T f} are both nonempty). Hence, ν(T ) >

0. This can be relaxed by weakening Assumption 2 to allow all theories

to be null, though we would then need an alternative condition to ensure

uniqueness of our representation.

The following definition will be used to state the next axiom. It is

the standard definition of pairwise comonotonic sets of profiles, apart from

the fact that in our case, comonotonicity will only apply to past problems.

Thus, two profiles are historically-comonotonic if they do not rank any two

problems differently. Appendix A explains how pairwise historical comono-

tonicity is a weaker requirement than standard comonotonicity notions (e.g.,

Köbberling and Wakker (2003, p. 400)) and shows that pairwise-historically-

comonotonic sets share some familiar properties of comonotonic sets.

Definition 1 For any a ∈ A, a set of profiles in Fa is pairwise historically-

comonotonic if there are no two profiles f and g in the set such that

f(p) � f(p′) and g(p) ≺ g(p′)

for some p, p′ ∈ Ha.
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We can now state the version of the tradeoff consistency axiom we will

need for our representation. This condition strengthens the one used in

Köbberling and Wakker (2003) by imposing its implication on pairwise

historically-comonotonic rather than simply comonotonic sets. A familiar

version of comonotonicity would suffice to characterize decisions based only

on theories or based only on problems, but this somewhat stronger notion

is needed to connect the two.

Axiom 4 (Pairwise Comonotonic (“BiCo”) Tradeoff Consistency)

For every a ∈ A, f, f ′, g, g′ ∈ Fa, α, β, γ, δ, δ∗ ∈ G, and s, s′ ∈ Ha ∪ T , if

α{s}f ∼H,T β{s}f ′, γ{s}f ∼H,T δ{s}f ′, α{s′}g ∼H,T β{s′}g′,

then

γ{s′}g ∼H,T δ∗{s′}g′ ⇐⇒ δ ∼ δ∗,

whenever {α{s}f, β{s}f ′, γ{s}f, δ{s}f ′} and {α{s′}g, β{s′}g′, γ{s′}g, δ∗{s′}g′}
are pairwise historically-comonotonic sets, and s and s′ are non-null on the

first and second set, respectively.

The interpretation of this axiom is familiar. Suppose (i) a switch from α

to β in (problem or theory) s just balances a switch from f to f ′ elsewhere,

(ii) a switch from γ to δ in s similarly just balances a switch from f to

f ′ elsewhere, and (iii) a switch from α to β in (problem or theory) s′ just

balances a switch from g to g′ elsewhere. Then the agent is consistent in

how she evaluates tradeoffs, in that a switch from γ to δ in s′ similarly just

balances a switch from g to g′ elsewhere. Note that a set of profiles that

have the same past profile is trivially a pairwise historically-comonotonic set.

This means that if s, s′ ∈ T then the above axiom is equivalent to imposing

the full tradeoff consistency property over preferences restricted to future

profiles. Köbberling and Wakker (2003), in the process of using tradeoff con-

sistency axioms to characterize expected utility, Choquet expected utility,

and prospect theory, argue that such axioms have the advantage of depend-

ing only on indifferences.

The next axiom guarantees the existence of a “neutral payoff” that is

independent of the choice of act a ∈ A. Suppose that the agent compares an

act y ∈ GT , with no history, to an act with the same future profile but also
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with the history Ha. We expect that either (i) past profiles do not affect the

ranking of the two acts (that is, problems in Ha are null), which will be the

case if the agent believes that all the information in past cases is already

incorporated into the likelihood of theories; or (ii) some past profiles make

the act with the history more attractive and some make it less so. In either

case, one would expect there to be a payoff α∗ ∈ G such that the constant

past profile α∗ makes y just as desirable as it would be with no history at

all, that is, (α∗, y) ∼H,T y. (In case (i) this would be the case for any α∗,

and in case (ii) it would follow for some α∗ by continuity.)

One could think of models in which this neutral payoff α∗ depends on the

act a under discussion and/or on the future profile y. Having different neu-

tral payoffs for different acts a might occur if the agent has a certain intrinsic

preference for some acts over others. For example, an agent might have pref-

erences for the labels associated with some acts. However, in our model we

assume that the agent is consequentialist, in the sense that only past pay-

offs matter. Thus, we wish to require that the payoff α∗ be independent

of the act under consideration. Moreover, in line with the problem-theory

separability, we also require that this “neutral” payoff be independent of the

future profile y:

Axiom 5 (Consequentialism) There exists α∗ ∈ G such that, for every

a ∈ A and y ∈ GT , the vector (α∗, y) ∈ Fa satisfies (α∗, y) ∼H,T y.

3.6 The Representation Result

We can now state our representation result, which combines past-based and

future-based reasoning in a single criterion.

Theorem 1 Let %H,T be a binary relation on F . Assume that Richness

holds and that there exist at least two non-null theories. The following state-

ments are equivalent:

(i) %H,T satisfies Restricted Weak Order, Monotonicity, Continuity, BiCo

Tradeoff Consistency, and Consequentialism;

(ii) There exist a continuous function u : G→ R such that 0 ∈ int(u(G)),

a pseudo-capacity σa on 2Ha for each a ∈ A, and a probability ν on T ,
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such that, for all a, b ∈ A, f ∈ Fa, g ∈ Fb,

f %H,T g ⇐⇒
∫
Ha

u(f)dσa+

∫
T
u(f)dν ≥

∫
Hb

u(g)dσb+

∫
T
u(g)dν.

(3)

According to representation (3), our agent compares acts on the basis

of both their performance in past problems and their expected future per-

formance. The agent’s beliefs about the relevance of past problems to the

present one are captured by a collection (σa)a∈A of pseudo-capacities. These

are monotone set functions that are not normalized to 1, because the past

problems in which different acts were chosen may be of different relevance.

On the other hand, the agent’s beliefs about the likelihood of theories are

reflected by a single probability measure ν. The representation depicts a

formal link between these two criteria. Indeed, the overall utility of an act

a depends not only on how the two criteria evaluate it independently, but

also on the relative weight placed on each criterion.

In the extreme situations in which the agent puts all the weight on

either past problems or on theories, we recover the special cases of case-

based decision theory or of Subjective Expected Utility, respectively. The

relative weight of the two modes of reasoning (say, the ratio of σa (Ha) to

ν (T )) is derived from preferences given a specific history, and it is expected

to change from one history to another depending both on the similarity

of past cases to the new problem encountered, and on the performance

of theories in these past cases. Consider our motivating example again.

The day before September 11, the market analyst might have entertained a

collection of theories T , each with some probability weight ν (t) > 0. The

history H = ((qi, ai, ri))i≤n he had was pretty rich, but we can assume, for

simplicity, that the similarity function σ satisfied σ
(
{qi}i≤n , qn+1

)
≈ 0 for a

typical new problem qn+1. That is, there is a sense that all the information in

past cases has already been gleaned and processed, crystallized into theories,

and no additional weight should be put on past cases above and beyond their

impact on future beliefs. However, the new case (qi, ai, ri), involving the

attacks on the World Trade Center and the Pentagon, was hardly predicted

by any of these. We may thus assume that, for a small ε > 0, ν (t) < ε.

