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Abstract

Research in Economics on COVID19 typically posits an economy
subject to a model of epidemiological dynamics which is at the core of
the analysis. We place this model on the foundations of an epidemi-
ological analysis of the SARS-CoV-2 transmission timescales. We for-
mulate a full model with both epidemiologically-based and clinically-
based parameterization. We show that there is often serious mis-
specification of the model, erroneously characterizing a relatively slow-
moving disease, thereby distorting the policymaker decisions towards
less severe, delayed intervention. Moreover, the scale of the disease is
under-estimated. We also discuss misguided modelling of lockdown
policies.
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Modelling COVID19: Epidemiological Evidence and Model
Misspecifications

1 Introduction

Since March 2020 there has been a rapidly expanding research effort ded-
icated to COVID19 analysis across disciplines, inter alia, in Economics. A
typical analysis posits an economy, which is subject to a model of COVID19
epidemiological dynamics. One type of economic analysis describes a plan-
ner problem that seeks to derive optimal policy. This trades off the costs of
public health outcomes, such as breach of ICU capacity and death, with
the economic costs of suppression policy, including declines in production,
consumption, and investment. It leads to the modelling of the well-known
concept of “flattening the curve” policy. Another strand of papers models
the decentralized economy and the optimal decisions of agents, emphasiz-
ing individual epidemic-related behavior as well as externalities. In both
cases the dynamics of the disease, as well as its features, like its scale, are
at the core of the analysis.

This paper makes two contributions: one is to place this analysis on
the foundations of an epidemiological analysis of SARS-CoV-2 properties,
particularly, its transmission timescales. The main elements of the ensuing
model are two blocks: an infection transmission block, where the num-
ber of new cases is determined; and a clinical block, which characterizes
the development of symptoms, hospitalization, ICU admission and recov-
ery/death. The former block derives from the epidemiologically-grounded
analysis and defines epidemiological dynamics; the latter block models the
dynamics within the health system. We offer a complete model of these
two different dynamics, including epidemiologically-based and clinically-
based parameterizations.

The second contribution is to show that there is often serious misspecifi-
cation of the model, due to errors in the set-up and in the parameterization,
at odds with the epidemiological evidence. These errors have important
consequences for optimal economic planning related to COVID19. In par-
ticular, they are manifested in erroneously characterizing a relatively slow-
moving disease, thereby distorting the policymaker decisions towards less
severe, delayed intervention. Moreover, the scale of the disease is under-
estimated. The underlying cause for the misspecification is the failure to
make the distinction between the epidemiological and clinical aspects of
COVID19. Wrong values are assigned to key parameters of disease dy-
namics, and important parameters are omitted. The mis-specification in
question runs deeper than simply assigning questionable values to para-
meters that are highly uncertain.

Finally, we revisit some prevalent approaches to modelling lockdown
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policies, highlighting problems in their main assumptions, and propose
alternatives. In particular, the quadratic matching properties, flagged by
economists, hold true only in highly unrealistic and implausible lockdown
situations.

The analysis points economic researchers at the correct way to model
the dynamics of the disease. The analysis may also be useful for other epi-
demics beyond COVID19, as much of the discussion is pertinent to other
forms of infectious diseases. Note, in this context, that the set of epidemics
since 1980 is quite large and includes, inter alia, HIV/AIDS, SARS, H5N1,
Ebola, H7N9, H1N1, Dengue fever, and Zika. We see the analysis here as
complementary to the work of Ellison (2020), who focuses on the impor-
tance of the correct modelling of population heterogeneity.

The paper proceeds as follows: Section 2 presents key papers in the
Economics literature which are relevant for the current discussion. Sec-
tion 3 presents the epidemiological analysis of SARS-CoV-2. Section 4 dis-
cusses the epidemiological model which ensues and the parameterization
that is appropriate to use. Section 5 presents the misspecified model used in
part of the Economics literature, its parameterization, and its relation to the
epidemiology-based model. Section 6 discusses the repercussions of using
the wrong model. Section 7 briefly discusses the modelling of lockdowns.
Section 8 concludes.

2 Literature

There has been an explosion of research in Economics on COVID19. Avery
et al (2020) provide an early review and Baqaee, Farhi, Mina, and Stock
(2020) offer a more recent discussion. Two kinds of papers have been mak-
ing use of epidemiological models in ways that are relevant for the current
analysis.