By contrast, the new problem was perceived as similar to previous attacks
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(such as Pearl Harbor), and similarity-based prediction became dominant.

We will say that a triple
(
u, (σa)a∈A , ν

)
represents a binary relation %H,T

if it satisfies the properties of Theorem 1. In the degenerate (but important)

case in which all the information is incorporated in ν, and hence all of Ha

are null, one has the standard result that (σa)a∈A and ν are unique and u

is unique up to increasing affine transformations, i.e., u is an interval scale.

In general, (σa)a∈A and ν are unique and u is unique up to increasing linear

transformations, i.e., u is a ratio scale. In the latter case, the utility function

cannot be shifted by a constant: as long as there are some acts a for which

Ha is not a null set, one has to make sure that the utility function assigns the

value 0 to these payoffs α∗ that satisfy the condition of Consequentialism.

Finally, note that the uniqueness properties would be weaker if one does not

require the existence of at least two non-null theories. More explicitly:

Proposition 1 Assume that Richness holds and that there exists at least

two non-null theories. Two triples
(
u, (σa)a∈A , ν

)
and

(
û, (σ̂a)a∈A , ν̂

)
rep-

resent the same binary relation %H,T if and only if

• (i) σ̂a = σa for all a ∈ A, and ν̂ = ν; and

• (ii-a) there exists a ∈ A such that Ha isn’t null, and there exists λ > 0

such that û = λu; or

• (ii-b) for all a ∈ A, Ha is null, and there exists λ > 0 and d ∈ R such

that û = λu+ d.

As anticipated earlier on, this strong uniqueness property allows us to

relate the representations of any two preferences %H,T and %H′,T , where

H = ((qi, ai, ri))i≤n and H ′ = ((qi, ai, ri))i≤n+1, in terms of learning. First,

we identify the impact of the additional case on the Bayesian updating of

the probability over theories: in particular, the prior probability assigned to

each theory is multiplied by its conditional probability (given the realized

case). Second, the next problem is assessed for its similarity to the larger

set of past cases. As a result of this learning process, the relative weight

between theory-based and analogy-based reasoning may well shift.
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4 Implications

4.1 Cases vs. Theories

The decision criterion given by (3) combines information from past cases

and information about theories. How much weight will be placed on past

cases and how much on theories?

We expect the answer to depend on a variety of factors, relating both

to the problem and to the agent. It is no surprise that the mix between

cases and theories should differ across problems. If asked to predict the

outcome of a coin toss, we expect most people to rely primarily on reasoning

about theories. When asked to reason about the implications of autonomous

cars, we expect most people to rely on cases involving previous technological

innovations. Even the best chess players are unable to enumerate a complete

set of theories, and instead rely heavily on analogies to past cases, reflected

in their intensive study of previous games. Checkers has been solved, and

the best checker players are more likely to rely on theories.9

We are interested here in differences across people in proclivities to rely

on cases or theories. Our goal is to offer a behavioral definition of such dif-

ferences, and then to link this definition to our representation of preferences.

4.1.1 Cognitive Styles

We conjecture that people differ in their “cognitive style” in terms of their

propensity to rely relatively heavily on the case-based or the theory-based

modes of reasoning. Similar to the way in which economic agents may differ

in terms of their risk aversion or their ambiguity aversion, they will differ in

the degree to which they believe that they can glean all the information in

past cases and mold it into a probability on theories. Some people may be

prone to believe that past cases are still relevant more than others.

In any attempt to capture such differences, we wish to assume away

other differences, such as concavity of the utility function, or any feature of

the beliefs that may capture some notion of ambiguity aversion. Further, we

9Madrigal (2017) reports that checkers legend Marion Tinsley, at the tenth move of a

game, was able to see a path to victory by working through the game tree to the end, as

much as 64 moves away (though the opponent resigned after only 26 more moves).
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do not wish to compare individuals who differ in their memory of cases or

ability to conceive of theories. Hence, we limit attention to the comparison

of agents who are identical in terms of (i) the memory of past cases and the

set of theories; (ii) their attitude towards risk and uncertainty; (iii) their

similarity judgment of past cases, or sets thereof.

Intuitively, we expect differing proclivities to engage in case-based vs.

theory-based reasoning to be reflected in the relative weights in (3) captured

by the pseudo-capacity σa on cases and the probability ν on theories. To

make this precise, we offer a behavioral definition of what it means for the

agents to be identical in the terms described in the previous paragraph,

and then a behavioral definition of what it means for one agent to be more

prone to theory-based reasoning than another. We then confirm that these

translate into statements about the weights captured by the agents’ pseudo-

capacities on cases.

We begin with the following behavioral notion of comparability.

Definition 2 We say that %1
H,T is comparable to %2

H,T if the following con-

ditions hold:

(a) For all a, b ∈ A, x ∈ GHa, x′ ∈ GHb, and y ∈ GT ,

(x, y) %1
H,T

(
x′, y

)
⇐⇒ (x, y) %2

H,T

(
x′, y

)
; (4)

(b) For all y, y′ ∈ GT ,

y %1
T y
′ ⇐⇒ y %2

T y
′. (5)

The comparisons in (4) and (5) involve profiles that differ only in terms of

past profiles or only in terms of future profiles, so that no tradeoff between

cases and theories arises. The requirement of comparability is that the two

agents agree in their ranking of such profiles. Differences between the two

agents will then arise out of the differing weights agents put on past cases

and theories.

We can provide a behavioral notion of what it means for one agent to

be more prone to theory-based reasoning than another.

Definition 3 Assume that %1
H,T is comparable to %2

H,T . We say that %1
H,T

is more prone to theory-based reasoning than %2
H,T if, for all a, b ∈ A and
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α, β, θ ∈ G such that β � α � θ, the vectors (θ,β) ∈ Fa and (α,α) ∈ Fb
satisfy

(θ,β) %2
H,T (α,α) =⇒

(
θ,β) %1

H,T (α,α
)
.

To interpret this definition, notice that (α,α) is a constant profile, yield-

ing some payoff α in all past problems and all theories. Compare this to a

profile (θ,β) that is expected to deliver a payoff β better than α in all theo-

ries, but also yielded a payoff θ worse than α in all past problems. Suppose

that agent 2 prefers (θ,β) to (α,α). That is, receiving a more attractive

payoff in the future compensates the gloomy memory of the past, making

the overall profile at least as desirable as the constant one yielding simply α.

Definition 3 states that, if agent 1 is more prone to theory-based reasoning

than agent 2, then agent 1 should find the profile (θ,β) better than the

profile (α,α).

Note that the limit case of maximal proneness corresponds to full reliance

on future-based reasoning. In this case, an agent will always find (θ,β)

strictly better than (α,α) as long as β � α.10 In particular, a simple

implication of Definition 3 is that, given a maximally prone agent, any agent

with comparable preferences will be less prone to future-based reasoning (or,

equivalently, more prone to case-based reasoning).

We first characterize comparability of two agents. The notation u1 ≈ u2

stands for u1 = λu2 + d for some λ > 0 and d ∈ R.

Proposition 2 Let %1
H,T and %2

H,T be two binary relations on F that are

represented by
(
u1,
(
σ1a
)
a∈A , ν

1
)

and
(
u2,
(
σ2a
)
a∈A , ν

2
)

, respectively. Then,

the following conditions are equivalent:

(i) %1
H,T is comparable to %2

H,T ;

(ii) u1 ≈ u2, ν1 = ν2, and, for all a ∈ A, σ1a = λHσ
2
a for some λH > 0.

If %1
H,T and %2

H,T are comparable, we will denote by λ1,2H the coefficient

λH provided by the above proposition. (Observe that it is unique, and

clearly, λ1,2H λ2,1H = 1.)

10More precisely, observe that we can capture maximal proneness only as a limit case.

The reason is that our definition of comparability implies that two comparable agents

share the same set of non-null past problems.
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The implication of this characterization is that, given two individuals, 1

and 2, such that %1
H,T and %2

H,T are comparable, we attribute any behav-

ioral differences between them to a single factor, captured by λ1,2H or λ2,1H ,

reflecting their “cognitive style”: the degree to which they tend to trust

their analysis of past cases. Note that the individuals are assumed not to

differ in other cognitive capacities such as the prowess of their memory or

imagination. They have the same set of cases in mind, recalled to the same

(relative) degree, and the same set of theories in mind, judged to have the

same (relative) likelihood. Further, their tastes are identical. Thus, the

differences we might observe can only be attributed to the degree they are

prone to case-based vs. theory-based reasoning.

We can now characterize proneness to theory-based reasoning, building

on our characterization of comparability:

Proposition 3 Let %1
H,T and %2

H,T be two binary relations on F that are

represented by
(
u1,
(
σ1a
)
a∈A , ν

1
)

and
(
u2,
(
σ2a
)
a∈A , ν

2
)

, respectively. As-

sume that %1
H,T is comparable to %2

H,T . Then, the following conditions are

equivalent:

(i) %1
H,T is more prone to theory-based reasoning than %2

H,T ;

(ii) λ1,2H ≤ 1.

According to Proposition 3, the value of the coefficient λ1,2H provides

a succinct comparative measure of proneness to future-based reasoning.

Namely, being more prone translates into a coefficient smaller than 1. In

turn, this means that agent 1 places a smaller relative weight on case-based

reasoning than agent 2. The limit case of maximal proneness is characterized

by λ1,2H approaching 0.

4.1.2 Illustration

To illustrate the tradeoffs between case-based and theory-based reasoning,

suppose a team of entrepreneurs seeks funding from a venture capital firm.

The team describes their business plan in terms of a set of theories T dealing

with the efficacy of their new cancer treatment, the appearance of possible
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competitors, the possible delays and costs involved in clinical trials, the

amount insurers will pay for the treatment, and so forth. According to their

estimates, the expected profits on the initial investment are very enticing.

John finds the description of the theories T and their attendant proba-

bilities compelling, and has little experience with past cases. He adopts the

probability ν ∈ ∆(T ) presented by the entrepreneurs and concludes that the

investment looks quite promising.

Sarah, more experienced, responds skeptically to his enthusiastic descrip-

tion of the project, commenting that she sees nothing wrong with John’s

analysis, but “I’ve seen a parade of entrepreneurs in my time. All of them

seemed convincing, but only a fraction of these projects actually made it. I

can’t challenge your construction of T or the weights you put on its elements,

but I put considerable weight on all these past cases.”

Rachel, with little experience with past cases, is also skeptical of the

project, despite the fact that she objects to no details of his analysis. Rachel

explains, “We can’t be sure that even the most careful of calculations have

captured all the relevant possibilities and weighted them appropriately. The

only thing we can do is rely on our experience, scant as it might be, which

forces us to be cautious about claims involving fantastic new technologies.”

In this example, each new investment problem gives rise to a set of

theories T and a probability ν describing beliefs about the theories. Sarah’s

reasoning differs from John’s in that Sarah has a larger database of past

cases upon which to call. Past cases are evaluated according to the (σa)a∈A,

which are only assumed to be pseudo-capacities, allowing a larger database

to have larger values of σa (Ha). As a result, John and Sarah may well

agree on the probabilities of success of the present enterprise, and may even

have the same cognitive style (λJ,SH = 1), but the very fact that Sarah has

seen more cases can make her more skeptical. In contrast, we imagine John

and Rachel as having the same memory of past cases, but having different

cognitive styles. Rachel is less sanguine about the ability to imagine and

evaluate theories, and as a matter of course places more weight on cases—we

have λJ,RH < 1.

There are many other problems in which people reason with a combi-

nation of specific theories and cases. No two economic booms are precisely
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identical, and one can find theories explaining why the current economy will

keep growing despite the experiences of past recessions. Indeed, Reinhart

and Rogoff (2009) point to a wealth of theories claiming that “this time

is different”. However, it is also both natural and rational for an agent to

reason that “While I cannot find any flaw with the arguments that underlie

ν, I do not understand fully how the economy works, and I also cannot help

seeing some similarities to past cases in which recessions did occur. Hence, it

might be wise to take them into account alongside the theories listed in T .”

And we can well imagine different people resolving these conflicting forces

by placing different emphases on case-based and theory-based reasoning.

4.2 Learning

4.2.1 The Likelihood Principle

The agent learns as new cases are added to her memory. The entry of these

new cases into memory gives a direct learning effect, altering the realized

values of the function σ in (1) and (2). They also prompt a revision in

the probabilities attached to the theories in T in (2). We assume the agent

updates her probability ν over theories, upon the addition of a new case

to her history, by applying the classic Likelihood Principle: For every H =

((qi, ai, ri))i≤n, H ′ = ((qi, ai, ri))i≤n+1 and for any two theories t, t′ with

ν (t′ |H ) , t′ (H, p, a) (rn+1) > 0,

ν (t |H ′ )
ν (t′ |H ′ )

=
ν (t |H ) t (H, p, a) (rn+1)

ν (t′ |H ) t′ (H, p, a) (rn+1)

This allows the model to be consistent with Bayesian reasoning when the

agent relies entirely on theories.

Observe that the principle is stated in the language of conditional prob-

abilities given the entire history, and it therefore does not assume statistical

independence of consecutive cases.

4.2.2 Recency Effects

Following a disaster, people seem to react in ways that are extreme in the

short run, especially in comparison to the long run reactions. For example,

following a plane crash, people may avoid flying for a while (or avoid flying
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with the same airline or from the same airport), but go back to normal

behavior pretty fast. (See, e.g., Gigerenzer (2004).) We explain here how

learning in our model may give rise to such recency effects, which have been

recognized since the early works of Ebbinghaus (1913).