One is work using the concept of an optimizing planner. The point
here is to examine in economic terms the health-related losses due to the
pandemic and the economic consequences of public health policy. In this
framework an objective function is defined, with values taking into account
economic losses and the value of statistical life. Thus, tradeoffs are mea-
sured and alternative policies can be evaluated. The planner constraints
include, inter alia, the disease dynamics typically examined within the SIR
epidemiological model. Prominent contributions include Acemoglu, Cher-
nozhukov, Werning, and Whinston (2020), Akbarpour et al (2020), Alvarez,
Argente, and Lippi (2020), Chari, Kirpalani, and Phelan (2020), Farboodi,
Jarosch, and Shimer (2020), and Jones, Philippon, and Venkateswaran (2020).

The second kind of work includes papers which tie macroeconomic dy-
namics to the epidemiological dynamics of the SIR model. These models
posit that economic behavior has two-way connections with disease trans-

3



mission. Notable contributions include Eichenbaum, Rebelo, and Trabandt
(2020), and Krueger, Uhlig, and Xie (2020). Within the latter strand, the sec-
torial model of Kaplan, Moll, and Violante (2020) is notable for its careful
analysis.

Depending on the exact formulation, we show below how erroneous
use – which has been the case in some, but not all of the papers – might
lead to work with misspecified models, with substantial consequences for
policy. Two key properties of disease dynamics, its scale and speed, are at
the center of misspecification.

3 Epidemiological Analysis of the SARS-CoV-2 Trans-
mission Timescales

At the core of many mathematical frameworks for modeling the spread of
infectious diseases such as COVID19, lie key timescales which character-
ize the transmission of the disease between individuals, as well as its pro-
gression within an infected individual. These concepts are at the founda-
tion of the renewal equation approach, advanced by Lotka (1907), and the
compartmental model approach, proposed by Kermack and McKendrick
(1927). In what follows we present these approaches briefly. For a descrip-
tion of the evolution of the literature and a mathematical treatment of the
equivalence of the two approaches, see Champredon, Dushoff, and Earn
(2018).

3.1 The Generation Interval and the Renewal Equation

The most basic timescale is known as the generation interval and is defined
on an infector-infectee pair as the time passed between their corresponding
infections. The exact duration of the generation interval is hard to quantify,
since transmission time is not observed. The observed quantity is the serial
interval, which measures the time between symptoms onset in the pair. In-
ferring the generation interval from the serial interval requires knowledge
of the incubation period, defined as the time from infection to symptoms
onset. These timescales vary significantly between individuals, and are bet-
ter represented as probability density functions (PDFs). References to key
studies and details on these timescales are provided in Bar-On et al (2020).

Once inferred, the distribution of generation intervals is used for mod-
eling the disease by the Lotka-Euler renewal equation (see Lotka (1907)):

I(t) =
∫ ∞

0
I(t− τ) · β(τ, t)dτ (1)

where I(t) is the number of infected people at calendar time t, and β(τ, t)
is the transmission rate of people in day τ after their infection. The latter,
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also called the infectiousness profile, is the generation interval PDF, g(τ),
scaled by the reproduction number Rt, which is the average number of
people infected by a person:1

β(τ, t) = Rt · g(τ) (2)

3.2 The Compartmental Approach

An equivalent modeling approach discretizes the infectiousness profile by
splitting it up into distinct compartments – the Exposed (E), Infectious
(I), and Resolved (R), namely the Susceptible-Exposed-Infectious-Resolved
(SEIR) model. An infected individual spends some time in each compart-
ment before moving to the next, and is only infectious when in the I com-
partment, with a transmission rate of β(t). The times spent in the E and
I compartments are known as the latent2 and infectious periods, respec-
tively, and the reproduction number, Rt, is thus β(t) times the latter. The
SEIR model is described by the following differential equations:

.
S(t) = −β(t) · I(t) · S(t) (3)
.
E(t) = β(t) · I(t) · S(t)− σE(t) (4)
İ(t) = σE(t)− γI(t) (5)

Ṙ(t) = γI(t) (6)

where S, E, I and R are the fractions of the population in the respective
compartments, β(t) is the transmission rate during the infectious period,
σ is transition rate from E to I and γ is the transition rate from the I to R.
The time spent in the E and I compartments is exponentially distributed
with a mean of 1/σ and 1/γ, respectively. The durations of the latent and
infectious period are distributed according to the PDFs:

TL(t) = σe−σt; TI(t) = γe−γt (7)

Exponentially distributed periods capture the mean but not the mode of
the biologically accurate distributions, as most people stay longer than zero
time at each stage. Therefore, we split the E and I compartments into two
sub-compartments and double the rate of transition. Now, the latent and
infectious periods are the sum of the time spent in the E1 and E2 or I1 and
I2 sub-compartments, respectively, and their distributions are thus the sum

1We use Rt for the reproduction number at date t and omit the time subscript when
time-variability is not essential for the issue at hand.