Theories alone may give rise to a recency effect. One theory, say t0,

posits that plane crashes are iid events occurring with probability ε > 0. An

agent whose reasoning is guided solely by this theory would learn nothing

from observing an adverse outcome, and would make no adjustments in

behavior. However, the agent may also entertain other theories involving

“regime changes” having to do with airport security, equipment safety, and

so on. For example, for every period τ there exists a theory tτ , which posits

that the probability of a crash is the aforementioned (small) ε > 0 up to

period τ , but takes the higher value ρ in period τ and thereafter—it may

be that airport security has become lax, or that the airline’s fleet is growing

older, and so on. The likelihood principle would increase the value assigned

to tτ as compared to t0 after an adverse outcome in period τ , as the former

assigns a higher probability to the crash than did the latter, prompting the

agent to shun air travel. The agent will become more amenable to air travel

as subsequent periods τ ′ pass without incident, decreasing the weight placed

on theory τ ′.

The presence of cases can also give rise to recency effect. When an

new airline accident joins the history, theories such as t0 suffer an ad-

verse likelihood shock, whereas case-based reasoning does not. The value

σ ({qn} , qn+1) (measuring the similarity of the current problem to the crash

case) may be sufficiently high as to generate a powerful recency effect. For

instance, let H = ((qi, a, r))i≤n be the history of cases in which act a was

chosen and outcome r resulted, and consider a simple additive specification:

σ({q ∈ P |(q, a, r) ∈ H}, qn+1) =
∑
i≤n

e−(n+1−i). (6)

To interpret this specification, we may think of each past problem as inher-

ently equally similar to the current one, but with similarity decreasing with

time. An agent may forget past problems. Alternatively, an agent may have

perfect memory, and yet decide that, if two cases are equally similar to the

current one, it makes more sense to rely on a more recent case in making
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predictions. This can be justified by the assumption that data generating

process might change (as in “regime change” models), and a more recent

past case is less likely to belong to a different (pre-change) data generating

process.

The combination of theories and cases can amplify recency effects. If

the agent were solely case-based in her reasoning, any function that weighs

more distant cases less would explain some aspects of the recency effect.

But in our model the effect of the single event, as well as of the events

following it, would be magnified because of the existence of theories: when

the plane crash occurs it is not only the most recent case; it also represents

a surprise that shakes the agent’s belief in the theories she used to employ

for prediction. As a mirror image, when normal, non-crash events start

accumulating, the effect is not only the exponential decay of the weight

assigned to the crash; rather, there is a rise in the relative weights assigned

to (at least some) theories as these start looking better despite their failure

to predict the crash.

5 Reasoning in Games

This section illustrates how our model might be used to study players’ rea-

soning in games. Specifically, reasoning by cases and by theories is rem-

iniscent of Selten’s (1978, Section 5) discussion of three levels of decision

making—routine, imagination, and reasoning. The routine level can be cap-

tured by case-based reasoning, where no strategic sophistication is assumed:

the player expects the others to keep playing as they used to. Theories in

our model can reflect strategic reasoning, and can thus capture some aspects

of Selten’s “imagination” and “reasoning”.

The interaction between different modes of reasoning can be particularly

fruitful in rationalizing well-known experimental departures from the game-

theoretic predictions based on backward-induction. For instance, different

cognitive styles may help explain the abundant evidence on the Centipede

game: ordinary players tend to play the game for many stages before defect-

ing, suggesting a predominance of case-based reasoning. On the contrary,

more experienced players, such as professional chess players, engage into
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backward induction more easily—suggesting a dominance of theory-based

reasoning.11 More generally, our model provides insights into the role of

experience in the emergence of cooperation and, in turn, into the learning

process guiding the play of some popular finitely repeated games.

Consider a finitely repeated Prisoner’s Dilemma (PD) in which Player I

and Player II play L > 1 repetitions of the stage game:

C D

C 3, 3 0, 4

D 4, 0 1, 1

.

At stage l ∈ {1. . . . , L} each player has a memory consisting of (l − 1) cases,

where case i < l corresponds to stage i in the repeated game, and specifies

the stage number, the player’s choice and the outcome. Thus, if at i < l

the players played, say, (C,C), each would have a case (i, C, (C,C)) in her

memory, identifying the problem i, her choice C, and the outcome (C,C) ∈
R. The payoff u (r) ∈ G(≡ R) is given by the matrix above.12 We assume

that both players share the same similarity function.

A “theory” is a repeated game strategy of the other player. Thus, each

theory is sufficiently detailed to allow for the computation of the player’s

payoff in the repeated game given each repeated game strategy she may

choose. Note that in this model the objects of choice in the “routine” and the

“reasoning” levels differ: the former, case-based mode of thinking applies to

the selection of a move in the stage game (C orD); the latter, theoretical one,

selects repeated game strategies (in the subgame that remains to be played).

Case-based reasoning cannot apply to entire repeated game strategies in this

model, as there is no history of such games. By contrast, strategic reasoning

should allow players to think of their entire strategies, not only the stage

move they select. If, for example, she can imagine her opponent playing C

11See, e.g., Palacios-Huerta and Volij (2009).
12The nature of the strategic interaction is such that each player’s payoff depends on

the outcome emerging from the acts chosen by both players. In this context, there is a

one-to-one map between outcomes and payoffs, which allows us to define utilities directly

over outcomes and leave aside the distinction between outcomes and payoffs. Furthermore,

we do not need hypothetical payoffs, as these are required only for parameters’ elicitation

in our representation, whereas we can focus on actual payoffs in most of applications.
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until the last stage and then defecting, we would like her to be able to do the

same thing herself. Hence, theories rank entire strategies, while cases rank

only moves in specific stages. Thus, we assume that a player’s choice of a

move in a stage game is an act that yields the highest payoff, when summing

up the case-based payoff for this act in past stages with the expected payoff

of the best repeated game strategy that starts with this act.

When L is large it is unlikely to assume that all repeated game strategies

are considered by a player. We will restrict attention to strategies that play

cooperatively (C) until a certain stage l ≤ L and defect (D) thereafter,

where the strategy switches to D either as a response to the other player’s

choice of D or of its own initiative when the period is late enough. In other

words, for l = 1, ..., L + 1, define a strategy sl that plays D at period i ≥ l

independently of history, and plays C at period i < l if and only if the other

player has played C for all j < i. Otherwise, at i < l, if the other player has

defected at least once before i, sl plays D. This assumption makes the model

less cognitively demanding for the players. It also simplifies our analysis,

because it offers a one-to-one correspondence between the strategies and the

game stages, so that at each stage the player basically has to decide whether

to switch to D assuming neither player has done it so far. In other words,

the game resembles a Centipede game, where choosing D for the first time

is equivalent to stopping the game.