2Not to be confused with the incubation period, which is the time it takes from infection
to symptoms onset.
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of exponentially distributed random variables, a special case of the Gamma
distribution, known as the Erlang distribution. This type of augmented
model is known as the SEIR-Erlang model, and the corresponding PDFs
for the latent and infectious periods are:

TL(t) = (2σ)2te−2σt; TI(t) = (2γ)2te−2γt (8)

The means of these distributions remain 1/σ and 1/γ, but now the
modes are near the means.

4 A Model Based on the Epidemiological Evidence

We analyze the evolution of the disease in two complementary blocks – in-
fection transmission and clinical progression. The infections transmission
block is characterized by the SEIR-Erlang model discussed above, reflect-
ing the epidemiological properties of COVID19. The clinical block charac-
terizes the development of symptoms, hospitalization, ICU admission and
recovery or death and is needed to describe the dynamics within the public
health system.

4.1 The SEIR-Erlang Block

Graphically, this model is represented in panel a of Figure 1.

Figure 1

The following equations describe this block. Throughout, all stock vari-
ables are expressed as a fraction of the population.

Ṡ(t) = −β(t) · (I1(t) + I2(t)) · S(t) (9)
Ė1(t) = β(t) · (I1(t) + I2(t)) · S(t)− 2σE1(t) (10)
Ė2(t) = 2σE1(t)− 2σE2(t) (11)
İ1(t) = 2σE2(t)− 2γI1(t) (12)
İ2(t) = 2γI1(t)− 2γI2(t) (13)
Ṙ(t) = 2γI2(t) (14)

4.2 The Clinical Block

The clinical block describes the clinical progression of the disease and the
progression of new cases through the healthcare system, depending on the
development and severity of symptoms. We postulate the following. Once
infected, a person enters an incubation period , a P state, during which
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there are no symptoms, lasting for 1/θP on average. Following it, a person
either remains asymptomatic (O) or develops symptoms (M). Denote the
share of asymptomatic cases by η. The others (1− η ) develop symptoms,
and with probability ξ are hospitalized (H). A given share π of patients
develop conditions requiring transition to ICU (denoted X). Once in ICU,
a fraction δ(·) dies. We specify the death probability, once in ICU as:

δ(X(t), X) = δ1 + δ2 ·
I(X(t) > X) ·

(
X(t)− X

)
X(t)

(15)

where X denotes ICU capacity and I is the indicator function.
At any stage, a person may recover (C). The clinical block is represented

graphically in panel b of Figure 1.
The analytical description of the symptomatic branch is:

Ṗ(t) = β(t) · (I1(t) + I2(t)) · S(t)− θP · P(t) (16)
Ṁ(t) = (1− η) · θP · P(t)− θM ·M(t) (17)
Ḣ(t) = ξ · θM ·M(t)− θH · H(t) (18)
Ẋ(t) = π · θH · H(t)− θX · X(t) (19)
Ḋ(t) = δ(X(t)) · θX · X(t) (20)

The parameters θP, θM, θH, and θX relate to the average time that passes
between the stages of infection, symptoms onset, hospitalization, ICU ad-
mission, and death, respectively.

4.3 Connection to Economic Analysis

We posit that the number of people who can work daily, N(t), is given by:

N(t) = l · ρ · (1− D(t)− X(t)− H(t)− φM(t)) (21)

where 0 < l < 1 is the employment fraction out of the total population,
0 < ρ ≤ 1 is the fraction able to work given any policy restrictions, and
0 ≤ φ ≤ 1 is the fraction of people with symptoms who do not work. If
φ = 1, anyone who develops symptoms self-isolates immediately and does
not work.

4.4 Parameterization

The parameterization of this model needs to be both epidemiologically-
and clinically-based. In Table 1 we present the relevant values for the two
blocks, where we rely on the analysis in Bar-On et al (2020) and sources in
the epidemiological and medical literatures.
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Table 1

Note that:
(i) The transmission rate β(t) = γ · Rt depends on the regime – either

lockdown – γ · RL, or out of lockdown (work) – γ · RW .
(ii) The implied Infection Fatality Rate (IFR) is 0.8%,consistent with the

estimates of the Imperial College COVID19 Response Team (2020).
Additionally, based on Bar-On et al (2020), we set δ1 = 0.5. In the U.S.

economy, ICU capacity is X = 1. 8× 10−4 , based on an estimate of approx-
imately 58, 100 ICU beds by the Harvard Global Health Institute.3 Finally,
following Kaplan, Moll, and Violante (2020), we set δ2 = 0.5.

5 Alternative Specifications

The overwhelming majority of Economics papers on COVID19 model both
clinical outcomes and infections dynamics within a single block. In many
cases its calibration is anchored by two numbers that pertain to two sepa-
rate processes – the spread of the disease and its clinical progression:

a. The reproduction number Rt, often calibrated at 2.50, following var-
ious sources, for example CDC estimates.4

b. Duration till death. It takes on average 18-19 days to die from COVID19,
once one gets infected (Imperial College COVID-19 Response Team (2020)).

We proceed by presenting a widely-used model (SIR) and its calibra-
tion, a modification (SIRD) designed to better capture the epidemiology of
the disease, and then discuss the relations between the different specifica-
tions.

5.1 The Widely-Used SIR Model

Economists modelling the dynamics of COVID19 have mostly been using
versions of an SIR model with the following structure.

Ṡ(t) = −β(t) · I(t) · S(t) (22)
İ(t) = β(t) · I(t) · S(t)− γI(t) (23)

Ṙ(t) = γI(t) (24)

Whenever numbers of deceased and recovered are needed the follow-
ing equations are used:

3See https://globalepidemics.org/our-data/hospital-capacity/
4https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html#table-1
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Ḋ(t) = µṘ(t) (25)
Ċ(t) = (1− µ) Ṙ(t) (26)

where D is deceased, C is recovered and µ is the infection fatality rate.
The resulting prevalent calibration is:

1/γ = 18 =⇒ γ = 1/18

β = R · γ = 2.50 · 1/18 = 0.139

Thus:
a. The duration of the disease till death is exactly the duration of the

Infected stage, and it is 1/γ.
b. The infection transmission rate β is pinned down by both R and the

length of the infectious stage.

5.2 The SIRD Model

The specification above contradicts two facts established in the epidemio-
logical analysis of COVID19 and shown in Table 1:

a. There is a latency period of around 3 days in which people infected
are not infectious.

b. People are infectious for a short period of time (4 days on average),
though it may take longer till one recovers or dies.

To tackle the second issue, some economists modify the SIR model,
replacing equation (24) by:

Ṙ(t) = γI(t)− θ · R(t) (27)

where θ defines the duration of the resolving stage R. Also, replacing equa-
tions (25)-(26), one gets:

Ḋ(t) = µ · θ · R(t) (28)
Ċ(t) = (1− µ) · θ · R(t) (29)

This model is denoted SIRD and is calibrated to match the above tar-
gets:

γ = 1/7

θ = 1/11

β = R · γ = 2.5 · 1/7 = 0.357
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5.3 Relations Between the Specifications

We consider four different model specifications:
a. models (i) + (ii) – the full SEIR-Erlang model, discussed above in Sec-

tion 4; we look at both our preferred specification of two sub-compartments
(model i, denoted SEIR − 2, see sub-section 4.1), and a simpler variant
(model ii, denoted SEIR, see equations (3)-(6) in sub-section 3.2);

b. model (iii) – the widely-used SIR model parameterization discussed
in sub-section 5.1;

c. model (iv) – the SIRD model of sub-section 5.2.
Figure 2 illustrates these different specifications and presents the values

given to the key parameters.

Figure 2

The key difference between the models lies in the implied transmission
rate β, as seen in the fourth row of the table in Figure 2. Specifications that
assume a long infectious period have to posit a low transmission rate β in
order to match a particular value ofR, while specifications that assume the
epidemiologically-grounded short infectious period, posit a higher β.

The separation of the infection generation block from the clinical block
lies at the heart of the differences between the widely-used SIR parame-
terization and the benchmark SEIR− 2 model or its simplified counterpart
SEIR. Targeting two separate timescales with one parameter (γ) has impor-
tant implications. The SIRD model presented in sub-section 5.2 alleviates
the problem somewhat by adding a parameter θ thus enabling separate
targeting ofR and duration-till-death.

6 The Implications of Misspecification

We explore the implications of the different dynamics inherent in the mod-
els shown in Figure 2.

6.1 Key Features of the Disease

The length of the infectious period, governed by γ, has important effects
on implied epidemic dynamics. At the start of the epidemic S(t) ' 1. The
SIR model of sub-section 5.1 has the following approximate solution for I
using equation (23):

I (t) = I (0) eλt (30)

where λ = β(t)− γ = γ(Rt − 1).
As seen in Figure 2, different calibrations imply very different disease

growth rates. While all models, except for SIR, imply daily disease growth
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rates of 17%− 21% (doubling every 3.2− 4.2 days), the widely-used SIR
implies a growth rate of 8% (doubling every 8.3 days). Panels a and b in
Figure 3 illustrate the development of the disease, as measured by the stock
of infectious and exposed people (panel a) and hospitalized in ICU (panel
b), under the different models.