Note that sL+1 corresponds to a “grim trigger” strategy, which never

switches to D on its own. Consequently, if it is matched with itself, it will

choose a dominated move at period L. Similarly, s1 is the always-defect

strategy, and the only Nash equilibrium of the repeated game is (s1, s1).

The strategies of each player correspond to theories of levels of reasoning:

sL can be thought of as a variant of Level-0 reasoning: it plays C until the

last stage, where C is dominated and D is chosen. The best response to

sL is sL−1, which corresponds to Level-1 reasoning. More generally, sL−k

is the best response to sL−k+1 (for k ≥ 1) and sL−k corresponds Level-k

reasoning. Let the set of theories therefore be T = {s1, ..., sL}. Importantly,

all of these theories but s1 would be ruled out by iterated domination.

In general, each theory in T specifies a probability distribution over

outcomes in R given a problem, a history, and an act. In this model these
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probabilistic predictions are degenerate, as the theories describe pure strate-

gies of the other player. We let the belief ν on T be an additive probability,

and assume that it is identical for both players. For the sake of the example,

assume that ν ({sl}) is increasing in l for l > 1. That is, we allow the players

to have some belief on the equilibrium, backward induction theory s1, and

do not compare this probability to those assigned to other theories. Many

people can conceive of the common knowledge argument (corresponding to

k = ∞ and strategy s1) without climbing up the belief hierarchy step by

step, while lower values of k (strategies sl, l > 1) are typically arrived at

by inductive steps. Among these remaining finite levels of reasoning we as-

sume that higher levels of k have lower probabilities. While this may be too

simplistic when k ≤ 3, we find this assumption reasonable for higher levels

of k. We point out the following.

Observation 1 Under the assumptions above, the game will end with (s1, s1)

or (sL, sL).

The logic behind this observation is straightforward: in period 1, the

players have empty memories. All theories sl for l > 1 suggest a higher payoff

for act C over D, while s1 does the opposite. If its relative weight, ν (s1), is

high enough, the players will play the equilibrium (s1, s1), that is, will both

choose D. At the next stage all the other theories will have been refuted, and

the players will be “certain” that they play the equilibrium. Further, with

the payoffs being all non-negative, the outcome (D,D) makes the choice D

more attractive to each player, and they will indeed, play (D,D) throughout

the game.13 If, however, the relative weight of the equilibrium theory, ν (s1),

isn’t high enough, the players will both play C. In this situation two things

will occur: the equilibrium theory s1 will be refuted; and a case will be

added with act C and payoff 3. Both have the same effect of making C even

more attractive in the next stage: the only theory that favored D at the

present stage is now out of the game, and C has a nicer record. If C was

13Notice that if we were to change the neutral payoff to be above 1 this result would no

longer hold. Intuitively, if the players look at the outcome (D,D) and think to themselves,

“We must be able to do better than that”, they might choose C even in the absence of a

theory that explains how C would result in better long-run payoffs.
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chosen over D in the presence of s1 and with no record, it will certainly be

chosen now. The argument continues in the same way until the last stage.

This analysis is rather simplistic. Yet, we find that it captures some

intuitive reasoning. If we find two players cooperating at stage 10 out of 20

repetitions of the prisoners’ dilemma, and ask one of them why, she might

say, “Look, I don’t know exactly what my opponent thinks; I guess we don’t

have common knowledge of rationality between us, or else we wouldn’t be

here, but I don’t know exactly what are the higher order beliefs, and for now

I don’t really care. I’ve been playing C for ten stages and got a nice payoff.

Whatever the reason, it may well apply at stage 11 as well.” Of course, this

would break down at the last stage.

More realistic models can be constructed along similar lines. First, as

already mentioned, ν need not be monotone throughout the range l > 1.

When the game reaches stages L−3 or L−2, the players might suspect that

the backward induction solution is going to be played, and therefore play

it. Second, the reasoning of players in stages of the repeated game might

rely on (i) past stage games from other repeated games, and (ii) “cases”

that describe entire games. Starting with (i), we may assume that each of

C and D has been played in other, similar games of different lengths. Some

of these might have been a priori unbounded in length, some may still be

played at present. Thus, cooperation might look more attractive thanks to

its payoffs in other games. As for (ii), players may reason about the entire

repeated game strategy, and can say, “Oh, I know from experience that my

opponent will cooperate until the last 10% of the periods”. Incorporating

these types of reasoning is compatible with our general framework, which can

therefore be viewed as a theoretical basis to investigate the role of experience

in learning how to play games.14

14Among others, Selten and Stoecker (1986) and, more recently, Embrey, Fréchette, and

Yuksel (2018) provide experimental studies of the impact of experience on cooperative

behavior in the finitely repeated Prisoner’s Dilemma. See Fudenberg and Levine (2016)

for a more general discussion on learning in strategic interactions.
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6 Discussion

We propose an axiomatic model that gives us a snapshot of an agent who

combines analogy-based and theory-based reasonings. We study how the

relative weight between these two modes may depend on (i) the current

problem faced; and (ii) the agent’s “cognitive style” to reason about uncer-

tainty. Learning takes place in the form of addition of new cases to history

that may affect the revision of beliefs over theories—in a Bayesian updating

fashion—as well as the relative weight between case-based and theory-based

reasoning.

The similarity function in our model is best interpreted not as a mea-

sure of “pure” similarity of cases, but similarity given the theories. As

our elicitation procedure measures the similarity values in tandem with the

probability weights, we should interpret it as similarity-in-context. Part of

the learning procedure that we do not model in this paper is the extent to

which “pure similarity” is reduced given the fact that the theories already

capture some of the lessons that a given case can provide. More generally,

one may wish to have a theory of the way past cases are summarized by

new theories, transferring weight from these cases’ similarity values to the

theories’ likelihoods.

We intend our model both to provide a representation of preferences

and to characterize how the beliefs behind these preferences are formed

and updated. There is still work to be done on beliefs. In our current

formulation of the model, the set of theories can only shrink, as cases appear

that falsify theories. However, we expect an agent who accumulates sufficient

experience with cases to identify regularities that are then incorporated into

new theories. We can thus view theories as summaries of coherent collections

of past cases. An agent may initially assign high weight to cases and low

weight to theories, indicating that she does not trust the theories she has

available as sufficiently informative. However, the agent may use past cases

as a motivation for modifying existing theories or forming and attaching

weight to new theories. In the process, she may diminish or eliminate the

weight placed on cases, as she comes to believe that her theories provide

an effective explanation of her environment. This process requires inductive

reasoning, abstraction from details, and imagination in combining parts of
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past cases into new sequences of occurrences that form the inspiration for

considering new theories.

This process would be reflected in our model in an updating of the func-

tion ν: new theories t will be generated and added to T . We can then

expect the relative importance of past cases to decrease. Even if the in-

trinsic similarity between a past case and a present problem is unchanged,

the relevance of the past case would be reduced if the agent views the new

theory as adequately capturing the information contained in that case. We

view a formal development of this process as an important area for further

work.