Figure 3

a. Slow disease in the widely-used SIR. From Figure 3 and Table 1 one sees
that a specification with a very long infectious period – the SIR model with
γ = 1/18 – implies a much lower transmission rate β and therefore much
slower disease progression; the epidemic is spread out in time, and the
maximal number of infected at a given point in time reaches 24% of the
population on day 120. It takes almost 330 days for the epidemic to die out.

b. Faster dynamics in SEIR and SIRD. By contrast, specifications with a
relatively short infectious period, the SEIR models and the SIRD model,
imply much faster dynamics. The epidemic starts aggressively and cases
rise very fast, reaching the peak on days 59 (for SEIR), 56 (for SEIR− 2),
and 49 (for SIRD). The epidemic also dies off quickly; there are hardly any
people in I after day 120, and the entire episode ends twice as fast as under
the SIR model calibration.

c. Scale of the disease. In the SEIR− 2 model with two sub-compartments,
more people are infected before herd immunity is attained, and so a higher
level of disease is reached. At the peak, the number of infectious/exposed
people reaches over 27% of the population (a difference of 3.5% relative to
the other models, or 11.6 million people in the case of the U.S). This can be
seen in the higher peak of the red lines in I and in X in Figure 3 and in the
numbers presented in panel c of Table 2.

d. Effects on ICU utilization. Panel b of Figure 3 shows that with a slow
moving disease, implied by a long infectious period, ICU capacity is breached
on day 82, and peak demand exceeds capacity by a factor of 7, whereas in
the epidemiological-grounded model it is breached much earlier, on day
41, and peak demand exceeds capacity by a factor of 14.

These numbers pertain to an unmitigated disease and do not corre-
spond to real world data, where suppression measures have been under-
taken.

e. Role of the latent period. Ignoring the short latent period (E), as in SIR
and SIRD, has moderate effects on epidemic dynamics. In SIRD, relative
to the two SEIR models, the epidemic develops somewhat faster at the be-
ginning, because there is no delay between the moment a person becomes
infected and the moment he or she starts spreading the disease.

f. The role of sub-compartments. Division of I and E into sub-compartments
and their number has some effects on both the speed and the scale of the
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disease. Using only one compartment for I and E implies dynamics such
that most of the people exposed become infectious immediately and most
of the infected recover immediately. This is counter-factual. When the dis-
ease is rising, each compartment and sub-compartment is more populated
that the compartment following it.

The underlying dynamics (not shown) are that in the SEIR model, the
disease slows down with the number of E sub-compartments and speeds
up with the number of I sub-compartments; when both E and I sub com-
partments are increased, the combined effect depends on model parame-
ters. Specifically, in COVID19 where γ < σ , the disease speed is faster
when increasing the number of both sub-compartments in E and I.

g. Implications for initial conditions. Under equal initial conditions, it
takes much more time for the epidemic to gain pace under the widely-used
SIR model than under SEIR− 2. One can try to ‘circumvent’ this problem
by assuming a higher initial seed of the infection. Panel c of Figure 3 com-
pares the SEIR− 2 model with initial seed of 10−4 and the SIR model with
initial seed of 10−2. It shows that assuming a higher initial seed does place
SIR on the same timescale as SEIR− 2 in terms of the length of the entire
episode and timing of the peak. However, two problems remain. First, at
peak, the implied number of infectious individuals is still way lower under
SIR, which distorts the problem of a policymaker constrained by a number
of hospital/ICU beds. Second, assuming a seed of 1% of the population im-
plies, in terms of the U.S. economy, that the epidemic has started when over
3.3 million people were infected. This is a highly implausible assumption,
given actual data on known cases and on deaths.

6.2 Initial Disease Dynamics and the Reproduction Number

As mentioned, the Lotka–Euler equation is used in epidemiology to study
disease growth. The reproduction number, R, can be extracted from the
initial growth rates of the disease. Following Wallinga and Lipsitch (2007),
the characteristic equation of Lotka-Euler is given by:

1 =
∫ ∞

0
e−λτ · β(τ)dτ (31)

Using equations (1), (2), (30), and (31) they get:

1
R =

∫ ∞

0
e−λτg(τ)dτ (32)

The term on the right-hand side of equation (32) is both the Laplace
transform of the function g(τ) and the moment generating function M(λ)
of the distribution g(τ).

Thus:
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M(λ) =
∫ ∞

0
eλτg(τ)dτ (33)

and so:

R = 1
M(−λ)

(34)

Wallinga and Lipsitch (2007) go on to show the explicit expression for
R using different formulations of g(τ).