7 Appendix

7.1 Appendix A: Pairwise Comonotonicity

We start with some simple observations regarding the notion of pairwise

historically-comonotonic profiles in Definition 1. Observe that pairwise

historic-comonotonicity in our model is less restrictive than the standard

comonotonicity condition (e.g., Köbberling and Wakker (2003, p. 400) ),

in that comparisons are only made between two components within a set

of problems. The standard characterizations of comonotonicity in terms of

monotonicity with respect to a permutation have natural counterparts in

our case, as explained below.

Let a ∈ A and Ha = {pi}n(a)i=1 . Given a permutation π on Ha, consider

the set Cπ = {f ∈ Fa : f(π(p1)) % . . . % f(π(pn(a)))}. Then, Cπ is a maxi-

mal pairwise historically-comonotonic set (pairwise comoncone). Note that

(standard) comonotonic sets are subsets of pairwise historically-comonotonic

sets (relative to the appropriate permutations).

For f ∈ Fa, define the binary relation �fHa
on Ha as

pi �fHa
pj ⇔ f(pi) % f(pj).

For a set F ⊆ Fa, define the binary relation �FHa
=
⋂
f∈F �

f
Ha

. The follow-

ing lemma adapts a basic result in the literature to our notion of pairwise

historic-comonotonicity.
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Lemma 1 Let a ∈ A and F ⊂ Fa. Assume that % on G is a weak order.

Then, the following statements are equivalent:

1. F is a pairwise historically-comonotonic set;

2. �FHa
is a weak order;

3. F ⊂ Cπ for some permutation π on Ha.

The proof of the above lemma follows easily by adapting well-known results

(see, e.g., Wakker (1989, Lemma 3) ).

7.2 Appendix B: Proofs

Throughout the appendix, for every a ∈ A, the binary relation %Ha,T stands

for the restriction of %H,T to Fa. If Ha = ∅, then %∅,T coincides with the

restriction of %H,T to GT , and is simply denoted by %T .

We recall that, for a ∈ A, a binary relation %Ha,T on Fa is:

• monotone if f(s) % g(s) for all s ∈ Ha ∪ T implies f %Ha,T g;

• continuous if, for every f ∈ Fa, the sets {g ∈ Fa : f %Ha,T g} and

{g ∈ Fa : g %Ha,T f} are closed.

We start with some preliminary results which will be useful to prove

Theorem 1.

Lemma 2 For every a ∈ A, let the binary relation %Ha,T on Fa be a mono-

tone and continuous weak order that satisfies BiCo Tradeoff Consistency.

Then, for every f, g ∈ Fa, α, γ ∈ G, and s ∈ Ha ∪ T ,

α{s}f %Ha,T α{s}g ⇐⇒ γ{s}f %Ha,T γ{s}g (7)

whenever the set {α{s}f, α{s}g, γ{s}f, γ{s}g} is pairwise historically-comonotonic.

Observe that (7) is a stronger version of the standard Comonotonic Coor-

dinate Independence axiom. In particular, for all s ∈ T , (7) is equivalent to

Coordinate Independence imposed on preferences restricted to future pro-

files.
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Proof. Let a ∈ A and F be a pairwise comoncone in Fa which contains

α{s}f, α{s}g, γ{s}f , and γ{s}g. Without loss of generality, assume that the

profiles in F are ordered from best to worst using the identity permutation

on Ha.

In the formulation of BiCo Tradeoff Consistency, set α = β, γ = δ and

f = f ′. Then, this axiom implies that

α{s}f ∼Ha,T α{s}g ⇐⇒ γ{s}f ∼Ha,T γ{s}g. (8)

For the strict part of the statement, suppose, by contradiction, that

α{s}f �Ha,T α{s}g and γ{s}f ≺Ha,T γ{s}g. Then, there exists s′ ∈ Ha∪T
such that s′ 6= s and f(s′) � g(s′).

To ease notation, set f = α{s}f and g = α{s}g. The following argu-

ments are analogous to the steps of the proof of Lemma 31 in Köbberling

and Wakker (2003) .

Step 1.1 : Consider the set S = {ti ∈ T : f(ti) � g(ti)} and suppose it is

nonempty. Pick some tj ∈ S and consider the profile f(tj){tj}g ∈ Fa. Note

that it belongs to F because g ∈ F .

If f �Ha,T f(tj){tj}g, replace the original profile g with g = f(tj){tj}g
and repeat Step 1.1 by taking another element in S.

If f(tj){tj}g %Ha,T f �Ha,T g, we can find β ∈ G such that β{tj}g ∼Ha,T

f because %Ha,T is continuous. Note that β{tj}g ∈ F . In this case, replace

the original profile g with g = β{tj}g and proceed with Step 2.

Observe that, if Ha is a null set (or simply Ha = ∅), then there is at

least one ti ∈ T such that f(ti) � g(ti) and the procedure described in Step

1.1 can be implemented. If Ha is not null, then Step 1.2 may also be needed

to reach the desired conclusion.

Step 1.2 : Suppose that S = ∅ or S 6= ∅ but, after applying Step 1.1

iteratively using all elements in S, we still have f �Ha,T fSg. Then, it must

be that Ha is not null, and f(pi) � g(pi) for at least one pi ∈ Ha. Let

Q = {pi ∈ Ha : f(pi) � g(pi)} and pj stand for the first rank-ordered index

in Q. Consider the profile f(pj){pj}g ∈ Fa (where g could be the original

profile or the profile resulting from the transformations in Step 1.1) and note

that it belongs to F , too. By proceeding analogously to Step 1.1, we can

find some δ ∈ G such that δ{pj}g ∼Ha,T f .
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Step 2 : Denote by ḡ ∈ Fa the profile constructed from the original profile

g in Step 1. Observe that α{s}f ∼Ha,T α{s}ḡ, which implies, by (8), that

γ{s}f ∼Ha,T γ{s}ḡ. However, note that ḡ(s) % g(s) for all s ∈ Ha ∪ T .

Hence, by monotonicity, γ{s}ḡ %Ha,T γ{s}g �Ha,T γ{s}f , contradiction.

Corollary 1 For every a ∈ A, let the binary relation %Ha,T on Fa be a

monotone and continuous weak order that satisfies BiCo Tradeoff Consis-

tency. Then, for every x, x′ ∈ GHa, and y, y′ ∈ GT ,

(x, y) %Ha,T (x, y′) ⇐⇒ (x′, y) %Ha,T (x′, y′).

whenever the set {(x, y), (x, y′), (x′, y), (x′, y′)} is pairwise historically-comonotonic.

Proof. The result follows from Lemma 2 using an inductive argument.

For two utility functions, u, u′ : G→ R the notation u ≈ u′ implies that

they are positive affine transformations of each other.

Proof of Theorem 1. We prove the sufficiency of the axioms. The ne-

cessity part follows by standard arguments.

Step 1 Let a, b ∈ A, a 6= b and f ∈ Fa. Consider U = {g ∈ Fb : g %H,T
f} and V = {g ∈ Fb : f %H,T g}. By Continuity, the sets U and V are

nonempty and closed; by Restricted Weak Order, U ∪ V = Fb. Since Fb is

connected, U ∩ V 6= ∅. Hence, for every f ∈ Fa, there exists g ∈ Fb such

that g ∼H,T f . �

Step 2 Let a ∈ A. We show that the binary relation %Ha,T satisfies all

axioms of Corollary 10 in Köbberling and Wakker (2003) . Clearly, %Ha,T

is a preorder by Restricted Weak Order. Let f, f ′ ∈ Fa. By Step 1, there

exists g ∈ Fb, for b ∈ A, b 6= a, such that f ∼H,T g. Then, Restricted

Weak Order implies that %Ha,T is complete and, therefore, is a weak order.

Moreover, %Ha,T is monotone: Let f, f ′ ∈ Fa be such that f(s) % f ′(s) for all

s ∈ Ha ∪ T . From Step 1 and Monotonicity, it follows that f %Ha,T f
′. The

binary relation %Ha,T is also continuous: Indeed, let f ∈ Fa and consider

the set {f ′ ∈ Fa : f ′ �Ha,T f}. Step 1 and Continuity directly imply that
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this set is open in Fa. Similarly, it can be shown that {f ′ ∈ Fa : f �Ha,T f
′}

is open, too. Finally, BiCo Tradeoff Consistency implies that %Ha,T satisfies

the Comonotonic Tradeoff Consistency axiom of Köbberling and Wakker

(2003) .

Hence, %Ha,T satisfies all the axioms of Corollary 10 in Köbberling and

Wakker (2003) and, therefore, admits a Choquet expected utility repre-

sentation: there exist a continuous function ua : G → R and a capacity

σa : 2Ha∪T → [0, 1] such that Va(f) =
∫
Ha∪T ua(f)dσa represents %Ha,T .

Moreover, for all b ∈ A such that Hb is null, there exist a continuous func-

tion u : G → R and a capacity ν : 2T → [0, 1] such that VT (f) =
∫
T u(f)dν

represents %T . �

Step 3 Let a ∈ A and, for a given x ∈ GHa , consider the set

Z = {f = (x, y) ∈ Fa | y(t) % x(p) for all p ∈ Ha and t ∈ T} .

Using the representation of %Ha,T , we observe that %Ha,T restricted to Z

coincides with %T and, therefore, we have that (x, y) %Ha,T (x, y′) if and

only if y %T y′ for all (x, y), (x, y′) ∈ Z. By applying Corollary 1, it follows

that

(x′, y) %Ha,T (x′, y′) ⇔ y %T y
′ (9)

for all x′ ∈ GHa such that the set {(x, y), (x, y′), (x′, y), (x′, y′)} is pairwise

historically-comonotonic. Hence, by the uniqueness properties of the repre-

sentation of Köbberling and Wakker (see their Observation 9), we have that

ua ≈ u and σa(A)
σa(T )

= ν(A) for all A ⊆ T . Moreover, Pairwise Comonotonic

Tradeoff Consistency directly implies that %T satisfies the standard Tradeoff

Consistency axiom on GT (see, e.g., Definition 2 of Köbberling and Wakker

(2003) ). Thus, ν is a probability measure, and the pseudo-capacity σa re-

stricted to T is additive. Shift u so that u(α∗) = 0 for the consequence α∗ of

the Consequentialism axiom. (Note that the remaining freedom in selecting

u is only multiplication by a positive number.) �

Step 4 We claim that, for every a ∈ A and f ∈ Fa,

Va(f) =

∫
Ha

u(f)dσa +

∫
T
u(f)dσa.
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To this end, it is sufficient to show that σa(E ∪ F ) = σa(E) + σa(F ) for all

E ⊆ Ha and F ⊆ T .

Let y = (α,D;β, T\D) and y′ = (γ, T ), where D ( T and α, β, γ ∈ G are

such that α � γ � β and ν(D) = u(γ)−u(β)
u(α)−u(β) . Note that we can find such a set

D because, by assumption, there exists at least two non-null theories. Then,

y ∼T y′. Now, let x = (β,Ha) ∈ GHa . By (9), we have (x, y) ∼Ha,T (x, y′)

which, using the representation of %Ha,T , is equivalent to

u(α)σa(D)+u(β) [σa(Ha ∪ T )− σa(D)] = u(γ)σa(T )+u(β) [σa(Ha ∪ T )− σa(T )] .

Replace x with x′ = (θ,B;β,Ha\B) ∈ GHa , where B ⊆ Ha and θ ∈ G such

that γ � θ � β . Then, by Corollary 1, (x′, y) ∼Ha,T (x′, y′) and, using the

representation, we have

u(α)σa(D)+u(θ) [σa(B ∪D)− σa(D)]+u(β) [σa(Ha ∪ T )− σa(B ∪D)] =

u(γ)σa(T ) + u(θ) [σa(B ∪ T )− σa(T )] + u(β) [σa(Ha ∪ T )− σa(B ∪ T )] .

Then, subtracting the previous equality from this last one, we get

[u(θ)− u(β)] [σa(B ∪D)− σa(D)] = [u(θ)− u(β)] [σa(B ∪ T )− σa(T )] ,

and u(θ)− u(β) > 0 delivers

σa(B ∪D)− σa(D) = σa(B ∪ T )− σa(T ) (10)

for all B ⊆ Ha and D ( T .

It remains to show that σa(B∪D)−σa(D) = σa(B), which can be proved

by following a similar argument. Specifically: let z = (γ,Ha) ∈ GHa . Then,

(z, y) ∼Ha,T (z, y′) if and only if

u(α)σa(D)+u(γ) [σa(Ha ∪D)− σa(D)]+u(β) [σa(Ha ∪ T )− σa(Ha ∪D)]

= u(γ)σa(Ha ∪ T ) .

Now, replace z with z′ = (ζ,B; γ,Ha\B) ∈ GHa , where B ⊆ Ha and ζ ∈ G
with α � ζ � γ. Then, (z′, y) ∼Ha,T (z′, y′), which is equivalent to

u(α)σa(D) + u(ζ) [σa(B ∪D)− σa(D)] +

u(γ) [σa(Ha ∪D)− σa(B ∪D)] + u(β) [σa(Ha ∪ T )− σa(Ha ∪D)]

= u(ζ)σa(B) + u(γ) [σa(Ha ∪ T )− σa(B)] .
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A similar subtraction yields

[u(ζ)− u(γ)] [σa(B ∪D)− σa(D)] = [u(ζ)− u(γ)]σa(B)

and u(ζ)− u(γ) > 0 delivers

σa(B ∪D)− σa(D) = σa(B). (11)

By combining conditions (10) and (11), we have σa(E∪F ) = σa(E)+σa(F )

for all E ⊆ Ha and F ⊆ T . �

Hence, for every a ∈ A, the binary relation %Ha,T is represented by

Va(f) =
∫
Ha
u(f)dσa +

∫
T u(f)dσa. Moreover, by the uniqueness properties

of u and σa discussed in Step 3, we can apply the normalization V ′a = Va
σa(T )

and obtain, with little abuse of notation, that

V ′a(f) =

∫
Ha

u(f)dσa +

∫
T
u(f)dν

represents %Ha,T , too. As shown in Step 3, recall that ν ∈ ∆(T ).