For the case of the SIR model and SIRD:

R = 1+
λ

γ
(35)

For SEIR:

R =
(

1+
λ

γ

)(
1+

λ

σ

)
(36)

For SEIR model with m, n sub-compartments it is given by (using equa-
tion 4 in Wearing et al (2005)):

R = λ( λ
σm+1)

m

γ

(
1−

(
λ

γn + 1
)−n

) (37)

Once the value of λ is known, Figure 2 provides numerical values for
all other parameters needed to computeR.

One concludes that even if one were to recover the reproduction num-
ber R from data on disease speed λ, the incorrect value of γ still leads to
erroneous results for β.

6.3 Implications for an Optimizing Planner Problem

In order to illustrate the consequences of the wrong parameterization of γ,
in particular for the number of deaths and breach of ICUs, we use an opti-
mizing planner model. The planner minimizes the following loss function:

min
∞∫

t=0

e−rt
(

Y (t)
N (t)

(Nss − N (t)) + χḊ (t)
)

dt (38)

The loss function is minimized in PDV terms (r is the discount rate) over
the infinite horizon, where at finite point TV (set at 540 days) the vaccine is
found and the pool of susceptibles drops to zero, so that the disease stops
growing. The loss function includes both lost output Y, due to a decline in
employment N relative to steady state, and the value (with parameter χ)
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of lost life. The latter is affected by the breach of ICU modelled in equation
(15) above.

To work within a realistic but simple set-up, we let the planner decide
on when to start and stop a full lockdown. In Alon et al (2020) we allow
for alternative lockdown strategies and for more choices of timing. We
use the parameterization of Table 1 and start withRt=2.50 consistent with
the findings of Jones and Villaverde (2020). Following the review of the
literature in Karin et al (2020) and their estimates, we useRL = 0.80 for the
lockdown period andRW = 1.50 thereafter. Referring to the U.S. economy,
we use ρ = 0.7 for the fraction of workers able to work in a lockdown,
using evidence cited in Alon et al (2020), and χ = 85.7 for the value of lost
life following Hall, Jones, and Klenow (2020) and Greenstone and Nigam
(2020).5

We solve the planner problem for the optimal start and stop dates of
lockdown with the afore-cited SIR model plugged into the infection trans-
mission block. We subsequently compare results across two scenarios us-
ing the same policy plan: (i) The true model of the disease is in accordance
to plan (‘planned’), and (ii) The true model of the disease is SEIR− 2 (‘re-
alized’). Such comparison gives a sense of the cost of errors made when
using the wrong model and parameter values.

Figure 4

In both scenarios, lockdown is set between days 75 and 147. In the first
scenario, following the blue lines, one can see that in lockdown a small
breach of ICU capacity occurs; in panel b of Figure 4, X attains 2.4 ∗ 10−4

while X = 1.8 ∗ 10−4. This is followed by a decline in infections. Following
the release there is a smaller second wave, which does not breach ICU ca-
pacity. The disease declines to below 0.5% on day 454 and the cumulative
death toll is 0.43%, 1.43 million people in U.S. terms. Loss is 0.42 in PDV,
annual GDP terms, out of which 0.06 is loss of output, and 0.36 is loss of
life.

What is the planner doing? A long lockdown to suppress the disease
until a vaccine is found is too expensive. Therefore the planner tries to
minimize death by trying to avoid both breaching the ICU limit and over-
shooting the herd immunity threshold (S∗ = 0.66) for RW = 1.50). Opti-
mal lockdown balances moderate ICU breach with moderate overshooting

5

χ =
expected years remaining · value of statistical life

Y
POP

=
14 ∗ 400, 000

65, 351
= 85.7
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(S(TV) = 0.48 vs. S∗ = 0.66). The two-wave pattern is consistent with out-
comes observed during the 1918 influenza pandemic in the locations that
implemented NPIs early on (Hatchett, Mecher, and Lipsitch (2007)).

In the second scenario, the planner is mistaking the speed of the disease
and thus the severity of the situation. Most of the outbreak happens before
lockdown is imposed. The epidemic rages unmitigated and declines to
below 0.5% on day 81. The overshooting is huge, with S(TV) = 0.11 vs.
S∗ = 0.66. Following the red lines, one can see the enormous breach of
ICU capacity; X attains 24 ∗ 10−4, ten times the value above. The number
of deaths increases to 12, 962 per 1 million, out of which 5, 859 per 1 million
are due to the breaching of ICU capacity, and the cumulative death toll is
1.29%, 4.28 million people in U.S. terms. Loss is 1.18 in annual GDP PDV
terms, out of which 0.08 is loss of output and 1.1 is loss of life. The latter
is a tremendous loss, caused by the misperception of the dynamics of the
disease.

Three remarks are in place. One is that in Alon et al (2020) we show
that much more favorable outcomes, with much lower death numbers, can
be attained when allowing the planner more choices of lockdown strate-
gies. The cost of mis-specification, though, remains high. The second, and
related to the first, is that in the real world, U.S. death numbers are cur-
rently almost 160, 000, or 0.05% , an order of magnitude lower than even
the relatively ‘benign’ first scenario above. This is so because U.S. policy-
makers have imposed longer lockdowns than the planner above, as they
have access to wider policy choices. Third, most papers, which model the
SIR-based planner, actually present even higher numbers of deaths, in the
order of magnitude of the second scenario above, or worse.

7 Modelling Lockdowns

In this section we question the assumptions underlying prevalent models
of lockdown policy, a non-pharmaceutical intervention (NPI) used world-
wide to control the spread of the disease. In lockdown, work and consump-
tion activities, which involve social interactions, are restricted. We use the
SEIR model to offer a brief discussion of the modelling of these policies.

In what follows, all variables are expressed in stocks, rather than frac-
tions of the total population (denoted by POP). We assume that when the
policymaker locks down a share of (1− α) of the population this part is
completely isolated. The dynamics over time depend on the way the lock-
down is modelled. We discuss two such ways.
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7.1 Lock-and-Hold

Consider a lockdown imposed at time t0. The part of the population that
is locked is chosen at random and held locked down throughout the in-
tervention; namely a “lock-and-hold.” At time t0−, before lockdown, the
following equations hold true with corresponding initial conditions:

Ṡ (t) = −β(t)S (t)
I (t)
POP

(39)

Ė (t) = β(t)S (t)
I (t)
POP

− σE (t) (40)

İ (t) = σE (t)− γI (t) (41)
Ṙ (t) = γI (t) (42)

S (t0−) = S0, E (t0−) = E0, I (t0−) = I0, (43)
R (t0−) = R0, L (t0−) = 0,

S+ E+ I + R+ L = POP

where L denotes the pool of people under lockdown.
After lockdown, at time t0+, the same dynamic equations (39)-(42) hold

true. Since public spaces, public transportation, and other human gather-
ings are occupied by the fraction of the population not locked, this implies
an effective transmission rate of α · β(t). The chance of meeting an infector
is computed out of the active population, α · POP. Therefore, the dynamics
of new cases is governed by Ṡ (t) = −α · β(t)S (t) I(t)

α·POP which reduces to
equation (39). However, initial conditions are altered so as to reflect the
lockdown:

S (t0+) = αS0, E (t0+) = αE0, I (t0+) = αI0, (44)
R (t0+) = αR0, L (t0+) = (1− α) POP,

S+ E+ I + R+ L = POP

By reducing the size of the interacting population, the system is placed
on a new epidemiological track for the duration of the lockdown, described
by the same dynamic equations with different initial conditions.

The effective reproduction number is defined by Re = Rt · S(t)
POP . Lock-

down controls the spread of the disease by reducing S(t), and if Re is
driven below 1, the disease declines for the duration of the lockdown. As
long as one is willing to pay the price of forgone output, such a lockdown,
being intuitive and clear, allows to suppress or control the disease, while
waiting for cures and vaccines.
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7.2 Lock-and-Reshuffle

The quadratic nature of equation (39) above is reminiscent of matching
processes in search models. Some papers in Economics have proposed to
use it so as to exploit this dynamic property. Note, however, that the im-
plicit assumption here is that not only is (1− α) of the population locked,
but that it is released, reshuffled with the rest of population, sampled ran-
domly again, and locked again. We call this type of lockdown “lock-and-
reshuffle.” In order for the quadratic reduction in cases to occur, one needs
to ascertain that at each instant exactly a share α of all susceptibles and a
share α of all infected are active. The disease dynamics are:

·
S(t) = −αβ(t)αS (t)

αI(t)
αPOP

= −β(t)α2S (t)
I(t)
POP

(45)

In such a case, by paying the linear cost of lockdown, one gains a quadratic
reduction in the spread of the disease. Though an attractive feature of the
model, such policy is highly unrealistic and impractical. It assumes that all
workers are interchangeable or that they can be organized in homogenous
groups for sampling. Such mechanisms do not respect the differentiation
between essential and nonessential workers and between workers who can
work remotely and those who cannot. Moreover, the fact that personal
history does not influence the chances of release contradicts basic princi-
ples, such as fairness, stability, and predictability. We believe that “lock and
reshuffle” is not a realistic policy instrument and that lockdowns should be
modelled in more sensible ways. One of the options is the “lock-and-hold”
model presented above.