Step 5 It remains to derive the representation of %H,T on F — i.e., when

comparing profiles induced by distinct acts a and b in A.

Fix a ∈ A and f ∈ Fa. Step 1 implies that there exists y ∈ GT such that

f ∼H,T y. By Consequentialism, y ∼H,T (α∗, y) (where α∗ ∈ GHa), and by

transitivity we also get f ∼Ha,T (α∗, y) (that is, f ∼H,T (α∗, y) and both

these profiles are in Fa). Using the representation of %Ha,T from Step 4, we

have that f ∼Ha,T (α∗, y) if and only if∫
Ha

u (f) dσa +

∫
T
u (f) dν (12)

=

∫
Ha

u(α∗)dσa +

∫
T
u (y) dν

=

∫
T
u (y) dν.

Next, consider a, b ∈ A, and a pair of profiles, f ∈ Fa and g ∈ Fb. Choose

y, y′ ∈ GT so that f ∼H,T y and g ∼H,T y′. Representation of %H,T by the
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sum of the integrals over the entire space follows from its representation on

GT and (12). More explicitly,

f %H,T g ⇔ y %T y
′ ⇔

∫
T
u (y) dν ≥

∫
T
u
(
y′
)
dν ⇔∫

Ha

u (f) dσa +

∫
T
u (f) dν ≥

∫
Hb

u (g) dσb +

∫
T
u (g) dν.

�

Proof of Proposition 1. Assume first that, for all a ∈ A, Ha is null.

Then any representation of %Ha,T ,
(
u, (σa)a∈A , ν

)
, satisfies σa ≡ 0 for all

a ∈ A. In this case u is unique up to an affine transformation, and ν is

unique, as in Observation 6 of Köbberling and Wakker (2003) , while the

identically-zero pseudo-capacities σa are clearly unique.

Next, assume that, for some a ∈ A, Ha isn’t null. Assume first that

both
(
u, (σa)a∈A , ν

)
and

(
û, (σ̂a)a∈A , ν̂

)
represent %H,T as in Theorem 1.

By Observation 9 of Köbberling and Wakker (2003) , we have (i) σ̂a = σa, for

all a ∈ A, and ν̂ = ν; (ii) there exist λ, d ∈ R with λ > 0 such that û = λu+d.

Choose a consequence α∗ such that (α∗, y) ∼H,T y where (α∗, y) ∈ Fa,
whose existence is guaranteed by Consequentialism. As σa (Ha) = σ̂a (Ha) >

0, it has to be the case that û(α∗) = 0 = u(α∗). Hence, d = 0 and û = λu.

Conversely, it is easy to verify that, if the triple
(
u, (σa)a∈A , ν

)
represents

%H,T as in Theorem 1, so will any triple
(
û, (σa)a∈A , ν

)
where û = λu for

any λ > 0.

Proof of Proposition 2. We only prove that (i) implies (ii), the converse

being routine. First, note that condition (5) of Definition 2 implies that %1
T

coincides with %2
T . Thus, by Observation 6(c) of Köbberling and Wakker

(2003) , we have that ν1 = ν2 and u1 = γu2 + d for some γ > 0 and d ∈ R.

For the remaining, set u := u1 ≈ u2.
If Ha is null for all a ∈ A, condition (ii) trivially holds. So, assume that

Ha is not null for some a ∈ A. For any such a ∈ A, define %iHa
on GHa ,

for i = 1, 2, as x %iHa
x′ if and only if (x, y) %iHa,T

(x′, y) for some y ∈ GT .
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Using the representation of %iHa,T
, we have that

x %iHa
x′ ⇐⇒

∫
Ha

u(x)dσia ≥
∫
Ha

u(x′)dσia.

Hence, %iHa
is independent of the choice of y and, therefore, is well defined.

Moreover, condition (4) implies that

x %1
Ha

x′ ⇐⇒ x %2
Ha

x′ ∀x, x′ ∈ GHa .

That is, %1
Ha

coincides with %2
Ha

. Set %Ha := %1
Ha

= %2
Ha

. Clearly, %Ha

satisfies all axioms of Corollary 10 in Köbberling and Wakker (2003) . Thus,

there exists a unique capacity σa : 2Ha → [0, 1] that represents %Ha . It

follows that the pseudo-capacity σ1a must be proportional to the pseudo-

capacity σ2a, i.e., there exists λHa > 0 such that σ1a = λHaσ
2
a.

It remains to show that λHa = λHb
for all a, b ∈ A. Let x ∈ GHa ,

x′ ∈ GHb , and y ∈ GT . By condition (4), we have

(x, y) %1
H,T (x′, y) ⇐⇒ (x, y) %2

H,T (x′, y)

which, given the representations, is equivalent to

λHa

∫
Ha

u(x)dσ2a ≥ λHb

∫
Hb

u(x′)dσ2b ⇐⇒
∫
Ha

u(x)dσ2a ≥
∫
Hb

u(x′)dσ2b .

Since u(G) is an open interval, the last equivalence can hold only if λHa =

λHb
.

Proof of Proposition 3. Since %1
H,T is comparable to %2

H,T , we have

u := u1 ≈ u2, ν1 = ν2, and, for all a ∈ A, σ1a = λHσ
2
a for some λH > 0.

(i) implies (ii). Choose α∗ ∈ G such that u(α∗) = 0. Recall that this

can be done because u(G) is an open interval containing 0. Let β, θ ∈ G

such that β � α∗ � θ and (θ,β) ∼2
H,T (α∗,α∗). Using the representation

of %2
H,T , we have

u(β) = −u(θ)σ2a(Ha).

Since %1
H,T is more prone to theory-based reasoning than %2

H,T , we have

(θ,β) %1
H,T (α∗,α∗) which is equivalent to

u(β) ≥ −λHu(θ)σ2a(Ha)
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by the representation of %1
H,T . Hence, −u(θ)σ2a(Ha) ≥ −λHu(θ)σ2a(Ha),

implying that λH ≤ 1.

(ii) implies (i). Assume that λH ≤ 1 and that (θ,β) %2
H,T (α,α) for

some β � α � θ. By the representation, we have u(θ)σ2a(Ha) + u(β) ≥
u(α)σ2a(Ha) + u(α). By applying comparability, we obtain

u(β)− u(α)

u(α)− u(θ)
≥ σ2a(Ha) ≥ λHσ2a(Ha),

which implies that (θ,β) %1
H,T (α,α).
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