8 Conclusions

The paper has shown how dynamics in COVID19 should be modelled and
parameterized based on epidemiological and clinical analyses. Duration of
the infectious stage is crucial for implied disease dynamics. The widely-
used SIR model makes a grave mistake and extends the infectiousness pe-
riod, distorting policymaker decisions towards less severe and delayed in-
terventions. It makes a smaller omission by ignoring the latent stage and
not considering sub-compartments. Tweaking the initial seed in the base-
line SIR model to correct its timescale requires implausible assumptions
and is misleading in terms of the predicted burden on the constrained pub-
lic health system.

We use the epidemiologically-grounded model in companion work (Alon
et al (2020)) to explore an optimal planner model with two dimensions –
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the degree of lockdown policies and their timing. The emerging optimal
policy is quite different from the one proposed thus far in the Economics
literature.
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1 Exhibits

Figure 1: The Model

a. The SEIR-Erlang block

b. The Clinical Block
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Table 1 : Epidemiologically-grounded and Clinically-based
Parameterization

a. The SEIR-Erlang Block

Interpretation
Value range
(source)

Preferred
value Number used

σ latent period duration 3− 4 (Compendium) 3 1/3
γ infectious period duration 4− 5 (Compendium) 4 1/4
β transmission rate γ · R

b. The Clinical Block

Interpretation
Value range
(source)

Preferred
value Number used

θP incubation period 5− 6 (Compendium) 5 1/5

θM
days from symptoms
till hospitalization

7 (S1, S2) 7 1/7

θH days in hospital till ICU 2 (S3) 2 1/2
θX days in ICU before death 5.5 (S3, S4) 5.5 1/5.5

η Prob. to be 20%− 50% (Compendium) 50% 0.5
asymptomatic

ξ
Prob. to get
hospitalized

when symptomatic

#Hospitalized
#Infected

= [2%− 4%]
(Compendium)

4%
0.04
1−0.5
= 0.08

π Prob. of ICU admission 10%− 40% (Compendium) 40% 0.4

Notes:
1. Values in third and fourth columns are in days. 2. #Hospitalized#Infected = #Hospitalized

#Symptomatic ·
#Symptomatic
#Infected = ξ · (1− η) =⇒ ξ =

#Hospitalized
#Infected

1−η
3. Sources:
a. Compendium: Bar-On, Sender, Flamholz, Phillips, and Milo (2020).
b. S1: CDC
https://www.cdc.gov/mmwr/volumes/69/wr/mm6915e3.htm
c. S2: The Lancet
https://www.thelancet.com/action/showPdf?pii=S0140-6736%2820%2930183-5
d. S3: Science
https://science.sciencemag.org/content/early/2020/05/12/science.abc3517/tab-pdf
e. S4: JAMA
https://jamanetwork.com/journals/jama/fullarticle/2765184
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Figure 2: Alternative Specifications of the Epidemiological Model

Table 2. Four specifications: parameterizations and properties
2-block specifications 1-block specifications

SEIR SEIR− 2 SIR SIRD

Panel A: Parameterization

σ 1/3 1/3 − −
γ 1/4 1/4 1/18 1/7

θ n.a(a) n.a(a) − 1/11
β R · 1/4 = 0.625 R · 1/4 = 0.625 R · 1/18 = 0.139 R · 1/7 = 0.357

Scale(b) E + I E1 + E2 + I1 + I2 I I

Panel B: Implied exponential growth rate and doubling time

λ(c) 0.17 0.18 0.08 0.21

t(d) 4.16 3.91 8.32 3.23

Panel C: Herd immunity and disease scale at peak

S∗ 0.4 0.39 0.4 0.4
Scale∗ 0.23 0.27 0.23 0.23

Notes: 1. We assume throughout R= 2.50. 2. (a) there is no duration for R in
these models. (b) scale of the disease - the number of people who are either infectious
or exposed (will become infectious). (c) exponential growth rate. (d) doubling time
3. S∗: Herd immunity - the fraction of susceptibles such that the disease scale reaches
its peak. For model a without sub-compartments S∗= 1/R . In SEIR-2 there is no
closed-form expression but S∗< 1/R 4. Scale∗ - scale of the disease at the peak.

For the models with no sub-compartments it is 1− 1+ln(R)R . In SEIR-2 there is no

closed-form expression but Scale∗> 1− 1+ln(R)R .
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Figure 3: Disease Dynamics

Panel A: The Stock of Infectious and Exposed

Panel B: In ICU

Panel C: Comparing SEIR-2 with seed=10−4 and SIR with
seed=10−2
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Figure 4: Planner Errors

Panel A: The Stock of Infectious and Exposed

Panel B: In ICU

Panel C: Cumulative Deaths

Note: Shaded area indicates lockdown period.
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